ADA4938-1_15 [ADI]

Ultralow Distortion Differential ADC Driver;
ADA4938-1_15
型号: ADA4938-1_15
厂家: ADI    ADI
描述:

Ultralow Distortion Differential ADC Driver

文件: 总28页 (文件大小:573K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Ultralow Distortion  
Differential ADC Driver  
ADA4938-1/ADA4938-2  
FUNCTIONAL BLOCK DIAGRAMS  
FEATURES  
Extremely low harmonic distortion (HD)  
−106 dBc HD2 @ 10 MHz  
−82 dBc HD2 @ 50 MHz  
−109 dBc HD3 @ 10 MHz  
−82 dBc HD3 @ 50 MHz  
Low input voltage noise: 2.6 nV/√Hz  
High speed  
ADA4938-1  
12 PD  
–FB  
+IN  
–IN  
1
2
3
4
11 –OUT  
10 +OUT  
+FB  
9 V  
OCM  
−3 dB bandwidth of 1000 MHz, G = +1  
Slew rate: 4700 V/μs  
0.1 dB gain flatness to 150 MHz  
Fast overdrive recovery of 4 ns  
1 mV typical offset voltage  
Figure 1. ADA4938-1 Functional Block Diagram  
Externally adjustable gain  
Differential-to-differential or single-ended-to-differential  
operation  
Adjustable output common-mode voltage  
Wide supply voltage range: +5 V to 5 V  
Single or dual amplifier configuration available  
–IN1  
+FB1  
1
2
3
4
5
6
18 +OUT1  
17 V  
OCM1  
16 –V  
+V  
S2  
S2  
S1  
ADA4938-2  
–V  
15  
14  
+V  
S1  
–FB2  
+IN2  
PD2  
13 –OUT2  
APPLICATIONS  
ADC drivers  
Single-ended-to-differential converters  
IF and baseband gain blocks  
Differential buffers  
Figure 2. ADA4938-2 Functional Block Diagram  
–50  
–60  
G = +2, V  
G = +2, V  
G = +2, V  
G = +2, V  
= 5V p-p  
= 3.2V p-p  
= 2V p-p  
= 1V p-p  
O, dm  
O, dm  
O, dm  
O, dm  
Line drivers  
–70  
GENERAL DESCRIPTION  
–80  
The ADA4938-x is a low noise, ultralow distortion, high speed  
differential amplifier. It is an ideal choice for driving high per-  
formance ADCs with resolutions up to 16 bits from dc to 27 MHz,  
or up to 12 bits from dc to 74 MHz. The output common-mode  
voltage is adjustable over a wide range, allowing the ADA4938 to  
match the input of the ADC. The internal common-mode  
feedback loop also provides exceptional output balance as well  
as suppression of even-order harmonic distortion products.  
–90  
–100  
–110  
–120  
–130  
1
10  
FREQUENCY (MHz)  
100  
Full differential and single-ended-to-differential gain configurations  
are easily realized with the ADA4938-x. A simple external feedback  
network of four resistors determines the closed-loop gain of the  
amplifier.  
Figure 3. SFDR vs. Frequency and Output Voltage  
The ADA4938-1 (single amplifier) is available in a Pb-free,  
3 mm × 3 mm, 16-lead LFCSP. The ADA4938-2 (dual  
amplifier) is available in a Pb-free, 4 mm × 4 mm, 24-lead  
LFCSP. The pinouts have been optimized to facilitate layout and  
minimize distortion. The parts are specified to operate over the  
extended industrial temperature range of −40°C to +85°C.  
The ADA4938-x is fabricated using the Analog Devices, Inc.,  
proprietary third generation, high voltage XFCB process, enabling  
it to achieve very low levels of distortion with an input voltage  
noise of only 2.6 nV/√Hz. The low dc offset and excellent dynamic  
performance of the ADA4938-x make it well-suited for a wide  
variety of data acquisition and signal processing applications.  
Rev. A  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
www.analog.com  
Fax: 781.461.3113 ©2007–2009 Analog Devices, Inc. All rights reserved.  
 
ADA4938-1/ADA4938-2  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Theory of Operation ...................................................................... 19  
Analyzing an Application Circuit ............................................ 19  
Setting the Closed-Loop Gain .................................................. 19  
Estimating the Output Noise Voltage...................................... 19  
The Impact of Mismatches in the Feedback Networks......... 20  
Calculating the Input Impedance of an Application Circuit 20  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagrams............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Dual-Supply Operation ............................................................... 3  
Single-Supply Operation ............................................................. 5  
Absolute Maximum Ratings............................................................ 7  
Thermal Resistance ...................................................................... 7  
ESD Caution.................................................................................. 7  
Pin Configurations and Function Descriptions ........................... 8  
Typical Performance Characteristics ............................................. 9  
Test Circuts...................................................................................... 17  
Terminology .................................................................................... 18  
Input Common-Mode Voltage Range in Single-Supply  
Applications ................................................................................ 20  
Terminating a Single-Ended Input .......................................... 21  
Setting the Output Common-Mode Voltage.......................... 21  
Layout, Grounding, and Bypassing.............................................. 23  
High Performance ADC Driving ................................................. 24  
Outline Dimensions....................................................................... 25  
Ordering Guide .......................................................................... 25  
REVISION HISTORY  
10/09—Rev. 0 to Rev. A  
Added Settling Time Parameter, Table 1 ....................................... 3  
Changes to Linear Output Current Parameter, Table 1............... 3  
Added Settling Time Parameter, Table 3 ....................................... 5  
Changes to Linear Output Current Parameter, Table 3............... 5  
Changes to Figure 5 and Figure 6................................................... 8  
Added EP Row to Table 7 and EP Row to Table 8........................ 8  
Changes to Figure 41...................................................................... 14  
Added New Figure 53, Renumbered Sequentially ..................... 16  
Changes to Table 9.......................................................................... 19  
Added Exposed Pad Notation to Outline Dimensions ............. 25  
Changes to Ordering Guide .......................................................... 25  
11/07—Revision 0: Initial Version  
Rev. A | Page 2 of 28  
 
ADA4938-1/ADA4938-2  
SPECIFICATIONS  
DUAL-SUPPLY OPERATION  
TA = 25°C, +VS = 5 V, VS = −5 V, VOCM = 0 V, RT = 61.9 Ω, RG = RF = 200 Ω, G = +1, RL, dm = 1 kꢀ, unless otherwise noted.  
All specifications refer to single-ended input and differential output, unless otherwise noted. For gains other than G = +1, values for RF  
and RG are shown in Table 11.  
±±IN to ±ꢀOU Performance  
Table 1.  
Parameter  
Conditions  
Min Typ  
Max Unit  
DYNAMIC PERFORMANCE  
−3 dB Small Signal Bandwidth  
Bandwidth for 0.1 dB Flatness  
Large Signal Bandwidth  
Slew Rate  
VOUT = 0.1 V p-p  
VOUT = 2 V p-p  
VOUT = 2 V p-p  
VOUT = 2 V p-p  
VOUT = 2 V p-p  
1000  
150  
800  
4700  
6.5  
MHz  
MHz  
MHz  
V/μs  
ns  
Settling Time  
Overdrive Recovery Time  
NOISE/HARMONIC PERFORMANCE  
Second Harmonic  
VIN = 5 V to 0 V step, G = +2  
4
ns  
VOUT = 2 V p-p, 10 MHz  
VOUT = 2 V p-p, 50 MHz  
VOUT = 2 V p-p, 10 MHz  
VOUT = 2 V p-p, 50 MHz  
f1 = 30.0 MHz, f2 = 30.1 MHz  
f = 30 MHz, RL, dm = 100 Ω  
f = 10 MHz  
G = +4, f = 10 MHz  
f = 10 MHz  
f = 100 MHz  
−106  
−82  
−109  
−82  
89  
45  
2.6  
15.8  
4.8  
−85  
dBc  
dBc  
dBc  
dBc  
dBc  
dBm  
nV/√Hz  
dB  
pA/√Hz  
dB  
Third Harmonic  
IMD  
IP3  
Input Voltage Noise  
Noise Figure  
Input Current Noise  
Crosstalk (ADA4938-2)  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS, dm = VOUT, dm/2; VDIN+ = VDIN− = 0 V  
TMIN to TMAX variation  
1
4
−13  
−0.01  
6
4
mV  
μV/°C  
μA  
μA/°C  
MΩ  
MΩ  
pF  
Input Bias Current  
Input Resistance  
−18  
TMIN to TMAX variation  
Differential  
Common mode  
3
1
Input Capacitance  
Input Common-Mode Voltage  
CMRR  
−VS + 0.3 to +VS − 1.6  
−75  
V
dB  
∆VOUT, dm/∆VIN, cm; ∆VIN, cm = 1 V, f = 1 MHz  
OUTPUT CHARACTERISTICS  
Output Voltage Swing  
Linear Output Current  
Output Balance Error  
Maximum ∆VOUT; single-ended output  
Per amplifier, RL, dm = 20 Ω, f = 10 MHz  
∆VOUT, cm/∆VOUT, dm; ∆VOUT, dm = 1 V; f = 10 MHz  
−VS + 1.2 to +VS − 1.2  
75  
−60  
V
mA  
dB  
Rev. A | Page 3 of 28  
 
