ADAR2001 [ADI]

10 GHz to 40 GHz, 1:4 Channel, 4× Frequency Multiplier/Filter;
ADAR2001
型号: ADAR2001
厂家: ADI    ADI
描述:

10 GHz to 40 GHz, 1:4 Channel, 4× Frequency Multiplier/Filter

文件: 总39页 (文件大小:884K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
10 GHz to 40 GHz, 1:4 Channel,  
4× Frequency Multiplier/Filter  
ADAR2001  
Data Sheet  
FEATURES  
GENERAL DESCRIPTION  
The ADAR2001 is a transmitter IC optimized for millimeter  
wave body scanning applications. Accepting a single-ended  
continuous wave (CW) input signal between 2.5 GHz and 10 GHz,  
the ADAR2001 provides gain, 4× frequency multiplication,  
harmonic filtering, 1:4 signal splitting, and four independently  
controllable power amplifiers (PAs) with differential outputs  
designed to directly drive dipole antennas with differential inputs.  
All device functions and configuration options can be accessed by a  
3-wire or 4-wire Analog Devices, Inc., serial peripheral interface  
(SPI).  
Two state machines are also integrated into the ADAR2001,  
which facilitate easy configuration, control, and fast switching  
of the frequency multiplier, filter, and transmitter sections.  
These sequencers are programmed through the SPI and are  
then operated by pulsed inputs (reset and advance).  
The output power and chip temperature can be monitored by  
four on-chip detectors and a temperature sensor whose outputs  
are multiplexed to an 8-bit ADC.  
4× input frequency multiplier with programmable harmonic  
filter  
Quad differential output PAs with independent enable control  
Input frequency range: 2.5 GHz to 10 GHz  
Output frequency range: 10 GHz to 40 GHz  
Input power: −20 dBm (50 Ω)  
Output power: 5 dBm differential (100 Ω)  
Harmonic rejection: −20 dBc to −40 dBc at all frequencies  
3-wire or 4-wire SPI control of all functions  
On-chip programmable state machines for fast  
multiplier/filter and transmitter switching and control  
On-chip temperature sensor, output power detectors, and ADC  
DC power: 450 mW (2.5 V supply)  
6 mm × 6 mm, 40-terminal LGA package  
APPLICATIONS  
Millimeter wave imaging  
Security  
Medical  
Industrial  
The ADAR2001 requires only a single 2.5 V supply with power  
consumption of 450 mW with one channel turned on.  
Wideband local oscillator (LO) multiplier/distributor  
The ADAR2001 is available in a compact, 40-terminal, 6 mm ×  
6 mm LGA package and is specified from −40°C to +85°C.  
FUNCTIONAL BLOCK DIAGRAM  
ADAR2001  
MULTIPLIER/FILTER SEQUENCER  
×4  
TRANSMITTER SEQUENCER  
RFOUT1+  
RFOUT1–  
PA  
RFIN  
BUFFER  
×4  
×4  
RFOUT2+  
RFOUT2–  
PA  
RFOUT3+  
RFOUT3–  
PA  
CS  
SDIO  
SCLK  
SDO  
SPI  
CONTROL  
RFOUT4+  
RFOUT4–  
PA  
TEMP.  
SENSOR  
MULTIPLIER/FILTER  
STATE MACHINE  
(16 STATES)  
TRANSMITTER  
STATE MACHINE  
(70 STATES)  
ADC  
MRST  
MADV  
TxRST  
TxADV  
Figure 1.  
Rev. 0  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice.  
No license is granted by implication or otherwise under any patent or patent rights of Analog  
Devices. Trademarks and registeredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2020 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
 
ADAR2001  
Data Sheet  
TABLE OF CONTENTS  
Features.............................................................................................. 1  
Applications Information ............................................................. 16  
SPI Control.................................................................................. 16  
State Machine Modes vs. States................................................ 16  
State Machine Setup .................................................................. 17  
Multiplier/Filter State Machine................................................ 17  
Transmitter State Machine ....................................................... 18  
Single-Channel Frequency Sweep............................................ 18  
Single Frequency Channel Sweep ............................................ 19  
Multichannel Frequency Sweep............................................... 20  
Sequencer Sleep Control ........................................................... 20  
Sequencer Sleep Hold................................................................ 21  
Sequencer Control Latch Bypass.............................................. 21  
Parallel Chip Control................................................................. 21  
Multichip Frequency and Channel Sweep.............................. 22  
Bias Points ....................................................................................... 25  
Register Summary .......................................................................... 26  
Outline Dimensions....................................................................... 39  
Ordering Guide .......................................................................... 39  
Applications ...................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications .................................................................................... 3  
Timing Specifications .................................................................. 5  
Absolute Maximum Ratings ........................................................... 6  
Thermal Resistance...................................................................... 6  
Electrostatic Discharge (ESD) Ratings...................................... 6  
ESD Caution.................................................................................. 6  
Pin Configuration and Function Descriptions ............................ 7  
Typical Performance Characteristics............................................. 9  
Theory of Operation ...................................................................... 13  
Overview...................................................................................... 13  
Input Buffer, 4× Multiplier, and Band-Pass Filter................. 13  
Digital Step Attenuator.............................................................. 13  
Low-Pass/Notch Filter............................................................... 13  
1:4 Signal Splitter Network ....................................................... 14  
Output Power Amplifiers.......................................................... 14  
Power Detectors and Temperature Sensor............................. 14  
ADC Input Multiplexer............................................................. 14  
ADC and ADC Clock ................................................................ 15  
REVISION HISTORY  
8/2020—Revision 0: Initial Version  
Rev. 0 | Page 2 of 39  
 
Data Sheet  
ADAR2001  
SPECIFICATIONS  
VPOS1, VPOS3, VPOS4, VPOS5 = 2.5 V, VPOS2 = VREG, TA = −40°C to +85°C, unless otherwise noted.  
Table 1.  
Parameter  
Test Conditions/Comments  
Min Typ Max Unit  
RF INPUT  
Frequency Range  
Impedance  
2.5  
10  
GHz  
50  
Return Loss  
−15  
dB  
Power Range  
RF OUTPUT  
−25 −20 −10 dBm  
Frequency Range  
Output Power  
10  
40  
GHz  
dBm  
dBm  
dBm  
dBc  
Input power (PIN) = −20 dBm  
Multiplier enabled, PA disabled  
Multiplier and PA disabled  
Disabled channel to active channel  
Ready channel to active channel  
Using ready mode  
5
−30  
−80  
−50  
−50  
Channel Isolation  
dBc  
MHz  
Channel to Channel Switching Frequency  
Phase Noise  
100  
10 GHz Output  
10 kHz offset  
100 kHz offset  
1 MHz offset  
120  
123  
129  
dBc/Hz  
dBc/Hz  
dBc/Hz  
20 GHz Output  
30 GHz Output  
40 GHz Output  
10 kHz offset  
100 kHz offset  
1 MHz offset  
121  
119  
131  
dBc/Hz  
dBc/Hz  
dBc/Hz  
10 kHz offset  
100 kHz offset  
1 MHz offset  
119  
117  
129  
dBc/Hz  
dBc/Hz  
dBc/Hz  
10 kHz offset  
100 kHz offset  
1 MHz offset  
115  
116  
127  
100  
8
dBc/Hz  
dBc/Hz  
dBc/Hz  
Ω
Differential Impedance  
Differential Return Loss  
HARMONIC FILTERING  
Input Frequency  
dB  
Second Harmonic Rejection  
Third Harmonic Rejection  
Output Frequency  
−40  
−40  
dBc  
dBc  
Second Harmonic Rejection  
Third Harmonic Rejection  
STATE MACHINES AND TIMING  
Minimum Pulse Width  
MADV, MRST  
−25  
−20  
dBc  
dBc  
3
3
ns  
ns  
TxADV, TxRST  
Minimum Pulse Separation  
MADV, MRST  
TxADV, TxRST  
Pulse start to pulse start  
10  
10  
ns  
ns  
Switching Frequency  
Using ready mode  
100  
MHz  
Rev. 0 | Page 3 of 39  
 
ADAR2001  
Data Sheet  
Parameter  
Test Conditions/Comments  
Min Typ Max Unit  
Switching Time  
Multiplier Band Sleep to Active  
50  
10  
50  
2
ns  
ns  
ns  
ns  
Multiplier Band Switch  
PA Sleep to Active  
Channel to Channel Switch  
DIGITAL INPUT LOGIC LEVELS  
Logic Low  
Using ready mode  
Using ready mode, first channel off to second channel on  
0
1.8  
0.3  
0.4  
V
V
Logic High  
1
DIGITAL OUTPUT LOGIC LEVELS  
Logic Low  
Logic High  
0
1.8  
1.8  
V
V
V
1.4  
VREG OUTPUT  
POWER SUPPLY  
Analog  
Supply Voltage Range (VPOS1, VPOS3, VPOS4, VPOS5  
Current Consumption  
)
2.25 2.5  
180  
2.75  
V
One channel active  
Chip disabled  
One channel active  
Chip disabled  
mA  
mA  
mW  
mW  
10  
450  
25  
Power Consumption  
Digital  
Supply Voltage Range (VPOS2  
Current Consumption  
Power Consumption  
)
1.6  
1.8  
25  
45  
2
V
µA  
µW  
Chip enabled  
Chip enabled  
Rev. 0 | Page 4 of 39  
Data Sheet  
ADAR2001  
TIMING SPECIFICATIONS  
VPOS1, VPOS3, VPOS4, VPOS5 = 2.5 V, VPOS2 = VREG, TA = −40°C to +85°C, unless otherwise noted.  
Table 2. SPI Timing  
Parameter  
fSCLK  
Description  
Maximum clock rate  
Test Conditions/Comments  
Write only  
Write and read  
Min  
Typ  
Max  
40  
15  
Unit  
MHz  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
tPWH  
tPWL  
tDS  
tDH  
tDV  
tDCS  
tR  
Minimum pulse width high  
Minimum pulse width low  
Setup time, SDIO to SCLK  
Hold time, SDIO to SCLK  
Data valid, SDO to SCLK  
10  
10  
5
5
5
10  
40  
40  
Setup time, to SCLK  
CS  
SDIO, SDO rise time  
SDIO, SDO fall time  
Outputs loaded with 10 pF, 10% to 90%  
Outputs loaded with 10 pF, 10% to 90%  
ns  
ns  
tF  
Timing Diagrams  
INSTRUCTION CYCLE  
DATA TRANSFER CYCLE  
CS  
SCLK  
SDIO  
DON'T CARE  
DON'T CARE  
DON'T CARE  
A14  
A13  
A2  
A1  
A0  
D7  
D6  
D5  
D2  
D1  
D0  
DON'T CARE  
R/W  
Figure 2. SPI Transaction Structure (MSB First)  
CS  
tPWH  
tDCS  
SCLK  
SDIO  
DON'T CARE  
DON'T CARE  
DON'T CARE  
tDS  
A1  
tDH  
A0  
tPWL  
A13  
DON'T CARE  
WRITE  
A14  
A2  
D7  
D6  
D5  
D2  
D1  
D0  
Figure 3. SPI Write Timing Diagram  
CS  
SCLK  
SDIO  
DON'T CARE  
DON'T CARE  
DON'T CARE  
DON'T CARE  
DON'T  
CARE  
DON'T  
CARE  
DON'T  
CARE  
DON'T  
CARE  
DON'T  
CARE  
READ  
A14  
A13  
A2  
A1  
A0  
tDV  
SDO  
D7  
D6  
D5  
tR  
D1  
D0  
tF  
Figure 4. SPI 4-Wire Read Timing Diagram  
SPI Block Write Mode  
Data can be written to the SPI registers using the block write mode where the register address automatically increments and data for  
CS  
consecutive registers can be written without sending new address bits. Data writing can be continued indefinitely until  
is raised,  
ending the transaction. See Figure 5.  
CS  
SCLK  
SDIO  
DON'T CARE  
DON'T CARE  
DON'T CARE  
DON'T CARE  
WRITE  
A14  
A13  
A1  
A0  
D7  
D6  
D1  
D0  
D7  
D6  
D1  
D0  
FIRST REGISTER ADDRESS  
FIRST REGISTER DATA  
(n + FIRST REGISTER) DATA  
Figure 5. SPI Block Write  
Rev. 0 | Page 5 of 39  
 
 
ADAR2001  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
Table 3.  
THERMAL RESISTANCE  
Thermal performance is directly linked to printed circuit board  
(PCB) design and operating environment. Careful attention to  
PCB thermal design is required.  
Parameter  
VPOS1, VPOS3, VPOS4, VPOS5 to GND1  
VPOS2 to GND1  
Digital Input to GND1  
RFIN to GND1  
RFIN Power  
Operating Temperature Range  
Storage Temperature Range  
Maximum Junction Temperature  
Reflow Soldering  
Rating  
+3 V, −0.3 V  
+2.1 V, −0.3 V  
+2.1 V, −0.3 V  
0.3 V  
θJA is the natural convection junction to ambient thermal  
resistance measured in a one cubic foot sealed enclosure. θJC is  
the junction to case thermal resistance.  
−5 dBm  
−40°C to +85°C  
−65°C to +150°C  
135°C  
Table 4. Thermal Resistance  
Package Type  
CC-40-71  
θJA  
33.8  
θJC  
12.2  
Unit  
°C/W  
Peak Temperature  
260°C  
1 Pad soldered.  
1 GND is the common ground to which all GNDx pins are connected.  
ELECTROSTATIC DISCHARGE (ESD) RATINGS  
The following ESD information is provided for handling of  
ESD sensitive devices in an ESD protected area only.  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the  
operational section of this specification is not implied.  
Operation beyond the maximum operating conditions for  
extended periods may affect product reliability.  
Human body model (HBM) per ANSI/ESDA/JEDEC JS-001.  
Charged device model (CDM) per ANSI/ESDA/JEDEC JS-002.  
ESD Ratings for ADAR2001  
Table 5. ADAR2001, 40-Terminal LGA  
ESD Model  
HBM  
Withstand Threshold (V)  
1000 to 2000  
Class  
1C  
CDM  
500 to 750  
C2A  
ESD CAUTION  
Rev. 0 | Page 6 of 39  
 
 
 
 
Data Sheet  
ADAR2001  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
1
V
POS1  
2
30  
GND1  
GND2  
RFIN  
GND11  
3
4
29  
28  
27  
26  
25  
24  
23  
22  
RFOUT2+  
RFOUT2–  
GND10  
5
GND3  
VREG  
ADAR2001  
TOP VIEW  
(Not to Scale)  
6
GND9  
7
V
GND8  
POS2  
8
TxADV  
RFOUT3–  
RFOUT3+  
GND7  
9
TxRST  
MADV  
10  
V
11  
21  
POS3  
12  
13  
14  
15  
16  
17  
18  
19  
20  
NOTES  
1. THE EXPOSED PAD MUST BE CONNECTED TO A GROUND PLANE WITH  
LOW THERMAL AND ELECTRICAL IMPEDANCE.  
Figure 6. Pin Configuration (Top View, Not to Scale)  
Table 6. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1, 21, 31, 40  
VPOS1, VPOS3, VPOS4, VPOS5  
2.5 V Power Supply for the Analog Section. Connect decoupling capacitors (one 10 nF and  
one 100 pF on each pin, and a 1 μF for the rail) to the ground plane as close as possible to  
these pins.  
2, 3, 5, 16, 17, 20, 22, GND1 to GND17  
25 to 27, 30, 32,  
Ground. Connect all ground pins to a ground plane with low thermal and electrical  
impedance.  
35 to 39  
4
RFIN  
RF Input. RFIN is a single-ended, 50 Ω input operating from 2.5 GHz to 10 GHz, ac-coupled  
internally. The nominal input power level is −20 dBm.  
6
7
VREG  
VPOS2  
1.8 V Low Dropout (LDO) Regulator Output. Directly connect VREG to Pin 7 (VPOS2).  
1.8 V Power Supply for the Digital Section. Directly connect this supply to Pin 6 (VREG).  
Place a 1 μF capacitor to ground as close as possible to VPOS2  
.
8
TxADV  
Transmitter State Machine Advance. If the state machine is enabled, pulsing TxADV  
advances the transmitter state machine to the next state in its cycle. If currently at the end  
of the cycle, pulsing TxADV returns the pointer to the mode defined in TX_STATE_1  
(Register 0x019, Bits[7:4]).  
9
TxRST  
MADV  
Transmitter State Machine Reset. If the state machine is enabled, TxRST immediately sets  
the transmit control state machine back to the configuration in the TX_EN1_MODE_0 and  
TX_EN2_MODE_0 registers (Register 0x050 and Register 0x051).  
Multiplier/Filter State Machine Advance. If the state machine is enabled, pulsing MADV  
advances the multiplier/filter state machine to the next state in its cycle. If currently at the  
end of the cycle, pulsing MADV returns the pointer to the mode defined in MULT_STATE_1  
(Register 0x03C, Bits[7:4]).  
10  
11  
MRST  
Multiplier/Filter State Machine Reset. If the state machine is enabled, MRST immediately  
sets the multiplier/filter state machine back to the configuration defined in the  
MULT_EN_MODE_0 and MULT_PASS_MODE_0 registers (Register 0x070 and Register 0x071).  
12  
13  
SCLK  
SDIO  
Serial Clock. The SCLK pin is used to clock data into and out of the SPI interface.  
Serial Data Input/Output. The SDIO pin is a high impedance data input for clocking in  
information. SDIO can also be used to read out data if Register 0x000, Bits[4:3] are set low  
(default).  
Rev. 0 | Page 7 of 39  
 
