ADAS3022SCPZ-EP-RL [ADI]

16-Bit, 1 MSPS, 8 Channel Data Acquisition System;
ADAS3022SCPZ-EP-RL
型号: ADAS3022SCPZ-EP-RL
厂家: ADI    ADI
描述:

16-Bit, 1 MSPS, 8 Channel Data Acquisition System

转换器
文件: 总21页 (文件大小:497K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
16-Bit, 1 MSPS, 8-Channel  
Data Acquisition System  
ADAS3022-EP  
Enhanced Product  
an 8-channel, low leakage multiplexer; a high impedance  
programmable gain instrumentation amplifier (PGIA) stage with  
high common-mode rejection; a precision, low drift 4.096 V  
reference and buffer; and a 16-bit charge redistribution analog-  
to-digital converter (ADC) with a successive approximation  
register (SAR) architecture. The ADAS3022-EP can resolve eight  
single-ended inputs or four fully differential inputs up to  
±24.576 V when using 15 V supplies. In addition, the device  
can accept the commonly used bipolar differential, bipolar  
single-ended, pseudo bipolar, or pseudo unipolar input signals,  
as shown in Table 1, thus enabling the use of almost any direct  
sensor interface.  
FEATURES  
Ease of use—16-bit, 1 MSPS complete data acquisition system  
High impedance, 8-channel input: >500 MΩ  
Differential input voltage range: 24.576 V maximum  
High input common-mode rejection: >100 dB  
User-programmable input ranges  
Channel sequencer with individual channel gains  
On-chip 4.096 V reference and buffer  
Auxiliary input—direct interface to PulSAR® ADC inputs  
No latency or pipeline delay (SAR architecture)  
Serial 4-wire, 1.8 V to 5 V SPI-/SPORT-compatible interface  
40-Lead LFCSP package (6 mm × 6 mm)  
The ADAS3022-EP simplifies design challenges by eliminating  
signal buffering, level shifting, amplification/attenuation,  
common-mode rejection, settling time, and any other analog  
signal conditioning challenge while allowing a smaller form  
factor, faster time to market, and lower cost.  
ENHANCED FEATURES  
Supports defense and aerospace applications (AQEC  
standard)  
Military temperature range (such as −55°C to +105°C)  
Controlled manufacturing baseline  
One assembly/test site  
Additional application and technical information can be found  
in the ADAS3022 data sheet.  
Enhanced product change notification  
Qualification data available on request  
Table 1. Typical Input Range Selection  
APPLICATIONS  
Signal (V)  
Differential  
±±  
±2.5  
±5  
Input Range, VIN (V)  
Multichannel data acquisition and system monitoring  
Process controls  
Power line monitoring  
Automated test equipment  
Instrumentation  
±±.28  
±2.56  
±5.±2  
±±0.24  
±±0  
GENERAL DESCRIPTION  
Single Ended  
0 to ±  
0 to 2.5  
0 to 5  
±±.28  
±2.56  
±5.±2  
±±0.24  
The ADAS3022-EP is a complete 16-bit, 1 MSPS, successive  
approximation–based, analog-to-digital data acquisition system  
that is manufactured on Analog Devices, Inc., proprietary iCMOS®  
high voltage industrial process technology. The device integrates  
0 to ±0  
Rev. 0  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2017 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
 
 
ADAS3022-EP  
Enhanced Product  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Absolute Maximum Ratings ......................................................... 10  
ESD Caution................................................................................ 10  
Pin Configuration and Function Descriptions........................... 11  
Typical Performance Characteristics ........................................... 13  
Outline Dimensions....................................................................... 21  
Ordering Guide .......................................................................... 21  
Enhanced Features............................................................................ 1  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Revision History ........................................................................... 2  
Functional Block Diagram .............................................................. 3  
Specifications..................................................................................... 4  
Timing Specifications .................................................................. 8  
REVISION HISTORY  
6/2017—Revision 0: Initial Version  
Rev. 0 | Page 2 of 2±  
 
Enhanced Product  
ADAS3022-EP  
FUNCTIONAL BLOCK DIAGRAM  
AVDD  
DVDD  
VIO  
RESET  
PD  
VDDH  
DIFF TO  
COM  
DIFF  
PAIR  
ADAS3022-EP  
CNV  
LOGIC/  
INTERFACE  
IN0/IN1  
BUSY  
IN0  
IN1  
CS  
IN2  
IN2/IN3  
IN4/IN5  
IN6/IN7  
IN3  
®
SCK  
DIN  
SDO  
PulSAR  
ADC  
PGIA  
MUX  
IN4  
IN5  
IN6  
IN7  
TEMP  
SENSOR  
COM  
AUX+  
REFIN  
BUF  
REF  
AUX–  
VSSH  
AGND  
DGND  
REFx  
Figure 1.  
Rev. 0 | Page 3 of 21  
 
ADAS3022-EP  
Enhanced Product  
SPECIFICATIONS  
VDDH = 15 V 5%, VSSH = −15 V 5%, AVDD = DVDD = 5 V 5%, VIO = 1.8 V to AVDD, internal voltage reference (VREF) =  
4.096 V, sampling frequency (fS) = 1 MSPS unless otherwise noted. All specifications TMIN to TMAX, unless otherwise noted.  
Table 2.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit1  
RESOLUTION  
±6  
Bits  
ANALOG INPUTS—IN[7:0], COM  
Operating Input Voltage Range  
Differential Input Voltage Range, VIN  
VIN  
VIN+ − VIN−  
−VSSH + 2.5  
VDDH − 2.5  
V
PGIA gain = 0.±6, VIN = 49.±5 V p-p  
PGIA gain = 0.2, VIN = 40.96 V p-p  
PGIA gain = 0.4, VIN = 20.48 V p-p  
PGIA gain = 0.8, VIN = ±0.24 V p-p  
PGIA gain = ±.6, VIN = 5.±2 V p-p  
PGIA gain = 3.2, VIN = 2.56 V p-p  
PGIA gain = 6.4, VIN = ±.28 V p-p  
−6 × VREF  
−5 × VREF  
+6 × VREF  
+5 × VREF  
+2.5 × VREF  
+±.25 × VREF  
+0.625 × VREF  
+0.3±25 × VREF  
+0.±563 × VREF  
V
V
V
V
V
V
V
MΩ  
nA  
nA  
−2.5 × VREF  
−±.25 × VREF  
−0.625 × VREF  
−0.3±25 × VREF  
−0.±563 × VREF  
500  
Input Impedance, ZIN  
Channel Off Leakage  
Channel On Leakage  
±0.6  
±0.02  
Common-Mode Voltage Range  
VIN+, VIN−; full-scale differential inputs  
2
(VCM  
)
PGIA gain = 0.4  
PGIA gain = 0.8  
PGIA gain = ±.6  
PGIA gain = 3.2  
PGIA gain = 6.4  
−5.±2  
−7.68  
−8.96  
−9.60  
−9.92  
+5.±2  
+7.68  
+8.96  
+9.60  
+9.92  
V
V
V
V
V
ANALOG INPUTS—AUX+, AUX−  
Differential Input Voltage Range  
THROUGHPUT  
−VREF  
+VREF  
V
Conversion Rate  
One channel and one pair  
Two channels and two pairs  
Four channels and four pairs  
Eight channels  
0
0
0
0
±000  
500  
250  
±25  
520  
kSPS  
kSPS  
kSPS  
kSPS  
ns  
Transient Response  
DC ACCURACY  
Full-scale step  
No Missing Codes  
Integral Linearity Error  
±6  
−2  
−3  
−5  
−0.9  
−0.9  
−0.9  
Bits  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
PGIA gain = 0.±6, 0.2, 0.4, 0.8, and ±.6  
PGIA gain = 3.2  
PGIA gain = 6.4  
PGIA gain = 0.±6, 0.2, 0.4, 0.8, and ±.6  
PGIA gain = 3.2  
PGIA gain = 6.4  
±0.6  
±±.0  
±±.5  
±0.6  
±0.75  
±0.75  
+2  
+3  
+5  
+±.0  
+±.25  
+±.25  
Differential Linearity Error  
Transition Noise  
External reference  
PGIA gain = 0.±6, 0.2, 0.4, 0.8, and ±.6  
PGIA gain = 3.2  
5
7
LSB  
LSB  
PGIA gain = 6.4  
±±  
LSB  
Gain Error  
Gain Error Temperature Drift  
External reference, all PGIA gains, TA = 25°C −9  
External reference, all PGIA gains  
+9  
0.±  
LSB  
ppm/°C  
Rev. 0 | Page 4 of 2±  
 