ADA4938-1/ADA4938-2  
VꢀCM to ±ꢀOU Performance  
Table 2.  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VOCM DYNAMIC PERFORMANCE  
−3 dB Bandwidth  
Slew Rate  
Input Voltage Noise (RTI)  
VOCM INPUT CHARACTERISTICS  
Input Voltage Range  
Input Resistance  
Input Offset Voltage  
Input Bias Current  
VOCM CMRR  
230  
1700  
7.5  
MHz  
V/μs  
nV/√Hz  
VIN = −3.4 V to +3.4 V, 25% to 75%  
−VS + 1.3 to +VS − 1.3  
10  
3
0.5  
−81  
1.00  
V
kΩ  
mV  
μA  
dB  
V/V  
VOS, cm = VOUT, cm; VDIN+ = VDIN− = 0 V  
∆VOUT, dm/∆VOCM; ∆VOCM = 1 V  
∆VOUT, cm/∆VOCM; ∆VOCM = 1 V  
Gain  
0.95  
4.5  
1.05  
POWER SUPPLY  
Operating Range  
Quiescent Current  
11  
40  
V
Per amplifier  
TMIN to TMAX variation  
Powered down  
37  
40  
2.0  
−80  
mA  
μA/°C  
mA  
dB  
3.0  
Power Supply Rejection Ratio  
POWER DOWN (PD)  
∆VOUT, dm/∆VS; ∆VS = 1 V  
PD Input Voltage  
Powered down  
Enabled  
≤2.5  
≥3  
V
V
Turn-Off Time  
Turn-On Time  
PD Bias Current  
Enabled  
1
200  
μs  
ns  
PD = 5 V  
1
μA  
μA  
°C  
Disabled  
PD = −5 V  
−760  
OPERATING TEMPERATURE RANGE  
−40  
+85  
Rev. A | Page 4 of 28  
ADA4938-1/ADA4938-2  
SINGLE-SUPPLY OPERATION  
TA = 25°C, +VS = 5 V, VS = 0 V, VOCM = +VS/2, RT = 61.9 Ω, RG = RF = 200 Ω, G = +1, RL, dm = 1 kꢀ, unless otherwise noted.  
All specifications refer to single-ended input and differential output, unless otherwise noted. For gains other than G = 1, values for RF and  
RG are shown in Table 11.  
±±IN to ±ꢀOU Performance  
Table 3.  
Parameter  
Conditions  
Min Typ  
Max Unit  
DYNAMIC PERFORMANCE  
−3 dB Small Signal Bandwidth  
Bandwidth for 0.1 dB Flatness  
Large Signal Bandwidth  
Slew Rate  
VOUT = 0.1 V p-p  
VOUT = 2 V p-p  
VOUT = 2 V p-p  
VOUT = 2 V p-p  
VOUT = 2 V p-p  
1000  
150  
750  
3900  
6.5  
MHz  
MHz  
MHz  
V/μs  
ns  
Settling Time  
Overdrive Recovery Time  
NOISE/HARMONIC PERFORMANCE  
Second Harmonic  
VIN = 2.5 V to 0 V step, G = +2  
4
ns  
VOUT = 2 V p-p, 10 MHz  
VOUT = 2 V p-p, 50 MHz  
VOUT = 2 V p-p, 10 MHz  
VOUT = 2 V p-p, 50 MHz  
f = 10 MHz  
G = +4, f = 10 MHz  
f = 10 MHz  
f = 100 MHz  
−110  
−79  
−100  
−79  
2.6  
15.8  
4.8  
−85  
dBc  
dBc  
dBc  
dBc  
nV/√Hz  
dB  
Third Harmonic  
Input Voltage Noise  
Noise Figure  
Input Current Noise  
Crosstalk (ADA4938-2)  
INPUT CHARACTERISTICS  
Offset Voltage  
pA/√Hz  
dB  
VOS, dm = VOUT, dm/2; VDIN+ = VDIN− = VOCM = 2.5 V  
TMIN to TMAX variation  
1
4
−13  
−0.01  
6
4
mV  
μV/°C  
μA  
μA/°C  
MΩ  
MΩ  
pF  
Input Bias Current  
Input Resistance  
−18  
TMIN to TMAX variation  
Differential  
Common mode  
3
1
Input Capacitance  
Input Common-Mode Voltage  
CMRR  
−VS + 0.3 to +VS − 1.6  
−80  
V
dB  
∆VOUT, dm/∆VIN, cm; ∆VIN, cm = 1 V  
OUTPUT CHARACTERISTICS  
Output Voltage Swing  
Linear Output Current  
Output Balance Error  
Maximum ∆VOUT; single-ended output  
Per amplifier, RL, dm = 20 Ω, f = 10 MHz  
∆VOUT, cm/∆VOUT, dm; ∆VOUT, dm = 1 V  
−VS + 1.2 to +VS − 1.2  
65  
−60  
V
mA  
dB  
Rev. A | Page 5 of 28  
 