ADAR2001  
Data Sheet  
Pin No.  
Mnemonic  
Description  
14  
CS  
Chip Select Bar.  
is used to activate the SPI port on the ADAR2001 and is active low.  
CS  
When goes high, the data previously clocked into the shift registers is latched to the  
CS  
chip. Connect a 200 kΩ pull-up resistor to 1.8 V from to ensure that the SPI interface is  
CS  
deactivated when not in use.  
15  
SDO  
Serial Data Output. Register states can be read back on the SDO line if Register 0x000,  
Bits[4:3] are set high.  
18, 19, 23, 24, 28,  
29, 33, 34  
RFOUT4+, RFOUT4−,  
RFOUT3+, RFOUT3−,  
RFOUT2−, RFOUT2+,  
RFOUT1−, RFOUT1+  
Differential RF Outputs. RFOUTx are 100 Ω differential pairs, ac-coupled internally.  
RFOUTx operate from 10 GHz to 40 GHz. All eight lines must have equal electrical and  
mechanical lengths.  
EPAD  
Exposed Pad. The exposed pad must be connected to a ground plane with low thermal  
and electrical impedance.  
Rev. 0 | Page 8 of 39  
Data Sheet  
ADAR2001  
TYPICAL PERFORMANCE CHARACTERISTICS  
300  
200  
195  
190  
185  
180  
175  
170  
165  
160  
155  
150  
145  
+85°C  
+25°C  
–40°C  
250  
200  
150  
100  
50  
+85°C  
+25°C  
–40°C  
0
2.25  
2.50  
2.75  
10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40  
RF OUTPUT FREQUENCY (GHz)  
SUPPLY VOLTAGE (V dc)  
Figure 7. Supply Current (ICC) vs. RF Output Frequency and Temperature,  
Supply Voltage = 2.5 V  
Figure 10. ICC vs. Supply Voltage and Temperature  
550  
500  
450  
400  
350  
300  
700  
+85°C  
+25°C  
–40°C  
600  
500  
400  
300  
200  
100  
0
+85°C  
+25°C  
–40°C  
2.25  
2.50  
2.75  
10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40  
SUPPLY VOLTAGE (V dc)  
RF OUTPUT FREQUENCY (GHz)  
Figure 8. Power Consumption vs. RF Output Frequency and Temperature,  
Supply Voltage = 2.5 V  
Figure 11. DC Power Consumption vs. Supply Voltage and Temperature  
30  
20  
–10dBm  
+85°C  
+25°C  
–40°C  
–15dBm  
–20dBm  
–25dBm  
15  
15  
10  
5
10  
5
0
0
–5  
–15  
–5  
10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40  
10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40  
RF OUTPUT FREQUENCY (GHz)  
RF OUTPUT FREQUENCY (GHz)  
Figure 9. RF Output Power vs. RF Output Frequency and Temperature,  
RF Input Power = −20 dBm, Supply Voltage = 2.5 V  
Figure 12. RF Output Power vs. RF Output Frequency and RF Input Power  
Rev. 0 | Page 9 of 39  
 
ADAR2001  
Data Sheet  
0
–5  
20  
15  
10  
5
2.75V  
2.50V  
2.25V  
+85°C  
+25°C  
–40°C  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
0
–5  
10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40  
RF OUTPUT FREQUENCY (GHz)  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
RF OUTPUT FREQUENCY (GHz)  
Figure 13. RF Output Power vs. RF Output Frequency and Supply Voltage,  
RF Input Power = −20 dBm  
Figure 16. Second RF Output Harmonic Rejection vs. RF Output Frequency  
and Temperature  
0
0
+85°C  
+25°C  
–40°C  
+85°C  
+25°C  
–40°C  
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0  
10.0  
10.5  
11.0  
11.5  
12.0  
12.5  
13.0  
13.5  
14.0  
RF INPUT FREQUENCY (GHz)  
RF OUTPUT FREQUENCY (GHz)  
Figure 14. Second RF Input Harmonic Rejection vs. RF Input Frequency and  
Temperature  
Figure 17. Third RF Output Harmonic Rejection vs. RF Output Frequency and  
Temperature  
0
0.10  
0.08  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
+85°C  
+25°C  
–40°C  
CHANNEL 1  
MADV  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
0.06  
0.04  
0.02  
0
–0.02  
–0.04  
–0.06  
–0.08  
–0.10  
–0.12  
–0.2  
12  
2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0  
–2  
0
2
4
6
8
10  
RF INPUT FREQUENCY (GHz)  
TIME (ns)  
Figure 15. Third RF Input Harmonic Rejection vs. RF Input Frequency and  
Temperature  
Figure 18. 25 GHz RF Frequency Band Switching with MADV  
Rev. 0 | Page 10 of 39  
Data Sheet  
ADAR2001  
0
–5  
0.3  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
CHANNEL 1  
TxADV  
0.2  
0.1  
0
–10  
–15  
–20  
–25  
–30  
–35  
–40  
1.0  
0.8  
0.6  
0.4  
–0.1  
–0.2  
–0.3  
HIGH BAND  
MID BAND  
LOW BAND  
DISABLED  
0.2  
0
–0.2  
–20 –10  
0
10  
20  
30  
40  
50  
60  
70  
80  
TIME (ns)  
RF INPUT FREQUENCY (GHz)  
Figure 19. RF Output Sleep to Active Switching Time  
Figure 22. RF Input Return Loss  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
10  
5
CHANNEL 1  
CHANNEL 2  
TxADV  
NOTCH FILTER ON  
NOTCH FILTER OFF  
DISABLED  
0.5  
0.3  
0
–5  
0.1  
0
–10  
–15  
–20  
–25  
0.  
8
–0.1  
0.6  
0.4  
0.2  
0
–0.3  
–0.5  
–2  
–0.2  
10  
–30  
0
2
4
6
8
5
10  
15  
20  
25  
30  
35  
40  
45  
TIME (ns)  
RF OUTPUT FREQUENCY (GHz)  
Figure 20. Channel to Channel Switching Time  
Figure 23. RF Output Return Loss  
170  
160  
150  
140  
130  
120  
110  
100  
90  
5
0
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
–65  
CHANNEL 1 ACTIVE (REFERENCE)  
CHANNEL 2 READY  
CHANNEL 3 READY  
CHANNEL 4 READY  
CHANNEL 2 DISABLED  
CHANNEL 3 DISABLED  
CHANNEL 4 DISABLED  
80  
70  
60  
50  
40  
30  
20  
10  
–70  
0
–40  
10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40  
RF OUTPUT FREQUENCY (GHz)  
25  
85  
TEMPERATURE (°C)  
Figure 21. Channel to Channel Isolation vs. RF Output Frequency,  
RF Input = −20 dBm  
Figure 24. ADC Code vs. Temperature  
Rev. 0 | Page 11 of 39  
ADAR2001  
Data Sheet  
5
4
25  
20  
3
15  
2
10  
1
5
0
0
–1  
–2  
–3  
–4  
–5  
–10  
–15  
–20  
CHANNEL 1  
CHANNEL 2  
CHANNEL 3  
CHANNEL 4  
CHANNEL 1  
CHANNEL 2  
CHANNEL 3  
CHANNEL 4  
–5  
–25  
10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40  
RF OUTPUT FREQUENCY (GHz)  
10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40  
RF OUTPUT FREQUENCY (GHz)  
Figure 25. Amplitude Imbalance vs. RF Output Frequency  
Figure 26. Phase Imbalance vs. RF Output Frequency  
Rev. 0 | Page 12 of 39  
Data Sheet  
ADAR2001  
THEORY OF OPERATION  
Register 0x011 and Register 0x012. See the Bias Points section  
for more information.  
OVERVIEW  
The main elements of the ADAR2001 are an RF input buffer, a  
4× frequency multiplier with integrated switchable harmonic  
filter, a 1:4 signal splitter, and four differential output PAs that  
can drive dipole or similar antennas with differential inputs.  
When the input frequency is in the low end of the band of the  
subcircuit, the BPF corner frequency must be set to its low  
state. Set the associated bit high to set the BPF corner frequency  
to its low state. See Table 7.  
Apply a CW RF input signal between 2.5 GHz and 10 GHz with  
a power level of approximately −20 dBm to the RFIN port  
(Pin 4), which results in a nominal PA output power of 5 dBm  
on each of the differential PA outputs, RFOUTx (Pin 18,  
Pin 19, Pin 23, Pin 24, Pin 28, Pin 29, Pin 33, and Pin 34).  
To complete a full 10 GHz to 40 GHz frequency sweep, the  
multiplier/filter block settings must be adjusted seven times to  
ensure optimum harmonic rejection and output power. These  
seven settings are shown in Table 7. By using the appropriate  
subcircuit and filter settings, harmonic distortion across the  
10 GHz to 40 GHz range can be kept below −25 dBc. Within  
the 20 GHz to 40 GHz range, −30 dBc of harmonic rejection  
can be achieved.  
The operation of these subcircuits can be controlled from the  
SPI port as well as two programmable state machines, one  
focused on multiplier/filter control and the other focused on  
transmit control.  
In addition to having sleep and active modes, the 4× multipliers  
can be set to ready mode. Ready mode is a hybrid state between  
sleep and active mode, which does not pass a signal, but allows  
fast turn on. Current consumption in ready mode is higher  
than sleep mode but lower than in active mode. The switching  
time between ready mode and active mode is significantly faster  
than from sleep mode to active mode.  
RF output power on each channel can be monitored using  
individual, on-chip RF detectors. Temperature can also be  
observed with a temperature diode. These sensors feed into a  
5:1 multiplexer that passes the desired signal to an on-chip,  
8-bit ADC.  
The ADAR2001 also includes an Analog Devices SPI port that  
is used for device configuration and readback. Although the  
state machines provide the fastest switching between states, all  
functions can also be controlled directly through the SPI port.  
DIGITAL STEP ATTENUATOR  
Although there is a digital step attenuator inside the multiplier/  
filter block of the ADAR2001, it is not intended to be used as a  
level control for the output power of the ADAR2001. This  
attenuator is meant for reducing the level of harmonic content  
coming out of the multipliers before entering the splitter network.  
INPUT BUFFER, 4× MULTIPLIER, AND BAND-PASS  
FILTER  
The RF input buffer provides approximately 17 dB of gain and  
provides an optimal driver for the 4× multiplier bands. The bias  
levels of the input and output stages of the buffer are independently  
adjustable through the SPI via Register 0x013. See the Bias Points  
section for more information.  
Suggested values for the digital step attenuator vs. RF frequency  
are shown in Table 7 and represent a balance between harmonic  
performance and output power level. Therefore, altering these  
values is not recommended. Note that a value of 0x00 for  
ATTN_x (which refers to the ATTN_MDx and ATTN_SPI  
bits) corresponds to maximum attenuation.  
The broadband frequency multiplier consists of three parallel  
subcircuits. Each subcircuit (low band, mid band, high band) is  
optimized to multiply and filter a segment of the total frequency  
range (2.5 GHz to 10 GHz input, 10 GHz to 40 GHz output).  
Recommended ranges and register settings for each band are  
shown in Table 7. Switches at the input and output of the  
multiplier block are used to select the subcircuit for the desired  
frequency of operation.  
LOW-PASS/NOTCH FILTER  
A low-pass/notch filter is included after the PA outputs to help  
reduce any undesired harmonic content before transmission of  
the desired signal. RF output frequencies less than 16 GHz  
benefit from having this filter enabled. RF output frequencies  
more than 16 GHz must have this filter switched out to reduce  
any insertion loss due to the filter. Set the associated bit high to  
enable the filter. See Table 7.  
Each subcircuit consists of a 4× multiplier and a band-pass  
filter (BPF) with an adjustable corner frequency. The bias levels  
of the 4× multipliers are adjustable through the SPI using  
Rev. 0 | Page 13 of 39  
 
 
 
 
 
ADAR2001  
Data Sheet  
Table 7. Multiplier/Filter Settings for Optimal Harmonic Rejection  
Input  
Frequency  
(GHz)  
Output  
Frequency  
(GHz)  
Low-Pass/  
MULT_EN_x  
MULT_PASS_x  
Multiplier Band  
BPF  
ATTN_x1 Notch Filter Register Value2 Register Value3  
2.50 to 3.00  
3.00 to 3.50  
3.50 to 4.00  
4.00 to 5.00  
5.00 to 6.25  
6.25 to 8.00  
8.00 to 10.00  
10 to 12  
12 to 14  
14 to 16  
16 to 20  
20 to 25  
25 to 32  
32 to 40  
Low band active (mid and  
high bands ready)  
Low band active (mid and  
high bands ready)  
Low band active (mid and  
high bands ready)  
Mid band active (low and  
high bands ready)  
Mid band active (low and  
high bands ready)  
High band active (low and  
mid bands ready)  
High band active (low and  
mid bands ready)  
Low  
0x13  
On  
On  
On  
Off  
Off  
Off  
Off  
0x7A  
0x7A  
0x7A  
0x6E  
0x6E  
0x6B  
0x6B  
0xD3  
0x47  
0x53  
0x9F  
0x1F  
0x9F  
0x1F  
High 0x07  
High 0x13  
Low  
High 0x1F  
Low 0x1F  
High 0x1F  
0x1F  
1 ATTN_x refers to the ATTN_MDx and ATTN_SPI bit fields.  
2 MULT_EN_x refers to the MULT_EN_MODE_x and MULT_EN_SPI registers.  
3 MULT_PASS_x refers to the MULT_PASS_MODE_x and MULT_PASS_SPI registers.  
ready mode and active mode is significantly faster than from  
sleep mode to active mode.  
1:4 SIGNAL SPLITTER NETWORK  
The output of the multiplier/filter block is then applied to a  
1:4 active power splitting network that is composed of two  
stages. The first stage is a 1:2 active splitter, which then feeds  
the second stage, two 1:2 active splitters. Each output path from  
the second stage drives a single PA, which results in a single  
input signal being split into four independently controlled  
output channels. The bias levels of each splitter stage are  
adjustable through the SPI via Register 0x014. See the Bias  
Points section for more information.  
For the fastest switching times, use of the ready mode is critical.  
For example, while Power Amplifier 1 (PA1) is transmitting,  
Power Amplifier 2 (PA2) can be set to ready mode. The  
transmitter state machine can then be used to put PA1 to sleep  
and switch PA2 from ready to active.  
POWER DETECTORS AND TEMPERATURE SENSOR  
Each transmit channel on the ADAR2001 has a dedicated  
power detector with an enable bit in Register 0x049. All the  
detectors feed into a 5:1 multiplexer along with the local  
temperature sensor. This multiplexer allows the 8-bit on-chip  
ADC the flexibility to measure the current output power level  
of any channel, or the temperature of the chip itself. To  
calculate the approximate temperature in Celsius from the  
ADC output code, use the following equation:  
OUTPUT POWER AMPLIFIERS  
There are four PAs, each with an ac-coupled, differential output  
operating from 10 GHz to 40 GHz. The differential output is  
intended to facilitate direct connection to an antenna with  
differential inputs. In applications where a single-ended output  
is required, the unused output can be terminated to ground  
using a 50 Ω resistor. Terminating the unused output results in  
3 dB lower output power (that is, a single-ended output power  
of 2 dBm, nominal) along with some degradation in harmonic  
rejection. The bias level of the PAs is adjustable through the  
SPI. One setting, PA_BIAS in Register 0x015, controls all four  
PA bias points. See the Bias Points section for more information.  
TA = (1.31 × ADC_OUTPUT) – 118  
where ADC_OUTPUT is the ADC output word in Register 0x04B.  
ADC INPUT MULTIPLEXER  
The multiplexer position can be programmed using the  
MUX_SEL bits (Register 0x04A, Bits[3:1]). The multiplexer has  
five valid states, from 0 to 4. Figure 27 shows the multiplexer  
mapping.  
In normal operation, only one of the four PAs is active at a  
time, but the programmability allows all four (or any  
combination thereof) to be turned on simultaneously.  
0
1
2
3
4
TEMPERATURE SENSOR  
CHANNEL 1 DETECTOR  
CHANNEL 2 DETECTOR  
CHANNEL 3 DETECTOR  
CHANNEL 4 DETECTOR  
Like the 4× multipliers, each PA has three modes of operation:  
sleep, ready, and active. Ready mode is a hybrid state between  
sleep and active, which does not pass a signal, but allows fast turn  
on. Current consumption in ready mode is higher than sleep  
mode but lower than active mode. The switching time between  
TO ADC  
OUT  
Figure 27. ADC Input Multiplexer Mapping  
Rev. 0 | Page 14 of 39  
 
 
 
 
 
 
Data Sheet  
ADAR2001  
ADC AND ADC CLOCK  
The ADAR2001 has an on-chip, 8-bit ADC and a variable clock  
input, each with their own enable control bits.  
To take a measurement from the ADC, the user must first write  
to the ADC_CTRL register, Register 0x04A. This register  
contains the following bits:  
Bit 0: ADC_EOC (read only). This bit is a flag for when the  
ADC conversion is done.  
Bit 1 to Bit 3: MUX_SEL (read/write). These bits are used  
to select the ADC input, according to Figure 27.  
Bit 4: ST_CONV (read/write). This bit is set to start an  
ADC conversion cycle.  
Bit 5: CLK_EN (read/write). This bit enables the ADC  
clock.  
Bit 6: ADC_EN (read/write). This bit enables the ADC.  
Bit 7: ADC_CLKFREQ_SEL (read/write). This bit sets the  
clock frequency. A low sets the clock to 2 MHz, whereas a  
high sets the clock to 250 kHz.  
After the ADC_CTRL register is written, it must be polled to  
wait for the ADC_EOC bit to go high. When this happens, the  
measured value can be read out from the ADC_OUTPUT  
register, Register 0x04B.  
Rev. 0 | Page 15 of 39  
 
