ADATE305BSVZ [ADI]

250 MHz Dual Integrated DCL with Level Setting DACs, Per Pin PMU, and Per Chip VHH; 250 MHz双通道集成DCL与电平设置的DAC ,每个引脚PMU和每个芯片VHH
ADATE305BSVZ
型号: ADATE305BSVZ
厂家: ADI    ADI
描述:

250 MHz Dual Integrated DCL with Level Setting DACs, Per Pin PMU, and Per Chip VHH
250 MHz双通道集成DCL与电平设置的DAC ,每个引脚PMU和每个芯片VHH

模拟IC 信号电路
文件: 总56页 (文件大小:1088K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
250 MHz Dual Integrated DCL with Level  
Setting DACs, Per Pin PMU, and Per Chip VHH  
ADATE305  
FEATURES  
GENERAL DESCRIPTION  
Driver  
The ADATE305 is a complete, single-chip solution that performs  
3-level driver with high-Z mode and built-in clamps  
Precision trimmed output resistance  
Low leakage mode (typically <10 nA)  
Voltage range: up to −2.0 V to +6.0 V  
1.6 ns minimum pulse width, 2 V terminated  
2.1 ns minimum pulse width, 3 V terminated  
Comparator  
Window and differential comparator  
500 MHz input equivalent bandwidth  
Load  
the pin electronic functions of the driver, the comparator, and  
the active load (DCL), per pin PMU, and dc levels for ATE appli-  
cations. The device also contains an HVOUT driver with a VHH  
buffer capable of generating up to 13.5 V.  
The driver features three active states: data high mode, data low  
mode, and term mode, as well as an inhibit state. The inhibit  
state, in conjunction with the integrated dynamic clamp, facili-  
tates the implementation of a high speed active termination.  
The ADATE305 supports two output voltage ranges: −2.0 V  
to +6.0 V and −1.5 V to +6.0 V by adjusting the positive and  
negative supply voltages.  
12 mA maximum current capability  
Per pin PMU  
The ADATE305 can be used as either a dual single-ended drive/  
receive channel or a single differential drive/receive channel.  
Each channel of the ADATE305 features a high speed window  
comparator per pin for functional testing, as well as a per pin  
PMU with FV, or FI and MV, or MI functions. All necessary dc  
levels for DCL functions are generated by on-chip 14-bit DACs.  
The per pin PMU features an on-chip 16-bit DAC for high  
accuracy and contains integrated range resistors to minimize  
external component counts.  
Force voltage range: up to −2.0 V to +6.0 V  
5 current ranges: 32 mA, 2 mA, 200 μA, 20 μA, 2 μA  
Levels  
14-bit DAC for DCL levels  
Typically < 5 mV INL (calibrated)  
16-bit DAC for PMU levels  
Typically < 1.5 mV INL (calibrated) linearity in FV mode  
HVOUT output buffer  
0 V to 13.5 V output range  
100-lead, 14 mm × 14 mm, TQFP_EP package  
900 mW per channel with no load  
The ADATE305 uses a serial bus to program all functional blocks  
and has an on-board temperature sensor for monitoring the  
device temperature.  
APPLICATIONS  
Automatic test equipment  
Semiconductor test systems  
Board test systems  
Instrumentation and characterization equipment  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2008 Analog Devices, Inc. All rights reserved.  
 
ADATE305  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Absolute Maximum Ratings ......................................................... 19  
Thermal Resistance.................................................................... 19  
Explanation of Test Levels......................................................... 19  
ESD Caution................................................................................ 19  
Pin Configuration and Function Descriptions........................... 20  
Typical Performance Characteristics ........................................... 23  
SPI Details ....................................................................................... 34  
Definition of SPI Word.............................................................. 35  
Write Operation.......................................................................... 36  
Read Operation........................................................................... 37  
Reset Operation.......................................................................... 38  
Register Map ................................................................................... 39  
Details of Registers......................................................................... 40  
User Information............................................................................ 42  
Details of DACs vs. Levels......................................................... 43  
Recommended PMU Mode Switching Sequences................. 46  
Block Diagrams............................................................................... 49  
Outline Dimensions....................................................................... 53  
Ordering Guide .......................................................................... 53  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Functional Block Diagram .............................................................. 3  
Specifications..................................................................................... 4  
Total Function............................................................................... 4  
Driver ............................................................................................. 5  
Reflection Clamp.......................................................................... 7  
Normal Window Comparator .................................................... 7  
Differential Comparator.............................................................. 9  
Active Load.................................................................................. 11  
PMU............................................................................................. 12  
External Sense (PMUS_CHx)................................................... 16  
DUTGND Input ......................................................................... 16  
Serial Peripheral Interface......................................................... 17  
HVOUT Driver........................................................................... 17  
Overvoltage Detector (OVD) ................................................... 18  
16-Bit DAC Monitor MUX ....................................................... 18  
REVISION HISTORY  
8/08—Revision 0: Initial Version  
Rev. 0 | Page 2 of 56  
 
ADATE305  
FUNCTIONAL BLOCK DIAGRAM  
CH1  
PMU_FLAG  
PMU  
16-BIT DAC  
*
MUX  
MUX  
DAC16_MON  
*
OVD  
OVD_CH0  
MUX  
MEASOUT01  
PMUS_CH0  
CH1  
VCLAMPH  
VCLAMPL  
VH  
VT  
VL  
R
OUT  
(TRIMMED)  
DATA0P  
100  
DRV  
DUT0  
DATA0N  
RCV0P  
*
100Ω  
WINDOW  
DIFF.  
C
RCV0N  
OTHER CHANNEL  
DUT1  
*
COMP_VTT0  
VHH  
HVOUT  
50Ω  
COMP_QH0P  
COMP_QH0N  
C
C
VOH  
VOL  
COMP_QL0P  
COMP_QL0N  
*
G
IOL  
ADATE305  
SDIN  
*
RST  
SCLK  
CS  
VCOM  
*
14-BIT DAC  
SPI  
TEMPERATURE  
SENSOR  
TEMPSENSE  
IOH  
SDOUT  
*
ONE PER DEVICE.  
Figure 1. One of Two Channels Is Shown  
Rev. 0 | Page 3 of 56  
 
ADATE305  
SPECIFICATIONS  
Characterization and production tests performed using Power Supply Range 1 (see Table 36). VDD = +10.0 V, VCC = +3.3 V, VSS = −5.25 V,  
VPLUS = +16.75 V, VCOMP_VTT = +3.3 V, VREF = +5.0 V, VREF_GND = 0.0 V. All default test conditions are as defined in Table 38. All specified  
values are at TJ = 70°C, where TJ corresponds to the internal temperature sensor, unless otherwise noted. Temperature coefficients are  
measured at TJ = 70°C 20°C, unless otherwise noted. Typical values are based on design, simulation analyses, and/or limited bench  
evaluations. Typical values are not tested or guaranteed. Test levels are specified in the Explanation of Test Levels section.  