ADA4938-1/ADA4938-2  
VꢀCM to ±ꢀOU Performance  
Table 4.  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VOCM DYNAMIC PERFORMANCE  
−3 dB Bandwidth  
Slew Rate  
Input Voltage Noise (RTI)  
VOCM INPUT CHARACTERISTICS  
Input Voltage Range  
Input Resistance  
Input Offset Voltage  
Input Bias Current  
VOCM CMRR  
400  
1700  
7.5  
MHz  
V/μs  
nV/√Hz  
VIN = 1.6 V to 3.4 V, 25% to 75%  
−VS + 1.3 to +VS − 1.3  
10  
3
0.5  
−89  
V
kΩ  
mV  
μA  
dB  
V/V  
VOS, cm = VOUT, cm; VDIN+ = VDIN– = VOCM = 2.5 V  
∆VOUT, dm/∆VOCM; ∆VOCM = 1 V  
∆VOUT, cm/∆VOCM; ∆VOCM = 1 V  
Gain  
0.95 1.00  
1.05  
POWER SUPPLY  
Operating Range  
Quiescent Current  
4.5  
34  
11  
36.5  
V
mA  
μA/°C  
mA  
dB  
TMIN to TMAX variation  
Powered down  
∆VOUT, dm/∆VS; ∆VS = 1 V  
40  
1.0  
−80  
1.7  
Power Supply Rejection Ratio  
POWER DOWN (PD)  
PD Input Voltage  
Powered down  
Enabled  
≤2.5  
≥3  
V
V
Turn-Off Time  
Turn-On Time  
PD Bias Current  
Enabled  
1
200  
μs  
ns  
PD = 5 V  
PD = 0 V  
1
−260  
μA  
μA  
°C  
Disabled  
OPERATING TEMPERATURE RANGE  
−40  
+85  
Rev. A | Page 6 of 28  
ADA4938-1/ADA4938-2  
ABSOLUTE MAXIMUM RATINGS  
The power dissipated in the package (PD) is the sum of the  
quiescent power dissipation and the power dissipated in the  
package due to the load drive. The quiescent power is the voltage  
between the supply pins (VS) times the quiescent current (IS).  
The power dissipated due to the load drive depends upon the  
particular application. The power due to load drive is calculated  
by multiplying the load current by the associated voltage drop  
across the device. RMS voltages and currents must be used in  
these calculations.  
Table 5.  
Parameter  
Rating  
Supply Voltage  
12 V  
Power Dissipation  
See Figure 4  
−65°C to +125°C  
−40°C to +85°C  
300°C  
Storage Temperature Range  
Operating Temperature Range  
Lead Temperature (Soldering, 10 sec)  
Junction Temperature  
150°C  
Airflow increases heat dissipation, which effectively reducing  
θJA. In addition, more metal directly in contact with the package  
leads/exposed pad from metal traces, through-holes, ground,  
and power planes reduces the θJA.  
Stresses above those listed under Absolute Maximum Rating  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Figure 4 shows the maximum safe power dissipation in the  
package vs. the ambient temperature for the ADA4938-1,  
16-lead LFCSP (95°C/W) and the ADA4938-2, 24-lead LFCSP  
(65°C/W) on a JEDEC standard 4-layer board.  
THERMAL RESISTANCE  
3.5  
θJA is specified for the device (including exposed pad) soldered  
to a high thermal conductivity 4-layer circuit board, as described in  
EIA/JESD 51-7. The exposed pad is not electrically connected to  
the device. It is typically soldered to a pad on the PCB that is  
thermally and electrically connected to an internal ground plane.  
3.0  
2.5  
ADA4938-2  
2.0  
Table 6. Thermal Resistance  
Package Type  
16-Lead LFCSP (Exposed Pad)  
24-Lead LFCSP (Exposed Pad)  
1.5  
θJA  
95  
65  
Unit  
°C/W  
°C/W  
ADA4938-1  
1.0  
0.5  
0
Maximum Power ±issipation  
The maximum safe power dissipation in the ADA4938-x  
packages is limited by the associated rise in junction temper-  
ature (TJ) on the die. At approximately 150°C, which is the glass  
transition temperature, the plastic changes its properties. Even  
temporarily exceeding this temperature limit can change the  
stresses that the package exerts on the die, permanently shifting  
the parametric performance of the ADA4938. Exceeding a junction  
temperature of 150°C for an extended period can result in changes  
in the silicon devices, potentially causing failure.  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90  
AMBIENT TEMPERATURE (°C)  
Figure 4. Maximum Power Dissipation vs. Temperature, 4-Layer Board  
ESD CAUTION  
Rev. A | Page 7 of 28  
 
 
ADA4938-1/ADA4938-2  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
PIN 1  
PIN 1  
INDICATOR  
INDICATOR  
12 PD  
–FB  
+IN  
–IN  
1
2
3
4
–IN1  
+FB1  
1
2
3
4
5
6
18  
17 V  
16 –V  
15  
14  
+OUT1  
11 –OUT  
10 +OUT  
ADA4938-1  
OCM1  
+V  
ADA4938-2  
TOP VIEW  
(Not to Scale)  
S2  
S2  
S1  
TOP VIEW  
(Not to Scale)  
–V  
+V  
S1  
–FB2  
+IN2  
+FB  
9
V
OCM  
PD2  
13 –OUT2  
NOTES  
1. THE EXPOSED PAD IS NOT ELECTRICALLY CONNECTED  
TOTHE DEVICE. IT IS TYPICALLY SOLDERED TO GROUND  
OR A POWER PLANE ON THE PCB THAT IS THERMALLY  
CONDUCTIVE.  
NOTES  
1. THE EXPOSED PAD IS NOT ELECTRICALLY CONNECTED  
TOTHE DEVICE. IT IS TYPICALLY SOLDERED TO GROUND  
OR A POWER PLANE ON THE PCB THAT IS THERMALLY  
CONDUCTIVE.  
Figure 6. ADA4938-2 Pin Configuration  
Figure 5. ADA4938-1 Pin Configuration  
Table 7. ADA4938-1 Pin Function Descriptions  
Table 8. ADA4938-2 Pin Function Descriptions  
Pin No.  
Mnemonic Description  
Pin No.  
Mnemonic  
Description  
1
2
3
4
−FB  
+IN  
−IN  
+FB  
+VS  
VOCM  
+OUT  
−OUT  
PD  
Negative Output Feedback Pin.  
1
2
3, 4  
5
6
7
8
9, 10  
11  
12  
−IN1  
+FB1  
+VS1  
−FB2  
+IN2  
−IN2  
+FB2  
+VS2  
VOCM2  
+OUT2  
−OUT2  
PD2  
Negative Input Summing Node 1.  
Positive Output Feedback Pin 1.  
Positive Supply Voltage 1.  
Negative Output Feedback Pin 2.  
Positive Input Summing Node 2.  
Negative Input Summing Node 2.  
Positive Output Feedback Pin 2.  
Positive Supply Voltage 2.  
Positive Input Summing Node.  
Negative Input Summing Node.  
Positive Output Feedback Pin.  
Positive Supply Voltage.  
Output Common-Mode Voltage.  
Positive Output for Load Connection.  
Negative Output for Load Connection.  
Power-Down Pin.  
5 to 8  
9
10  
11  
12  
Output Common-Mode Voltage 2.  
Positive Output 2.  
Negative Output 2.  
13 to 16 −VS  
EP  
Negative Supply Voltage.  
Exposed Paddle. The exposed pad is not  
electrically connected to the device. It is  
typically soldered to ground or a  
power plane on the PCB that is  
thermally conductive.  
13  
14  
Power-Down Pin 2.  
−VS2  
15, 16  
17  
18  
19  
20  
Negative Supply Voltage 2.  
Output Common-Mode Voltage 1.  
Positive Output 1.  
Negative Output 1.  
Power-Down Pin 1.  
VOCM1  
+OUT1  
−OUT1  
PD1  
21, 22  
23  
24  
−VS1  
−FB1  
+IN1  
Negative Supply Voltage 1.  
Negative Output Feedback Pin 1.  
Positive Input Summing Node 1.  
EP  
Exposed Paddle. The exposed pad is  
not electrically connected to the  
device. It is typically soldered to  
ground or a power plane on the PCB  
that is thermally conductive.  
Rev. A | Page 8 of 28  
 
ADA4938-1/ADA4938-2  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C, +VS = 5 V, VS = −5 V, VOCM = 0 V, RT = 61.9 Ω, RG = RF = 200 Ω, G = +1, RL, dm = 1 kꢀ, unless otherwise noted.  
All measurements were performed with single-ended input and differential output, unless otherwise noted. For gains other than G = +1,  
values for RF and RG are shown in Table 11.  
3
3
0
0
–3  
–6  
–9  
–12  
–3  
–6  
–9  
–12  
G = +1  
G = +2  
G = +3.16  
G = +5  
G = +1  
G = +2  
G = +3.16  
G = +5  
1
10  
100  
1000  
1
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 7. Small Signal Frequency Response for Various Gains, VOUT = 0.1 V p-p  
Figure 10. Large Signal Frequency Response for Various Gains  
3
3
0
–3  
–6  
–9  
0
–3  
–6  
–9  
V
V
= +5V  
= ±5V  
V
V
= +5V  
= ±5V  
S
S
S
S
–12  
–12  
1
10  
100  
1000  
1
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 8. Small Signal Response for Various Supplies, VOUT = 0.1 V p-p  
Figure 11. Large Signal Response for Various Supplies  
3
3
0
0
–3  
–6  
–3  
–6  
–9  
–12  
–9  
–40°C  
–40°C  
+25°C  
+85°C  
+25°C  
+85°C  
–12  
1
10  
100  
1000  
1
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 9. Small Signal Frequency Response for  
Various Temperatures, VOUT = 0.1 V p-p  
Figure 12. Large Signal Frequency Response for Various Temperatures  
Rev. A | Page 9 of 28  
 