ADAR2001  
Data Sheet  
APPLICATIONS INFORMATION  
Within each mode of the transmitter state machine, the user  
can define the following:  
SPI CONTROL  
The ADAR2001 is designed to operate as part of a larger array.  
The built in state machines help to ease the control of multiple  
chips in parallel and to ensure that the fastest switching speeds  
are achieved. However, it is possible to operate every aspect of  
the ADAR2001 using the SPI port alone. When the state machines  
are disabled by setting MULT_SEQ_EN (Register 0x018, Bit 7)  
and TX_SEQ_EN (Register 0x016, Bit 7) low, the multiplier/filter  
and transmitter blocks respond to the SPI controlled registers  
(Register 0x045 to Register 0x048), rather than stepping  
through the programmed states.  
Sleep, ready, or active state of each PA (two bits for each  
band, eight bits in total). The two bits control the ready  
and active status, and if neither is high, the PA is set to  
sleep. Both bits must be high to be fully active.  
The enabled status of the first 1:2 signal splitter feeding the  
second stage of splitters (on or off, one bit)  
The enabled status of the 1:2 signal splitter feeding PA  
Channel 1 and Channel 2 (on or off, one bit)  
The enabled status of the 1:2 signal splitter feeding PA  
Channel 3 and Channel 4 (on or off, one bit)  
Register 0x047 and Register 0x048 set up the multiplier/filter  
block when controlling the block with the SPI and have all the  
same controls as a typical multiplier/filter mode when  
controlling the block with the multiplier/filter sequencer.  
Each multiplier/filter state is used to select a previously  
configured operating mode. Each state bit field contains  
four bits, allowing selection of any mode between 0 and 15  
(Register 0x070 to Register 0x08F). There are 16 multiplier/filter  
states available (Register 0x03C to Register 0x043). When the  
multiplier/filter state machine is enabled and the sequencer  
depth set in Register 0x018, Bits[3:0], the state machine cycles  
through the states in order, up to the defined state machine depth.  
Register 0x045 and Register 0x046 set up the transmitter block  
when controlling the block with the SPI and have all the same  
controls as a typical transmitter mode when controlling the  
block with the transmitter sequencer.  
Operating the ADAR2001 in this manner can be thought of as a  
manual, rather than an automatic, approach. With the sequencers  
disabled, any changes to the configuration of the chip must occur  
through a SPI write.  
Similarly, each transmitter state is used to select a previously  
configured operating mode. Each state bit field has four bits,  
allowing selection of any mode between 0 and 15 (Register 0x050  
to Register 0x06F). There are 70 transmit control states available  
(Register 0x019 to Register 0x03B). When the transmitter state  
machine is enabled, and the sequencer depth set in Register 0x017,  
the state machine cycles through the states in order, up to the  
defined state machine depth.  
STATE MACHINE MODES vs. STATES  
Both the multiplier/filter state machine and the transmitter  
state machine have 16 modes available to set the configuration  
of their respective subcircuitry. The multiplier/filter state  
machine has 16 states available to cycle through, whereas the  
transmitter state machine has 70 available states.  
Figure 28 shows how the state machine pointer moves through  
a loop. In this diagram, n is the total number of states inside the  
loop. Because the sequencer depth bit field is 0 indexed, n is  
equal to one more than the value of the bits in the sequencer depth.  
Within each mode of the multiplier/filter state machine, the  
user can define the following:  
n = MULT_STATES + 1  
The enabled status of the RF input buffer (on or off, one bit)  
Sleep, ready, or active state of each 4× multiplier band  
(two bits for each band, six bits in total). The two bits  
control the ready and active status, and if neither is high,  
the multiplier band is set to sleep. Both bits must be high  
to be fully active.  
Digital step attenuator value (five bits)  
BPF corner frequency (low or high, one bit controls the  
filters in all bands)  
where:  
n = 1 to 16.  
MULT_STATES is the multiplier sequencer depth.  
n = TX_STATES + 1  
where:  
n = 1 to 16.  
TX_STATES is the transmitter sequence depth.  
RESET  
0
Low-pass/notch filter status (on or off, one bit controls all  
low-pass/notch filters)  
ADVANCE  
ADVANCE  
1
2
ADVANCE  
ADVANCE  
n
3
ADVANCE  
Figure 28. State Machine Position Loop  
Rev. 0 | Page 16 of 39  
 
 
 
 
Data Sheet  
ADAR2001  
STATE MACHINE SETUP  
MULTIPLIER/FILTER STATE MACHINE  
Both state machines in the ADAR2001 have configuration  
registers that control various aspects of the state machine.  
A programmable state machine provides a convenient and fast  
control mechanism for the multiplier/filter block and avoids the  
need for SPI writes each time the block must be reconfigured.  
For the multiplier/filter sequencer, this register is  
Register 0x018, and contains the following bits:  
To enable the state machine, set the MULT_SEQ_EN bit  
(Register 0x018, Bit 7) high.  
Bit 0 to Bit 3: MULT_STATES. Sets the number of states in  
the loop (see Figure 28).  
Although only seven multiplier/filter modes are required for a  
complete 10 GHz to 40 GHz sweep as described in Table 7, a  
maximum state machine depth of 16 is provided for optimum  
flexibility.  
Bit 4: MULT_CTL_LATCH_BYP. Bypasses the latch on  
the MADV and MRST pins. Setting this bit high bypasses  
the latch. Regardless of the value of this bit, the new state is  
preloaded on the rising edge of a MRST or MADV pulse. If  
the latch is enabled, the new settings are all latched to the  
appropriate section at the same time on the falling edge of  
the same pulse. If the latch is bypassed, the new settings are  
applied as soon as possible after the rising edge of the  
pulse, with no latching and no guaranteed order.  
Bit 5: MULT_SLP_HOLD. Prevents the multiplier/filter  
block from advancing when forced into a sleep state by the  
transmitter block. Used in conjunction with  
Nine preloaded modes can be assigned to any of the 16 states.  
These nine modes consist of a sleep mode, a ready mode, and  
the seven modes required to perform a 10 GHz to 40GHz  
sweep, as shown in Table 7. It is possible to overwrite any of the  
multiplier/filter modes with a custom set of operating conditions  
by changing the bits in Register 0x070 to Register 0x08F.  
After the modes are defined, the order in which the sequencer  
moves through the desired modes must be set by filling the  
state bits in Register 0x03C to Register 0x043 in order, with the  
modes of interest. Any state can point to any mode, except  
State 0, which always points to Mode 0. Note that the sequencer  
moves through the states in order, up to the state machine  
depth.  
MULT_SLP_CTRL. See the Sequencer Sleep Control  
section for more information.  
Bit 6: MULT_SLP_CTRL. Forces the multiplier/filter block  
to sleep whenever the transmitter block is sleeping.  
Bit 7: MULT_SEQ_EN. Enables the multiplier/filter block.  
MULT_SEQ_EN must be set high for the block to operate  
with the external pins.  
Finally, the user must define how many states are used by setting  
the state machine depth (MULT_STATES, Register 0x018,  
Bits[3:0]). MULT_STATES is 0 indexed. Therefore, setting the  
depth to 0 leaves MULT_STATE_1 (Register 0x03C, Bits[7:4])  
as the only state in the loop.  
For the transmitter sequencer, the two control registers are  
Register 0x016 and Register 0x017.  
Register 0x016 contains the following bits:  
After the multiplier/filter state machine is programmed and  
enabled, operation is controlled by the MRST (multiplier reset,  
Pin 11) and MADV (multiplier advance, Pin 10) pins.  
Alternatively, operation can be controlled through the SPI  
using the MULT_RST_SPI and MULT_ADV_SPI bits  
(Register 0x044, Bit 3 and Bit 2, respectively). Note that using  
the SPI is slower than pulsing the sequencer pins directly.  
Bit 4: TX_CTL_LATCH_BYP. Bypasses the latch on the  
TxADV and TxRST pins. Setting this bit high bypasses the  
latch. Regardless of the value of this bit, the new state is  
preloaded on the rising edge of a TxRST or TxADV pulse.  
If the latch is enabled, the new settings are all latched to  
the appropriate section at the same time on the falling edge  
of the same pulse. If the latch is bypassed, the new settings  
are applied as soon as possible after the rising edge of the  
pulse, with no latching and no guaranteed order.  
Bit 5: TX_SLP_HOLD. Prevents the transmitter block  
from advancing when forced into a sleep state by the  
multiplier/filter block. Used in conjunction with  
MRST moves the pointer on the multiplier/filter state machine  
to State 0 regardless of the current position of the pointer and  
can be asserted at any time. State 0 always refers to Mode 0 and  
cannot be set to another mode. However, Mode 0 can be  
overwritten with any multiplier/filter configuration. Mode 0 is  
defined in Register 0x070 and Register 0x071.  
MULT_SLP_CTRL. See the Sequencer Sleep Control  
MADV pulses advance the multiplier/filter state machine  
pointer one state at a time until the defined sequencer depth is  
cycled through. At that point, an additional MADV pulse  
moves the pointer back to State 1, which is normally set to a  
ready mode (however, State 1 can be set to any mode). State 1  
applies the mode defined in the MULT_STATE_1 bits  
(Register 0x03C, Bits[7:4]).  
section for more information.  
Bit 6: TX_SLP_CTRL. Forces the transmitter block to sleep  
whenever the multiplier/filter block is sleeping.  
Bit 7: TX_SEQ_EN. Enables the transmitter block. Must be  
set high for the block to operate with the external pins.  
Register 0x017 contains Bit 0 to Bit 6, TX_STATES, which sets the  
number of states in the loop (see Figure 28).  
Rev. 0 | Page 17 of 39  
 
 
ADAR2001  
Data Sheet  
be asserted at any time. State 0 always refers to Mode 0 and  
TRANSMITTER STATE MACHINE  
cannot be set to another mode. However, Mode 0 can be  
overwritten with any transmitter configuration. Mode 0 is  
defined in Register 0x050 and Register 0x051.  
Like the multiplier/filter state machine, the transmitter state  
machine can be used to quickly cycle through transmit states  
without using the comparatively slower SPI interface.  
TxADV pulses advance the transmitter state machine pointer  
one state at a time until the defined sequencer depth is cycled  
through. At that point, an additional TxADV pulse moves the  
pointer back to State 1. State 1 applies the mode defined in the  
TX_STATE_1 bits (Register 0x019, Bits[7:4]).  
To enable the state machine, set the TX_SEQ_EN bit  
(Register 0x016, Bit 7) high.  
The transmitter state machine controls the status of the four  
PAs (sleep, ready, or active) and the status of the 1:4 splitter  
network by defining the desired modes of operation in  
Register 0x050 to Register 0x06F. The PAs are in sleep mode  
when the ready and active bits are not enabled. Each mode  
outlines a custom set of operating conditions.  
SINGLE-CHANNEL FREQUENCY SWEEP  
Figure 29 shows a method of operation that can be used during  
a 20 GHz to 40 GHz frequency sweep of Channel 1. Based on  
Table 7, three multiplier/filter states are required during a 20 GHz  
to 40 GHz sweep. In this example, the defined state machine depth,  
MULT_STATES (Register 0x018, Bits[3:0]), is 3 because there  
are four states inside the loop, and MULT_STATES is 0 indexed.  
Although only four states are required to cycle through a transmit  
cycle by each of the PAs, a state machine depth of 70 is provided  
for optimum flexibility and to lower the total number of control  
lines required to operate multiple ADAR2001 chips in parallel.  
It is possible to control up to 16 ADAR2001 ICs using the same  
four sequencer lines (MADV, MRST, TxADV, TxRST). See the  
Sequencer Control Latch Bypass section for more information.  
As shown in Figure 29,  
Multiplier/Filter State 0 = sleep (outside the loop)  
Multiplier/Filter State 1 = mid band multiplier ready  
Multiplier/Filter State 2 = output 20 GHz to 25 GHz to PAs  
Multiplier/Filter State 3 = output 25 GHz to 30 GHz to PAs  
Multiplier/Filter State 4 = output 30 GHz to 40 GHz to PAs  
Following the mode definitions, the user must fill the state bits  
in Register 0x019 to Register 0x03B with the modes of interest.  
Any state can point to any mode, except State 0 which always  
points to Mode 0. Note that the sequencer moves through the  
states in order, up to the state machine depth.  
The initial state is the sleep state where power consumption is  
at a minimum. This state is reached by pulsing the MRST pin.  
A pulse on MADV then advances the state machine to the first  
state inside the loop, which is defined as a ready state, where  
the mid band multiplier is partially powered but not active, and  
the BPF is disabled to pass the higher portion of the mid band.  
By using this ready state, an additional pulse on MADV makes  
this subcircuit path active in less than 10 ns. By making use of  
the ready mode for the upcoming state throughout the sweep,  
the multiplier/filter switching and settling time can be kept less  
than 10 ns between all states.  
After the states are defined, the user must set the number of  
states to be used by the sequencer by changing the TX_STATES  
bits (Register 0x017, Bits[6:0]). TX_STATES is 0 indexed.  
Therefore, setting the depth to 0 leaves TX_STATE_1  
(Register 0x019, Bits[7:4]) as the only state in the loop.  
After the transmit state machine is programmed, operation is  
controlled by the TxRST (transmit reset, Pin 9) and TxADV  
(transmit advance, Pin 8) pins. Alternatively, operation can be  
controlled through the SPI using the TX_RST_SPI and  
TX_ADV_SPI bits (Register 0x044, Bit 1 and Bit 0, respectively).  
TxRST moves the pointer on the transmit state machine to  
State 0 regardless of the current position of the pointer and can  
After the appropriate number of pulses is applied to MADV (5,  
in this case), the state machine automatically returns to the first  
state in the loop (ready).  
CHANNEL 1  
READY  
CHANNEL 1  
20GHz TO 25GHz  
SLEEP  
MULT_STATE_0  
TX_STATE_0  
MULT_STATE_1  
TX_STATE_1  
MULT_STATE_2  
TX_STATE_2  
MULT: ALL SLEEP  
BPF: N/A  
PA: ALL SLEEP  
MULT: MID RDY  
BPF: N/A  
PA: CH. 1 RDY  
MULT: MID ACT  
BPF: HIGH  
PA: CH. 1 ACT  
MULTIPLIER TRANSMITTER  
RESET RESET  
MULTIPLIER TRANSMITTER  
ADVANCE ADVANCE  
MULTIPLIER TRANSMITTER  
MULTIPLIER  
ADVANCE  
ADVANCE  
ADVANCE  
CHANNEL 1  
CHANNEL 1  
25GHz TO 30GHz  
30GHz TO 40GHz  
MULT_STATE_3  
TX_STATE_2  
MULT_STATE_4  
TX_STATE_2  
MULT: HIGH ACT  
BPF: LOW  
PA: CH. 1 ACT  
MULT: HIGH ACT  
BPF: HIGH  
PA: CH. 1 ACT  
MULTIPLIER  
ADVANCE  
MULTIPLIER TRANSMITTER  
ADVANCE ADVANCE  
Figure 29. State Machine Loop Example for a Frequency Sweep from 20 GHz to 40 GHz on a Single Channel  
Rev. 0 | Page 18 of 39  
 
 
 
Data Sheet  
ADAR2001  
The initial state is the sleep state, where power consumption is  
at a minimum. This state is reached by pulsing the TxRST pin.  
SINGLE FREQUENCY CHANNEL SWEEP  
Figure 30 shows how the transmitter state machine can be used  
to cycle through the four PAs on a single ADAR2001 while at a  
fixed frequency. In this example, the defined state machine  
depth, TX_STATES (Register 0x017, Bits[6:0]), is 5 because  
there are 6 states inside the loop, and TX_STATES is 0 indexed.  
A pulse on TxADV then advances the state machine to the first  
state inside the loop, which is defined as a ready state, where  
Channel 1 is partially powered but not active. The splitters  
feeding Channel 1 are active to speed up the switching speed of  
the next state. An additional pulse on TxADV then makes this  
subcircuit path fully active. Continuing to make use of the  
ready mode for the upcoming state throughout the sweep, the  
PA switching and settling time can be minimized for all states.  
As shown in Figure 30,  
Transmit State 0 = sleep (outside the loop)  
Transmit State 1 = Channel 1 PA ready  
Transmit State 2 = transmit on Channel 1, Channel 2 PA  
ready  
After the appropriate number of pulses are applied to TxADV  
(6, in this case), the state machine automatically returns to the  
first state in the loop (ready).  
Transmit State 3 = transmit on Channel 2, Channel 3 PA  
ready  
Transmit State 4 = transmit on Channel 3, Channel 4 PA  
ready  
Transmit State 5 = transmit on Channel 4  
CHANNEL 1  
READY  
CHANNEL 1  
10GHz TO 12GHz  
SLEEP  
MULT_STATE_0  
TX_STATE_0  
MULT_STATE_1  
TX_STATE_1  
MULT_STATE_2  
TX_STATE_2  
MULT: ALL SLEEP  
BPF: N/A  
PA: ALL SLEEP  
MULT: LOW RDY  
BPF: N/A  
PA: CH. 1 RDY  
MULT: LOW ACT  
BPF: LOW  
PA: CH. 1 ACT  
MULTIPLIER TRANSMITTER  
RESET RESET  
MULTIPLIER TRANSMITTER  
ADVANCE ADVANCE  
MULTIPLIER TRANSMITTER  
TRANSMITTER  
ADVANCE  
ADVANCE  
ADVANCE  
CHANNEL 4  
10GHz TO 12GHz  
CHANNEL 2  
10GHz TO 12GHz  
CHANNEL 3  
10GHz TO 12GHz  
MULT_STATE_2  
TX_STATE_5  
MULT_STATE_2  
TX_STATE_3  
MULT_STATE_2  
TX_STATE_4  
MULT: LOW ACT  
BPF: LOW  
PA: CH. 4 ACT  
MULT: LOW ACT  
BPF: LOW  
PA: CH. 2 ACT  
MULT: LOW ACT  
BPF: LOW  
PA: CH. 3 ACT  
TRANSMITTER  
ADVANCE  
TRANSMITTER  
ADVANCE  
MULTIPLIER TRANSMITTER  
ADVANCE ADVANCE  
Figure 30. State Machine Loop Example for a Channel Sweep with a Fixed Frequency  
Rev. 0 | Page 19 of 39  
 