Enhanced Product  
ADAS3022-EP  
Parameter  
Test Conditions/Comments  
External reference, TA = 25°C  
PGIA gain = 0.±6, 0.2, 0.4, and 0.8  
PGIA gain = ±.6  
PGIA gain = 3.2  
PGIA gain = 6.4  
Min  
Typ  
Max  
Unit1  
Offset Error  
−3.0  
−4.0  
−7.5  
−±2.5  
+0.2  
+0.2  
+0.2  
+0.2  
+3.0  
+4.0  
+7.5  
+±2.5  
LSB  
LSB  
LSB  
LSB  
Offset Error Temperature Drift  
Total Unadjusted Error  
External reference  
PGIA gain = 0.±6, 0.2, 0.4, and 0.8  
PGIA gain = ±.6  
PGIA gain = 3.2  
PGIA gain = 6.4  
0.±  
0.2  
0.4  
0.8  
0.5  
±.0  
2.0  
4.0  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
External reference, ambient temperature  
(TA) = 25°C  
PGIA gain = 0.±6, 0.2, 0.4, 0.8, ±.6, and 3.2  
PGIA gain = 6.4  
−9  
−±5  
+9  
+±5  
LSB  
LSB  
AC ACCURACY3  
Signal-to-Noise Ratio (SNR)  
fIN = ±0 kHz  
PGIA gain = 0.±6  
PGIA gain = 0.2  
PGIA gain = 0.4  
PGIA gain = 0.8  
PGIA gain = ±.6  
PGIA gain = 3.2  
PGIA gain = 6.4  
Input frequency (fIN) = ±0 kHz  
90.0  
90.0  
89.5  
89.0  
88.0  
86.0  
83.0  
9±.5  
9±.5  
9±.5  
9±.0  
89.7  
86.8  
84.5  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
Signal-to-Noise-and-Distortion  
(SINAD)  
PGIA gain = 0.±6  
PGIA gain = 0.2  
PGIA gain = 0.4  
PGIA gain = 0.8  
PGIA gain = ±.6  
88.0  
88.0  
88.5  
88.5  
87.5  
85.5  
82.5  
90.0  
90.0  
9±.0  
90.5  
89.5  
86.5  
84.0  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
PGIA gain = 3.2  
PGIA gain = 6.4  
Dynamic Range  
fIN = ±0 kHz, −60 dB input  
PGIA gain = 0.±6  
PGIA gain = 0.2  
9±.0  
9±.0  
90.5  
90.0  
89.0  
86.0  
83.5  
92.0  
92.0  
9±.5  
9±.0  
90.0  
87.0  
85.0  
−±00  
±0±  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
PGIA gain = 0.4  
PGIA gain = 0.8  
PGIA gain = ±.6  
PGIA gain = 3.2  
PGIA gain = 6.4  
fIN = ±0 kHz, all PGIA gains  
fIN = ±0 kHz, all PGIA gains  
Total Harmonic Distortion (THD)  
Spurious-Free Dynamic Range  
(SFDR)  
Channel to Channel Crosstalk  
Common-Mode Rejection Ratio  
(CMRR)  
fIN = ±0 kHz, all channels inactive  
fIN = 2 kHz  
−±20  
dB  
PGIA gain = 0.±6, 0.2, 0.4, and 0.8  
PGIA gain = ±.6  
PGIA gain = 3.2  
PGIA gain = 6.4  
−40 dBFS  
90.0  
90.0  
90.0  
90.0  
±±0.0  
±05.0  
98.0  
98.0  
8
dB  
dB  
dB  
dB  
−3 dB Input Bandwidth  
MHz  
Rev. 0 | Page 5 of 2±  
ADAS3022-EP  
Enhanced Product  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit1  
AUXILIARY ADC INPUT CHANNEL  
DC Accuracy  
External reference  
Integral Nonlinearity Error  
Differential Nonlinearity Error  
Gain Error  
−1.5  
−0.8  
−2.5  
−5  
0.5  
0.6  
0.2  
0.2  
+1.5  
+1.0  
+2.5  
+5  
LSB  
LSB  
LSB  
LSB  
Offset Error  
AC Performance  
Internal reference  
SNR  
SINAD  
THD  
SFDR  
90.0  
89.5  
93.0  
92.5  
−105  
110  
dB  
dB  
dB  
dB  
INTERNAL REFERENCE  
REF1 and REF2 Output Voltage  
REF1 and REF2 Output Current  
REF1 and REF2 Temperature Drift  
TA = 25°C  
TA = 25°C  
REFEN = 1  
REFEN = 0  
AVDD = 5 V 5%  
4.088  
4.096  
250  
5
4.104  
2.505  
V
μA  
ppm/°C  
ppm/°C  
1
REF1 and REF2 Line Regulation  
Internal Reference  
Buffer Only  
REFIN Output Voltage4  
Turn-On Settling Time  
EXTERNAL REFERENCE  
Voltage Range  
20  
4
2.500  
100  
μV/V  
μV/V  
V
TA = 25°C  
CREFIN, CREF1, CREF2 = 10 μF and 0.1 μF  
2.495  
4.000  
ms  
REFx input  
REFIN input (buffered)  
VREF = 4.096 V  
4.096  
2.5  
100  
4.104  
2.505  
V
V
μA  
Current Drain  
TEMPERATURE SENSOR  
Output Voltage  
Temperature Sensitivity  
DIGITAL INPUTS  
TA = 25 °C  
275  
800  
mV  
μV/°C  
Logic Levels  
Input Voltage Low, VIL  
VIO > 3 V  
VIO ≤ 3 V  
VIO > 3 V  
VIO ≤ 3 V  
−0.3  
−0.3  
0.7 × VIO  
0.9 × VIO  
−1  
+0.3 × VIO  
+0.1 × VIO  
VIO + 0.3  
VIO + 0.3  
+1  
V
V
V
V
μA  
μA  
Input Voltage High, VIH  
Input Low Current, IIL  
Input High Current, IIH  
DIGITAL OUTPUTS5  
Data Format  
Output Low Voltage, VOL  
Output High Voltage, VOH  
POWER SUPPLIES  
VIO  
−1  
+1  
Twos complement  
0.4  
ISINK = +500 μA  
ISOURCE = −500 μA  
PD = 0  
V
V
VIO − 0.3  
1.8  
4.75  
4.75  
14.25  
−15.75  
AVDD + 0.3  
5.25  
5.25  
15.75  
−14.25  
V
V
V
V
V
AVDD  
5
5
15  
−15  
DVDD  
VDDH6  
VDDH > input voltage + 2.5 V  
VSSH < input voltage − 2.5 V  
VSSH6  
Rev. 0 | Page 6 of 21  
Enhanced Product  
ADAS3022-EP  
Parameter  
Test Conditions/Comments  
PGIA gain = 0.16  
PGIA gain = 0.2  
PGIA gain = 0.4  
PGIA gain = 0.8  
PGIA gain = 1.6  
PGIA gain = 3.2  
PGIA gain = 6.4  
All PGIA gains, PD = 1  