ADA4938-1/ADA4938-2  
3
3
0
0
–3  
–3  
–6  
–6  
–9  
–9  
–12  
–15  
–12  
–15  
–18  
–21  
R
R
R
= 1k  
R
R
R
= 1kΩ  
L
L
L
L
L
L
–18  
–21  
= 100Ω  
= 200Ω  
= 100Ω  
= 200Ω  
1
1
1
10  
100  
1000  
1
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 13. Small Signal Frequency Response for  
Various Loads, VOUT = 0.1 V p-p  
Figure 16. Large Signal Frequency Response for Various Loads  
3
0
3
0
–3  
–6  
–3  
–6  
–9  
–12  
–9  
G = +1  
G = +2  
G = +3.16  
G = +5  
G = +1  
G = +2  
G = +3.16  
G = +5  
–12  
10  
100  
1000  
1
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 14. Small Signal Frequency Response for  
Various Gains, VS = 5 V, VOUT = 0.1 V p-p  
Figure 17. Large Signal Frequency Response for Various Gains, VS = 5 V  
6
3
6
3
0
0
–3  
–6  
–9  
–12  
–3  
–6  
G = +1  
G = +2  
G = +3.16  
G = +5  
G = +1  
G = +2  
G = +3.16  
G = +5  
–9  
–12  
10  
100  
1000  
1
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 15. Small Signal Response for Various Gains, RF = 402 Ω, VOUT = 0.1 V p-p  
Figure 18. Large Signal Response for Various Gains, RF = 402 Ω  
Rev. A | Page 10 of 28  
ADA4938-1/ADA4938-2  
6
3
6
3
0
0
–3  
–6  
–9  
–12  
–3  
–6  
–9  
–12  
G = +1  
G = +2  
G = +3.16  
G = +5  
G = +1  
G = +2  
G = +3.16  
G = +5  
1
10  
100  
1000  
1
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 19. Small Signal Frequency Response for Various Gains, RF = 402 Ω,  
VS = 5 V, VOUT = 0.1 V p-p  
Figure 22. Large Signal Frequency Response for Various Gains, RF = 402 Ω,  
VS = 5 V  
3
3
0
0
–3  
–6  
–9  
–3  
–6  
–9  
V
V
= +5V  
= ±5V  
V
V
= +5V  
= ±5V  
S
S
S
S
–12  
–12  
1
10  
100  
1000  
1
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 20. VOUT, cm Small Signal Frequency Response, VOUT = 0.1 V p-p  
Figure 23. VOUT, cm Large Signal Frequency Response  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.1  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.6  
–0.7  
–0.8  
–0.9  
–1.0  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
R
R
R
= 1kΩ  
R
R
R
= 1kΩ  
L, dm  
L, dm  
L, dm  
L, dm  
L, dm  
L, dm  
= 100Ω  
= 200Ω  
= 100Ω  
= 200Ω  
1
10  
100  
1000  
1
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 21. 0.1 dB Flatness Response for Various Loads, ADA4938-1,  
VOUT = 0.1 V p-p  
Figure 24. 0.1 dB Flatness Response for Various Loads, ADA4938-2,  
VOUT = 0.1 V p-p  
Rev. A | Page 11 of 28  
ADA4938-1/ADA4938-2  
–40  
–40  
–50  
HD2, V = +5V  
HD2, +5V  
HD3, +5V  
S
HD3, V = +5V  
S
–50  
–60  
HD2, ±5V  
HD3, ±5V  
HD2, V = ±5V  
S
HD3, V = ±5V  
S
–60  
–70  
–70  
–80  
–80  
–90  
–90  
–100  
–110  
–120  
–100  
–110  
–120  
1
10  
100  
0
1
2
3
4
5
6
7
8
9
FREQUENCY (MHz)  
V
(V)  
OUT, dm  
Figure 25. Harmonic Distortion vs. Frequency and Supply Voltage  
Figure 28. Harmonic Distortion vs. VOUT and Supply Voltage  
–40  
–40  
HD2, G = +1  
HD3, G = +1  
HD2, R = 1k  
L
HD3, R = 1kΩ  
L
–50  
–50  
–60  
HD2, G = +2  
HD3, G = +2  
HD2, R = 200Ω  
L
HD3, R = 200Ω  
L
–60  
HD2, G = +5  
HD3, G = +5  
HD2, R = 100Ω  
L
HD3, R = 100Ω  
L
–70  
–70  
–80  
–90  
–80  
–90  
–100  
–110  
–120  
–130  
–100  
–110  
–120  
1
10  
100  
1
10  
FREQUENCY (MHz)  
100  
FREQUENCY (MHz)  
Figure 26. Harmonic Distortion vs. Frequency and Gain  
Figure 29. Harmonic Distortion vs. Frequency for Various Loads  
–40  
–50  
–40  
HD2, 10MHz  
HD3, 10MHz  
HD2, 10MHz  
HD3, 10MHz  
–50  
HD2, 70MHz  
HD3, 70MHz  
HD2, 70MHz  
HD3, 70MHz  
–60  
–60  
–70  
–70  
–80  
–80  
–90  
–90  
–100  
–110  
–120  
–130  
–100  
–110  
–120  
–3.3 –2.7 –2.1 –1.5 –0.9 –0.3 0.3 0.9 1.5 2.1 2.7 3.3  
1.7  
1.9  
2.1  
2.3  
2.5  
2.7  
2.9  
3.1  
3.3  
V
(V)  
V
(V)  
OCM  
OCM  
Figure 30. Harmonic Distortion vs. VOCM and Frequency, VS = 5 V  
Figure 27. Harmonic Distortion vs. VOCM and Frequency  
Rev. A | Page 12 of 28  
ADA4938-1/ADA4938-2  
10  
0
0
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–PSRR  
+PSRR  
29.5 29.6 29.7 29.8 29.9 30.0 30.1 30.2 30.3 30.4 30.5  
0.1  
1
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 31. Intermodulation Distortion  
Figure 34. PSRR vs. Frequency  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
0
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
–55  
S22  
S11  
V
= ±5V  
S
V
= +5V  
S
0.1  
1
10  
FREQUENCY (MHz)  
100  
1000  
1
10  
100  
1000  
FREQUENCY (MHz)  
Figure 32. VIN CMRR vs. Frequency  
Figure 35. Return Loss (S11, S22) vs. Frequency  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
–65  
–40  
R
R
R
= 1kΩ  
R
= 200Ω  
L
L
L
L
= 200Ω  
= 100Ω  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
1
10  
100  
1000  
1
10  
100  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 33. Output Balance vs. Frequency  
Figure 36. SFDR vs. Frequency for Various Loads  
Rev. A | Page 13 of 28  
ADA4938-1/ADA4938-2  
26  
100  
10  
1
24  
G = +1  
22  
20  
G = +2  
18  
G = +4  
16  
14  
12  
10  
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
10  
100  
500  
FREQUENCY (Hz)  
FREQUENCY (MHz)  
Figure 40. Input Voltage Noise vs. Frequency  
Figure 37. Noise Figure vs. Frequency  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
10  
8
6
PD INPUT  
4
2
0
–2  
–4  
–6  
–8  
–10  
NEGATIVE OUTPUT  
V
V
× 3.16  
IN  
, dm  
OUT  
–0.5  
TIME (200ns/DIV)  
0
5
10 15 20 25 30 35 40 45 50 55 60  
TIME (5ns/DIV)  
Figure 41. Power-Down Response Time  
Figure 38. Overdrive Recovery Time (Pulse Input)  
45  
40  
35  
30  
25  
20  
15  
10  
5
12  
10  
8
+85°C  
+25°C  
–40°C  
6
4
2
0
–2  
–4  
–6  
–8  
–10  
–12  
V
V
× 3.16  
IN  
, dm  
OUT  
0
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
4.0  
0
50  
100 150 200 250 300 350 400 450 500  
TIME (50ns/DIV)  
VOLTAGE (V)  
Figure 42. Supply Current vs. Power-Down Voltage and Temperature  
Figure 39. Overdrive Amplitude Characteristics (Triangle Wave Input)  
Rev. A | Page 14 of 28  
ADA4938-1/ADA4938-2  
0.20  
0.15  
0.10  
0.05  
0
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
–0.05  
–0.10  
–0.15  
–0.20  
TIME (1ns/DIV)  
TIME (1ns/DIV)  
Figure 43. Small Signal Transient Response, VOUT = 0.1 V p-p  
Figure 46. Large Signal Transient Response  
0.10  
0.08  
0.06  
0.04  
0.02  
0
2.5  
2.0  
1.5  
1.0  
0.5  
0
–0.02  
–0.04  
–0.06  
–0.08  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–0.10  
TIME (2ns/DIV)  
TIME (2ns/DIV)  
Figure 44. VOCM Small Signal Transient Response, VOUT = 0.1 V p-p  
Figure 47. VOCM Large Signal Transient Response  
60  
3
0
+85°C  
+25°C  
–40°C  
ALL CURVES ARE  
NORMALIZED TO V  
= 0V  
OCM  
50  
40  
30  
20  
10  
0
–3  
–6  
–9  
V
= –3.7V  
= –3.5V  
= –3V  
= 0V  
= +3V  
OCM  
OCM  
OCM  
OCM  
OCM  
OCM  
OCM  
V
V
V
V
V
V
= +3.5V  
= +3.7V  
–12  
1
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
4.0  
10  
100  
1000  
VOLTAGE (V)  
FREQUENCY (MHz)  
Figure 45. Supply Current vs. Power-Down Voltage and Temperature, VS = 5 V  
Figure 48. VOUT, dm Small Signal Frequency Response for Various VOCM  
VOUT = 0.1 V p-p  
,
Rev. A | Page 15 of 28  
ADA4938-1/ADA4938-2  
–40  
–50  
55  
–60  
50  
INPUT1, OUTPUT2  
INPUT2, OUTPUT1  
100  
–70  
IP3 100  
–80  
45  
40  
35  
30  
–90  
–100  
–110  
–120  
–130  
–140  
10  
100  
0.3  
1
10  
FREQUENCY (MHz)  
1000  
1.0  
FREQUENCY (MHz)  
Figure 49. IP3 vs. Frequency  
Figure 52. Crosstalk vs. Frequency for ADA4938-2  
3
2
1
ALL CURVES ARE  
NORMALIZED TO V  
= 0V  
OCM  
V
IN  
0
–3  
0.5  
0.1  
0
0
–0.1  
–6  
V
V
V
V
V
V
V
= –3.7V  
= –3.5V  
= –3V  
= 0V  
= +3V  
OCM  
OCM  
OCM  
OCM  
OCM  
OCM  
OCM  
SETTLING ERROR  
–1  
–2  
–0.5  
–1.0  
–9  
= +3.5V  
= +3.7V  
–12  
1
10  
100  
FREQUENCY (MHz)  
1000  
TIME (1ns/DIV)  
Figure 53. 0.1% Settling Time  
Figure 50. VOUT, dm Large Signal Frequency Response for Various VOCM  
100  
10  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
Figure 51. Input Current Noise vs. Frequency  
Rev. A | Page 16 of 28  
ADA4938-1/ADA4938-2  
TEST CIRCUTS  
200  
+5V  
50Ω  
200Ω  
V
V
IN  
OCM  
61.9Ω  
ADA4938  
1kΩ  
200Ω  
27.5Ω  
–5V  
200Ω  
Figure 54. Equivalent Basic Test Circuit  
200Ω  
+5V  
50Ω  
200Ω  
50Ω  
V
V
IN  
OCM  
61.9Ω  
ADA4938  
200Ω  
50Ω  
27.5Ω  
–5V  
200Ω  
Figure 55. Test Circuit for Output Balance  
200Ω  
+5V  
0.1µF  
412Ω  
50Ω  
200Ω  
FILTER  
FILTER  
V
V
IN  
OCM  
61.9Ω  
ADA4938  
0.1µF  
200Ω  
412Ω  
27.5Ω  
–5V  
200Ω  
Figure 56. Test Circuit for Distortion Measurements  
Rev. A | Page 17 of 28  
 