 
ADAR2001  
Data Sheet  
Pulses on MADV and TxADV then advance both state  
machines to their first active state.  
MULTICHANNEL FREQUENCY SWEEP  
Figure 31 shows an example of how the two state machines can  
be used to perform a multichannel frequency sweep from  
20 GHz to 40 GHz (that is, sweep through a frequency range  
while on one channel, move to the next channel, and repeat the  
sweep). In this example, because both MULT_STATES  
(Register 0x018, Bits[3:0]) and TX_STATES (Register 0x017  
Bits[6:0]) are 0 indexed, MULT_STATES is defined as 2  
because there are three states inside the multiplier/filter loop  
and TX_STATES as 3 because there are four states inside the  
transmitter loop.  
In this example, an initial ready state is skipped, and the circuit  
goes directly from sleep mode to active mode. Additional pulses  
on MADV are applied as the frequency is swept. Multiplier  
ready modes are used to ensure the fastest switching of the  
multiplier/filter circuitry.  
After the frequency sweep is completed on Channel 1, both  
MADV and TxADV are pulsed to put the multiplier/filter back  
into its first state and the transmitter switches the active  
channel from 1 to 2. Then, the frequency sweep repeats itself  
using repeated pulses on the MADV pin.  
As shown in Figure 31,  
In this example, after the four channels are frequency swept,  
both state machines loop back to their first active state. In a  
large array, it is recommended to loop them back to a sleep or  
ready state to wait for their turn to transmit again.  
Multiplier/Filter State 0 = sleep (outside the loop)  
Multiplier/Filter State 1 = output 20 GHz to 25 GHz to PAs  
Multiplier/Filter State 2 = output 25 GHz to 30 GHz to PAs  
Multiplier/Filter State 3 = output 30 GHz to 40 GHz to PAs  
Transmit State 0 = sleep (outside the loop)  
Transmit State 1 = transmit on Channel 1  
Transmit State 2 = transmit on Channel 2  
Transmit State 3 = transmit on Channel 3  
Transmit State 4 = transmit on Channel 4  
SEQUENCER SLEEP CONTROL  
To further simplify the control of the ADAR2001, it is possible  
to link the sleep states of the two state machines so that one  
sequencer going to sleep forces the other to sleep as well. This  
link helps to limit the total number of required states to achieve  
a desired type of operation. To use this feature, one of the two  
sleep control bits must be set, but not both.  
Reset pulses on TxRST and MRST put both state machines in  
their initial states, which in this case are defined as sleep modes.  
CHANNEL 1  
20GHz TO 25GHz  
CHANNEL 1  
25GHz TO 30GHz  
CHANNEL 1  
30GHz TO 40GHz  
SLEEP  
MULT_STATE_0  
TX_STATE_0  
MULT_STATE_1  
TX_STATE_1  
MULT_STATE_2  
TX_STATE_1  
MULT_STATE_3  
TX_STATE_1  
MULT: ALL SLEEP  
BPF: N/A  
PA: ALL SLEEP  
MULT: MID ACT  
BPF: HIGH  
PA: CH. 1 ACT  
MULT: HIGH ACT  
BPF: LOW  
PA: CH. 1 ACT  
MULT: HIGH ACT  
BPF: HIGH  
PA: CH. 1 ACT  
MULTIPLIER TRANSMITTER  
RESET RESET  
MULTIPLIER TRANSMITTER  
ADVANCE ADVANCE  
MULTIPLIER  
ADVANCE  
MULTIPLIER  
ADVANCE  
CHANNEL 2  
20GHz TO 25GHz  
CHANNEL 2  
25GHz TO 30GHz  
CHANNEL 2  
30GHz TO 40GHz  
MULT_STATE_3  
TX_STATE_2  
MULT_STATE_1  
TX_STATE_2  
MULT_STATE_2  
TX_STATE_2  
MULT: HIGH ACT  
BPF: HIGH  
PA: CH. 2 ACT  
MULT: MID ACT  
BPF: HIGH  
PA: CH. 2 ACT  
MULT: HIGH ACT  
BPF: LOW  
PA: CH. 2 ACT  
MULTIPLIER TRANSMITTER  
ADVANCE ADVANCE  
MULTIPLIER  
ADVANCE  
MULTIPLIER  
ADVANCE  
CHANNEL 3  
20GHz TO 25GHz  
CHANNEL 3  
25GHz TO 30GHz  
CHANNEL 3  
30GHz TO 40GHz  
MULT_STATE_1  
TX_STATE_3  
MULT_STATE_2  
TX_STATE_3  
MULT_STATE_3  
TX_STATE_3  
MULT: HIGH ACT  
BPF: HIGH  
PA: CH. 3 ACT  
MULT: MID ACT  
BPF: HIGH  
PA: CH. 3 ACT  
MULT: HIGH ACT  
BPF: LOW  
PA: CH. 3 ACT  
MULTIPLIER TRANSMITTER  
ADVANCE ADVANCE  
MULTIPLIER  
ADVANCE  
MULTIPLIER  
ADVANCE  
CHANNEL 4  
20GHz TO 25GHz  
CHANNEL 4  
25GHz TO 30GHz  
CHANNEL 4  
30GHz TO 40GHz  
MULT_STATE_3  
TX_STATE_4  
MULT_STATE_1  
TX_STATE_4  
MULT_STATE_2  
TX_STATE_4  
MULT: HIGH ACT  
BPF: HIGH  
PA: CH. 4 ACT  
MULT: MID ACT  
BPF: HIGH  
PA: CH. 4 ACT  
MULT: HIGH ACT  
BPF: LOW  
PA: CH. 4 ACT  
MULTIPLIER TRANSMITTER  
ADVANCE ADVANCE  
MULTIPLIER TRANSMITTER  
ADVANCE ADVANCE  
MULTIPLIER  
ADVANCE  
MULTIPLIER  
ADVANCE  
Figure 31. State Machine Loop Example for 4-Channel Frequency Sweep  
Rev. 0 | Page 20 of 39  
 
 
 
Data Sheet  
ADAR2001  
For example, when the ADAR2001 is configured for a frequency  
sweep (as shown in Figure 29), if the TX_SLP_CTRL bit  
(Register 0x016, Bit 6) is set, when the multiplier/filter sequencer  
is reset, the transmitter state machine is forced to sleep as well.  
This means that the transmitter state machine does not need to  
have a state dedicated to sleep if it only needs to sleep when the  
multiplier/ filter sleeps. Furthermore, because the multiplier/  
filter sleep state is controlling the sleep state of the transmitter,  
bringing the multiplier/filter out of sleep also brings the  
transmitter out of sleep, all of which is controlled with either  
the SPI or one external line (MADV).  
It is possible to bypass the latching of the internal control  
signals by setting the bypass bits (TX_CTL_LATCH_BYP and  
MULT_CTL_LATCH_BYP) in the sequencer setup registers  
(Register 0x016, Bit 4 and Register 0x018, Bit 4).  
Bypassing the latch results in the new state taking effect as soon  
as possible after the rising edge. Because the internal control  
signals are not aligned, the overall switching time between  
states can increase when compared to using the latch. Also,  
glitches are more likely to occur in the internal control signals,  
resulting in undesired transients in the RF blocks.  
Note that this latch is the last check before any new data is sent  
to the various individual blocks. Therefore, when using the  
ADAR2001 in manual or SPI mode (sequencers disabled), the  
latching must be bypassed. If latching is not bypassed, the  
blocks never receive the new instructions unless the external  
sequencer pins are pulsed. However, this issue is uncommon  
because the sequencers are disabled in this mode of operation.  
SEQUENCER SLEEP HOLD  
By default, when one of the sequencers is forced asleep using one  
of the sleep control bits (MULT_SLP_CTRL or TX_SLP_CTRL),  
the counter for the sequencer being controlled can still be  
advanced. Because of this behavior, it is possible for a state  
machine to be put to sleep in one condition and brought out of  
sleep in another, depending on whether the sequencer advance or  
reset signals were exercised while the sequencer was sleeping.  
PARALLEL CHIP CONTROL  
Up to 16 devices (a total of 64 channels) can be driven by a  
single set of four state machine control lines, three common SPI  
If this behavior is undesired, the sleep hold bits (MULT_SLP_  
HOLD and TX_SLP_HOLD) can be asserted to force the  
associated state machine counter to ignore any inputs on the  
sequencer advance line. The counter also ignores advance  
signals coming from the SPI.  
CS  
lines, and a  
line for each chip. Using this method, the total  
number of digital control lines is 7 + N, where N is the number  
of ADAR2001 ICs (see Figure 33 for a basic diagram). Parallel  
chip control can be used to minimize the total number of digital  
control lines. The SPI lines can be reduced to two common  
lines if 3-wire mode is selected by setting the SDOACTIVE and  
SDOACTIVE_ bits (Register 0x00, Bit 4 and Bit 3, respectively)  
to low. If 3-wire SPI mode is used, the total number of digital  
lines to 6 + N.  
Note that the state machine counters always respond to a reset  
signal, even when the sleep hold bit is high.  
When sleep hold is used, care must be taken when bringing the  
state machines out of sleep mode to ensure that the desired  
modes are reached. If the advance pins for both sequencers are  
pulsed too closely together under this condition, it is possible  
for the sequencer being controlled to not move into the expected  
state. To prevent this, the advance pulses must be staggered  
such that the rising edges are separated by a minimum of 3 ns  
with the pulse of the controlled sequencer coming second. See  
Figure 32 for an example of how to pulse the sequencers under  
this condition.  
ADAR2001  
(1)  
SPI  
SEQUENCERS  
COMMON  
SEQUENCER  
LINES  
ADAR2001  
(2)  
SPI CS  
LINES  
SPI  
SEQUENCERS  
TX_SLP_HOLD REGISTER 0x016, BIT 5 = 1 MULT_SLP_HOLD REGISTER 0x018, BIT 5 = 0  
TX_SLP_CTRL REGISTER 0x016, BIT 6 = 1 MULT_SLP_CTRL REGISTER 0x018, BIT 6 = 0  
≥3ns  
COMMON  
SPI  
MADV  
LINES  
TxADV  
Figure 32. Example of How to Pulse the Sequencer Advance Pins to Ensure  
Advancement with Transmitter State Machine Sleep Hold Enabled  
ADAR2001  
(16)  
SEQUENCERS  
SPI  
SEQUENCER CONTROL LATCH BYPASS  
Typically, when a sequencer control line is pulsed, the  
upcoming state is loaded on the rising edge of the control pulse  
and latched to the various signal blocks on the falling edge of  
the same pulse. The latching helps to line up all the internal  
control signals so that the changes take place simultaneously.  
Figure 33. SPI and State Machine Digital Lines for Addressing and  
Controlling Up to 16 ADAR2001 Devices in Parallel  
Rev. 0 | Page 21 of 39  
 
 
 
 
 
ADAR2001  
Data Sheet  
applied to successively switch through all the transmit channels  
of the first ADAR2001.  
MULTICHIP FREQUENCY AND CHANNEL SWEEP  
Figure 34 shows an example of how the two state machines can  
be used to perform a multichip frequency and channel sweep  
from 10 GHz to 16 GHz (that is, sweep through all four  
channels on a single chip while at a fixed frequency range,  
move to the next chip to repeat the channel sweep, then move  
to the next frequency to repeat the process). This example  
assumes that the state machine control lines are connected in  
parallel for up to 16 devices (64 channels, see Figure 33).  
After all four channels are swept on the first device, an  
additional pulse on TxADV activates Channel 1 on ADAR2001  
IC 2 while putting the Channel 4 PA on the first chip into a  
ready mode to prevent disrupting the multiplier/filter signal  
before the PA turns off. This sequence continues until all  
64 channels on all 16 ADAR2001 ICs have transmitted at the  
first frequency or range.  
At that point, a pulse is applied to both MADV and TxADV to  
advance the multiplier/filter sequencer to the next frequency  
range of interest and set the Channel 1 PA on ADAR2001 IC 1  
back into an active mode. Another series of TxADV pulses  
follows until the last channel on ADAR2001 IC 16 is  
transmitting the new frequency or range.  
Initially, pulses on TxRST and MRST put both state machines  
in State 0, which in this case, is a sleep mode.  
Next, pulses on MADV and TxADV advance both state  
machines to their first active state (transmitting on Channel 1  
of ADAR2001 IC 1). Additional pulses on the TxADV line are  
SLEEP  
MULT_STATE_0  
TX_STATE_0  
MULT: ALL SLEEP  
BPF: N/A  
PA: ALL SLEEP  
MULTIPLIER Tx  
RESET RESET  
IC 1  
IC 16  
10GHz TO 13GHz  
IC 1  
IC 16  
13GHz TO 16GHz  
......  
......  
10GHz TO 13GHz  
13GHz TO 16GHz  
MULT_STATE_1  
TX_STATE_1  
MULT: LOW ACT  
BPF: LOW  
MULT_STATE_1  
TX_STATE_61  
MULT: LOW ACT  
BPF: LOW  
MULT_STATE_2  
TX_STATE_1  
MULT: LOW ACT  
BPF: HIGH  
MULT_STATE_2  
TX_STATE_61  
MULT: LOW ACT  
BPF: HIGH  
PA:  
CH. 1 ACT  
PA:  
CH. 1 ACT  
PA:  
CH. 1 ACT  
PA:  
CH. 1 ACT  
MULTIPLIER  
TX  
ADVANCE ADVANCE  
Tx  
Tx  
Tx  
Tx  
ADVANCE  
ADVANCE  
ADVANCE  
ADVANCE  
MULT_STATE_1  
MULT_STATE_1  
MULT_STATE_2  
TX_STATE_2  
MULT: LOW ACT  
BPF: HIGH  
MULT_STATE_2  
TX_STATE_62  
MULT: LOW ACT  
BPF: HIGH  
TX_STATE_2  
MULT: LOW ACT  
BPF: LOW  
TX_STATE_62  
MULT: LOW ACT  
BPF: LOW  
PA:  
CH. 2 ACT  
PA:  
CH. 2 ACT  
PA:  
CH. 2 ACT  
PA:  
CH. 2 ACT  
ANY  
Tx  
Tx  
Tx  
Tx  
ADDITIONAL  
MULTIPLIER  
BANDS  
ADVANCE  
ADVANCE  
ADVANCE  
ADVANCE  
MULT_STATE_1  
MULT_STATE_1  
MULT_STATE_2  
TX_STATE_3  
MULT: LOW ACT  
BPF: HIGH  
MULT_STATE_2  
TX_STATE_63  
MULT: LOW ACT  
BPF: HIGH  
TX_STATE_3  
MULT: LOW ACT  
BPF: LOW  
TX_STATE_63  
MULT: LOW ACT  
BPF: LOW  
PA:  
CH. 3 ACT  
PA:  
CH. 3 ACT  
PA:  
CH. 3 ACT  
PA:  
CH. 3 ACT  
Tx  
Tx  
Tx  
Tx  
ADVANCE  
ADVANCE  
ADVANCE  
ADVANCE  
MULT_STATE_1  
MULT_STATE_1  
MULT_STATE_2  
TX_STATE_4  
MULT: LOW ACT  
BPF: HIGH  
MULT_STATE_2  
TX_STATE_64  
MULT: LOW ACT  
BPF: HIGH  
TX_STATE_4  
MULT: LOW ACT  
BPF: LOW  
TX_STATE_64  
MULT: LOW ACT  
BPF: LOW  
PA:  
CH. 4 ACT  
PA:  
CH. 4 ACT  
PA:  
CH. 4 ACT  
PA:  
CH. 4 ACT  
Tx  
MULT  
ADV  
Tx  
MULT  
ADVANCE  
ADVANCE  
ADVANCE  
Tx  
Tx  
ADVANCE  
ADVANCE  
Figure 34. State Machine Loop Example for a 16-Chip Frequency and Channel Sweep  
Rev. 0 | Page 22 of 39  
 