TOTAL FUNCTION  
Table 1.  
Test  
Parameter  
Min  
Typ  
Max  
Unit  
Level Conditions/Comments  
TOTAL FUNCTION  
Output Leakage Current  
PE Disable Range E  
−20.0 5.3  
5.3  
+20.0 nA  
nA  
P
−1.5 V < VDUTx < +6.0 V; PMU and PE disabled via SPI; PMU  
Range E, VCH = 7.0 V, VCL = −2.5 V  
PE Disable Range A, B, C, D  
High-Z Mode  
CT  
−1.5 V < VDUTx < +6.0 V; PMU and PE disabled via SPI; PMU  
Range A, PMU Range B, PMU Range C, and PMU Range D,  
VCH = +7.0 V, VCL = −2.5 V  
−1.5 V < VDUTx < +6.0 V; PMU disabled and PE enabled via SPI;  
RCV active, VCH = +7.0 V, VCL = −2.5 V  
−400 5.4  
+400 nA  
pF  
P
Output Capacitance  
DUT Pin Range  
4
S
D
VTERM mode operation  
−1.5  
+6.0  
V
POWER SUPPLIES  
Total Supply Range, VPLUS to VSS  
VPLUS Supply, VPLUS  
Positive Supply, VDD  
Negative Supply, VSS  
Logic Supply, VCC  
Comparator Termination, VCOMP_VTT  
VPLUS Supply Current, IPLUS  
VPLUS Supply Current, IPLUS  
Logic Supply Current, ICC  
Comparator Termination Current,  
ICOMP_VTT  
22.5  
23.25  
V
V
V
V
V
V
mA  
mA  
mA  
mA  
D
D
D
D
D
D
P
P
P
P
Defines PSRR conditions  
Defines PSRR conditions  
Defines PSRR conditions  
Defines PSRR conditions  
Defines PSRR conditions  
16.25 16.75 17.25  
9.5 10.0 10.5  
−5.50 −5.25 −5.00  
3.1  
3.3  
−1.0  
4.0  
1.0  
3.3  
3.5  
5.0  
+3.0  
17.0  
10.0  
26.0  
+1.3  
12.7  
2.7  
HVOUT disabled  
HVOUT enabled, RCV active, no load, VHH = 12 V  
Quiescent (SPI is static)  
10.0  
17  
Positive Supply Current, IDD  
Negative Supply Current, ISS  
Total Power Dissipation  
Positive Supply Current, IDD  
Negative Supply Current, ISS  
Total Power Dissipation  
72  
92  
105  
135  
1.9  
154  
183  
2.5  
mA  
mA  
W
mA  
mA  
W
P
P
P
P
P
P
Load power down (IOH = IOL = 0 mA)  
Load power down (IOH = IOL = 0 mA)  
Load power down (IOH = IOL = 0 mA)  
Load active off (IOH = IOL = 12 mA)  
Load active off (IOH = IOL = 12 mA)  
Load active off (IOH = IOL = 12 mA)  
100  
1.0  
102  
130  
1.8  
119  
1.7  
133  
158  
2.2  
TEMPERATURE MONITORS  
Temperature Sensor Gain  
Temperature Sensor Accuracy  
Without Calibration over  
25°C to 100°C  
10  
6
mV/K CT  
°C  
CT  
Temperature voltage available on Pin 3 at all times and Pin 28  
when selected (see Table 24 and Table 36)  
VREF INPUT  
Reference Input Voltage Range for  
DACs (VREF Pin)  
Input Bias Current  
4.95  
5
5.05  
100  
V
D
P
Referenced to VREF_GND; not referenced to VDUTGND  
Tested with 5 V applied  
0.1  
μA  
Rev. 0 | Page 4 of 56  
 
ADATE305  
DRIVER  
VH − VL ≥ 200 mV (to meet dc/ac specifications).  
Table 2.  
Test  
Parameter  
Min  
Typ  
Max  
Unit  
Level Conditions/Comments  
DC SPECIFICATIONS  
High-Speed Differential Logic  
Input Characteristics (DATA, RCV)  
Input Termination Resistance  
92  
100  
108  
Ω
P
Push 6 mA into xP pins, force 1.3 V on xN pins; measure voltage  
from xP to xN, calculate resistance (ΔV/ΔI)1  
Input Voltage Differential  
Common-Mode Voltage  
Input Bias Current  
0.2  
0.85  
−20.0 +2.2  
1.0  
2.35  
+20.0 μA  
V
V
PF  
PF  
P
Each pin tested at 2.85 V and 0.35 V, while the other high speed  
pin remains open  
Pin Output Characteristics  
Output High Range, VH  
Output Low Range, VL  
Output Term Range, VT  
−1.4  
−1.5  
−1.5  
+6.0  
+5.9  
+6.0  
V
V
V
V
D
D
D
D
Functional Amplitude (VH − VL) 0.0  
7.5  
Amplitude can be programmed to VH = VL, accuracy specs  
apply when VH − VL ≥ 200 mV  
DC Output Current Limit  
Source  
75  
100  
120  
mA  
P
Driver high, VH = 6.0 V, short DUTx pin to −2.0 V, measure current  
DC Output Current Limit Sink  
Output Resistance, 50 mA  
−120 −100 −75  
mA  
Ω
P
P
Driver low, VL = −1.5 V, short DUTx pin to 6.0 V, measure current  
Source: driver high, VH = 3.0 V, IDUTx = 1 mA and 50 mA;  
sink: driver low, VL = 0.0 V, IDUTx = −1 mA and −50 mA; ΔVDUT/ΔIDUT  
45.0  
47.0  
49.0  
ABSOLUTE ACCURACY  
VH tests done with VL = −2.5 V and VT= −2.5 V;  
VL tests done with VH = 7.5 V and VT = 7.5 V;  
VT tests done with VL = −2.5 V and VH = +7.5 V; unless otherwise  
specified  
VH, VL, VT Uncalibrated Accuracy  
VH, VL, VT Offset Tempco  
VH, VL, VT DNL  
−250  
−10  
75  
450  
1
2.5  
+250 mV  
P
Error measured at calibration points of 0 V and 5 V  
Measured at calibration points  
After two-point gain/offset calibration  
After two-point gain/offset calibration; measured over driver  
output ranges  
After two-point gain/offset calibration; range/number of DAC  
bits as measured at calibration points of 0 V and 5 V  