PGIA gain = 0.16  
PGIA gain = 0.2  
PGIA gain = 0.4  
PGIA gain = 0.8  
PGIA gain = 1.6  
PGIA gain = 3.2  
PGIA gain = 6.4  
All PGIA gains, PD = 1  
PGIA gain = 6.4, reference buffer enabled  
All other PGIA gains, reference buffer  
enabled  
Min  
Typ  
3.0  
3.0  
3.5  
5.0  
Max  
Unit1  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
μA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
μA  
VDDH Capacitance, IVDDH  
3.5  
3.5  
4.0  
5.5  
9.5  
17.5  
17.5  
8.5  
15.5  
15.5  
100  
−2.5  
−2.5  
−3.0  
−4.5  
−8.0  
−15  
−15  
10  
Current at VSSH Supply, IVSSH  
−3.0  
−3.0  
−3.5  
−5.5  
−9.5  
−17.5  
−17.5  
Current at AVDD, IAVDD  
18  
16  
21.0  
19.0  
mA  
mA  
PGIA gain = 6.4, reference buffer disabled  
All other PGIA gains, reference buffer  
disabled  
14  
12  
17.5  
16.0  
mA  
mA  
All PGIA gains, PD = 1  
All PGIA gains, PD = 0  
All PGIA gains, PD = 1  
VIO = 3.3 V, PD = 0  
PD = 1  
100  
2.5  
10  
0.30  
10  
μA  
mA  
μA  
mA  
μA  
Current at DVDD, IDVDD  
Current at VIO, IVIO  
3.5  
1.2  
Power Supply Sensitivity  
At TA = 25°C  
External reference  
PGIA gain = 0.16, 0.2, 0.4, and 0.8;  
VDDH/VSSH 5%  
0.5  
LSB  
PGIA gain = 3.2, VDDH/VSSH 5%  
PGIA gain = 6.4, VDDH/VSSH 5%  
PGIA gain = 0.16, AVDD/DVDD 5%  
PGIA gain = 0.2, AVDD/DVDD 5%  
PGIA gain = 0.4, AVDD/DVDD 5%  
PGIA gain = 0.8, AVDD/DVDD 5%  
PGIA gain = 1.6, AVDD/DVDD 5%  
PGIA gain = 3.2, AVDD/DVDD 5%  
PGIA gain = 6.4, AVDD/DVDD 5%  
1.0  
2.0  
0.6  
0.8  
1.0  
1.5  
2.0  
3.5  
7.0  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
TEMPERATURE RANGE  
Specified Performance  
TMIN to TMAX  
−55  
+105  
°C  
1 LSB means least significant bit and changes depending on the voltage range.  
2 The common-mode voltage (VCM) for a PGIA gain of 0.16 or 0.2 is 0 V.  
3 All ac accuracy specifications expressed in decibels are referred to a full-scale range (FSR) and tested with an input signal at 0.5 dB below full scale, unless otherwise noted.  
4 This is the output from the internal band gap reference.  
5 There is no pipeline delay. Conversion results are available immediately after a conversion is complete.  
6 The differential input common-mode voltage (VCM) range changes according to the maximum input range selected and the high voltage power supplies (VDDH and  
VSSH). Note that the specified operating input voltage of any input pin requires 2.5 V of headroom from the VDDH and VSSH supplies; therefore, (VSSH + 2.5 V) ≤  
INx/COM ≤ (VDDH − 2.5 V).  
Rev. 0 | Page 7 of 21  
ADAS3022-EP  
Enhanced Product  
TIMING SPECIFICATIONS  
VDDH = 15 V 5%, VSSH = −15 V 5%, AVDD = DVDD = 5 V 5%, VIO = 1.8 V to AVDD, internal reference, VREF = 4.096 V,  
fS = 1 MSPS unless otherwise noted. All specifications TMIN to TMAX, unless otherwise noted.  
Table 3.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Time Between Conversions  
Warp Mode,± CMS = 0  
Normal Mode (Default), CMS = ±  
Conversion Time: CNV Rising Edge to Data Available  
Warp Mode, CMS = 0  
Normal Mode (Default), CMS = ±  
Auxiliary ADC Input Channel Acquisition Time  
CNV Pulse Width  
CNV High to Hold Time (Aperture Delay)  
CNV High to Busy Delay  
Safe Data Access Time During Conversion  
Quiet Conversion Time (BUSY High)  
Warp Mode, CMS = 0  
Normal Mode (Default), CMS = ±  
Data Access During Quiet Conversion Time  
Warp Mode, CMS = 0  
Normal Mode (Default), CMS = ±  
SCK Period  
SCK Low Time  
SCK High Time  
SCK Falling Edge to Data Valid  
SCK Falling Edge to Data Valid Delay  
VIO > 4.5 V  
tCYC  
±
±.±  
±000  
µs  
µs  
tCONV  
825  
925  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
±000  
tACQ  
tCH  
tAD  
tCBD  
tDDC  
tQUIET  
600  
±0  
2
520  
500  
400  
500  
ns  
ns  
tDDCA  
200  
300  
ns  
ns  
ns  
ns  
ns  
ns  
tSCK  
±5  
5
5
tSCKL  
tSCKH  
tSDOH  
tSDOD  
4
±2  
±8  
24  
25  
37  
ns  
ns  
ns  
ns  
ns  
VIO > 3.0 V  
VIO > 2.7 V  
VIO > 2.3 V  
VIO > ±.8 V  
CS/RESET/PD Low to SDO  
VIO > 4.5 V  
tEN  
±5  
±6  
±8  
23  
28  
25  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
VIO > 3.0 V  
VIO > 2.7 V  
VIO > 2.3 V  
VIO > ±.8 V  
CS/RESET/PD High to SDO High Impedance  
DIN Valid Setup Time from SCK Rising Edge  
DIN Valid Hold Time from SCK Rising Edge  
CNV Rising to CS  
tDIS  
tDINS  
tDINH  
tCCS  
tRH  
4
4
5
5
RESET/PD High Pulse  
± Exceeding the maximum time has an effect on the accuracy of the conversion.  
Rev. 0 | Page 8 of 2±  
 