ADA4938-1/ADA4938-2  
TERMINOLOGY  
–FB  
Common-Mode Voltage  
The common-mode voltage is the average of two node voltages.  
ADA4938  
R
F
R
G
+IN  
–OUT  
The output common-mode voltage is defined as  
V
R
V
OUT, dm  
OCM  
L, dm  
V
OUT, cm = (V+OUT + V−OUT)/2  
–IN  
+OUT  
R
G
R
F
Balance  
+FB  
Balance is a measure of how well differential signals are matched in  
amplitude and are exactly 180° apart in phase. Balance is most  
easily determined by placing a well-matched resistor divider  
between the differential voltage nodes and comparing the  
magnitude of the signal at the midpoint of the divider with  
the magnitude of the differential signal. By this definition,  
output balance is the magnitude of the output common-mode  
voltage divided by the magnitude of the output differential  
mode voltage.  
Figure 57. Circuit Definitions  
Differential Voltage  
The differential voltage is the difference between two node  
voltages. For example, the output differential voltage (or  
equivalently, output differential-mode voltage) is defined as  
V
OUT, dm = (V+OUT V−OUT)  
where V+OUT and V−OUT refer to the voltages at the +OUT and  
−OUT terminals with respect to a common reference.  
VOUT, cm  
Output Balance Error =  
VOUT, dm  
Rev. A | Page 18 of 28  
 
 
ADA4938-1/ADA4938-2  
THEORY OF OPERATION  
The ADA4938-x differs from conventional op amps in that it  
has two outputs whose voltages move in opposite directions.  
Like an op amp, it relies on open-loop gain and negative  
feedback to force these outputs to the desired voltages. The  
ADA4938-x behaves much like a standard voltage feedback op  
amp and makes it easier to perform single-ended-to-differential  
conversions, common-mode level shifting, and amplifications of  
differential signals. Also like an op amp, the ADA4938-x has  
high input impedance and low output impedance.  
SETTING THE CLOSED-LOOP GAIN  
The differential-mode gain of the circuit in Figure 57 can be  
determined by  
VOUT, dm  
RF  
RG  
=
VIN, dm  
This assumes the input resistors (RG) and feedback resistors (RF)  
on each side are equal.  
Two feedback loops are employed to control the differential and  
common-mode output voltages. The differential feedback, set  
with external resistors, controls only the differential output  
voltage. The common-mode feedback controls only the common-  
mode output voltage. This architecture makes it easy to set the  
output common-mode level to any arbitrary value. It is forced,  
by internal common-mode feedback, to be equal to the voltage  
applied to the VOCM input, without affecting the differential  
output voltage.  
ESTIMATING THE OUTPUT NOISE VOLTAGE  
The differential output noise of the ADA4938 can be estimated  
using the noise model in Figure 58. The input-referred noise  
voltage density, vnIN, is modeled as a differential input, and the  
noise currents, inIN− and inIN+, appear between each input and  
ground. The noise currents are assumed to be equal and produce a  
voltage across the parallel combination of the gain and feedback  
resistances. vn, cm is the noise voltage density at the VOCM pin.  
Each of the four resistors contributes (4kTR)1/2. Table 9 summarizes  
the input noise sources, the multiplication factors, and the output-  
referred noise density terms.  
The ADA4938-x architecture results in outputs that are highly  
balanced over a wide frequency range without requiring tightly  
matched external components. The common-mode feedback  
loop forces the signal component of the output common-  
mode voltage to zero, which results in nearly perfectly balanced  
differential outputs that are identical in amplitude and are  
exactly 180° apart in phase.  
V
V
nRG1  
nRF1  
R
R
F1  
G1  
inIN+  
+
V
nIN  
V
nOD  
inIN–  
ADA4938  
ANALYZING AN APPLICATION CIRCUIT  
V
OCM  
The ADA4938-x uses open-loop gain and negative feedback to  
force its differential and common-mode output voltages in such  
a way as to minimize the differential and common-mode error  
voltages. The differential error voltage is defined as the voltage  
between the differential inputs labeled +IN and −IN (see  
Figure 57). For most purposes, this voltage can be assumed  
to be zero. Similarly, the difference between the actual output  
common-mode voltage and the voltage applied to VOCM can also  
be assumed to be zero. Starting from these two assumptions,  
any application circuit can be analyzed.  
V
nCM  
R
R
F2  
G2  
V
V
nRG2  
nRF2  
Figure 58. ADA4938 Noise Model  
Table 9. Output Noise Voltage Density Calculations  
Input Noise  
Voltage Density  
Output  
Multiplication Factor  
Output Noise  
Voltage Density Term  
Input Noise Contribution  
Differential Input  
Inverting Input  
Noninverting Input  
VOCM Input  
Gain Resistor, RG1  
Gain Resistor, RG2  
Feedback Resistor, RF1  
Feedback Resistor, RF2  
Input Noise Term  
vnIN  
inIN−  
inIN+  
vn, cm  
vnRG1  
vnRG2  
vnRF1  
vnRF2  
vnIN  
GN  
GN  
GN  
vnO1 = GN(vnIN)  
vnO2 = GN[inIN− × (RG2||RF2)]  
vnO3 = GN[inIN+ × (RG1||RF1)]  
inIN− × (RG2||RF2)  
inIN+ × (RG1||RF1)  
vn, cm  
(4kTRG1)1/2  
(4kTRG2)1/2  
(4kTRF1)1/2  
(4kTRF2)1/2  
GN1 − β2)  
GN(1 − β1)  
GN(1 − β2)  
1
1
vnO4 = GN1 − β2)(vnCM)  
vnO5 = GN(1 − β1)(4kTRG1)1/2  
vnO6 = GN(1 − β2)(4kTRG2)1/2  
vnO7 = (4kTRF1)1/2  
vnO8 = (4kTRF2)1/2  
Rev. A | Page 19 of 28  
 