μV/°C CT  
mV  
mV  
CT  
P
VH, VL, VT INL  
+10  
+1  
VH, VL, VT Resolution  
DUTGND Voltage Accuracy  
VH, VL, VT Crosstalk  
0.6  
mV  
mV  
mV  
PF  
P
−7  
1.3  
2
+7  
Over 0.1 V range; measured at end points of VH, VL, and VT  
functional range  
CT  
VL = −1.5 V: VH = −1.4 V 6.0 V, VT = −1.5 V 6.0 V;  
VH = 6.0 V: VL = −1.5 V 5.9 V, VT = −1.5 V 6.0 V;  
VT = 1.5 V: VL = −1.5 V 5.9 V, VH = −1.4 V 6.0 V; dc crosstalk  
on VL, VH, VT output level when other driver DACs are varied  
Overall Voltage Accuracy  
10  
15  
mV  
CT  
Sum of INL, crosstalk, DUTGND, and tempco over 5°C, after  
gain/offset calibration  
Measured at calibration points  
VH, VL, VT DC PSRR  
AC SPECIFICATIONS  
mV/V CT  
Rise/Fall Times  
Toggle DATAxx  
0.2 V Programmed Swing  
1.0 V Programmed Swing  
2.0 V Programmed Swing  
3.0 V Programmed Swing  
3.0 V Programmed Swing  
5.0 V Programmed Swing  
Rise to Fall Matching  
1000  
800  
950  
1175 1500  
1650  
2350  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
CB  
CB  
CB  
P/CB  
CB  
VH = 0.2 V, VL = 0.0 V, terminated; 20% to 80%  
VH = 1.0 V, VL = 0.0 V, terminated; 20% to 80%  
VH = 2.0 V, VL = 0.0 V, terminated; 20% to 80%  
VH = 3.0 V, VL = 0.0 V, terminated; 20% to 80%  
VH = 3.0 V, VL = 0.0 V, unterminated; 10% to 90%  
VH = 5.0V, VL = 0.0 V, unterminated; 10% to 90%  
VH = 3.0 V, VL = 0.0 V, terminated; rise to fall within one channel  
1000  
CB  
CB  
30  
Rev. 0 | Page 5 of 56  
 
ADATE305  
Test  
Parameter  
Min  
Typ  
Max  
Unit  
Level Conditions/Comments  
Minimum Pulse Width  
1.0 V Programmed Swing  
Toggle DATAxx  
VH = 1.0 V, VL = 0.0 V, terminated; timing error 75 ps  
VH = 1.0 V, VL = 0.0 V, terminated; less than 10% amplitude  
degradation  
1.4  
1.6  
ns  
ns  
CB  
CB  
2.0 V Programmed Swing  
3.0 V Programmed Swing  
1.6  
1.8  
ns  
ns  
CB  
CB  
VH = 2.0 V, VL = 0.0 V, terminated; timing error 75 ps  
VH = 2.0 V, VL = 0.0 V, terminated; less than 10% amplitude  
degradation  
VH = 3.0 V, VL = 0.0 V, terminated; timing error 75 ps  
VH = 3.0 V, VL = 0.0 V, terminated; less than 10% amplitude  
degradation  
2.1  
2.3  
ns  
ns  
CB  
CB  
Maximum Toggle Rate  
2.0 V Programmed Swing  
3.0 V Programmed Swing  
Dynamic Performance, Drive  
(VH to VL and VL to VH)  
250  
200  
MHz  
MHz  
CB  
CB  
VH = 2.0 V, VH = 0.0 V, terminated, 10% amplitude degradation  
VH = 3.0 V, VH = 0.0 V, terminated, 10% amplitude degradation  
Toggle DATAxx  
Propagation Delay Time  
Propagation Delay Tempco  
Delay Matching  
Edge to Edge  
Channel to Channel  
Delay Change vs. Duty Cycle  
Overshoot and Undershoot  
Settling Time (VH to VL)  
To Within 3% of Final Value  
To Within 1% of Final Value  
Dynamic Performance, VT  
(VH or VL to VT and VT to VH  
or VL)  
3.0  
3.0  
ns  
CB  
VH = 3.0 V, VL = 0.0 V, terminated  
VH = 3.0 V, VL = 0.0 V, terminated  
VH = 3.0 V, VL = 0.0 V, terminated  
Rising vs. falling  
Rising vs. rising, falling vs. falling  
VH = 3.0 V, VL = 0.0 V, terminated; 5% to 95% duty cycle; 1 MHz  
VH = 3.0 V, VL = 0.0 V, terminated  
Toggle DATAxx  
ps/°C CT  
115  
30  
30  
ps  
ps  
ps  
mV  
CB  
CB  
CB  
CB  
20  
5
35  
ns  
ns  
CB  
CB  
VH = 3.0 V, VL = 0.0 V, terminated  
VH = 3.0 V, VL = 0.0 V, terminated  
Toggle RCVx  
Propagation Delay Time  
Delay Matching, Edge to Edge  
Propagation Delay Tempco  
3.3  
100  
4.0  
ns  
ps  
CB  
CB  
VH = 3.0 V, VT = 1.5 V, VL = 0.0 V, terminated  
VH = 3.0 V, VT = 1.5 V, VL = 0.0 V, terminated; rising vs. falling  
VH = 3.0 V, VT = 1.5 V, VL = 0.0 V, terminated  
ps/°C CT  
Transition Time, Active to VT  
and VT to Active  
0.85  
ns  
CB  
VH = 3.0 V, VT = 1.5 V, VL = 0.0 V, terminated; 20% to 80%  
Dynamic Performance,  
Inhibit (VH or VL to/from  
Inhibit)  
Toggle RCVx  
Propagation Delay Time  
Active to Inhibit  
Inhibit to Active  
Transition Time  
Active to Inhibit  
Inhibit to Active  
I/O Spike  
VH = +1.0 V, VL = −1.0 V, terminated  
4.5  
6.9  
ns  
ns  
CB  
CB  
VH =+1.0 V, VL = −1.0 V, terminated; 20% to 80%  
VH = 0.0 V, VL = 0.0 V, terminated  
2.6  
0.75  
190  
ns  
ns  
mV  
CB  
CB  
CB  
1 The xP pins include DATA0P, DATA1P, RCV0P, and RCV1P; the xN pins include DATA0N, DATA1N, RCV0N, and RCV1N. For example, push 6 mA into the DATA0P pin,  
force 1.3 V into DATA0N, and measure the voltage from DATA0P to DATA0N.  
Rev. 0 | Page 6 of 56  
ADATE305  
REFLECTION CLAMP  
Clamp accuracy specifications apply when VCH > VCL.  
Table 3.  