Enhanced Product  
ADAS3022-EP  
Timing Diagrams  
I
500µA  
OL  
70% VIO  
30% VIO  
tDELAY  
tDELAY  
1.4V  
TO SDO  
1
1
2V OR VIO – 0.5V  
2V OR VIO – 0.5V  
C
L
50pF  
2
2
0.8V OR 0.5V  
0.8V OR 0.5V  
1
500µA  
I
2V IF VIO > 2.5V; VIO – 0.5V IF VIO < 2.5V.  
0.8V IF VIO > 2.5V; 0.5V IF VIO < 2.5V.  
OH  
2
Figure 3. Voltage Levels for Timing  
Figure 2. Load Circuit for Digital Interface Timing  
tACQ  
tCYC  
SOC  
EOC  
SOC  
EOC  
tQUIET  
NOTE 2  
tDDC  
NOTE 1  
tDAC  
NOTE 1  
POWER  
UP  
CONVERSION (n – 1)  
UNDEFINED  
ACQUISITION (n)  
UNDEFINED  
CONVERSION (n)  
UNDEFINED  
ACQUISITION (n + 1)  
UNDEFINED  
CONVERSION (n + 1)  
UNDEFINED  
PHASE  
CNV  
BUSY  
tDDCA  
NOTE 2  
NOTE 5  
tAD  
NOTE 4  
CS  
X
1
16/32  
NOTE 3  
1
16  
SCK  
CFG  
INVALID  
CFG (n + 2)  
CFG (n + 2)  
CFG (n + 3)  
CFG (n + 3)  
DIN  
DATA  
INVALID  
DATA (n – 1)  
INVALID  
DATA (n – 1)  
INVALID  
DATA (n)  
INVALID  
DATA (n)  
INVALID  
SDO  
EOC  
EOC  
EOC  
ACQUISITION  
(n + 4)  
CONVERSION  
(n + 2)  
ACQUISITION  
(n + 3)  
CONVERSION  
(n + 3)  
CONVERSION  
(n + 4)  
ACQUISITION  
(n + 2)  
PHASE  
CNV  
BUSY  
CS  
1
1
16  
16  
1
SCK  
CFG (n + 4)  
CFG (n + 4)  
CFG (n + 5)  
CFG (n + 5)  
CFG (n + 6)  
CFG (n + 6)  
DIN  
DATA (n + 1)  
INVALID  
DATA (n + 1)  
INVALID  
SDO  
DATA (n + 2)  
DATA (n + 2)  
DATA (n + 3)  
DATA (n + 3)  
NOTES  
1. DATA ACCESS CAN OCCUR DURING A CONVERSION (tDDC), AFTER A CONVERSION (tDAC), OR BOTH DURING AND AFTER A CONVERSION.  
THE CONVERSION RESULT AND THE CFG REGISTER ARE UPDATED AT THE END OF A CONVERSION (EOC).  
2. DATA ACCESS CAN ALSO OCCUR UP TO tDDCA WHILE BUSY IS ACTIVE (SEE THE ADAS3022 DATA SHEET FOR DETAILS). ALL OF THE BUSY  
TIME CAN BE USED TO ACQUIRE DATA.  
3. A TOTAL OF 16 SCK FALLING EDGES IS REQUIRED FOR A CONVERSION RESULT. AN ADDITIONAL 16 EDGES ARE REQUIRED TO  
READ BACK THE CFG RESULT ASSOCIATED WITH THE CURRENT CONVERSION.  
4. CS CAN BE HELD LOW OR CONNECTED TO CNV. CS WITH FULL INDEPENDENT CONTROL IS SHOWN IN THIS FIGURE.  
5. FOR OPTIMAL PERFORMANCE, DATA ACCESS SHOULD NOT OCCUR DURING THE SAMPLING EDGE. A MINIMUM TIME  
OF THE APERTURE DELAY (tAD) SHOULD ELAPSE PRIOR TO DATA ACCESS.  
Figure 4. General Timing Diagram  
Rev. 0 | Page 9 of 21  
ADAS3022-EP  
Enhanced Product  
ABSOLUTE MAXIMUM RATINGS  
Table 4.  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Parameter  
Rating  
Analog Inputs/Outputs  
INx, COM to AGND  
AUX+, AUX− to AGND  
REFx to AGND  
REFIN to AGND  
REFN to AGND  
VSSH − 0.3 V to VDDH + 0.3 V  
−0.3 V to AVDD + 0.3 V  
AGND − 0.3 V to AVDD + 0.3 V  
AGND − 0.3 V to +2.7 V  
0.3 V  
ESD CAUTION  
Ground Voltage Differences  
AGND, RGND, DGND  
Supply Voltages  
0.3 V  
VDDH to AGND  
VSSH to AGND  
−0.3 V to +16.5 V  
+0.3 V to −16.5 V  
−0.3 V to +7 V  
AVDD, DVDD, VIO to AGND  
ACAP, DCAP, RCAP to GND  
Digital Inputs/Outputs  
CNV, DIN, SCK, RESET, PD, CS  
to DGND  
−0.3 V to +2.7 V  
−0.3 V to VIO + 0.3 V  
SDO, BUSY to DGND  
Internal Power Dissipation  
Junction Temperature  
Storage Temperature Range  
Thermal Impedance  
θJA  
−0.3 V to VIO + 0.3 V  
2 W  
125°C  
−65°C to +125°C  
44.1°C/W  
0.28°C/W  
θJC  
Rev. 0 | Page 10 of 21  
 