 
Data Sheet  
ADAR2001  
Table 8 shows how the transmitter state machine for each  
ADAR2001 can be set up to work in sequence, as described.  
Each device is turned fully on for only four states, but these  
four on states are all offset from each other. To run this sequence  
where up to 64 channels are swept with the state machines of all  
devices driven in parallel, 64 transmit states are used inside the  
loop, with the sleep state (State 0) used as a reset condition.  
In Table 8, SLP is the sleep state (State 0), CH1 to CH4 indicates  
the actively transmitting channel (Channel 1, Channel 2, Channel  
3, or Channel 4), and RDY is ready mode.  
If there are more tiles of 16 chips in the array that need to transmit  
after the tile shown in Table 8, this tile can have a reset pulse sent  
to put the sequencers into the initial sleep mode to wait for their  
turn to transmit again.  
Table 8. Transmitter Sequencer Settings for 16 ADAR2001 Chips Using Shared Sequencer Lines for a Chip and Channel Sweep  
ADAR2001 Chip Number  
Tx  
State  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
Function  
(Reset) SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP All sleep  
0
1
CH1 SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP RDY Chip 1  
transmitting  
2
CH2 SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP  
CH3 SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP  
CH4 RDY SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP  
RDY CH1 SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP Chip 2  
3
4
5
transmitting  
6
SLP CH2 SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP  
SLP CH3 SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP  
SLP CH4 RDY SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP  
SLP RDY CH1 SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP Chip 3  
7
8
9
transmitting  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
SLP SLP CH2 SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP  
SLP SLP CH3 SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP  
SLP SLP CH4 RDY SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP  
SLP SLP RDY CH1 SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP Chip 4  
transmitting  
SLP SLP SLP CH2 SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP  
SLP SLP SLP CH3 SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP  
SLP SLP SLP CH4 RDY SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP  
SLP SLP SLP RDY CH1 SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP Chip 5  
transmitting  
SLP SLP SLP SLP CH2 SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP  
SLP SLP SLP SLP CH3 SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP  
SLP SLP SLP SLP CH4 RDY SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP  
SLP SLP SLP SLP RDY CH1 SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP Chip 6  
transmitting  
SLP SLP SLP SLP SLP CH2 SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP  
SLP SLP SLP SLP SLP CH3 SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP  
SLP SLP SLP SLP SLP CH4 RDY SLP SLP SLP SLP SLP SLP SLP SLP SLP  
SLP SLP SLP SLP SLP RDY CH1 SLP SLP SLP SLP SLP SLP SLP SLP SLP Chip 7  
transmitting  
SLP SLP SLP SLP SLP SLP CH2 SLP SLP SLP SLP SLP SLP SLP SLP SLP  
SLP SLP SLP SLP SLP SLP CH3 SLP SLP SLP SLP SLP SLP SLP SLP SLP  
SLP SLP SLP SLP SLP SLP CH4 RDY SLP SLP SLP SLP SLP SLP SLP SLP  
SLP SLP SLP SLP SLP SLP RDY CH1 SLP SLP SLP SLP SLP SLP SLP SLP Chip 8  
transmitting  
SLP SLP SLP SLP SLP SLP SLP CH2 SLP SLP SLP SLP SLP SLP SLP SLP  
SLP SLP SLP SLP SLP SLP SLP CH3 SLP SLP SLP SLP SLP SLP SLP SLP  
SLP SLP SLP SLP SLP SLP SLP CH4 RDY SLP SLP SLP SLP SLP SLP SLP  
SLP SLP SLP SLP SLP SLP SLP RDY CH1 SLP SLP SLP SLP SLP SLP SLP Chip 9  
transmitting  
SLP SLP SLP SLP SLP SLP SLP SLP CH2 SLP SLP SLP SLP SLP SLP SLP  
SLP SLP SLP SLP SLP SLP SLP SLP CH3 SLP SLP SLP SLP SLP SLP SLP  
SLP SLP SLP SLP SLP SLP SLP SLP CH4 RDY SLP SLP SLP SLP SLP SLP  
Rev. 0 | Page 23 of 39  
 
ADAR2001  
Data Sheet  
ADAR2001 Chip Number  
10  
Tx  
State  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
1
2
3
4
5
6
7
8
9
11  
12  
13  
14  
15  
16  
Function  
SLP SLP SLP SLP SLP SLP SLP SLP RDY CH1 SLP SLP SLP SLP SLP SLP Chip 10  
transmitting  
SLP SLP SLP SLP SLP SLP SLP SLP SLP CH2 SLP SLP SLP SLP SLP SLP  
SLP SLP SLP SLP SLP SLP SLP SLP SLP CH3 SLP SLP SLP SLP SLP SLP  
SLP SLP SLP SLP SLP SLP SLP SLP SLP CH4 RDY SLP SLP SLP SLP SLP  
SLP SLP SLP SLP SLP SLP SLP SLP SLP RDY CH1 SLP SLP SLP SLP SLP Chip 11  
transmitting  
SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP CH2 SLP SLP SLP SLP SLP  
SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP CH3 SLP SLP SLP SLP SLP  
SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP CH4 RDY SLP SLP SLP SLP  
SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP RDY CH1 SLP SLP SLP SLP Chip 12  
transmitting  
SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP CH2 SLP SLP SLP SLP  
SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP CH3 SLP SLP SLP SLP  
SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP CH4 RDY SLP SLP SLP  
SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP RDY CH1 SLP SLP SLP Chip 13  
transmitting  
SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP CH2 SLP SLP SLP  
SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP CH3 SLP SLP SLP  
SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP CH4 RDY SLP SLP  
SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP RDY CH1 SLP SLP Chip 14  
transmitting  
SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP CH2 SLP SLP  
SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP CH3 SLP SLP  
SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP CH4 RDY SLP  
SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP RDY CH1 SLP Chip 15  
transmitting  
SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP CH2 SLP  
SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP CH3 SLP  
SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP CH4 RDY  
SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP RDY CH1 Chip 16  
transmitting  
SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP CH2  
SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP CH3  
RDY SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP SLP CH4  
Rev. 0 | Page 24 of 39  
Data Sheet  
ADAR2001  
BIAS POINTS  
Table 9. Default Bias Points  
Register  
Address Register Name  
Bit Field Name(s)  
Register Bit(s) Default Value Description  
0x011  
BIAS_CURRENT_MULT1  
0xBB  
0xB  
0xB  
Low and mid band multiplier bias current  
Low band multiplier bias current  
Mid band multiplier bias current  
High band multiplier bias current  
High band multiplier bias current  
RF buffer amplifier bias current  
RF buffer input stage bias current  
RF buffer output stage bias current  
Active splitter bias current  
MULT_LOW_BIAS [3:0]  
MULT_MID_BIAS  
[7:4]  
0x012  
0x013  
BIAS_CURRENT_MULT2  
BIAS_CURRENT_RFAMP  
0x0B  
0xB  
MULT_HIGH_BIAS [3:0]  
0x75  
0x05  
0x07  
0xB5  
0x5  
RF_AMP1_BIAS  
RF_AMP2_BIAS  
[3:0]  
[7:4]  
0x014  
0x015  
BIAS_CURRENT_SPLT  
BIAS_CURRENT_PA  
SPLT1_BIAS  
SPLT2_BIAS  
[3:0]  
[7:4]  
First stage active splitter bias current  
Second stage active splitter bias current  
Power amplifier bias current  
0xB  
0x0C  
0xC  
PA_BIAS  
[3:0]  
Power amplifier bias current  
Rev. 0 | Page 25 of 39  
 
ADAR2001  
Data Sheet  
REGISTER SUMMARY  
Table 10. ADAR2001 Register Summary  
Addr Name  
0x000 INTERFACE_CONFIG_A  
Bits Bit Name  
Description  
Soft Reset  
Reset Access  
7
6
5
4
3
2
1
0
7
6
SOFTRESET  
0x0  
0x0  
0x0  
0x1  
0x1  
0x0  
0x0  
0x0  
0x0  
0x0  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LSB_FIRST  
LSB First  
ADDR_ASCN  
SDOACTIVE  
SDOACTIVE_  
ADDR_ASCN_  
LSB_FIRST_  
Address Ascension  
SDO Active  
SDO Active  
Address Ascension  
LSB First  
SOFTRESET_  
SINGLE_INSTRUCTION  
Soft Reset  
0x001 INTERFACE_CONFIG_B  
Single Instruction  
Stall  
CS  
_STALL  
CS  
5
4
3
MASTER_SLAVE_RB  
SLOW_INTERFACE_CTRL  
RESERVED  
Master Slave Readback  
Slow Interface Control  
Reserved.  
0x0  
0x0  
0x0  
0x0  
0x0  
0x1  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x1  
0xB  
0xB  
0x0  
0xB  
0x7  
0x5  
0xB  
0x5  
0x0  
0xC  
0x0  
0x0  
0x0  
R/W  
R/W  
R
[2:1] SOFT_RESET  
RESERVED  
[7:4] DEV_STATUS  
Soft Reset  
R/W  
R
0
Reserved  
0x002 DEV_CONFIG  
Device Status  
R/W  
R/W  
R/W  
R
[3:2] CUST_OPERATING_MODE Custom Operating Modes  
[1:0] NORM_OPERATING_MODE Normal Operating Modes  
0x003 CHIP_TYPE  
[7:0] CHIP_TYPE  
Chip Type  
0x004 PRODUCT_ID_H  
0x005 PRODUCT_ID_L  
0x00A SCRATCH_PAD  
0x00B SPI_REV  
[7:0] PRODUCT_ID[15:8]  
[7:0] PRODUCT_ID[7:0]  
[7:0] SCRATCHPAD  
[7:0] SPI_REV  
Product ID High  
R
Product ID Low  
Scratch Pad  
R
R/W  
R
SPI Revision  
0x00C VENDOR_ID_H  
0x00D VENDOR_ID_L  
0x00F TRANSFER_REG  
[7:0] VENDOR_ID[15:8]  
[7:0] VENDOR_ID[7:0]  
[7:1] RESERVED  
Vendor ID High  
R
Vendor ID Low  
R
Reserved  
Master Slave Transfer  
R
R/W  
R
0
MASTER_SLAVE_XFER  
[7:1] RESERVED  
PWRON  
0x010 PWRON  
Reserved  
0
Chip Power-Up  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
0x011 BIAS_CURRENT_MULT1  
0x012 BIAS_CURRENT_MULT2  
0x013 BIAS_CURRENT_RFAMP  
0x014 BIAS_CURRENT_SPLT  
0x015 BIAS_CURRENT_PA  
0x016 TX_SEQUENCER_SETUP  
[7:4] MULT_MID_BIAS  
[3:0] MULT_LOW_BIAS  
[7:4] RESERVED  
[3:0] MULT_HIGH_BIAS  
[7:4] RF_AMP2_BIAS  
[3:0] RF_AMP1_BIAS  
[7:4] SPLT2_BIAS  
Multiplier Mid Band 4× Bias Current Setting  
Multiplier Low Band 4× Bias Current Setting  
Reserved  
Multiplier High Band 4× Bias Current Setting  
RF Amp Output Stage Bias Current Setting  
RF Amp Input Stage Bias Current Setting  
Second Active Splitter Stages Bias Current Setting  
First Active Splitter Stage Bias Current Setting  
Reserved  
[3:0] SPLT1_BIAS  
[7:4] RESERVED  
[3:0] PA_BIAS  
PA Bias Current Setting  
Enables Transmit Sequencer  
Sets Transmit Sleep Mode Control  
Holds the Transmit Sequencer State When  
Multiplier Is in Sleep Mode  
R/W  
R/W  
R/W  
R/W  
7
6
5
TX_SEQ_EN  
TX_SLP_CTRL  
TX_SLP_HOLD  
4
TX_CTL_LATCH_BYP  
Bypasses the Control Latch for Transmit Controls  
Reserved  
0x1  
0x0  
R/W  
R
[3:0] RESERVED  
Rev. 0 | Page 26 of 39  
 