Test  
Parameter  
VCH  
Min  
Typ  
Max  
Unit  
Level Conditions/Comments  
Range  
−1.0  
+6.0  
V
D
Uncalibrated Accuracy  
−200  
50  
+200  
mV  
P
Driver high-Z, sinking 1 mA; VCH error measured at the  
calibration points of 0.0 V and 5.0 V  
Resolution  
0.6  
0.75  
mV  
PF  
Driver high-Z, sinking 1 mA; after two-point gain/offset  
calibration; range/number of DAC bits as measured at  
the calibration points of 0.0 V and 5.0 V  
DNL  
INL  
1
2
mV  
CT  
P
Driver high-Z, sinking 1 mA; after two-point gain/offset  
calibration  
Driver high-Z, sinking 1 mA; after two-point gain/offset  
calibration; measured over VCH range of −1.0 V to +6.0 V  
−40  
+40  
mV  
Tempco  
−0.3  
mV/°C  
CT  
Measured at calibration points  
VCL  
Range  
Uncalibrated Accuracy  
−1.5  
−200  
+5.0  
+200  
V
mV  
D
P
50  
Driver high-Z, sourcing 1 mA; VCL error measured at the  
calibration points of 0.0 V and 5.0 V  
Resolution  
0.6  
0.75  
mV  
PF  
Driver high-Z, sourcing 1 mA; after two-point gain/offset  
calibration; range/number of DAC bits as measured at  
the calibration points of 0.0 V and 5.0 V  
DNL  
INL  
1
2
mV  
CT  
P
Driver high-Z, sourcing 1 mA; after two-point gain/offset  
calibration  
Driver high-Z, sourcing 1 mA; after two-point gain/offset  
calibration; measured over VCL range of −1.5 V to +5 V  
−40  
+40  
mV  
Tempco  
0.5  
mV/°C  
CT  
Measured at calibration points  
DC CLAMP CURRENT LIMIT  
VCH  
VCL  
−120  
60  
−85  
85  
1
−60  
120  
+7  
mA  
mA  
mV  
P
P
P
Driver high-Z, VCH = 0 V, VCL = −1.5 V, VDUTx = +5 V  
Driver high-Z, VCH = 6.0 V, VCL= 5.0 V, VDUTx = 0.0 V  
DUTGND VOLTAGE ACCURACY  
−7  
Over 0.1 V range; measured at the end points of VCH  
and VCL functional range  
NORMAL WINDOW COMPARATOR  
VOH tests done with VOL = −1.5 V; VOL tests done with VOH = 6.0 V, unless otherwise specified.  
Table 4.  
Test  
Parameter  
Min  
Typ  
Max  
Unit  
Level Conditions/Comments  
DC SPECIFICATIONS  
Input Voltage Range  
Differential Voltage Range  
−1.5  
0.1  
+6.0  
7.5  
V
V
D
D
Comparator Input Offset Vol-  
tage Accuracy, Uncalibrated  
−150  
30  
+150  
mV  
P
Offset measured at the calibration  
points of 0.0 V and 5.0 V  
Comparator Threshold  
Resolution  
0.6  
1
mV  
PF  
After two-point gain/offset calibration;  
range/number of DAC bits as measured  
at the calibration points of 0 V and 5 V  
Comparator Threshold DNL  
Comparator Threshold INL  
1
1.3  
mV  
mV  
CT  
P
After two-point gain/offset calibration  
−7  
−7  
+7  
After two-point gain/offset calibration;  
measured over VOH, VOL range of  
−1.5 V to +6.0 V  
Comparator Input Offset  
Voltage Tempco  
DUTGND Voltage Accuracy  
100  
0.5  
ꢀV/°C CT  
mV  
Measured at calibration points  
+7  
P
Over 0.1 V range; measured at end  
points of VOH and VOL functional range  
Rev. 0 | Page 7 of 56  
 
ADATE305  
Test  
Parameter  
Min  
Typ  
Max  
Unit  
Level Conditions/Comments  
Comparator Uncertainty Range  
6.0  
mV  
CB  
VDUTx = 0 V, sweep comparator  
threshold to determine uncertainty  
region  
DC Hysteresis  
DC PSRR  
0.5  
5
mV  
mV/V CT  
CB  
VDUTx = 0 V  
Measured at calibration points  
Digital Output Characteristics  
Internal Pull-Up Resistance  
to Comparator, COMP_VTT  
Pin  
40  
50  
60  
Ω
P
Pull 1 mA and 10 mA from Logic 1 leg  
and measure ΔV to calculate resis-  
tance; measured ΔV/9 mA; done for  
both comparator logic states  
VCOMP_VTT Range  
Common-Mode Voltage  
3.3  
5.0  
V
V
D
CT  
VCOMP_VTT − 1.88  
Measured with 100 Ω differential  
termination  
VCOMP_VTT − 2.075  
VCOMP_VTT − 1.675  
V
P
Measured with no external termination  
Differential Voltage  
250  
mV  
CT  
Measured with 100 Ω differential  
termination  
400  
500  
450  
600  
mV  
ps  
P
CB  
Measured with no external termination  
Measured with each comparator leg  
terminated 50 Ω to GND  
Rise/Fall Time, 20% to 80%  
AC SPECIFICATIONS  
Input transition time = 800 ps, 10% to  
90%; measured with each comparator  
leg terminated 50 Ω to GND; unless  
otherwise specified  
Propagation Delay, Input to  
Output  
1.75  
5
ns  
CB  
VDUTx = 0 V to 1.5 V swing, Driver  
VTERM mode, VT = 0.0 V; high-side  
measurement: VOH = 0.75 V, VOL =  
−1.5 V; low-side measurement: VOH =  
6.0 V, VOL = 0.75 V  
VDUTx = 0 V to 1.5 V swing, Driver  
VTERM mode, VT = 0.0 V; high-side  
measurement: VOH = 0.75 V, VOL =  
−1.5 V; low-side measurement: VOH =  
6.0 V, VOL = 0.75 V  
VDUTx = 0 V to 1.5 V swing, Driver  
VTERM mode, VT = 0.0 V; high-side  
measurement: VOH = 0.75 V, VOL =  
−1.5 V; low-side measurement: VOH =  
6.0 V, VOL = 0.75 V  
Propagation Delay Tempco  
Propagation Delay Matching  
ps/°C CT  
High Transition to Low  
Transition  
High to Low Comparator  
200  
50  
ps  
ps  
CB  
CB  
Propagation Delay Change  
(with Respect To)  
Slew Rate, 800 ps, 1 ns, 1.2 ns,  
and 2.2 ns (10% to 90%)  
50  
75  
ps  
ps  
CB  
CB  
VDUTx = 0 V to 1.5 V swing, Driver  
VTERM mode, VT = 0.0 V; high-side  
measurement: VOH = 0.75 V, VOL =  
−1.5 V; low-side measurement: VOH =  
6.0 V, VOL = 0.75 V  
For 250 mV: VDUTx = 0 V to 0.5 V swing;  
for 1.5 V: VDUTx = 0 V to 1.75 V swing;  
Driver VTERM mode, VT = 0.0 V; high-  