 
Enhanced Product  
ADAS3022-EP  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
IN0  
IN1  
1
2
3
4
5
6
7
8
9
30 NC  
29  
28  
27  
NC  
IN2  
AVDD  
DVDD  
IN3  
ADAS3022-EP  
TOP VIEW  
(Not to Scale)  
AUX+  
IN4  
26 ACAP  
25 DCAP  
IN5  
AGND  
24  
IN6  
23 AGND  
22 DGND  
21 DGND  
IN7  
COM 10  
NOTES  
1. NC = NO CONNECT. THIS PIN IS NOT INTERNALLY CONNECTED.  
2. CONNECT THE EXPOSED PADDLE TO VSSH.  
Figure 5. Pin Configuration  
Table 5. Pin Function Descriptions  
Pin No.  
1 to 4  
5
6 to 9  
10  
Mnemonic Type1 Description  
IN0 to IN3  
AUX+  
AI  
AI  
AI  
AI  
Input Channel 0 to Input Channel 3.  
Auxiliary Input Channel Positive Input.  
Input Channel 4 to Input Channel 7.  
IN4 to IN7  
COM  
IN[7:0] Common Channel Input. The IN[7:0] input channels can be referenced to a common point. The  
maximum voltage on this pin is 10.24 V for all PGIA gains except for a PGIA gain of 0.16, in which case,  
the maximum voltage on this pin is 12.22ꢀ V. AUX+ and AUX− are not referenced to COM.  
11  
12  
13  
CS  
DI  
DI  
DI  
Chip Select. Active low signal. Enables the digital interface for writing and reading data. Use this pin  
when sharing the serial bus. For a dedicated ADAS3022-EP serial interface, CS can be tied to DGND or  
CNV to simplify the interface.  
Data Input. Serial data input used for writing the 16-bit configuration word (CFG) that is latched on SCK  
rising edges. CFG is an internal register that is updated on the rising edge of the end of a conversion, which is  
the falling edge of BUSY. The configuration register can be written to during and after a conversion.  
DIN  
RESET  
Asynchronous Reset. A low to high transition resets the ADAS3022-EP. The current conversion, if active,  
is aborted and CFG is reset to the default state.  
14, 29, 30  
15  
NC  
PD  
N/A  
DI  
No Connect. This pin is not connected internally.  
Power-Down. A low to high transition powers down the ADAS3022-EP, minimizing the bias current.  
Note that this pin must be held high until the user is ready to power on the device; after powering on  
the device, the user must wait 100 ms until the reference is enabled and then wait for the completion of  
two dummy conversions before the device is ready to convert.  
16  
17  
1ꢀ  
19  
SCK  
DI  
Serial Clock Input. The DIN and SDO data sent to and from the ADAS3022-EP are synchronized with  
SCK.  
Digital Interface Supply. Nominally, this supply is at the same voltage as the supply of the host  
interface: 1.ꢀ V, 2.5 V, 3.3 V, or 5 V.  
Serial Data Output. The conversion result is output on this pin and is synchronized to SCK falling edges.  
The conversion result is output in twos complement format.  
Busy Output. An active high signal on this pin indicates that a conversion is in process. Reading or  
writing data during the quiet conversion phase (tQUIET) may cause incorrect bit decisions.  
VIO  
P
SDO  
BUSY  
DO  
DO  
20  
CNV  
DI  
P
P
Convert Input. A conversion is initiated on the rising edge of this pin.  
Digital Ground. Connect these pins to the system digital ground plane.  
Analog Ground. Connect these pins to the system analog ground plane.  
Internal 2.5 V Digital Regulator Output. Decouple this internally regulated output using a 10 μF  
capacitor and a 0.1 μF local capacitor.  
21, 22  
23, 24  
25  
DGND  
AGND  
DCAP  
P
26  
ACAP  
P
Internal 2.5 V Analog Regulator Output. This regulator supplies power to the internal ADC core and all  
of the supporting analog circuits with the exception of the internal reference. Decouple this internally  
regulated output using a 10 μF capacitor and a 0.1 μF local capacitor.  
Rev. 0 | Page 11 of 21  
 