Data Sheet  
ADAR2001  
Addr Name  
0x017 TX_SEQUENCER_SETUP2  
Bits Bit Name  
RESERVED  
[6:0] TX_STATES  
Description  
Reserved  
Reset Access  
7
0x0  
0x0  
0x0  
0x0  
0x0  
R
Sets Transmit Sequencer Depth  
Enables Multiplier Sequencer  
Sets Multiplier Sleep Mode Control  
Holds the Multiplier Sequencer State When  
Transmit Is in Sleep Mode  
R/W  
R/W  
R/W  
R/W  
0x018 MULT_SEQUENCER_SETUP 7  
MULT_SEQ_EN  
6
5
MULT_SLP_CTRL  
MULT_SLP_HOLD  
4
MULT_CTL_LATCH_BYP  
Bypasses the Control Latch for Multiplier Controls  
Sets Multiplier Sequencer Depth  
0x1  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
[3:0] MULT_STATES  
[7:4] TX_STATE_1  
0x019 TX_STATES_1_2  
0x01A TX_STATES_3_4  
0x01B TX_STATES_5_6  
0x01C TX_STATES_7_8  
0x01D TX_STATES_9_10  
0x01E TX_STATES_11_12  
0x01F TX_STATES_13_14  
0x020 TX_STATES_15_16  
0x021 TX_STATES_17_18  
0x022 TX_STATES_19_20  
0x023 TX_STATES_21_22  
0x024 TX_STATES_23_24  
0x025 TX_STATES_25_26  
0x026 TX_STATES_27_28  
0x027 TX_STATES_29_30  
0x028 TX_STATES_31_32  
0x029 TX_STATES_33_34  
0x02A TX_STATES_35_36  
0x02B TX_STATES_37_38  
0x02C TX_STATES_39_40  
0x02D TX_STATES_41_42  
Mode Select for Transmit Sequencer State 1  
Mode Select for Transmit Sequencer State 2  
Mode Select for Transmit Sequencer State 3  
Mode Select for Transmit Sequencer State 4  
Mode Select for Transmit Sequencer State 5  
Mode Select for Transmit Sequencer State 6  
Mode Select for Transmit Sequencer State 7  
Mode Select for Transmit Sequencer State 8  
Mode Select for Transmit Sequencer State 9  
Mode Select for Transmit Sequencer State 10  
Mode Select for Transmit Sequencer State 11  
Mode Select for Transmit Sequencer State 12  
Mode Select for Transmit Sequencer State 13  
Mode Select for Transmit Sequencer State 14  
Mode Select for Transmit Sequencer State 15  
Mode Select for Transmit Sequencer State 16  
Mode Select for Transmit Sequencer State 17  
Mode Select for Transmit Sequencer State 18  
Mode Select for Transmit Sequencer State 19  
Mode Select for Transmit Sequencer State 20  
Mode Select for Transmit Sequencer State 21  
Mode Select for Transmit Sequencer State 22  
Mode Select for Transmit Sequencer State 23  
Mode Select for Transmit Sequencer State 24  
Mode Select for Transmit Sequencer State 25  
Mode Select for Transmit Sequencer State 26  
Mode Select for Transmit Sequencer State 27  
Mode Select for Transmit Sequencer State 28  
Mode Select for Transmit Sequencer State 29  
Mode Select for Transmit Sequencer State 30  
Mode Select for Transmit Sequencer State 31  
Mode Select for Transmit Sequencer State 32  
Mode Select for Transmit Sequencer State 33  
Mode Select for Transmit Sequencer State 34  
Mode Select for Transmit Sequencer State 35  
Mode Select for Transmit Sequencer State 36  
Mode Select for Transmit Sequencer State 37  
Mode Select for Transmit Sequencer State 38  
Mode Select for Transmit Sequencer State 39  
Mode Select for Transmit Sequencer State 40  
Mode Select for Transmit Sequencer State 41  
Mode Select for Transmit Sequencer State 42  
[3:0] TX_STATE_2  
[7:4] TX_STATE_3  
[3:0] TX_STATE_4  
[7:4] TX_STATE_5  
[3:0] TX_STATE_6  
[7:4] TX_STATE_7  
[3:0] TX_STATE_8  
[7:4] TX_STATE_9  
[3:0] TX_STATE_10  
[7:4] TX_STATE_11  
[3:0] TX_STATE_12  
[7:4] TX_STATE_13  
[3:0] TX_STATE_14  
[7:4] TX_STATE_15  
[3:0] TX_STATE_16  
[7:4] TX_STATE_17  
[3:0] TX_STATE_18  
[7:4] TX_STATE_19  
[3:0] TX_STATE_20  
[7:4] TX_STATE_21  
[3:0] TX_STATE_22  
[7:4] TX_STATE_23  
[3:0] TX_STATE_24  
[7:4] TX_STATE_25  
[3:0] TX_STATE_26  
[7:4] TX_STATE_27  
[3:0] TX_STATE_28  
[7:4] TX_STATE_29  
[3:0] TX_STATE_30  
[7:4] TX_STATE_31  
[3:0] TX_STATE_32  
[7:4] TX_STATE_33  
[3:0] TX_STATE_34  
[7:4] TX_STATE_35  
[3:0] TX_STATE_36  
[7:4] TX_STATE_37  
[3:0] TX_STATE_38  
[7:4] TX_STATE_39  
[3:0] TX_STATE_40  
[7:4] TX_STATE_41  
[3:0] TX_STATE_42  
Rev. 0 | Page 27 of 39  
ADAR2001  
Data Sheet  
Addr Name  
Bits Bit Name  
Description  
Reset Access  
0x02E TX_STATES_43_44  
[7:4] TX_STATE_43  
[3:0] TX_STATE_44  
[7:4] TX_STATE_45  
[3:0] TX_STATE_46  
[7:4] TX_STATE_47  
[3:0] TX_STATE_48  
[7:4] TX_STATE_49  
[3:0] TX_STATE_50  
[7:4] TX_STATE_51  
[3:0] TX_STATE_52  
[7:4] TX_STATE_53  
[3:0] TX_STATE_54  
[7:4] TX_STATE_55  
[3:0] TX_STATE_56  
[7:4] TX_STATE_57  
[3:0] TX_STATE_58  
[7:4] TX_STATE_59  
[3:0] TX_STATE_60  
[7:4] TX_STATE_61  
[3:0] TX_STATE_62  
[7:4] TX_STATE_63  
[3:0] TX_STATE_64  
[7:4] TX_STATE_65  
[3:0] TX_STATE_66  
[7:4] TX_STATE_67  
[3:0] TX_STATE_68  
[7:4] TX_STATE_69  
[3:0] TX_STATE_70  
[7:4] MULT_STATE_1  
[3:0] MULT_STATE_2  
[7:4] MULT_STATE_3  
[3:0] MULT_STATE_4  
[7:4] MULT_STATE_5  
[3:0] MULT_STATE_6  
[7:4] MULT_STATE_7  
[3:0] MULT_STATE_8  
[7:4] MULT_STATE_9  
[3:0] MULT_STATE_10  
[7:4] MULT_STATE_11  
[3:0] MULT_STATE_12  
[7:4] MULT_STATE_13  
[3:0] MULT_STATE_14  
[7:4] MULT_STATE_15  
[3:0] MULT_STATE_16  
[7:4] RESERVED  
Mode Select for Transmit Sequencer State 43  
Mode Select for Transmit Sequencer State 44  
Mode Select for Transmit Sequencer State 45  
Mode Select for Transmit Sequencer State 46  
Mode Select for Transmit Sequencer State 47  
Mode Select for Transmit Sequencer State 48  
Mode Select for Transmit Sequencer State 49  
Mode Select for Transmit Sequencer State 50  
Mode Select for Transmit Sequencer State 51  
Mode Select for Transmit Sequencer State 52  
Mode Select for Transmit Sequencer State 53  
Mode Select for Transmit Sequencer State 54  
Mode Select for Transmit Sequencer State 55  
Mode Select for Transmit Sequencer State 56  
Mode Select for Transmit Sequencer State 57  
Mode Select for Transmit Sequencer State 58  
Mode Select for Transmit Sequencer State 59  
Mode Select for Transmit Sequencer State 60  
Mode Select for Transmit Sequencer State 61  
Mode Select for Transmit Sequencer State 62  
Mode Select for Transmit Sequencer State 63  
Mode Select for Transmit Sequencer State 64  
Mode Select for Transmit Sequencer State 65  
Mode Select for Transmit Sequencer State 66  
Mode Select for Transmit Sequencer State 67  
Mode Select for Transmit Sequencer State 68  
Mode Select for Transmit Sequencer State 69  
Mode Select for Transmit Sequencer State 70  
Mode Select for Multiplier Sequencer State 1  
Mode Select for Multiplier Sequencer State 2  
Mode Select for Multiplier Sequencer State 3  
Mode Select for Multiplier Sequencer State 4  
Mode Select for Multiplier Sequencer State 5  
Mode Select for Multiplier Sequencer State 6  
Mode Select for Multiplier Sequencer State 7  
Mode Select for Multiplier Sequencer State 8  
Mode Select for Multiplier Sequencer State 9  
Mode Select for Multiplier Sequencer State 10  
Mode Select for Multiplier Sequencer State 11  
Mode Select for Multiplier Sequencer State 12  
Mode Select for Multiplier Sequencer State 13  
Mode Select for Multiplier Sequencer State 14  
Mode Select for Multiplier Sequencer State 15  
Mode Select for Multiplier Sequencer State 16  
Reserved  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
0x02F TX_STATES_45_46  
0x030 TX_STATES_47_48  
0x031 TX_STATES_49_50  
0x032 TX_STATES_51_52  
0x033 TX_STATES_53_54  
0x034 TX_STATES_55_56  
0x035 TX_STATES_57_58  
0x036 TX_STATES_59_60  
0x037 TX_STATES_61_62  
0x038 TX_STATES_63_64  
0x039 TX_STATES_65_66  
0x03A TX_STATES_67_68  
0x03B TX_STATES_69_70  
0x03C MULT_STATES_1_2  
0x03D MULT_STATES_3_4  
0x03E MULT_STATES_5_6  
0x03F MULT_STATES_7_8  
0x040 MULT_STATES_9_10  
0x041 MULT_STATES_11_12  
0x042 MULT_STATES_13_14  
0x043 MULT_STATES_15_16  
0x044 SEQUENCER_CTRL_SPI  
3
2
1
0
MULT_RST_SPI  
MULT_ADV_SPI  
TX_RST_SPI  
Resets Multiplier Sequencer  
R/W  
R/W  
R/W  
R/W  
Advances Multiplier Sequencer State  
Resets Transmit Sequencer  
TX_ADV_SPI  
Advances Transmit Sequencer State  
Rev. 0 | Page 28 of 39  
Data Sheet  
ADAR2001  
Addr Name  
Bits Bit Name  
Description  
Reset Access  
0x045 TX_EN1_SPI  
7
6
5
4
3
2
1
0
CH1_RDY_SPI  
SPI Mode Channel 1 Ready Enable  
SPI Mode Channel 1 Active Enable  
SPI Mode Channel 2 Ready Enable  
SPI Mode Channel 2 Active Enable  
SPI Mode Channel 3 Ready Enable  
SPI Mode Channel 3 Active Enable  
SPI Mode Channel 4 Ready Enable  
SPI Mode Channel 4 Active Enable  
Reserved  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
CH1_ACT_SPI  
CH2_RDY_SPI  
CH2_ACT_SPI  
CH3_RDY_SPI  
CH3_ACT_SPI  
CH4_RDY_SPI  
CH4_ACT_SPI  
0x046 TX_EN2_SPI  
[7:3] RESERVED  
2
1
SPLT1_EN_SPI  
SPI Mode Active Splitter1 Enable  
SPI Mode Channel 1 to Channel 2 Active Splitter  
Enable  
R/W  
R/W  
SPLT12_EN_SPI  
0
SPLT34_EN_SPI  
SPI Mode Channel 3 to Channel 4 Active Splitter  
Enable  
0x0  
R/W  
0x047 MULT_EN_SPI  
7
6
5
4
3
2
1
0
7
6
5
RESERVED  
Reserved  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
R
RFAMP_EN_SPI  
SPI Mode RF Amplifier Enable  
SPI Mode Low Band Ready Enable  
SPI Mode Low Band Active Enable  
SPI Mode Mid Band Ready Enable  
SPI Mode Mid Band Active Enable  
SPI Mode High Band Ready Enable  
SPI Mode High Band Active Enable  
SPI Mode BPF Select  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
MULT_LOW_RDY_SPI  
MULT_LOW_ACT_SPI  
MULT_MID_RDY_SPI  
MULT_MID_ACT_SPI  
MULT_HIGH_RDY_SPI  
MULT_HIGH_ACT_SPI  
BPF_SPI  
0x048 MULT_PASS_SPI  
0x049 DET_ENABLES  
PA_NOTCH_SPI  
RESERVED  
SPI Mode Notch Filter Select  
Reserved  
[4:0] ATTN_SPI  
[7:4] RESERVED  
SPI Mode Attenuator Setting  
Reserved  
R/W  
R
3
2
1
0
7
6
5
4
CH4_DET_EN  
CH3_DET_EN  
CH2_DET_EN  
CH1_DET_EN  
ADC_CLKFREQ_SEL  
ADC_EN  
Enables Channel 4 Power Detector  
Enables Channel 3 Power Detector  
Enables Channel 2 Power Detector  
Enables Channel 1 Power Detector  
ADC Clock Frequency Selection  
Turns on Comparator and Resets State Machine  
Turns on Clock Oscillator  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
0x04A ADC_CTRL  
CLK_EN  
ST_CONV  
Pulse Triggers Conversion Cycle  
ADC Input Signal Select  
[3:1] MUX_SEL  
ADC_EOC  
0
ADC End of Conversion Signal  
ADC Output Word  
0x04B ADC_OUTPUT  
[7:0] ADC  
R
0x04C TX_CURR_MODE  
[7:4] RESERVED  
[3:0] TX_CURR_MODE  
Reserved  
R
Read Back Current Transmit Mode  
Reserved  
R
0x04D TX_CURR_STATE  
0x04E MULT_STATUS  
0x04F REV_ID  
7
RESERVED  
R
[6:0] TX_CURR_STATE  
[7:4] MULT_CURR_STATE  
[3:0] MULT_CURR_MODE  
[7:0] REV_ID  
Read Back Current Transmit Sequencer Count  
Read Back Current Multiplier Sequencer Count  
Read Back Current Multiplier Mode  
Chip Revision ID  
R
R
R
R
Rev. 0 | Page 29 of 39  
ADAR2001  
Data Sheet  
Addr Name  
Bits Bit Name  
Description  
Reset Access  
0x050 TX_EN1_MODE_0  
7
6
5
4
3
2
1
0
CH1_RDY_MD0  
Transmit Mode 0 Channel 1 Ready Enable  
Transmit Mode 0 Channel 1 Active Enable  
Transmit Mode 0 Channel 2 Ready Enable  
Transmit Mode 0 Channel 2 Active Enable  
Transmit Mode 0 Channel 3 Ready Enable  
Transmit Mode 0 Channel 3 Active Enable  
Transmit Mode 0 Channel 4 Ready Enable  
Transmit Mode 0 Channel 4 Active Enable  
Reserved  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
CH1_ACT_MD0  
CH2_RDY_MD0  
CH2_ACT_MD0  
CH3_RDY_MD0  
CH3_ACT_MD0  
CH4_RDY_MD0  
CH4_ACT_MD0  
0x051 TX_EN2_MODE_0  
0x052 TX_EN1_MODE_1  
[7:3] RESERVED  
2
1
SPLT1_EN_MD0  
Transmit Mode 0 Active Splitter 1 Enable  
Transmit Mode 0 Channel 1 to Channel 2 Active  
Splitter Enable  
Transmit Mode 0 Channel 3 to Channel 4 Active  
Splitter Enable  
R/W  
R/W  
SPLT12_EN_MD0  
0
SPLT34_EN_MD0  
0x0  
R/W  
7
6
5
4
3
2
1
0
CH1_RDY_MD1  
CH1_ACT_MD1  
CH2_RDY_MD1  
CH2_ACT_MD1  
CH3_RDY_MD1  
CH3_ACT_MD1  
CH4_RDY_MD1  
CH4_ACT_MD1  
Transmit Mode 1 Channel 1 Ready Enable  
Transmit Mode 1 Channel 1 Active Enable  
Transmit Mode 1 Channel 2 Ready Enable  
Transmit Mode 1 Channel 2 Active Enable  
Transmit Mode 1 Channel 3 Ready Enable  
Transmit Mode 1 Channel 3 Active Enable  
Transmit Mode 1 Channel 4 Ready Enable  
Transmit Mode 1 Channel 4 Active Enable  
Reserved  
0x1  
0x0  
0x1  
0x0  
0x1  
0x0  
0x1  
0x0  
0x0  
0x1  
0x1  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
0x053 TX_EN2_MODE_1  
0x054 TX_EN1_MODE_2  
[7:3] RESERVED  
2
1
SPLT1_EN_MD1  
Transmit Mode 1 Active Splitter 1 Enable  
Transmit Mode 1 Channel 1 to Channel 2 Active  
Splitter Enable  
Transmit Mode 1 Channel 3 to Channel 4 Active  
Splitter Enable  
R/W  
R/W  
SPLT12_EN_MD1  
0
SPLT34_EN_MD1  
0x1  
R/W  
7
6
5
4
3
2
1
0
CH1_RDY_MD2  
CH1_ACT_MD2  
CH2_RDY_MD2  
CH2_ACT_MD2  
CH3_RDY_MD2  
CH3_ACT_MD2  
CH4_RDY_MD2  
CH4_ACT_MD2  
Transmit Mode 2 Channel 1 Ready Enable  
Transmit Mode 2 Channel 1 Active Enable  
Transmit Mode 2 Channel 2 Ready Enable  
Transmit Mode 2 Channel 2 Active Enable  
Transmit Mode 2 Channel 3 Ready Enable  
Transmit Mode 2 Channel 3 Active Enable  
Transmit Mode 2 Channel 4 Ready Enable  
Transmit Mode 2 Channel 4 Active Enable  
Reserved  
Transmit Mode 2 Active Splitter 1 Enable  
Transmit Mode 2 Channel 1 to Channel 2 Active  
Splitter Enable  
Transmit Mode 2 Channel 3 to Channel 4 Active  
Splitter Enable  
0x1  
0x1  
0x1  
0x0  
0x1  
0x0  
0x1  
0x0  
0x0  
0x1  
0x1  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
0x055 TX_EN2_MODE_2  
0x056 TX_EN1_MODE_3  
[7:3] RESERVED  
2
1
SPLT1_EN_MD2  
R/W  
R/W  
SPLT12_EN_MD2  
0
SPLT34_EN_MD2  
0x1  
R/W  
7
6
5
4
3
2
1
0
CH1_RDY_MD3  
CH1_ACT_MD3  
CH2_RDY_MD3  
CH2_ACT_MD3  
CH3_RDY_MD3  
CH3_ACT_MD3  
CH4_RDY_MD3  
CH4_ACT_MD3  
Transmit Mode 3 Channel 1 Ready Enable  
Transmit Mode 3 Channel 1 Active Enable  
Transmit Mode 3 Channel 2 Ready Enable  
Transmit Mode 3 Channel 2 Active Enable  
Transmit Mode 3 Channel 3 Ready Enable  
Transmit Mode 3 Channel 3 Active Enable  
Transmit Mode 3 Channel 4 Ready Enable  
Transmit Mode 3 Channel 4 Active Enable  
0x1  
0x0  
0x1  
0x1  
0x1  
0x0  
0x1  
0x0  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Rev. 0 | Page 30 of 39  
Data Sheet  
ADAR2001  
Addr Name  
Bits Bit Name  
Description  
Reset Access  
0x057 TX_EN2_MODE_3  
[7:3] RESERVED  
Reserved  
0x0  
0x1  
0x1  
R
2
1
SPLT1_EN_MD3  
SPLT12_EN_MD3  
Transmit Mode 3 Active Splitter 1 Enable  
Transmit Mode 3 Channel 1 to Channel 2 Active  
Splitter Enable  
R/W  
R/W  
0
SPLT34_EN_MD3  
Transmit Mode 3 Channel 3 to Channel 4 Active  
Splitter Enable  
0x1  
R/W  
0x058 TX_EN1_MODE_4  
7
6
5
4
3
2
1
0
CH1_RDY_MD4  
CH1_ACT_MD4  
CH2_RDY_MD4  
CH2_ACT_MD4  
CH3_RDY_MD4  
CH3_ACT_MD4  
CH4_RDY_MD4  
CH4_ACT_MD4  
Transmit Mode 4 Channel 1 Ready Enable  
Transmit Mode 4 Channel 1 Active Enable  
Transmit Mode 4 Channel 2 Ready Enable  
Transmit Mode 4 Channel 2 Active Enable  
Transmit Mode 4 Channel 3 Ready Enable  
Transmit Mode 4 Channel 3 Active Enable  
Transmit Mode 4 Channel 4 Ready Enable  
Transmit Mode 4 Channel 4 Active Enable  
Reserved  
0x1  
0x0  
0x1  
0x0  
0x1  
0x1  
0x1  
0x0  
0x0  
0x1  
0x1  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
0x059 TX_EN2_MODE_4  
0x05A TX_EN1_MODE_5  
[7:3] RESERVED  
2
1
SPLT1_EN_MD4  
Transmit Mode 4 Active Splitter 1 Enable  
Transmit Mode 4 Channel 1 to Channel 2 Active  
Splitter Enable  
Transmit Mode 4 Channel 3 to Channel 4 Active  
Splitter Enable  
R/W  
R/W  
SPLT12_EN_MD4  
0
SPLT34_EN_MD4  
0x1  
R/W  
7
6
5
4
3
2
1
0
CH1_RDY_MD5  
CH1_ACT_MD5  
CH2_RDY_MD5  
CH2_ACT_MD5  
CH3_RDY_MD5  
CH3_ACT_MD5  
CH4_RDY_MD5  
CH4_ACT_MD5  
Transmit Mode 5 Channel 1 Ready Enable  
Transmit Mode 5 Channel 1 Active Enable  
Transmit Mode 5 Channel 2 Ready Enable  
Transmit Mode 5 Channel 2 Active Enable  
Transmit Mode 5 Channel 3 Ready Enable  
Transmit Mode 5 Channel 3 Active Enable  
Transmit Mode 5 Channel 4 Ready Enable  
Transmit Mode 5 Channel 4 Active Enable  
Reserved  
0x1  
0x0  
0x1  
0x0  
0x1  
0x0  
0x1  
0x1  
0x0  
0x1  
0x1  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
0x05B TX_EN2_MODE_5  
0x05C TX_EN1_MODE_6  
[7:3] RESERVED  
2
1
SPLT1_EN_MD5  
Transmit Mode 5 Active Splitter 1 Enable  
Transmit Mode 5 Channel 1 to Channel 2 Active  
Splitter Enable  
Transmit Mode 5 Channel 3 to Channel 4 Active  
Splitter Enable  
R/W  
R/W  
SPLT12_EN_MD5  
0
SPLT34_EN_MD5  
0x1  
R/W  
7
6
5
4
3
2
1
0
CH1_RDY_MD6  
CH1_ACT_MD6  
CH2_RDY_MD6  
CH2_ACT_MD6  
CH3_RDY_MD6  
CH3_ACT_MD6  
CH4_RDY_MD6  
CH4_ACT_MD6  
Transmit Mode 6 Channel 1 Ready Enable  
Transmit Mode 6 Channel 1 Active Enable  
Transmit Mode 6 Channel 2 Ready Enable  
Transmit Mode 6 Channel 2 Active Enable  
Transmit Mode 6 Channel 3 Ready Enable  
Transmit Mode 6 Channel 3 Active Enable  
Transmit Mode 6 Channel 4 Ready Enable  
Transmit Mode 6 Channel 4 Active Enable  
Reserved  
0x1  
0x1  
0x1  
0x1  
0x1  
0x1  
0x1  
0x1  
0x0  
0x1  
0x1  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
0x05D TX_EN2_MODE_6  
[7:3] RESERVED  
2
1
SPLT1_EN_MD6  
Transmit Mode 6 Active Splitter 1 Enable  
Transmit Mode 6 Channel 1 to Channel 2 Active  
Splitter Enable  
R/W  
R/W  
SPLT12_EN_MD6  
0
SPLT34_EN_MD6  
Transmit Mode 6 Channel 3 to Channel 4 Active  
Splitter Enable  
0x1  
R/W  
Rev. 0 | Page 31 of 39  
ADAR2001  
Data Sheet  
Addr Name  
Bits Bit Name  
Description  
Reset Access  
0x05E TX_EN1_MODE_7  
7
6
5
4
3
2
1
0
CH1_RDY_MD7  
Transmit Mode 7 Channel 1 Ready Enable  
Transmit Mode 7 Channel 1 Active Enable  
Transmit Mode 7 Channel 2 Ready Enable  
Transmit Mode 7 Channel 2 Active Enable  
Transmit Mode 7 Channel 3 Ready Enable  
Transmit Mode 7 Channel 3 Active Enable  
Transmit Mode 7 Channel 4 Ready Enable  
Transmit Mode 7 Channel 4 Active Enable  
Reserved  
0x1  
0x1  
0x1  
0x1  
0x1  
0x0  
0x1  
0x0  
0x0  
0x1  
0x1  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
CH1_ACT_MD7  
CH2_RDY_MD7  
CH2_ACT_MD7  
CH3_RDY_MD7  
CH3_ACT_MD7  
CH4_RDY_MD7  
CH4_ACT_MD7  
0x05F TX_EN2_MODE_7  
0x060 TX_EN1_MODE_8  
[7:3] RESERVED  
2
1
SPLT1_EN_MD7  
Transmit Mode 7 Active Splitter 1 Enable  
Transmit Mode 7 Channel 1 to Channel 2 Active  
Splitter Enable  
Transmit Mode 7 Channel 3 to Channel 4 Active  
Splitter Enable  
R/W  
R/W  
SPLT12_EN_MD7  
0
SPLT34_EN_MD7  
0x1  
R/W  
7
6
5
4
3
2
1
0
CH1_RDY_MD8  
CH1_ACT_MD8  
CH2_RDY_MD8  
CH2_ACT_MD8  
CH3_RDY_MD8  
CH3_ACT_MD8  
CH4_RDY_MD8  
CH4_ACT_MD8  
Transmit Mode 8 Channel 1 Ready Enable  
Transmit Mode 8 Channel 1 Active Enable  
Transmit Mode 8 Channel 2 Ready Enable  
Transmit Mode 8 Channel 2 Active Enable  
Transmit Mode 8 Channel 3 Ready Enable  
Transmit Mode 8 Channel 3 Active Enable  
Transmit Mode 8 Channel 4 Ready Enable  
Transmit Mode 8 Channel 4 Active Enable  
Reserved  
0x1  
0x1  
0x1  
0x0  
0x1  
0x1  
0x1  
0x0  
0x0  
0x1  
0x1  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
0x061 TX_EN2_MODE_8  
0x062 TX_EN1_MODE_9  
[7:3] RESERVED  
2
1
SPLT1_EN_MD8  
Transmit Mode 8 Active Splitter 1 Enable  
Transmit Mode 8 Channel 1 to Channel 2 Active  
Splitter Enable  
Transmit Mode 8 Channel 3 to Channel 4 Active  
Splitter Enable  
R/W  
R/W  
SPLT12_EN_MD8  
0
SPLT34_EN_MD8  
0x1  
R/W  
7
6
5
4
3
2
1
0
CH1_RDY_MD9  
CH1_ACT_MD9  
CH2_RDY_MD9  
CH2_ACT_MD9  
CH3_RDY_MD9  
CH3_ACT_MD9  
CH4_RDY_MD9  
CH4_ACT_MD9  
Transmit Mode 9 Channel 1 Ready Enable  
Transmit Mode 9 Channel 1 Active Enable  
Transmit Mode 9 Channel 2 Ready Enable  
Transmit Mode 9 Channel 2 Active Enable  
Transmit Mode 9 Channel 3 Ready Enable  
Transmit Mode 9 Channel 3 Active Enable  
Transmit Mode 9 Channel 4 Ready Enable  
Transmit Mode 9 Channel 4 Active Enable  
Reserved  
Transmit Mode 9 Active Splitter 1 Enable  
Transmit Mode 9 Channel 1 to Channel 2 Active  
Splitter Enable  
Transmit Mode 9 Channel 3 to Channel 4 Active  
Splitter Enable  
0x1  
0x1  
0x1  
0x0  
0x1  
0x0  
0x1  
0x1  
0x0  
0x1  
0x1  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
0x063 TX_EN2_MODE_9  
0x064 TX_EN1_MODE_10  
[7:3] RESERVED  
2
1
SPLT1_EN_MD9  
R/W  
R/W  
SPLT12_EN_MD9  
0
SPLT34_EN_MD9  
0x1  
R/W  
7
6
5
4
3
2
1
0
CH1_RDY_MD10  
CH1_ACT_MD10  
CH2_RDY_MD10  
CH2_ACT_MD10  
CH3_RDY_MD10  
CH3_ACT_MD10  
CH4_RDY_MD10  
CH4_ACT_MD10  
Transmit Mode 10 Channel 1 Ready Enable  
Transmit Mode 10 Channel 1 Active Enable  
Transmit Mode 10 Channel 2 Ready Enable  