side measurement: VOH = 0.25 V,  
VOL = −1.5 V; low-side measurement:  
VOH = 6.0 V, VOL = 0.25 V  
Overdrive, 250 mV and 1.5 V  
Pulse Width, Sweep 1.6 ns to  
10 ns  
75  
ps  
CB  
VDUTx = 0 V to 1.5 V swing @ 32.0 MHz,  
Driver VTERM mode, VT = 0.0 V; high-  
side measurement: VOH = 0.5 V, VOL =  
−1.5 V; low-side measurement: VOH =  
6.0 V, VOL = 0.5 V  
Rev. 0 | Page 8 of 56  
ADATE305  
Test  
Level Conditions/Comments  
Parameter  
Duty Cycle, 5% to 95%  
Min  
Typ  
Max  
Unit  
50  
ps  
CB  
VDUTx = 0 V to 1.5 V swing @ 1.0 MHz,  
Driver VTERM mode, VT =0.0 V; high-  
side measurement: VOH = 0.75 V, VOL =  
−1.5 V; low-side measurement: VOH =  
6.0 V, VOL = 0.75 V  
Minimum Pulse Width  
2.0  
ns  
CB  
VDUTx = 0 V to 1.5 V swing, Driver  
VTERM mode, VT = 0.0 V; less than  
12% amplitude degradation measured  
by shmoo  
Input Equivalent Bandwidth,  
Terminated  
500  
2.5  
MHz  
ns  
CB  
CB  
VDUTx = 0 V to 1.5 V swing, Driver  
VTERM mode, VT = 0.0 V; as measured  
by shmoo  
VDUTx = 0 V to 3.0 V swing, driver high-Z;  
as measured by shmoo; input transition  
time of ~2000 ps, 10% to 90%  
ERT High-Z Mode, 3 V, 20%  
to 80%  
DIFFERENTIAL COMPARATOR  
VOH tests done with VOL = −1.1 V, VOL tests done with VOH = +1.1 V, unless otherwise specified.  
Table 5.  
Test  
Parameter  
Min  
Typ  
Max  
Unit  
Level Conditions/Comments  
DC SPECIFICATIONS  
Input Voltage Range  
Operational Differential Voltage  
Range  
−1.25  
0.05  
+4.5  
1.1  
V
V
D
D
Maximum Differential Voltage Range  
8
V
D
Comparator Input Offset Voltage  
Accuracy, Uncalibrated  
VOH, VOL Resolution  
−150  
−15  
35  
+150  
mV  
P/CT  
Offset measured at differential calibration points +1.0 V  
and −1.0 V, with common mode = 0.0 V  
After two-point gain/offset calibration; range/number of  
DAC bits as measured at differential calibration points  
+1.0 V and −1.0 V, with common mode = 0.0 V  
After two-point gain/offset calibration; common  
mode = 0.0 V  
After two-point gain/offset calibration; measured over VOH,  
VOL range of −1.1 V to +1.1 V, common mode = 0.0 V  
0.6  
1
mV  
PF  
VOH, VOL DNL  
VOH, VOL INL  
1
mV  
mV  
CT  
P
2.0  
+15  
VOH, VOL Offset Voltage Tempco  
Comparator Uncertainty Range  
200  
18  
ꢀV/°C CT  
Measured at calibration points  
VDUTx = 0 V, sweep comparator threshold to determine  
uncertainty region  
mV  
CB  
DC Hysteresis  
CMRR  
0.5  
0.15  
mV  
mV/V  
CB  
P
VDUTx = 0 V  
1
Offset measured at common-mode voltage points of  
−1.5 V and +4.5 V, with differential voltage = 0.0 V  
DC PSRR  
1.5  
1.7  
mV/V CT  
Measured at calibration points  
AC SPECIFICATIONS  
Input transition time = 800 ps, 10% to 90%, measured  
with each comparator leg terminated 50 Ω to GND  
VDUT0 = 0 V, VDUT1 = −0.5 V to +0.5 V swing, Driver VTERM  
mode, VT = 0.0 V; high-side measurement: VOH = 0.0 V,  
VOL = −1.1 V; low-side measurement: VOH = 1.1 V,  
VOL = 0.0 V; repeat for other DUT channel  
VDUT0 = 0 V, VDUT1 = −0.5 V to +0.5 V swing, Driver VTERM  
mode, VT = 0.0 V; high-side measurement: VOH = 0.0 V,  
VOL = −1.1 V; low-side measurement: VOH = 1.1 V, VOL =  
0.0 V; repeat for other DUT channel  
Propagation Delay, Input to Output  
Propagation Delay Tempco  
ns  
CB  
5
ps/°C CT  
Propagation Delay Matching  
VDUT0 = 0 V, VDUT1 = −0.5 V to +0.5 V swing, Driver VTERM  
mode, VT = 0.0 V; high-side measurement: VOH = 0.0 V,  
VOL = −1.1 V; low-side measurement: VOH = 1.1 V, VOL =  
0.0 V; repeat for other DUT channel  
High Transition to Low Transition  
High-to-Low Comparator  
100  
50  
ps  
ps  
CB  
CB  
Rev. 0 | Page 9 of 56  
 
ADATE305  
Test  
Parameter  
Min  
Typ  
Max  
Unit  
Level Conditions/Comments  
Propagation Delay Change (with  
Respect To)  
VDUT0 = 0 V, VDUT1 = −0.5 V to +0.5 V swing, Driver VTERM  
mode, VT = 0.0 V; high-side measurement: VOH = 0.0 V,  
VOL = −1.1 V; low-side measurement: VOH = 1.1 V, VOL =  
0.0 V; repeat for other DUT channel  
Slew Rate, 800 ps, 1ns, 1.2ns, and  
2.2 ns (10% to 90%)  
60  
ps  
ps  
ps  
ps  
ns  
CB  
CB  
CB  
CB  
CB  
VDUT0 = 0 V, VDUT1 = −0.5 V to +0.5 V swing, Driver VTERM  
mode, VT = 0.0 V; high-side measurement: VOH = 0.0 V,  
VOL = −1.1 V; low-side measurement: VOH = 1.1 V, VOL =  
0.0 V; repeat for other DUT channel  
VDUT0 = 0 V, for 250 mV: VDUT1 = 0 V to 0.5 V swing; for  
750 mV: VDUT1 = 0 V to 1.0 V swing, Driver VTERM mode,  
VT = 0.0 V; VOH = −0.25 V; repeat for other DUT channel  
with comparator threshold = +0.25 V  
VDUT0 = 0 V, VDUT1 = −0.5 V to +0.5 V swing @ 32 MHz, Driver  
VTERM mode, VT = 0.0 V; high-side measurement: VOH =  
0.0 V, VOL = −1.1 V; low-side measurement: VOH = 1.1 V,  
VOL = 0.0 V; repeat for other DUT channel  
VDUT0 = 0 V, VDUT1 = −0.5 V to +0.5 V swing @ 1 MHz, Driver  
VTERM mode, VT = 0.0 V; high-side measurement: VOH =  
0.0 V, VOL = −1.1 V; low-side measurement: VOH = 1.1 V,  
VOL = 0.0 V; repeat for other DUT channel  
Overdrive, 250 mV and 750 mV  
100  
75  
Pulse Width, Sweep from 1.6 ns to  
10 ns  
Duty Cycle, 5% to 95%  
Minimum Pulse Width  
60  
2.5  
VDUT0 = 0 V, VDUT1 = −0.5 V to +0.5 V swing, Driver VTERM  
mode, VT = 0.0 V; high-side measurement: VOH = 0.0 V,  