ADAS3022-EP  
Enhanced Product  
Pin No.  
27  
28  
Mnemonic Type1 Description  
DVDD  
AVDD  
RCAP  
P
P
P
Digital 5 V Supply. Decouple this supply using a 10 μF capacitor and a 0.1 μF local capacitor.  
Analog 5 V Supply. Decouple this supply using a 10 μF capacitor and a 0.1 μF local capacitor.  
Internal 2.5 V Analog Regulator Output. This regulator supplies power to the internal reference.  
Decouple this pin using a 1 μF capacitor connected to RCAP and a 0.1 μF local capacitor.  
31  
32  
REFIN  
AI/O  
Internal 2.5 V Band Gap Reference Output, Reference Buffer Input, or Reference Power-Down Input. See  
the Voltage Reference Input/Output section of the ADAS3022 data sheet for more information.  
33, 34  
REF1, REF2 AI/O  
Reference Input/Output. Regardless of the reference method, these pins need individual decoupling  
using external 10 μF ceramic capacitors connected as close to REF1, REF2, and REFN as possible. REF1  
and REF2 must be tied together externally.  
35  
36, 37  
RGND  
REFN  
P
P
Reference Supply Ground. Connect this pin to the system analog ground plane.  
Reference Input/Output Ground. Connect the 10 μF capacitors on REF1 and REF2 to these pins, and  
connect these pins to the system analog ground plane.  
38  
39  
40  
VSSH  
P
High Voltage Analog Negative Supply. Nominally, the supply of this pin should be −15 V. Decouple this  
pin using a 10 μF capacitor and a 0.1 μF local capacitor.  
High Voltage Analog Positive Supply. Nominally, the supply of this pin should be +15 V. Decouple this  
pin using a 10 μF capacitor and a 0.1 μF local capacitor.  
Auxiliary Input Channel Negative Input.  
Exposed Paddle. Connect the exposed paddle to VSSH.  
VDDH  
P
AUX−  
EPAD  
AI  
1AI = analog input, AI/O = analog input/output, DI = digital input, DO = digital output, N/A = not applicable, and P = power.  
Rev. 0 | Page 12 of 21  
Enhanced Product  
ADAS3022-EP  
TYPICAL PERFORMANCE CHARACTERISTICS  
VDDH = 15 V, VSSH = −15 V, AVDD = DVDD = 5 V, VIO = 1.8 V to AVDD, unless otherwise noted.  
2.0  
1.00  
0.75  
0.50  
0.25  
0
GAIN = 0.16, 0.2, 0.4, 0.8, AND 1.6  
INL MAX = +0.649  
INL MIN = –0.592  
FOR ALL GAINS  
1.5  
1.0  
0.5  
0
–0.5  
–1.0  
–1.5  
–2.0  
–0.25  
–0.50  
–0.75  
–1.00  
0
8192 16384 24576 32768 40960 49152 57344 65536  
CODE  
0
8192 16384 24576 32768 40960 49152 57344 65536  
CODE  
Figure 9. Differential Nonlinearity (DNL) vs. Code for All PGIA Gains  
Figure 6. Integral Nonlinearity (INL) vs. Code,  
PGIA Gain = 0.16, 0.2, 0.4, 0.8, and 1.6  
400,000  
2.0  
1.5  
GAIN = 3.2  
INL MAX = +1.026  
INL MIN = –0.948  
GAIN = 0.16, 0.2, 0.4, 0.8, 1.6  
350,000  
300,200  
300,000  
1.0  
250,000  
200,000  
0.5  
0
152,600  
150,000  
–0.5  
–1.0  
–1.5  
–2.0  
100,000  
52,300  
50,000  
6,400  
600  
0
0
8192 16384 24576 32768 40960 49152 57344 65536  
CODE  
CODE IN HEX  
Figure 10. Histogram of a DC Input at Code Center,  
PGIA Gain = 0.16, 0.2, 0.4, 0.8, and 1.6  
Figure 7. Integral Nonlinearity vs. Code, PGIA Gain = 3.2  
400,000  
2.0  
1.5  
GAIN = 6.4  
INL MAX = +0.558  
INL MIN = –1.319  
GAIN = 3.2  
350,000  
300,000  
1.0  
250,000  
0.5  
213,200  
200,000  
0
150,000  
129,000  
118,400  
–0.5  
–1.0  
–1.5  
–2.0  
100,000  
50,000  
25,500  
1,600  
22,700  
1,400  
0
0
8192 16384 24576 32768 40960 49152 57344 65536  
CODE  
CODE IN HEX  
Figure 11. Histogram of a DC Input at Code Center, PGIA Gain = 3.2  
Figure 8. Integral Nonlinearity vs. Code, PGIA Gain = 6.4  
Rev. 0 | Page ±3 of 2±  
 