Transmit Mode 10 Channel 2 Active Enable  
Transmit Mode 10 Channel 3 Ready Enable  
Transmit Mode 10 Channel 3 Active Enable  
Transmit Mode 10 Channel 4 Ready Enable  
Transmit Mode 10 Channel 4 Active Enable  
0x1  
0x0  
0x1  
0x1  
0x1  
0x1  
0x1  
0x0  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Rev. 0 | Page 32 of 39  
Data Sheet  
ADAR2001  
Addr Name  
Bits Bit Name  
Description  
Reset Access  
0x065 TX_EN2_MODE_10  
[7:3] RESERVED  
Reserved  
0x0  
0x1  
0x1  
R
2
1
SPLT1_EN_MD10  
SPLT12_EN_MD10  
Transmit Mode 10 Active Splitter 1 Enable  
Transmit Mode 10 Channel 1 to Channel 2 Active  
Splitter Enable  
R/W  
R/W  
0
SPLT34_EN_MD10  
Transmit Mode 10 Channel 3 to Channel 4 Active  
Splitter Enable  
0x1  
R/W  
0x066 TX_EN1_MODE_11  
7
6
5
4
3
2
1
0
CH1_RDY_MD11  
CH1_ACT_MD11  
CH2_RDY_MD11  
CH2_ACT_MD11  
CH3_RDY_MD11  
CH3_ACT_MD11  
CH4_RDY_MD11  
CH4_ACT_MD11  
Transmit Mode 11 Channel 1 Ready Enable  
Transmit Mode 11 Channel 1 Active Enable  
Transmit Mode 11 Channel 2 Ready Enable  
Transmit Mode 11 Channel 2 Active Enable  
Transmit Mode 11 Channel 3 Ready Enable  
Transmit Mode 11 Channel 3 Active Enable  
Transmit Mode 11 Channel 4 Ready Enable  
Transmit Mode 11 Channel 4 Active Enable  
Reserved  
0x1  
0x0  
0x1  
0x1  
0x1  
0x0  
0x1  
0x1  
0x0  
0x1  
0x1  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
0x067 TX_EN2_MODE_11  
0x068 TX_EN1_MODE_12  
[7:3] RESERVED  
2
1
SPLT1_EN_MD11  
Transmit Mode 11 Active Splitter 1 Enable  
Transmit Mode 11 Channel 1 to Channel 2 Active  
Splitter Enable  
Transmit Mode 11 Channel 3 to Channel 4 Active  
Splitter Enable  
R/W  
R/W  
SPLT12_EN_MD11  
0
SPLT34_EN_MD11  
0x1  
R/W  
7
6
5
4
3
2
1
0
CH1_RDY_MD12  
CH1_ACT_MD12  
CH2_RDY_MD12  
CH2_ACT_MD12  
CH3_RDY_MD12  
CH3_ACT_MD12  
CH4_RDY_MD12  
CH4_ACT_MD12  
Transmit Mode 12 Channel 1 Ready Enable  
Transmit Mode 12 Channel 1 Active Enable  
Transmit Mode 12 Channel 2 Ready Enable  
Transmit Mode 12 Channel 2 Active Enable  
Transmit Mode 12 Channel 3 Ready Enable  
Transmit Mode 12 Channel 3 Active Enable  
Transmit Mode 12 Channel 4 Ready Enable  
Transmit Mode 12 Channel 4 Active Enable  
Reserved  
0x1  
0x0  
0x1  
0x0  
0x1  
0x1  
0x1  
0x1  
0x0  
0x1  
0x1  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
0x069 TX_EN2_MODE_12  
0x06A TX_EN1_MODE_13  
[7:3] RESERVED  
2
1
SPLT1_EN_MD12  
Transmit Mode 12 Active Splitter 1 Enable  
Transmit Mode 12 Channel 1 to Channel 2 Active  
Splitter Enable  
Transmit Mode 12 Channel 3 to Channel 4 Active  
Splitter Enable  
R/W  
R/W  
SPLT12_EN_MD12  
0
SPLT34_EN_MD12  
0x1  
R/W  
7
6
5
4
3
2
1
0
CH1_RDY_MD13  
CH1_ACT_MD13  
CH2_RDY_MD13  
CH2_ACT_MD13  
CH3_RDY_MD13  
CH3_ACT_MD13  
CH4_RDY_MD13  
CH4_ACT_MD13  
Transmit Mode 13 Channel 1 Ready Enable  
Transmit Mode 13 Channel 1 Active Enable  
Transmit Mode 13 Channel 2 Ready Enable  
Transmit Mode 13 Channel 2 Active Enable  
Transmit Mode 13 Channel 3 Ready Enable  
Transmit Mode 13 Channel 3 Active Enable  
Transmit Mode 13 Channel 4 Ready Enable  
Transmit Mode 13 Channel 4 Active Enable  
Reserved  
0x1  
0x1  
0x1  
0x1  
0x1  
0x1  
0x1  
0x0  
0x0  
0x1  
0x1  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
0x06B TX_EN2_MODE_13  
[7:3] RESERVED  
2
1
SPLT1_EN_MD13  
Transmit Mode 13 Active Splitter 1 Enable  
Transmit Mode 13 Channel 1 to Channel 2 Active  
Splitter Enable  
R/W  
R/W  
SPLT12_EN_MD13  
0
SPLT34_EN_MD13  
Transmit Mode 13 Channel 3 to Channel 4 Active  
Splitter Enable  
0x1  
R/W  
Rev. 0 | Page 33 of 39  
ADAR2001  
Data Sheet  
Addr Name  
Bits Bit Name  
Description  
Reset Access  
0x06C TX_EN1_MODE_14  
7
6
5
4
3
2
1
0
CH1_RDY_MD14  
Transmit Mode 14 Channel 1 Ready Enable  
Transmit Mode 14 Channel 1 Active Enable  
Transmit Mode 14 Channel 2 Ready Enable  
Transmit Mode 14 Channel 2 Active Enable  
Transmit Mode 14 Channel 3 Ready Enable  
Transmit Mode 14 Channel 3 Active Enable  
Transmit Mode 14 Channel 4 Ready Enable  
Transmit Mode 14 Channel 4 Active Enable  
Reserved  
0x1  
0x0  
0x1  
0x1  
0x1  
0x1  
0x1  
0x1  
0x0  
0x1  
0x1  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
CH1_ACT_MD14  
CH2_RDY_MD14  
CH2_ACT_MD14  
CH3_RDY_MD14  
CH3_ACT_MD14  
CH4_RDY_MD14  
CH4_ACT_MD14  
0x06D TX_EN2_MODE_14  
0x06E TX_EN1_MODE_15  
[7:3] RESERVED  
2
1
SPLT1_EN_MD14  
Transmit Mode 14 Active Splitter 1 Enable  
Transmit Mode 14 Channel 1 to Channel 2 Active  
Splitter Enable  
Transmit Mode 14 Channel 3 to Channel 4 Active  
Splitter Enable  
R/W  
R/W  
SPLT12_EN_MD14  
0
SPLT34_EN_MD14  
0x1  
R/W  
7
6
5
4
3
2
1
0
CH1_RDY_MD15  
CH1_ACT_MD15  
CH2_RDY_MD15  
CH2_ACT_MD15  
CH3_RDY_MD15  
CH3_ACT_MD15  
CH4_RDY_MD15  
CH4_ACT_MD15  
Transmit Mode 15 Channel 1 Ready Enable  
Transmit Mode 15 Channel 1 Active Enable  
Transmit Mode 15 Channel 2 Ready Enable  
Transmit Mode 15 Channel 2 Active Enable  
Transmit Mode 15 Channel 3 Ready Enable  
Transmit Mode 15 Channel 3 Active Enable  
Transmit Mode 15 Channel 4 Ready Enable  
Transmit Mode 15 Channel 4 Active Enable  
Reserved  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
0x06F TX_EN2_MODE_15  
0x070 MULT_EN_MODE_0  
[7:3] RESERVED  
2
1
SPLT1_EN_MD15  
Transmit Mode 15 Active Splitter 1 Enable  
Transmit Mode 15 Channel 1 to Channel 2 Active  
Splitter Enable  
Transmit Mode 15 Channel 3 to Channel 4 Active  
Splitter Enable  
R/W  
R/W  
SPLT12_EN_MD15  
0
SPLT34_EN_MD15  
0x0  
R/W  
7
6
5
4
3
2
1
0
7
6
5
RESERVED  
Reserved  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x1  
0x1  
0x0  
0x1  
0x0  
0x1  
0x0  
R
RFAMP_EN_MD0  
MULT_LOW_RDY_MD0  
MULT_LOW_ACT_MD0  
MULT_MID_RDY_MD0  
MULT_MID_ACT_MD0  
MULT_HIGH_RDY_MD0  
MULT_HIGH_ACT_MD0  
BPF_MD0  
Multiplier Mode 0 RF Amplifier Enable  
Multiplier Mode 0 Low Band Ready Enable  
Multiplier Mode 0 Low Band Active Enable  
Multiplier Mode 0 Mid Band Ready Enable  
Multiplier Mode 0 Mid Band Active Enable  
Multiplier Mode 0 High Band Ready Enable  
Multiplier Mode 0 High Band Active Enable  
Multiplier Mode 0 BPF Select  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
0x071 MULT_PASS_MODE_0  
0x072 MULT_EN_MODE_1  
PA_NOTCH_MD0  
RESERVED  
Multiplier Mode 0 Notch Filter Select  
Reserved  
[4:0] ATTN_MD0  
Multiplier Mode 0 Attenuator Setting  
Reserved  
R/W  
R
7
6
5
4
3
2
1
0
RESERVED  
RFAMP_EN_MD1  
Multiplier Mode 1 RF Amplifier Enable  
Multiplier Mode 1 Low Band Ready Enable  
Multiplier Mode 1 Low Band Active Enable  
Multiplier Mode 1 Mid Band Ready Enable  
Multiplier Mode 1 Mid Band Active Enable  
Multiplier Mode 1 High Band Ready Enable  
Multiplier Mode 1 High Band Active Enable  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
MULT_LOW_RDY_MD1  
MULT_LOW_ACT_MD1  
MULT_MID_RDY_MD1  
MULT_MID_ACT_MD1  
MULT_HIGH_RDY_MD1  
MULT_HIGH_ACT_MD1  
Rev. 0 | Page 34 of 39  
Data Sheet  
ADAR2001  
Addr Name  
Bits Bit Name  
Description  
Reset Access  
0x073 MULT_PASS_MODE_1  
7
6
5
BPF_MD1  
Multiplier Mode 1 BPF Select  
0x0  
0x0  
0x0  
R/W  
R/W  
R
PA_NOTCH_MD1  
RESERVED  
Multiplier Mode 1 Notch Filter Select  
Reserved  
[4:0] ATTN_MD1  
Multiplier Mode 1 Attenuator Setting  
Reserved  
0x13 R/W  
0x074 MULT_EN_MODE_2  
7
6
5
4
3
2
1
0
7
6
5
RESERVED  
0x0  
0x1  
0x1  
0x1  
0x1  
0x0  
0x1  
0x0  
0x1  
0x1  
0x0  
R
RFAMP_EN_MD2  
MULT_LOW_RDY_MD2  
MULT_LOW_ACT_MD2  
MULT_MID_RDY_MD2  
MULT_MID_ACT_MD2  
MULT_HIGH_RDY_MD2  
MULT_HIGH_ACT_MD2  
BPF_MD2  
Multiplier Mode 2 RF Amplifier Enable  
Multiplier Mode 2 Low Band Ready Enable  
Multiplier Mode 2 Low Band Active Enable  
Multiplier Mode 2 Mid Band Ready Enable  
Multiplier Mode 2 Mid Band Active Enable  
Multiplier Mode 2 High Band Ready Enable  
Multiplier Mode 2 High Band Active Enable  
Multiplier Mode 2 BPF Select  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
0x075 MULT_PASS_MODE_2  
0x076 MULT_EN_MODE_3  
PA_NOTCH_MD2  
RESERVED  
Multiplier Mode 2 Notch Filter Select  
Reserved  
[4:0] ATTN_MD2  
Multiplier Mode 2 Attenuator Setting  
Reserved  
0x13 R/W  
7
6
5
4
3
2
1
0
7
6
5
RESERVED  
0x0  
0x1  
0x1  
0x1  
0x1  
0x0  
0x1  
0x0  
0x0  
0x1  
0x0  
0x7  
0x0  
0x1  
0x1  
0x1  
0x1  
0x0  
0x1  
0x0  
0x0  
0x1  
0x0  
R
RFAMP_EN_MD3  
MULT_LOW_RDY_MD3  
MULT_LOW_ACT_MD3  
MULT_MID_RDY_MD3  
MULT_MID_ACT_MD3  
MULT_HIGH_RDY_MD3  
MULT_HIGH_ACT_MD3  
BPF_MD3  
Multiplier Mode 3 RF Amplifier Enable  
Multiplier Mode 3 Low Band Ready Enable  
Multiplier Mode 3 Low Band Active Enable  
Multiplier Mode 3 Mid Band Ready Enable  
Multiplier Mode 3 Mid Band Active Enable  
Multiplier Mode 3 High Band Ready Enable  
Multiplier Mode 3 High Band Active Enable  
Multiplier Mode 3 BPF Select  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
0x077 MULT_PASS_MODE_3  
0x078 MULT_EN_MODE_4  
PA_NOTCH_MD3  
RESERVED  
Multiplier Mode 3 Notch Filter Select  
Reserved  
Multiplier Mode 3 Attenuator Setting  
Reserved  
[4:0] ATTN_MD3  
R/W  
R
7
6
5
4
3
2
1
0
7
6
5
RESERVED  
RFAMP_EN_MD4  
MULT_LOW_RDY_MD4  
MULT_LOW_ACT_MD4  
MULT_MID_RDY_MD4  
MULT_MID_ACT_MD4  
MULT_HIGH_RDY_MD4  
MULT_HIGH_ACT_MD4  
BPF_MD4  
Multiplier Mode 4 RF Amplifier Enable  
Multiplier Mode 4 Low Band Ready Enable  
Multiplier Mode 4 Low Band Active Enable  
Multiplier Mode 4 Mid Band Ready Enable  
Multiplier Mode 4 Mid Band Active Enable  
Multiplier Mode 4 High Band Ready Enable  
Multiplier Mode 4 High Band Active Enable  
Multiplier Mode 4 BPF Select  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
0x079 MULT_PASS_MODE_4  
0x07A MULT_EN_MODE_5  
PA_NOTCH_MD4  
RESERVED  
Multiplier Mode 4 Notch Filter Select  
Reserved  
[4:0] ATTN_MD4  
Multiplier Mode 4 Attenuator Setting  
Reserved  
0x13 R/W  
7
6
5
4
3
2
1
0
RESERVED  
0x0  
0x1  
0x1  
0x0  
0x1  
0x1  
0x1  
0x0  
R
RFAMP_EN_MD5  
Multiplier Mode 5 RF Amplifier Enable  
Multiplier Mode 5 Low Band Ready Enable  
Multiplier Mode 5 Low Band Active Enable  
Multiplier Mode 5 Mid Band Ready Enable  
Multiplier Mode 5 Mid Band Active Enable  
Multiplier Mode 5 High Band Ready Enable  
Multiplier Mode 5 High Band Active Enable  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
MULT_LOW_RDY_MD5  
MULT_LOW_ACT_MD5  
MULT_MID_RDY_MD5  
MULT_MID_ACT_MD5  
MULT_HIGH_RDY_MD5  
MULT_HIGH_ACT_MD5  
Rev. 0 | Page 35 of 39  
ADAR2001  
Data Sheet  
Addr Name  
Bits Bit Name  
Description  
Reset Access  
0x07B MULT_PASS_MODE_5  
7
6
5
BPF_MD5  
Multiplier Mode 5 BPF Select  
0x1  
0x0  
0x0  
R/W  
R/W  
R
PA_NOTCH_MD5  
RESERVED  
Multiplier Mode 5 Notch Filter Select  
Reserved  
[4:0] ATTN_MD5  
Multiplier Mode 5 Attenuator Setting  
Reserved  
0x1F R/W  
0x07C MULT_EN_MODE_6  
7
6
5
4
3
2
1
0
7
6
5
RESERVED  
0x0  
0x1  
0x1  
0x0  
0x1  
0x1  
0x1  
0x0  
0x0  
0x0  
0x0  
R
RFAMP_EN_MD6  
MULT_LOW_RDY_MD6  
MULT_LOW_ACT_MD6  
MULT_MID_RDY_MD6  
MULT_MID_ACT_MD6  
MULT_HIGH_RDY_MD6  
MULT_HIGH_ACT_MD6  
BPF_MD6  
Multiplier Mode 6 RF Amplifier Enable  
Multiplier Mode 6 Low Band Ready Enable  
Multiplier Mode 6 Low Band Active Enable  
Multiplier Mode 6 Mid Band Ready Enable  
Multiplier Mode 6 Mid Band Active Enable  
Multiplier Mode 6 High Band Ready Enable  
Multiplier Mode 6 High Band Active Enable  
Multiplier Mode 6 BPF Select  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
0x07D MULT_PASS_MODE_6  
0x07E MULT_EN_MODE_7  
PA_NOTCH_MD6  
RESERVED  
Multiplier Mode 6 Notch Filter Select  
Reserved  
[4:0] ATTN_MD6  
Multiplier Mode 6 Attenuator Setting  
Reserved  
0x1F R/W  
7
6
5
4
3
2
1
0
7
6
5
RESERVED  
0x0  
0x1  
0x1  
0x0  
0x1  
0x0  
0x1  
0x1  
0x1  
0x0  
0x0  
R
RFAMP_EN_MD7  
MULT_LOW_RDY_MD7  
MULT_LOW_ACT_MD7  
MULT_MID_RDY_MD7  
MULT_MID_ACT_MD7  
MULT_HIGH_RDY_MD7  
MULT_HIGH_ACT_MD7  
BPF_MD7  
Multiplier Mode 7 RF Amplifier Enable  
Multiplier Mode 7 Low Band Ready Enable  
Multiplier Mode 7 Low Band Active Enable  
Multiplier Mode 7 Mid Band Ready Enable  
Multiplier Mode 7 Mid Band Active Enable  
Multiplier Mode 7 High Band Ready Enable  
Multiplier Mode 7 High Band Active Enable  
Multiplier Mode 7 BPF Select  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
0x07F MULT_PASS_MODE_7  
0x080 MULT_EN_MODE_8  
PA_NOTCH_MD7  
RESERVED  
Multiplier Mode 7 Notch Filter Select  
Reserved  
Multiplier Mode 7 Attenuator Setting  
Reserved  
[4:0] ATTN_MD7  
0x1F R/W  
7
6
5
4
3
2
1
0
7
6
5
RESERVED  
0x0  
0x1  
0x1  
0x0  
0x1  
0x0  
0x1  
0x1  
0x0  
0x0  
0x0  
R
RFAMP_EN_MD8  
MULT_LOW_RDY_MD8  
MULT_LOW_ACT_MD8  
MULT_MID_RDY_MD8  
MULT_MID_ACT_MD8  
MULT_HIGH_RDY_MD8  
MULT_HIGH_ACT_MD8  
BPF_MD8  
Multiplier Mode 8 RF Amplifier Enable  
Multiplier Mode 8 Low Band Ready Enable  
Multiplier Mode 8 Low Band Active Enable  
Multiplier Mode 8 Mid Band Ready Enable  
Multiplier Mode 8 Mid Band Active Enable  
Multiplier Mode 8 High Band Ready Enable  
Multiplier Mode 8 High Band Active Enable  
Multiplier Mode 8 BPF Select  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
0x081 MULT_PASS_MODE_8  
0x082 MULT_EN_MODE_9  
PA_NOTCH_MD8  
RESERVED  
Multiplier Mode 8 Notch Filter Select  
Reserved  
[4:0] ATTN_MD8  
Multiplier Mode 8 Attenuator Setting  
Reserved  
0x1F R/W  
7
6
5
4
3
2
1
0
RESERVED  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
R
RFAMP_EN_MD9  
Multiplier Mode 9 RF Amplifier Enable  
Multiplier Mode 9 Low Band Ready Enable  
Multiplier Mode 9 Low Band Active Enable  
Multiplier Mode 9 Mid Band Ready Enable  
Multiplier Mode 9 Mid Band Active Enable  
Multiplier Mode 9 High Band Ready Enable  
Multiplier Mode 9 High Band Active Enable  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
MULT_LOW_RDY_MD9  
MULT_LOW_ACT_MD9  
MULT_MID_RDY_MD9  
MULT_MID_ACT_MD9  
MULT_HIGH_RDY_MD9  
MULT_HIGH_ACT_MD9  
Rev. 0 | Page 36 of 39  
Data Sheet  
ADAR2001  
Addr Name  
Bits Bit Name  
Description  
Reset Access  
0x083 MULT_PASS_MODE_9  
7
6
5
BPF_MD9  
Multiplier Mode 9 BPF Select  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
R/W  
R/W  
R
PA_NOTCH_MD9  
RESERVED  
Multiplier Mode 9 Notch Filter Select  
Reserved  
[4:0] ATTN_MD9  
Multiplier Mode 9 Attenuator Setting  
Reserved  
R/W  
R
0x084 MULT_EN_MODE_10  
7
6
5
4
3
2
1
0
7
6
5
RESERVED  
RFAMP_EN_MD10  
MULT_LOW_RDY_MD10  
MULT_LOW_ACT_MD10  
MULT_MID_RDY_MD10  
MULT_MID_ACT_MD10  
MULT_HIGH_RDY_MD10  
MULT_HIGH_ACT_MD10  
BPF_MD10  
Multiplier Mode 10 RF Amplifier Enable  
Multiplier Mode 10 Low Band Ready Enable  
Multiplier Mode 10 Low Band Active Enable  
Multiplier Mode 10 Mid Band Ready Enable  
Multiplier Mode 10 Mid Band Active Enable  
Multiplier Mode 10 High Band Ready Enable  
Multiplier Mode 10 High Band Active Enable  
Multiplier Mode 10 BPF Select  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
0x085 MULT_PASS_MODE_10  
0x086 MULT_EN_MODE_11  
PA_NOTCH_MD10  
RESERVED  
Multiplier Mode 10 Notch Filter Select  
Reserved  
[4:0] ATTN_MD10  
Multiplier Mode 10 Attenuator Setting  
Reserved  
R/W  
R
7
6
5
4
3
2
1
0
7
6
5
RESERVED  
RFAMP_EN_MD11  
MULT_LOW_RDY_MD11  
MULT_LOW_ACT_MD11  
MULT_MID_RDY_MD11  
MULT_MID_ACT_MD11  
MULT_HIGH_RDY_MD11  
MULT_HIGH_ACT_MD11  
BPF_MD11  
Multiplier Mode 11 RF Amplifier Enable  
Multiplier Mode 11 Low Band Ready Enable  
Multiplier Mode 11 Low Band Active Enable  
Multiplier Mode 11 Mid Band Ready Enable  
Multiplier Mode 11 Mid Band Active Enable  
Multiplier Mode 11 High Band Ready Enable  
Multiplier Mode 11 High Band Active Enable  
Multiplier Mode 11 BPF Select  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
0x087 MULT_PASS_MODE_11  
0x088 MULT_EN_MODE_12  
PA_NOTCH_MD11  
RESERVED  
Multiplier Mode 11 Notch Filter Select  
Reserved  
Multiplier Mode 11 Attenuator Setting  
Reserved  
[4:0] ATTN_MD11  
R/W  
R
7
6
5
4
3
2
1
0
7
6
5
RESERVED  
RFAMP_EN_MD12  
MULT_LOW_RDY_MD12  
MULT_LOW_ACT_MD12  
MULT_MID_RDY_MD12  
MULT_MID_ACT_MD12  
MULT_HIGH_RDY_MD12  
MULT_HIGH_ACT_MD12  
BPF_MD12  
Multiplier Mode 12 RF Amplifier Enable  
Multiplier Mode 12 Low Band Ready Enable  
Multiplier Mode 12 Low Band Active Enable  
Multiplier Mode 12 Mid Band Ready Enable  
Multiplier Mode 12 Mid Band Active Enable  
Multiplier Mode 12 High Band Ready Enable  
Multiplier Mode 12 High Band Active Enable  
Multiplier Mode 12 BPF Select  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
0x089 MULT_PASS_MODE_12  
0x08A MULT_EN_MODE_13  
PA_NOTCH_MD12  
RESERVED  
Multiplier Mode 12 Notch Filter Select  
Reserved  
[4:0] ATTN_MD12  
Multiplier Mode 12 Attenuator Setting  
Reserved  
R/W  
R
7
6
5
4
3
2
1
0
RESERVED  
RFAMP_EN_MD13  
Multiplier Mode 13 RF Amplifier Enable  
Multiplier Mode 13 Low Band Ready Enable  
Multiplier Mode 13 Low Band Active Enable  
Multiplier Mode 13 Mid Band Ready Enable  
Multiplier Mode 13 Mid Band Active Enable  
Multiplier Mode 13 High Band Ready Enable  
Multiplier Mode 13 High Band Active Enable  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
MULT_LOW_RDY_MD13  
MULT_LOW_ACT_MD13  
MULT_MID_RDY_MD13  
MULT_MID_ACT_MD13  
MULT_HIGH_RDY_MD13  
MULT_HIGH_ACT_MD13  
Rev. 0 | Page 37 of 39  
ADAR2001  
Data Sheet  
Addr Name  
Bits Bit Name  
Description  
Reset Access  
0x08B MULT_PASS_MODE_13  
7
6
5
BPF_MD13  
Multiplier Mode 13 BPF Select  
Multiplier Mode 13 Notch Filter Select  
Reserved  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
R/W  
R/W  
R
PA_NOTCH_MD13  
RESERVED  
[4:0] ATTN_MD13  
Multiplier Mode 13 Attenuator Setting  
Reserved  
R/W  
R
0x08C MULT_EN_MODE_14  
7
6
5
4
3
2
1
0
7
6
5
RESERVED  
RFAMP_EN_MD14  
MULT_LOW_RDY_MD14  
MULT_LOW_ACT_MD14  
MULT_MID_RDY_MD14  
MULT_MID_ACT_MD14  
MULT_HIGH_RDY_MD14  
MULT_HIGH_ACT_MD14  
BPF_MD14  
Multiplier Mode 14 RF Amplifier Enable  
Multiplier Mode 14 Low Band Ready Enable  
Multiplier Mode 14 Low Band Active Enable  
Multiplier Mode 14 Mid Band Ready Enable  
Multiplier Mode 14 Mid Band Active Enable  
Multiplier Mode 14 High Band Ready Enable  
Multiplier Mode 14 High Band Active Enable  
Multiplier Mode 14 BPF Select  
Multiplier Mode 14 Notch Filter Select  
Reserved  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
0x08D MULT_PASS_MODE_14  
0x08E MULT_EN_MODE_15  
PA_NOTCH_MD14  
RESERVED  
[4:0] ATTN_MD14  
Multiplier Mode 14 Attenuator Setting  
Reserved  
R/W  
R
7
6
5
4
3
2
1
0
7
6
5
RESERVED  
RFAMP_EN_MD15  
MULT_LOW_RDY_MD15  
MULT_LOW_ACT_MD15  
MULT_MID_RDY_MD15  
MULT_MID_ACT_MD15  
MULT_HIGH_RDY_MD15  
MULT_HIGH_ACT_MD15  
BPF_MD15  
Multiplier Mode 15 RF Amplifier Enable  
Multiplier Mode 15 Low Band Ready Enable  
Multiplier Mode 15 Low Band Active Enable  
Multiplier Mode 15 Mid Band Ready Enable  
Multiplier Mode 15 Mid Band Active Enable  
Multiplier Mode 15 High Band Ready Enable  
Multiplier Mode 15 High Band Active Enable  
Multiplier Mode 15 BPF Select  
Multiplier Mode 15 Notch Filter Select  
Reserved  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
0x08F MULT_PASS_MODE_15  
0x100 SCAN_MODE_EN  
PA_NOTCH_MD15  
RESERVED  
[4:0] ATTN_MD15  
[7:1] RESERVED  
Multiplier Mode 15 Attenuator Setting  
Reserved  
R/W  
R
0
SCAN_MODE_EN  
Scan Mode Enable  
R/W  
Rev. 0 | Page 38 of 39  
Data Sheet  
ADAR2001  
OUTLINE DIMENSIONS  
0.30  
0.25 SQ  
0.20  
6.10  
6.00  
5.90  
0.42  
BSC  
PIN 1  
INDICATOR  
AREA  
PIN 1  
INDICATOR  
31  
40  
1
4.40 BSC  
SQ  
4.00 REF  
SQ  
2.08 BSC  
SQ  
0.50  
BSC  
21  
11  
BOTTOM VIEW  
TOP VIEW  
SIDE VIEW  
0.25  
0.20  
0.175  
REF  
0.78  
0.68  
0.58  
0.45 REF  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.26  
0.23  
0.20  
SEATING  
PLANE  
SECTION OF THIS DATA SHEET.  
Figure 35. 40-Terminal Land Grid Array [LGA]  
6 mm × 6 mm Body and 0.75 mm Package Height  
(CC-40-7)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
ADAR2001ACCZ  
ADAR2001ACCZ-R7  
ADAR2001-EVALZ  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
Package Description  
40-Terminal Land Grid Array [LGA], Tray  
40-Terminal Land Grid Array [LGA], 7” Tape and Reel  
Evaluation Board  
Package Option  
CC-40-7  
CC-40-7  
1 Z = RoHS Compliant part.  
©2020 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D20538-8/20(0)  
Rev. 0 | Page 39 of 39  
 