VOL = −1.1 V; low-side measurement: VOH = 1.1 V, VOL =  
0.0 V; less than 10% amplitude degradation measured by  
shmoo; repeat for other DUT channel  
Input Equivalent Bandwidth,  
Terminated  
400  
MHz  
CB  
VDUT0 = 0 V, VDUT1 = −0.5 V to +0.5 V swing, Driver VTERM  
mode, VT = 0.0 V; high-side measurement: VOH = 0.0 V,  
VOL = −1.1 V; low-side measurement: VOH = 1.1 V, VOL =  
0.0 V; less than 22% amplitude degradation measured by  
shmoo; repeat for other DUT channel  
Rev. 0 | Page 10 of 56  
ADATE305  
ACTIVE LOAD  
See Table 29 for load control information.  
Table 6.  
Test  
Parameter  
Min  
Typ  
Max  
Unit  
Level Conditions/Comments  
DC SPECIFICATIONS  
Input Characteristics  
VCOM Voltage Range  
VDUT Range  
Load active on, RCV active, unless otherwise noted  
−1.25  
−1.5  
−200  
+5.75  
+6.0  
+200  
V
V
mV  
D
D
P
VCOM Accuracy, Uncalibrated  
30  
IOH = IOL = 6 mA, VCOM error measured at the calibration  
points of 0.0 V and 5.0 V  
VCOM Resolution  
0.6  
1
mV  
PF  
IOH = IOL = 6 mA, after two-point gain/offset calibration;  
range/number of DAC bits as measured at the calibration  
points of 0.0 V and 5.0 V  
VCOM DNL  
VCOM INL  
1
2
mV  
mV  
CT  
P
IOH = IOL = 6 mA, after two-point gain/offset calibration  
IOH = IOL = 6 mA, after two-point gain/offset calibration;  
measured over VCOM range of −1.25 V to +5.75 V  
Over 0.1 V range; measured at end points of VCOM functional  
range  
−7  
−7  
+7  
+7  
DUTGND Voltage Accuracy  
1
mV  
P
Output Characteristics  
IOL  
Maximum Source Current  
Uncalibrated Offset  
12  
−600.0  
mA  
D
P
100 +600.0 ꢀA  
IOH = 0 mA, VCOM = 1.5 V, VDUTx = 0.0 V, IOL offset calculated  
from the calibration points of 1 mA and 11 mA  
Uncalibrated Gain  
Resolution  
−12  
4
+12  
2
%
P
IOH = 0 mA, VCOM = 1.5 V, VDUTx = 0.0 V, IOL gain calculated from  
the calibration points of 1 mA and 11 mA  
IOH = 0 mA, VCOM = 1.5 V, VDUTx = 0.0 V, after two-point gain/  
offset calibration; range/number of DAC bits as measured at the  
calibration points of 1 mA and 11 mA  
1.5  
ꢀA  
PF  
DNL  
3.0  
20  
ꢀA  
ꢀA  
V
CT  
P
IOH = 0 mA, VCOM = 1.5 V, VDUTx = 0.0 V, after two-point  
gain/offset calibration  
IOH = 0 mA, VCOM = 1.5 V, VDUTx = 0.0 V, after two-point gain/  
offset calibration; measured over IOL range of 0 mA to 12 mA  
IOH = IOL = 12 mA, VCOM = 2.0 V, measure IOL reference at  
VDUTx = −1.0 V, measure IOL current at VDUTx = 1.75 V, ensure > 90%  
of reference current  
INL  
−80  
+80  
0.25  
90% Commutation Voltage  
P
IOH  
Maximum Sink Current  
Uncalibrated Offset  
12  
−600.0  
mA  
D
P
100 +600.0 ꢀA  
IOL = 0 mA, VCOM = 1.5 V, VDUTx = 3.0 V, IOH offset calculated  
from the calibration points of 1 mA and 11 mA  
Uncalibrated Gain  
Resolution  
−12  
4
+12  
2
%
P
IOL = 0 mA, VCOM = 1.5 V, VDUTx = 3.0 V, IOH gain calculated from  
the calibration points of 1 mA and 11 mA  
IOL = 0 mA, VCOM = 1.5 V, VDUTx = 3.0 V, after two-point  
gain/offset calibration; range/number of DAC bits as measured  
at the calibration points of 1 mA and 11 mA  
1.5  
ꢀA  
PF  
DNL  
3.0  
ꢀA  
ꢀA  
V
CT  
P
IOL = 0 mA, VCOM = 1.5 V, VDUTx = 3.0 V, after two-point  
gain/offset calibration  
IOL = 0 mA, VCOM = 1.5 V, VDUTx = 3.0 V, after two-point gain/  
offset calibration; measured over IOH range of 0 mA to 12 mA  
IOH = IOL =12 mA, VCOM = 2.0 V, measure IOH reference at  
VDUTx = 5.0 V, measure IOH current at VDUTx = 2.25 V, ensure >  
90% of reference current  
INL  
−80  
20  
+80  
0.25  
90% Commutation Voltage  
P
Output Current Tempco  
1.5  
ꢀA/°C CT  
Measured at calibration points  
Rev. 0 | Page 11 of 56  
 
ADATE305  
Test  
Parameter  
Min  
Typ  
Max  
Unit  
Level Conditions/Comments  
AC SPECIFICATIONS  
Dynamic Performance  
Load active on, unless otherwise noted  
Propagation Delay, Load Active  
On to Load Active Off;  
50%, 90%  
7.3  
ns  
CB  
CB  
Toggle RCV, DUTx terminated 50 Ω to GND, IOH = IOL = 12 mA,  
VH = VL = 0 V, VCOM = +1.25 V for IOL and VCOM = −1.25 V for  
IOH; measured from 50% point of RCVxP − RCVxN to 90% point  
of final output, repeat for drive low and high  
Toggle RCV, DUTx terminated 50 Ω to GND, IOH = IOL = 12 mA,  
VH = VL = 0 V, VCOM = +1.25 V for IOL and VCOM = −1.25 V for  
IOH; measured from 50% point of RCVxP − RCVxN to 90% point  
of final output, repeat for drive low and high  
Propagation Delay, Load Active  
Off to Load Active On;  
50%, 90%  
10.3  
ns  
Propagation Delay Matching  
Load Spike  
3.0  
190  
1.9  
ns  
CB  
CB  
CB  
Toggle RCV, DUTx terminated 50 Ω to GND, IOH = IOL = 12 mA,  
VH = VL = 0 V, VCOM = +1.25 V for IOL and VCOM = −1.25 V for  
IOH; active on vs. active off, repeat for drive low and high  
Toggle RCV, DUTx terminated 50 Ω to GND, IOH = IOL = 0 mA,  
VH = VL = 0 V, VCOM = +1.25 V for IOL and VCOM = −1.25 V for  
IOH; repeat for drive low and high  
Toggle RCV, DUTx terminated 50 Ω to GND, IOH = IOL = 12 mA,  
VH = VL = 0 V, VCOM = +1.25 V for IOL and VCOM = −1.25 V for  
IOH; measured at 90% of final value  
mV  
ns  
Settling Time to 90%  
PMU  
FV = force voltage, MV = measure voltage, FI = force current, MI = measure current, FN = force nothing.  