 
 
ADA4938-1/ADA4938-2  
Similar to the case of a conventional op amp, the output noise  
voltage densities can be estimated by multiplying the input-  
referred terms at +IN and −IN by the appropriate output factor,  
where:  
CALCULATING THE INPUT IMPEDANCE OF AN  
APPLICATION CIRCUIT  
The effective input impedance of a circuit depends on whether  
the amplifier is being driven by a single-ended or differential  
signal source. For balanced differential input signals, as shown  
in Figure 59, the input impedance (RIN, dm) between the inputs  
(+DIN and −DIN) is simply RIN, dm = 2 × RG.  
2
GN  
=
is the circuit noise gain.  
(
β1 + β2  
RG1  
F1 + RG1  
)
RG2  
β1 =  
and β2 =  
are the feedback factors.  
R
RF2 + RG2  
R
F
ADA4938  
When RF1/RG1 = RF2/RG2, β1 = β2 = β, and the noise gain  
becomes  
+V  
S
R
G
G
+IN  
+D  
–D  
IN  
1
RF  
RG  
V
OCM  
V
GN  
=
=1+  
OUT, dm  
β
IN  
–IN  
R
Note that the output noise from VOCM goes to zero in this case.  
The total differential output noise density, vnOD, is the root-sum-  
square of the individual output noise terms.  
R
F
Figure 59. ADA4938 Configured for Balanced (Differential) Inputs  
For an unbalanced, single-ended input signal (see Figure 60),  
the input impedance is  
8
vnOD  
=
v2  
nOi  
i =1  
THE IMPACT OF MISMATCHES IN THE FEEDBACK  
NETWORKS  
RG  
RF  
RG + RF  
RIN, cm  
=
1−  
2×  
(
)
As previously mentioned, even if the external feedback networks  
(RF/RG) are mismatched, the internal common-mode feedback  
loop still forces the outputs to remain balanced. The amplitudes  
of the signals at each output remain equal and 180° out of phase.  
The input-to-output, differential mode gain varies proportionately  
to the feedback mismatch, but the output balance is unaffected.  
R
F
+V  
S
R
G
R
S
R
V
OCM  
T
V
ADA4938  
OUT, dm  
R
G
As well as causing a noise contribution from VOCM, ratio matching  
errors in the external resistors result in a degradation of the  
ability of the circuit to reject input common-mode signals, much  
the same as for a four-resistor difference amplifier made from a  
conventional op amp.  
R
R
T
S
R
F
Figure 60. ADA4938-x Configured for Unbalanced (Single-Ended) Input  
The input impedance of the circuit is effectively higher than it  
would be for a conventional op amp connected as an inverter  
because a fraction of the differential output voltage appears at  
the inputs as a common-mode signal, partially bootstrapping  
the voltage across the Input Gain Resistor RG.  
In addition, if the dc levels of the input and output common-  
mode voltages are different, matching errors result in a small  
differential-mode output offset voltage. When G = +1, with a  
ground referenced input signal and the output common-mode  
level set to 2.5 V, an output offset of as much as 25 mV (1% of  
the difference in common-mode levels) can result if 1% tolerance  
resistors are used. Resistors of 1% tolerance result in a worst-case  
input CMRR of about 40 dB, a worst-case differential-mode  
output offset of 25 mV due to 2.5 V level-shift, and no significant  
degradation in output balance error.  
INPUT COMMON-MODE VOLTAGE RANGE IN  
SINGLE-SUPPLY APPLICATIONS  
The ADA4938 is optimized for level-shifting, ground-referenced  
input signals. As such, the center of the input common-mode  
range is shifted approximately 1 V down from midsupply. The  
input common-mode range at the summing nodes of the amplifier  
is from 0.3 V above −VS to 1.6 V below +VS. To avoid clipping at  
the outputs, the voltage swing at the +IN and −IN terminals must  
be confined to these ranges.  
Rev. A | Page 20 of 28  
 
 
 
ADA4938-1/ADA4938-2  
R
F
TERMINATING A SINGLE-ENDED INPUT  
200  
+V  
Using an example with an input source of 2 V, a source  
resistance of 50 ꢀ, and an overall gain of 1 V/V, four simple  
steps must be followed to terminate a single-ended input to the  
ADA4938-x.  
S
R
R
TH  
G
27.4Ω  
200Ω  
V
TH  
1.1V  
V
O
V
OCM  
ADA4938  
R
0.97V  
L
R
1. The input impedance is calculated using the formula  
G
200Ω  
R
TS  
27.4Ω  
–V  
S
RG  
RF  
RG + RF  
200  
200  
2×(200 +200)  
RIN  
=
=
= 267 Ω  
R
F
1−  
1−  
200Ω  
2×  
(
)
Figure 64. Balancing Gain Resistor RG  
R
F
4. Finally, the feedback resistor is recalculated to adjust the  
output voltage to the desired level.  
R
200  
+V  
IN  
267Ω  
S
R
S
R
a. To make the output voltage VO = 1 V, RF is calculated  
using  
G
50Ω  
200Ω  
V
S
V
OCM  
ADA4938  
R
V
O
2V  
L
VO ×(RG + RTS )  
1×(200 +27.4)  
R
G
RF =  
=
= 207 Ω  
VTH  
1.1  
200Ω  
b. To return the overall gain to 1 V/V (VO = VS = 2 V), RF  
should be  
–V  
S
R
F
200Ω  
VO ×(RG + RTS )  
2×(200 +27.4)  
Figure 61. Single-Ended Input Impedance  
RF =  
=
= 414 Ω  
VTH  
1.1  
2. To provide a 50 ꢀ termination for the source, the Resistor RT  
is calculated such that RT || RIN = 50 ꢀ, or RT = 61.9 ꢀ.  
R
F
R
F
+V  
S
200Ω  
+V  
50Ω  
R
R
S
S
G
50Ω  
200Ω  
R
61.9Ω  
T
R
R
S
G
V
2V  
S
V
OCM  
ADA4938  
R
L
V
O
50Ω  
200Ω  
R
T
V
2V  
S
61.9Ω  
R
V
G
OCM  
ADA4938  
R
V
O
L
200Ω  
R
TS  
27.4Ω  
R
G
200Ω  
–V  
S
R
F
–V  
S
R
F
Figure 65. Complete Single-Ended-to-Differential System  
200Ω  
SETTING THE OUTPUT COMMON-MODE VOLTAGE  
Figure 62. Adding Termination Resistor RT  
The VOCM pin of the ADA4938-x is internally biased at a voltage  
approximately equal to the midsupply point (average value of  
the voltages on V+ and V−). Relying on this internal bias results  
in an output common-mode voltage that is within about 100 mV of  
the expected value.  
3. To compensate for the imbalance of the gain resistors, a correc-  
tion resistor (RTS) is added in series with the inverting Input  
Gain Resistor RG. RTS is equal to the Thevenin equivalent of  
the source resistance (RS||RT).  
R
R
S
TH  
50Ω  
R
61.9Ω  
27.4Ω  
In cases where more accurate control of the output common-  
mode level is required, it is recommended that an external  
source or resistor divider (10 kꢀ or greater resistors) be used.  
T
V
2V  
V
S
TH  
1.1V  
It is also possible to connect the VOCM input to a common-mode  
level (CML) output of an ADC. However, care must be taken to  
ensure that the output has sufficient drive capability. The input  
impedance of the VOCM pin is approximately 10 kꢀ. If multiple  
ADA4938-x devices share one reference output, it is recommended  
that a buffer be used.  
Figure 63. Calculating Thevenin Equivalent  
RTS = RTH = RS || RT = 27.4 ꢀ. Note that VTH is not equal to  
VS/2, which would be the case if the amplifier circuit did  
not affect the termination.  
Rev. A | Page 21 of 28  
 