 

相关型号:

ADAR2001-EVALZ

10 GHz to 40 GHz, 1:4 Channel, 4× Frequency Multiplier/Filter
ADI

ADAR2001ACCZ

10 GHz to 40 GHz, 1:4 Channel, 4× Frequency Multiplier/Filter
ADI

ADAR2001ACCZ-R7

10 GHz to 40 GHz, 1:4 Channel, 4× Frequency Multiplier/Filter
ADI

ADAR2004

10 GHz to 40 GHz, 4-Channel Rx Mixer with 4× LO Multiplier/Filter
ADI

ADAR2004-EVALZ

10 GHz to 40 GHz, 4-Channel Rx Mixer with 4× LO Multiplier/Filter
ADI

ADAR2004ACCZ

10 GHz to 40 GHz, 4-Channel Rx Mixer with 4× LO Multiplier/Filter
ADI

ADAR2004ACCZ-R7

10 GHz to 40 GHz, 4-Channel Rx Mixer with 4× LO Multiplier/Filter
ADI

ADAR7251WBCSZ

4-Channel, 16-Bit, Continuous Time Data Acquisition ADC
ADI

ADAS1000

Low Power, 5-Electrode Electrocardiogram (ECG) Analog Front End
ADI

ADAS1000-1

Low Power, Five Electrode trocardiogram (ECG) Analog Front End
ADI

ADAS1000-1BCPZ

Low Power, Five Electrode Electrocardiogram (ECG) Analog Front End
ADI

ADAS1000-1BCPZ-RL

Low Power, Five Electrode Electrocardiogram (ECG) Analog Front End
ADI