Table 7.  
Test  
Parameter  
Min  
Typ  
Max  
Unit  
Level Conditions/Comments  
FORCE VOL TAGE (FV)  
Current Range A  
Current Range B  
Current Range C  
Current Range D  
Current Range E  
32  
2
200  
20  
2
−1.5  
mA  
mA  
ꢀA  
ꢀA  
ꢀA  
V
D
D
D
D
D
D
Force Input Voltage Range at  
Output for All Ranges  
+6.0  
Force Voltage Uncalibrated  
Accuracy for Range C  
Force Voltage Uncalibrated  
Accuracy for All Ranges  
Force Voltage Offset Tempco  
for All Ranges  
Force Voltage Gain Tempco  
for All Ranges  
−100  
25  
25  
25  
10  
2
+100 mV  
mV  
P
PMU enabled, FV, Range C, PE disabled, error measured at  
calibration points of 0.0 V and 5.0 V  
PMU enabled, FV, PE disabled, error measured at calibration  
points of 0.0 V and 5.0 V; repeat for each PMU current range  
Measured at calibration points for each PMU current range  
CT  
CT  
ꢀV/°C  
ppm/°C CT  
Measured at calibration points for each PMU current range  
Forced Voltage INL  
−7  
+7  
mV  
P
PMU enabled, FV, Range C, PE disabled, after two-point gain/offset  
calibration; measured over output range of −1.5 V to +6.0 V  
Force Voltage Compliance vs.  
Current Load  
PMU enabled, FV, PE disabled, force −1.5 V, measure voltage  
while PMU sinking zero and full-scale current; measure ∆V;  
force 6.0 V, measure voltage while PMU sourcing zero and full-  
scale current; measure ∆V; repeat for each PMU current range  
Range A  
Range B to Range E  
4
1
mV  
mV  
CT  
CT  
Rev. 0 | Page 12 of 56  
 
ADATE305  
Test  
Parameter  
Min  
Typ  
Max  
Unit  
Level Conditions/Comments  
Current Limit, Source, and Sink  
Range A  
108  
140  
180  
%FS  
P
P
PMU enabled, FV, PE disabled; sink: force 2.5 V, short DUTx  
to 6.0 V; source: force 2.5 V, short DUTx to −1.0 V; Range A FS =  
32 mA, 108% FS = 35 mA, 180% FS = 58 mA  
PMU enabled, FV, PE disabled; sink: force 2.5 V, short DUTx to  
6.0 V; source: force 2.5 V, short DUTx to −1.0 V; repeat for each  
PMU current range; example: Range B FS = 2 mA, 120 % FS =  
2.4 mA, 180% FS = 3.6 mA  
Over 0.1 V range; measured at end points of FV functional  
range  
Range B to Range E  
120  
−7  
145  
1
180  
+7  
%FS  
mV  
DUTGND Voltage Accuracy  
MEASURE CURRENT (MI)  
P
VDUTx externally forced to 0.0V, unless otherwise specified, ideal  
MEASOUT transfer functions: VMEASOUT01 [V] = (IMEASOUT01 × 5/FSR) +  
2.5 + VDUTGND I(VMEASOUT01) [A] = (VMEASOUT01 − VDUTGND − 2.5) × FSR/5  
Measure Current, Pin DUTx  
Voltage Range for All Ranges  
−1.5  
+6.0  
V
D
Measure Current Uncalibrated  
Accuracy  
Range A  
Range B  
Range C  
Range D  
Range E  
500  
ꢀA  
CT  
P
PMU enabled, FIMI, Range A, PE disabled, error at calibration  
points −25 mA and +25 mA, error = (I(VMEASOUT01) − IDUTx  
PMU enabled, FIMI, Range B, PE disabled, error at calibration  
points −1.6 mA and +1.6 mA, error = (I(VMEASOUT01) − IDUTx  
PMU enabled, FIMI, PE disabled, error at calibration points of  
80% FS, error = (I(VMEASOUT01)1 − IDUTx  
PMU enabled, FIMI, PE disabled, error at calibration points of  
80% FS, error = (I(VMEASOUT01) − IDUTx  
PMU enabled, FIMI, PE disabled, error at calibration points of  
)
−400  
3.0  
+400 ꢀA  
)
2.00  
0.30  
0.08  
ꢀA  
ꢀA  
ꢀA  
CT  
CT  
CT  
)
)
80% FS, error = (I(VMEASOUT01) − IDUTx  
)
Measure Current Offset Tempco  
Range A  
Range B  
Range C  
Range D and Range E  
2
25  
5
ꢀA/°C  
CT  
CT  
CT  
CT  
Measured at calibration points  
Measured at calibration points  
Measured at calibration points  
Measured at calibration points  
nA/°C  
nA/°C  
nA/°C  
1
Measure Current Gain Error,  
Nominal Gain = 1  
Range A  
2.5  
2
%
%
%
CT  
P
PMU enabled, FIMI, PE disabled, gain error from calibration  
points 80% FS  
PMU enabled, FIMI, Range B, PE disabled, gain error from  
calibration points 1.6 mA  
PMU enabled, FIMI, PE disabled, gain error from calibration  
points 80% FS  
Range B  
−20  
+20  
Range C to Range E  
4
CT  
Measure Current Gain Tempco  
Range A  
Range B to Range E  
Measure Current INL  
Range A  
Measured at calibration points  
300  
50  
ppm/°C CT  
ppm/°C CT  
0.05  
%FSR  
CT  
PMU enabled, FIMI, Range A, PE disabled, after two-point  
gain/offset calibration, measured over FSR output of −32 mA  
to +32 mA  
Range B  
−0.02  
−0.01  
+0.02 %FSR  
%FSR  
P
PMU enabled, FIM,I Range B, PE disabled, after two-point gain/  