ADA4938-1/ADA4938-2  
Table 10 and Table 11 list several common gain settings, associated  
resistor values, input impedances, and output noise densities for  
both balanced and unbalanced input configurations. Also shown  
are the input common-mode voltages under the given conditions  
for different VOCM settings for both a 10 V single supply and  
5 V dual supplies.  
Table 10. Differential Ground-Referenced Input, DC-Coupled; See Figure 59  
Common-Mode Level at +IN, −IN (V)  
+VS = 10 V, −VS = 0 V +VS = 5 V, −VS = −5 V  
VOUT, dm = 2.0 V p-p VOUT, dm = 2.0 V p-p  
VOCM = 2.5 V VOCM = 3.5 V VOCM = 1.0 V VOCM = 3.2 V  
Differential  
Output  
Noise Density  
(nV/√Hz)  
Nominal  
Gain (V/V)  
RF (Ω)  
200  
402  
402  
402  
RG (Ω)  
200  
200  
127  
80.6  
RIN, dm (Ω)  
400  
400  
254  
161  
1
2
3.16  
5
6.5  
1.25  
0.83  
0.60  
0.42  
1.75  
1.16  
0.84  
0.58  
0.50  
0.33  
0.24  
0.17  
1.60  
1.06  
0.77  
0.53  
10.4  
13.4  
18.2  
Table 11. Single-Ended Ground-Referenced Input, DC-Coupled, RS = 50 Ω; See Figure 60  
Differential  
Output  
Noise  
Common-Mode Swing at +IN, −IN (V)  
+VS = 10 V, −VS = 0 V +VS = 5 V, −VS = −5 V  
VOUT, dm = 2.0 V p-p VOUT, dm = 2.0 V p-p  
Nominal  
Overall  
Density  
Gain (V/V) RF (Ω) RG1 (Ω) RT (Ω) RIN,se (Ω) RG2 (Ω)1 Gain (V/V)2 (nV/√Hz)  
VOCM = 2.5 V  
VOCM = 3.5 V  
1.50 to 2.00  
1.00 to 1.33  
0.72 to 0.96  
0.50 to 0.67  
VOCM = 0 V  
VOCM = 2.0 V  
0.75 to 1.25  
0.50 to 0.83  
0.36 to 0.60  
0.25 to 0.42  
1
2
3.16  
5
200  
402  
402  
402  
200  
200  
127  
80.6  
60.4  
60.4  
66.5  
76.8  
267  
300  
205  
138  
226  
226  
158  
110  
0.9  
1.8  
2.5  
3.6  
6.2  
9.8  
11.8  
14.7  
1.00 to 1.50  
0.66 to 1.00  
0.48 to 0.72  
0.33 to 0.50  
−0.25 to +0.25  
−0.17 to +0.17  
−0.12 to +0.12  
−0.08 to +0.08  
1 RG2 = RG1 + RTS.  
2 Includes effects of termination match.  
Rev. A | Page 22 of 28  
 
 
 
ADA4938-1/ADA4938-2  
LAYOUT, GROUNDING, AND BYPASSING  
As a high speed device, the ADA4938-x is sensitive to the  
PCB environment in which it operates. Realizing its superior  
performance requires attention to the details of high speed  
PCB design.  
Bypass the power supply pins as close to the device as possible  
and directly to a nearby ground plane. Use high frequency ceramic  
chip capacitors. It is recommended that two parallel bypass capa-  
citors (1000 pF and 0.1 μF) be used for each supply with the  
1000 pF capacitor placed closer to the device; if further away,  
provide low frequency bypassing using 10 μF tantalum capacitors  
from each supply to ground.  
The first requirement is a solid ground plane that covers as much of  
the board area around the ADA4938-x as possible. However, the  
area near the feedback resistors (RF), input gain resistors (RG),  
and the input summing nodes should be cleared of all ground  
and power planes (see Figure 66). Clearing the ground and  
power planes minimizes any stray capacitance at these nodes  
and prevents peaking of the response of the amplifier at high  
frequencies.  
Signal routing should be short and direct to avoid parasitic  
effects. Wherever complementary signals exist, provide a  
symmetrical layout to maximize balanced performance.  
When routing differential signals over a long distance, keep  
PCB traces close together and twist any differential wiring to  
minimize loop area. Doing this reduces radiated energy and  
makes the circuit less susceptible to interference.  
The thermal resistance, θJA, is specified for the device, including  
the exposed pad, soldered to a high thermal conductivity 4-layer  
circuit board, as described in EIA/JESD 51-7. The exposed pad  
is electrically isolated from the device; therefore, it can be con-  
nected to a ground plane using vias. Examples of the thermal  
attach pad and via structure for the ADA4938-1 are shown in  
Figure 67 and Figure 68.  
1.30  
0.80  
1.30 0.80  
Figure 67. Recommended PCB Thermal Attach Pad (ADA4938-1)  
(Dimensions in mm)  
Figure 66. Ground and Power Plane Voiding in Vicinity of RF and RG  
1.30  
TOP METAL  
GROUND PLANE  
0.30  
PLATED  
VIA HOLE  
POWER PLANE  
BOTTOM METAL  
Figure 68. Cross-Section of a 4-Layer PCB (ADA4938-1) Showing a Thermal Via Connection to the Buried Ground Plane (Dimensions in mm)  
Rev. A | Page 23 of 28  
 
 
 