ADAS3022-EP  
Enhanced Product  
400,000  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
EXTERNAL REFERENCE  
GAIN = 6.4  
fS = 1000kSPS  
GAIN = 6.4  
350,000  
300,000  
250,000  
200,000  
150,000  
100,000  
50,000  
157,300  
151,900  
82,000  
75,100  
21,700  
18,400  
2,400  
300  
200  
100  
0
0
0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0  
OFFSET DRIFT (ppm/°C)  
CODE IN HEX  
Figure 12. Histogram of a DC Input at Code Center, PGIA Gain = 6.4  
Figure 15. Offset Drift, PGIA Gain = 6.4  
100  
120  
100  
80  
60  
40  
20  
0
112  
EXTERNAL REFERENCE  
GAIN = 0.16, 0.2, 0.4, 0.8, AND 1.6  
fS = 1000kSPS  
fS = 1000kSPS  
EXTERNAL 2.5V REFERENCE  
INTERNAL BUFFER  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
72  
23  
3
2
0
1
2
4
5
6
7
8
9
10  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0  
OFFSET DRIFT (ppm/°C)  
REFERENCE BUFFER DRIFT (ppm/°C)  
Figure 16. Reference Buffer Drift, External 2.5 V Reference  
Figure 13. Offset Drift, PGIA Gain = 0.16, 0.2, 0.4, 0.8, and 1.6  
120  
100  
fS = 1000kSPS  
INTERNAL 2.5V REFERENCE  
INTERNAL BUFFER  
EXTERNAL REFERENCE  
GAIN = 3.2  
fS = 1000kSPS  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
80  
60  
40  
20  
0
46  
38  
35  
30  
15 15  
11  
10  
8
6
2
1
0
1
2
3
4
5
6
7
9
10 11 12 13 14 15  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
OFFSET DRIFT (ppm/°C)  
REFERENCE BUFFER DRIFT (ppm/°C)  
Figure 17. Reference Buffer Drift, Internal 2.5 V Reference  
Figure 14. Offset Drift, PGIA Gain = 3.2  
Rev. 0 | Page ±4 of 2±  
Enhanced Product  
ADAS3022-EP  
0
0
–20  
GAIN = 0.16  
fS = 1000kSPS  
GAIN = 0.8  
fS = 1000kSPS  
–20  
fIN = 10.1kHz  
fIN = 10.1kHz  
–40  
–40  
SNR = 91.7dB  
SINAD = 89.2dB  
THD = –92.5dB  
SFDR = 92.5dB  
SNR = 90.7dB  
SINAD = 90.6dB  
THD = –107dB  
SFDR = 106dB  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–160  
–180  
–100  
–120  
–140  
–160  
–180  
0
0
0
100  
200  
300  
400  
500  
500  
500  
0
0
0
100  
200  
300  
400  
500  
500  
500  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
Figure 18. 10 kHz FFT, PGIA Gain = 0.16  
Figure 21. 10 kHz FFT, PGIA Gain = 0.8  
0
–20  
0
–20  
GAIN = 0.2  
fS = 1000kSPS  
fIN = 10.1kHz  
SNR = 91.4dB  
SINAD = 89.9dB  
THD = –94.7dB  
SFDR = 94.8dB  
GAIN = 1.6  
fS = 1000kSPS  
fIN = 10.1kHz  
SNR = 89.8dB  
SINAD = 89.7dB  
THD = –106dB  
SFDR = 107dB  
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–160  
–180  
–100  
–120  
–140  
–160  
–180  
100  
200  
300  
400  
100  
200  
300  
400  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
Figure 19. 10 kHz FFT, PGIA Gain = 0.2  
Figure 22. 10 kHz FFT, PGIA Gain = 1.6  
0
–20  
0
–20  
GAIN = 0.4  
fS = 1000kSPS  
fIN = 10.1kHz  
SNR = 91.2dB  
SINAD = 91.0dB  
THD = –103dB  
SFDR = 104dB  
GAIN = 3.2  
fS = 1000kSPS  
fIN = 10.1kHz  
SNR = 87.6dB  
SINAD = 87.5dB  
THD = –105dB  
SFDR = 106dB  
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–160  
–180  
–100  
–120  
–140  
–160  
–180  
100  
200  
300  
400  
100  
200  
300  
400  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
Figure 20. 10 kHz FFT, PGIA Gain = 0.4  
Figure 23. 10 kHz FFT, PGIA Gain = 3.2  
Rev. 0 | Page ±5 of 2±  
ADAS3022-EP  
Enhanced Product  
–55  
–60  
0
GAIN = 0.4, –0.5dBFS  
GAIN = 0.8, –0.5dBFS  
GAIN = 1.6, –0.5dBFS  
GAIN = 3.2, –0.5dBFS  
GAIN = 0.4, –10dBFS  
GAIN = 0.8, –10dBFS  
GAIN = 1.6, –10dBFS  
GAIN = 3.2, –10dBFS  
GAIN = 6.4  
fS = 1000kSPS  
fIN = 10.1kHz  
SNR = 85.7dB  
SINAD = 85.6dB  
THD = –101dB  
SFDR = 103dB  
–20  
–65  
–70  
–40  
–75  
–60  
–80  
–85  
–80  
–90  
–100  
–120  
–140  
–160  
–180  
–95  
–100  
–105  
–110  
–115  
–120  
–125  
0
1
1
100  
200  
300  
400  
500  
1000  
1000  
1
10  
100  
1000  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
Figure 24. 10 kHz FFT, PGIA Gain = 6.4  
Figure 27. THD vs. Frequency  
100  
95  
90  
85  
80  
75  
70  
–60  
–70  
INTERNAL REFERENCE  
CHANNEL 4 TO COM, SEQUENCER DISABLED  
V
= –0.5dBFS ON CHANNEL 0 TO CHANNEL 3,  
CHANNEL 5 TO CHANNEL 7  
IN  
fS = 1000kSPS  
–80  
–90  
–100  
–110  
–120  
–130  
–140  
GAIN = 0.4, –0.5dBFS  
GAIN = 0.8, –0.5dBFS  
GAIN = 1.6, –0.5dBFS  
GAIN = 3.2, –0.5dBFS  
GAIN = 0.4, –10dBFS  
GAIN = 0.8, –10dBFS  
GAIN = 1.6, –10dBFS  
GAIN = 3.2, –10dBFS  
0
20  
40  
60  
80  
100 120 140 160 180 200  
10  
100  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
Figure 28. Crosstalk vs. Frequency  
Figure 25. SNR vs. Frequency  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
130  
120  
110  
100  
90  
GAIN = 0.16  
GAIN = 0.20  
GAIN = 0.40  
GAIN = 0.80  
GAIN = 1.60  
GAIN = 3.20  
GAIN = 6.40  
GAIN = 0.4, –0.5dBFS  
GAIN = 0.8, –0.5dBFS  
GAIN = 1.6, –0.5dBFS  
GAIN = 3.2, –0.5dBFS  
GAIN = 0.4, –10dBFS  
GAIN = 0.8, –10dBFS  
GAIN = 1.6, –10dBFS  
GAIN = 3.2, –10dBFS  
80  
COMMON-MODE AMPLITUDE = 20.48V p-p  
INTERNAL REFERENCE  
fS = 1000kSPS  
70  
60  
10  
100  
1
10  
100  
1k  
10k  
100k  
FREQUENCY (kHz)  
FREQUENCY (Hz)  
Figure 26. SINAD vs. Frequency  
Figure 29. CMRR vs. Frequency  
Rev. 0 | Page ±6 of 2±  
Enhanced Product  
ADAS3022-EP  
–50  
20  
18  
16  
14  
12  
10  
PSRR VDDH  
PSRR VSSH  
AVDD, GAIN = 0.2  
AVDD, GAIN = 1.6  
AVDD, GAIN = 6.4  
GAIN = 0.2  
GAIN = 1.6  
GAIN = 0.4  
GAIN = 3.2  
GAIN = 0.8  
GAIN = 6.4  
–55  
AVDD, GAIN = 3.2  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
–95  
–100  
0.01  
0.1  
1
10  
100  
10  
100  
THROUGHPUT (kSPS)  
1000  
FREQUENCY (kHz)  
Figure 30. Power Supply Rejection Ration (PSRR) vs. Frequency  
Figure 33. AVDD Current vs. Throughput, Internal Reference  
19  
15  
14  
13  
12  
11  
10  
9
GAIN = 0.2  
GAIN = 1.6  
GAIN = 0.4  
GAIN = 3.2  
GAIN = 0.8  
GAIN = 6.4  
GAIN = 0.2  
GAIN = 1.6  
GAIN = 0.4  
GAIN = 3.2  
GAIN = 0.8  
GAIN = 6.4  
18  
17  
16  
15  
14  
13  
4.7  
4.8  
4.9  
5.0  
AVDD SUPPLY (V)  
5.1  
5.2  
5.3  
10  
100  
THROUGHPUT (kSPS)  
1000  
Figure 31. AVDD Current vs. AVDD Supply, Internal Reference  
Figure 34. AVDD Current vs. Throughput, External Reference  
15  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