 
ADA4938-1/ADA4938-2  
HIGH PERFORMANCE ADC DRIVING  
The ADA4938-x is ideally suited for dc-coupled baseband  
applications. The circuit in Figure 69 shows a front-end connection  
for an ADA4938-x driving an AD9446, 16-bit, 80 MSPS ADC.  
The AD9446 achieves its optimum performance when it is  
driven differentially. The ADA4938-x eliminates the need for a  
transformer to drive the ADC, performs a single-ended-to-  
differential conversion, buffers the driving signal, and provides  
appropriate level shifting for dc coupling.  
The circuit in Figure 70 shows a simplified front-end connection  
for an ADA4938-x driving an AD9246, 14-bit, 125 MSPS ADC.  
The AD9246 achieves its optimum performance when it is  
driven differentially. The ADA4938-x eliminates the need for a  
transformer to drive the ADC, performs a single-ended-to-  
differential conversion, buffers the driving signal, and provides  
appropriate level shifting for dc coupling.  
The ADA4938-x is configured with dual 5 V supplies and a  
gain of ~2 V/V for a single-ended input to differential output.  
The 76.8 ꢀ termination resistor, in parallel with the single-  
ended input impedance of 137 ꢀ, provides a 50 ꢀ dc termination  
for the source. The additional 30.1 ꢀ (120 ꢀ total) at the inverting  
input balances the parallel dc impedance of the 50 ꢀ source and  
the termination resistor driving the noninverting input.  
The ADA4938-x is configured with a single 10 V supply and  
unity gain for a single-ended input to differential output. The  
61.9 ꢀ termination resistor, in parallel with the single-ended  
input impedance of 267 ꢀ, provides a 50 ꢀ termination for the  
source. The additional 26 ꢀ (226 ꢀ total) at the inverting input  
balances the parallel impedance of the 50 ꢀ source and the  
termination resistor driving the noninverting input.  
The signal generator has a symmetric, ground-referenced  
bipolar output. The VOCM pin of the ADA4938-x is connected to  
the CML pin of the AD9246 to set the output common-mode  
level at the appropriate point. A portion of this is fed back to the  
summing nodes, biasing −IN and +IN at 0.55 V. For a common-  
mode voltage of 0.9 V, each ADA4938 output swings between  
0.4 V and 1.4 V, providing a 2 V p-p differential output.  
The signal generator has a symmetric, ground-referenced bipolar  
output. The VOCM pin of the ADA4938-x is biased with an external  
resistor divider to obtain the desired 3.5 V output common-mode.  
One-half of the common-mode voltage is fed back to the summing  
nodes, biasing −IN and +IN at 1.75 V. For a common-mode vol-  
tage of 3.5 V, each ADA4938-x output swings between 2.7 V  
and 4.3 V, providing a 3.2 V p-p differential output.  
The output is dc-coupled to a single-pole, low-pass filter. The filter  
reduces the noise bandwidth of the amplifier and provides some  
level of isolation from the switched capacitor inputs of the ADC.  
The AD9246 is set for a 2 V p-p full-scale input by connecting the  
SENSE pin to AGND. The inputs of the AD9246 are biased at  
1 V by connecting the CML output, as shown in Figure 70.  
The output of the amplifier is dc-coupled to the ADC through a  
second-order, low-pass filter with a −3 dB frequency of 50 MHz.  
The filter reduces the noise bandwidth of the amplifier and  
isolates the driver outputs from the ADC inputs.  
The AD9446 is configured for a 4.0 V p-p full-scale input by  
setting R1 = R2 = 1 kꢀ between the VREF pin and SENSE pin  
in Figure 69.  
10V  
200Ω  
5V (A) 3.3V (A) 3.3V (D)  
10V  
AVDD2 AVDD1 DRVDD  
30nH  
30nH  
200Ω  
50Ω  
VIN+  
47pF  
VIN–  
AD9446  
+
BUFFER T/H  
24.3Ω  
24.3Ω  
V
61.9Ω  
OCM  
ADA4938  
16  
ADC  
SIGNAL  
GENERATOR  
226Ω  
CLOCK/  
TIMING  
REF  
200Ω  
AGND SENSE  
VREF  
R1  
R2  
Figure 69. ADA4938 Driving an AD9446, 16-Bit, 80 MSPS ADC  
200Ω  
1.8V  
+5V  
76.8Ω  
50Ω  
33Ω  
90Ω  
V
AVDD DRVDD  
VIN–  
+
OCM  
D13 TO  
D0  
V
IN  
AD9246  
10pF  
ADA4938  
90Ω  
VIN+  
AGND SENSE CML  
33Ω  
30.1Ω  
0.1µF  
–5V  
200Ω  
Figure 70. ADA4938 Driving an AD9246, a 14-Bit, 125 MSPS ADC  
Rev. A | Page 24 of 28  
 
 
 
ADA4938-1/ADA4938-2  
OUTLINE DIMENSIONS  
0.50  
0.40  
0.30  
3.00  
BSC SQ  
0.60 MAX  
PIN 1  
INDICATOR  
*
1.45  
1.30 SQ  
1.15  
13  
16  
1
0.45  
(BOTTOM VIEW)  
12  
PIN 1  
INDICATOR  
2.75  
BSC SQ  
TOP  
VIEW  
EXPOSED  
PAD  
4
9
0.50  
BSC  
8
5
0.25 MIN  
1.50 REF  
0.80 MAX  
12° MAX  
0.65 TYP  
1.00  
0.85  
0.80  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.30  
0.23  
0.18  
0.20 REF  
*
COMPLIANT TO JEDEC STANDARDS MO-220-VEED-2  
EXCEPT FOR EXPOSED PAD DIMENSION.  
Figure 71. 16-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
3 mm × 3 mm Body  
(CP-16-2)  
Dimensions shown in millimeters  
0.60 MAX  
4.00  
BSC SQ  
0.60 MAX  
PIN 1  
INDICATOR  
1
24  
19  
18  
PIN 1  
INDICATOR  
0.50  
BSC  
2.25  
TOP  
VIEW  
3.75  
BSC SQ  
EXPOSED  
2.10 SQ  
1.95  
PAD  
(BOTTOM VIEW)  
0.50  
0.40  
0.30  
6
13  
12  
7
0.25 MIN  
0.80 MAX  
0.65TYP  
2.50 REF  
1.00  
0.85  
0.80  
12° MAX  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.30  
0.23  
0.18  
0.20 REF  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-220-VGGD-2  
Figure 72. 24-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
4 mm × 4 mm Body, Very Thin Quad  
(CP-24-1)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
Package Description  
16-Lead LFCSP_VQ  
16-Lead LFCSP_VQ  
16-Lead LFCSP_VQ  
24-Lead LFCSP_VQ  
24-Lead LFCSP_VQ  
24-Lead LFCSP_VQ  
Package Option  
CP-16-2  
CP-16-2  
CP-16-2  
CP-24-1  
Ordering Quantity  
Branding  
H11  
H11  
ADA4938-1ACPZ-R21  
ADA4938-1ACPZ-RL1  
ADA4938-1ACPZ-R71  
ADA4938-2ACPZ-R21  
ADA4938-2ACPZ-RL1  
ADA4938-2ACPZ-R71  
250  
5,000  
1,500  
250  
5,000  
1,500  
H11  
CP-24-1  
CP-24-1  
1 Z = RoHS Compliant Part.  
Rev. A | Page 25 of 28  
 
 
ADA4938-1/ADA4938-2  
NOTES  
Rev. A | Page 26 of 28  
ADA4938-1/ADA4938-2  
NOTES  
Rev. A | Page 27 of 28  
ADA4938-1/ADA4938-2  
NOTES  
©2007–2009 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D06592-0-10/09(A)  
Rev. A | Page 28 of 28  

相关型号:

ADA4938-1_16

Ultralow Distortion Differential ADC Driver
ADI

ADA4938-2

Operational Amplifiers Selection Guide
ADI

ADA4938-2ACPZ-R2

Ultralow Distortion Differential ADC Driver
ADI

ADA4938-2ACPZ-R7

Ultralow Distortion Differential ADC Driver
ADI

ADA4938-2ACPZ-RL

Ultralow Distortion Differential ADC Driver
ADI

ADA4938-2_15

Ultralow Distortion Differential ADC Driver
ADI

ADA4939-1

Ultralow Distortion Differential ADC Driver
ADI

ADA4939-1YCPZ-R2

Ultralow Distortion Differential ADC Driver
ADI

ADA4939-1YCPZ-R7

Ultralow Distortion Differential ADC Driver
ADI

ADA4939-1YCPZ-RL

Ultralow Distortion Differential ADC Driver
ADI

ADA4939-2

Ultralow Distortion Differential ADC Driver
ADI

ADA4939-2YCPZ-R2

Ultralow Distortion Differential ADC Driver
ADI