GAIN = 0.2  
GAIN = 1.6  
GAIN = 0.4  
GAIN = 3.2  
GAIN = 0.8  
GAIN = 6.4  
14  
13  
12  
11  
GAIN = 0.2  
GAIN = 1.6  
GAIN = 0.4  
GAIN = 3.2  
GAIN = 0.8  
GAIN = 6.4  
10  
4.7  
4.8  
4.9  
5.0  
AVDD SUPPLY (V)  
5.1  
5.2  
5.3  
10  
100  
THROUGHPUT (kSPS)  
1000  
Figure 32. AVDD Current vs. AVDD Supply, External Reference  
Figure 35. DVDD Current vs. Throughput  
Rev. 0 | Page ±7 of 2±  
ADAS3022-EP  
Enhanced Product  
0
–2  
18  
fS = 1000kSPS  
GAIN = 0.2  
GAIN = 1.6  
GAIN = 0.4  
GAIN = 3.2  
GAIN = 0.8  
GAIN = 6.4  
15  
12  
9
–4  
–6  
–8  
–10  
–12  
–14  
–16  
–18  
–20  
6
3
GAIN = 0.2  
GAIN = 1.6  
GAIN = 0.4  
GAIN = 3.2  
GAIN = 0.8  
GAIN = 6.4  
0
–50 –40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90  
10  
100  
THROUGHPUT (kSPS)  
1000  
TEMPERATURE (°C)  
Figure 36. VDDH Current vs. Throughput  
Figure 39. VSSH Current vs. Temperature  
19.5  
19.0  
18.5  
18.0  
17.5  
17.0  
16.5  
16.0  
0
–3  
GAIN = 0.2  
GAIN = 1.6  
GAIN = 0.4  
GAIN = 3.2  
GAIN = 0.8  
GAIN = 6.4  
fS = 1000kSPS  
–6  
–9  
–12  
–15  
–18  
GAIN = 0.2  
GAIN = 1.6  
GAIN = 0.4  
GAIN = 3.2  
GAIN = 0.8  
GAIN = 6.4  
10  
100  
THROUGHPUT (kSPS)  
1000  
–50 –40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90  
TEMPERATURE (°C)  
Figure 40. AVDD Current vs. Temperature  
Figure 37. VSSH Current vs. Throughput  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
20  
18  
16  
14  
12  
10  
8
GAIN = 0.2  
GAIN = 1.6  
GAIN = 0.4  
GAIN = 3.2  
GAIN = 0.8  
GAIN = 6.4  
VIO = 3.3V  
fS = 1000kSPS  
GAIN = 0.2  
GAIN = 1.6  
GAIN = 0.4  
GAIN = 3.2  
GAIN = 0.8  
GAIN = 6.4  
fS = 1000kSPS  
6
4
2
0
–50 –40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90  
–50 –40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 41. DVDD Current vs. Temperature  
Figure 38. VDDH Current vs. Temperature  
Rev. 0 | Page ±8 of 2±  
Enhanced Product  
ADAS3022-EP  
5
4
4.00  
GAIN = 0.2  
GAIN = 1.6  
GAIN = 0.4  
GAIN = 3.2  
GAIN = 0.8  
GAIN = 6.4  
GAIN = 0.16  
GAIN = 0.2  
GAIN = 0.4  
GAIN = 0.8  
GAIN = 1.6  
GAIN = 3.2  
GAIN = 6.4  
fS = 1000kSPS  
EXTERNAL REFERENCE  
fS = 1000kSPS  
3.75  
3.50  
3.25  
3.00  
2.75  
2.50  
2.25  
2.00  
3
2
1
0
–1  
–2  
–3  
–4  
–5  
–50 –40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90  
–50 –40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 45. Gain Error vs. Temperature  
Figure 42. VIO Current vs. Temperature  
12  
8
100  
98  
96  
94  
92  
90  
88  
86  
84  
82  
80  
fS = 1000kSPS  
GAIN = 0.16  
GAIN = 0.16  
fS = 1000kSPS  
EXTERNAL REFERENCE  
GAIN = 0.2  
GAIN = 0.4  
GAIN = 0.8  
GAIN = 1.6  
GAIN = 3.2  
GAIN = 6.4  
GAIN = 0.2  
GAIN = 0.4  
GAIN = 0.8  
GAIN = 1.6  
GAIN = 3.2  
GAIN = 6.4  
4
0
–4  
–8  
–12  
–50 –40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90  
–50 –40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 43. SNR vs. Temperature  
Figure 46. Offset Error vs. Temperature  
–80  
–85  
5
4
GAIN = 0.16  
fS = 1000kSPS  
EXTERNAL REFERENCE  
GAIN = 0.2  
GAIN = 0.4  
GAIN = 0.8  
GAIN = 1.6  
GAIN = 3.2  
GAIN = 6.4  
3
–90  
2
GAIN ERROR  
–95  
1
–100  
–105  
–110  
–115  
–120  
0
OFFSET ERROR  
–1  
–2  
–3  
–4  
–5  
–50 –40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90  
–50 –40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 44. THD vs. Temperature  
Figure 47. Offset and Gain Errors of the AUX +/AUX− ADC Channel Pair vs.  
Temperature  
Rev. 0 | Page ±9 of 2±  
ADAS3022-EP  
Enhanced Product  
5600  
5400  
5200  
5000  
4800  
4600  
4400  
4200  
4000  
3800  
3600  
32  
28  
24  
20  
16  
12  
8
25  
20  
15  
10  
5
T
= 25°C  
A
INTERNAL REFERENCE  
4
3400  
0
0
–50 –40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90  
0
100 200 300 400 500 600 700 800 900 1000  
TEMPERATURE (°C)  
THROUGHPUT (kSPS)  
Figure 48. Temperature Sensor Output Code vs. Temperature  
Figure 50. Temperature Sensor Output Error vs. Throughput  
0.5  
fS = 1000kSPS  
0
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
–3.5  
–4.0  
–0.5dBFS  
GAIN = 0.2  
GAIN = 0.8  
GAIN = 3.2  
GAIN = 0.4  
GAIN = 1.6  
GAIN = 6.4  
–4.5  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
Figure 49. Large Signal Frequency Response vs. Gain  
Rev. 0 | Page 20 of 2±  
Enhanced Product  
ADAS3022-EP  
OUTLINE DIMENSIONS  
6.10  
6.00 SQ  
5.90  
0.30  
0.25  
0.18  
PIN 1  
INDICATOR  
PIN 1  
INDICATOR  
40  
31  
30  
1
0.50  
BSC  
*
4.70  
EXPOSED  
PAD  
4.60 SQ  
4.50  
21  
10  
11  
20  
0.45  
0.40  
0.35  
0.25 MIN  
TOP VIEW  
BOTTOM VIEW  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
1.00  
0.95  
0.85  
0.05 MAX  
0.02 NOM  
SECTION OF THIS DATA SHEET.  
COPLANARITY  
0.08  
0.20 REF  
SEATING  
PLANE  
*
COMPLIANT TO JEDEC STANDARDS MO-220-VJJD-5  
WITH THE EXCEPTION OF THE EXPOSED PAD DIMENSION.  
Figure 51. 40-Lead Lead Frame Chip Scale Package [LFCSP]  
6 mm × 6 mm Body and 0.95 mm Package Height  
(CP-40-15)  
Dimensions shown in millimeters  
(See the ADAS3022 Data Sheet for Additional Information)  
ORDERING GUIDE  
Model1  
ADAS3022SCPZ-EP  
ADAS3022SCPZ-EP-RL  
EVAL-ADAS3022EDZ  
Temperature Range  
Package Description  
Package Option  
CP-40-15  
CP-40-15  
−55°C to +105°C  
−55°C to +105°C  
40-Lead Lead Frame Chip Scale Package [LFCSP]  
40-Lead Lead Frame Chip Scale Package [LFCSP]  
Evaluation Board  
1 Z = RoHS Compliant Part.  
©2017 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D15983-0-6/17(0)  
Rev. 0 | Page 21 of 21  
 
 

相关型号:

ADAS3023

16-Bit, 8-Channel Simultaneous Sampling Data Acquisition System
ADI

ADAS3023BCPZ

16-Bit, 8-Channel Simultaneous Sampling Data Acquisition System
ADI

ADAS3023BCPZ-RL7

16-Bit, 8-Channel Simultaneous Sampling Data Acquisition System
ADI

ADATE205

250 MHz Dual DCL
ADI

ADATE205BSV

250 MHz Dual DCL
ADI

ADATE205BSVZ

SPECIALTY ANALOG CIRCUIT
ADI

ADATE206

500 MHz Dual DCL
ADI

ADATE206BSV

500 MHz Dual DCL
ADI

ADATE207

Quad Pin Timing Formatter
ADI

ADATE207BBP

Quad Pin Timing Formatter
ADI

ADATE207BBPZ

Quad Pin Timing Formatter
ADI

ADATE209

4.0 Gbps Dual Driver
ADI