offset calibration measured over FSR output of −2 mA to +2 mA  
PMU enabled, FIMI, PE disabled, after two-point gain/offset  
calibration; measured over FSR output  
PMU enabled, FVMI, Range B, PE disabled, force −1 V and +5 V  
into load of 1 mA; measure ∆I reported at MEASOUT01  
Over 0.1 V range; measured at end points of MI functional range  
Range B to Range E  
0.01  
2.5  
CT  
P
FVMI DUT Pin Voltage Rejection  
DUTGND Voltage Accuracy  
+0.01 %FSR/V  
mV  
CT  
Rev. 0 | Page 13 of 56  
ADATE305  
Test  
Parameter  
Min  
Typ  
Max  
Unit  
Level Conditions/Comments  
FORCE CURRENT (FI)  
VDUTx externally forced to 0.0V, unless otherwise specified, ideal  
force current transfer function: IFORCE = (PMUDAC − 2.5) × (FSR/5)  
Force Current, DUTx Pin Voltage −1.5  
Range for All Ranges  
+6.0  
V
D
Force Current Uncalibrated  
Accuracy  
Range A  
Range B  
Range C  
Range D  
Range E  
−5.0  
−400  
−40  
−4  
0.5  
40  
4
+5.0  
mA  
P
P
P
P
P
PMU enabled, FIMI, Range A, PE disabled, error at calibration  
points of −25 mA and +25 mA  
PMU enabled, FIMI, Range B, PE disabled, error at calibration  
points of −1.6 mA and 1.6 mA  
PMU enabled, FIMI, Range C, PE disabled, error at calibration  
points of 80% FS  
PMU enabled, FIMI, Range D, PE disabled, error at calibration  
points of 80% FS  
+400 ꢀA  
+40  
+4  
ꢀA  
ꢀA  
0.4  
75  
−400  
+400 nA  
PMU enabled, FIMI, Range E, PE disabled, error at calibration  
points of 80% FS  
Force Current Offset Tempco  
Range A  
Range B  
Range C to Range E  
Forced Current Gain Error,  
Nominal Gain = 1  
1
80  
4
ꢀA/°C  
CT  
CT  
CT  
P
Measured at calibration points  
Measured at calibration points  
Measured at calibration points  
PMU enabled, FIMI, PE disabled, gain error from calibration  
points of 80% FS  
nA/°C  
nA/°C  
%
−20  
4
+20  
Forced Current Gain Tempco  
Range A  
Range B to Range E  
Force Current INL  
Range A  
Measured at calibration points  
−500  
75  
ppm/°C CT  
ppm/°C CT  
−0.3  
−0.2  
0.05  
+0.3  
%FSR  
%FSR  
P
P
PMU enabled, FIMI, Range A, PE disabled, after two-point  
gain/offset calibration; measured over FSR output of −32 mA  
to +32 mA  
PMU enabled, FIMI, PE disabled, after two-point gain/offset  
calibration; measured over FSR output  
Range B to Range E  
0.015 +0.2  
Force Current Compliance vs.  
Voltage Load  
PMU enabled, FIMV, PE disabled; force positive full-scale  
current driving −1.5 V and +6.0 V, measure ∆I @ DUTx pin;  
force negative full-scale current driving −1.5 V and +6.0 V,  
measure ∆I @ DUTx pin  
Range A to Range D  
Range E  
−0.6  
−1.0  
0.06  
0.1  
+0.6  
+1.0  
%FSR  
%FSR  
P
P
MEASURE VOLTAGE  
Measure Voltage Range  
Measure Voltage Uncalibrated  
Accuracy  
−1.5  
−25  
+6.0  
+25  
V
mV  
D
P
2.0  
PMU enabled, FVMV, Range B, PE disabled, error at calibration  
points 0 V and 5 V, error = (VMEASOUT01 − VDUTx  
)
Measure Voltage Offset Tempco  
Measure Voltage Gain Error  
10  
0.01  
ꢀV/°C  
%
CT  
P
Measured at calibration points  
PMU enabled, FVMV, Range B, PE disabled, gain error from  
calibration points 0 V and 5 V  
−2  
+2  
Measure Voltage Gain Tempco  
Measure Voltage INL  
25  
1
ppm/°C CT  
Measured at calibration points  
−7  
+7  
mV  
P
PMU enabled, FVMV, Range B, PE disabled, after two-point  
gain/offset calibration; measured over output range of −1.5 V  
to +6.0 V  
Rejection of Measure V vs. IDUTx  
−1.5  
0.1  
+1.5  
mV  
P
PMU enabled, FVMV, Range D, PE disabled, force 0 V into load  
of −10 ꢀA and +10 ꢀA; measure ∆V reported at MEASOUT01  
MEASOUT01 DC CHARACTERISTICS  
MEASOUT01 Voltage Range  
DC Output Current  
MEASOUT01 Pin Output  
Impedance  
−1.5  
+6.0  
4
200  
V
mA  
Ω
D
D
P
25  
PMU enabled, FVMV, PE disabled; source resistance: PMU force  
6.0 V and load with 0 mA and 4 mA; sink resistance: PMU force  
−1.5 V and load with 0 mA and −4 mA; resistance = ∆V/∆I at  
MEASOUT01 pin  
Output Leakage Current when  
Tristated  
−1  
+1  
ꢀA  
P
Tested at −1.5 V and +6.0 V  
Rev. 0 | Page 14 of 56  
ADATE305  
Test  
Parameter  
Min  
Typ  
Max  
Unit  
Level Conditions/Comments  
Output Short-Circuit Current  
−25  
+25  
mA  
P
PMU enabled, FVMV, PE disabled; source: PMU force +6.0 V,  
short MEASOUT01 to −1.5 V; sink: PMU force −1.5 V, short  
MEASOUT01 to +6.0 V  
VOLTAGE CLAMPS  
Low Clamp Range (VCL)  
High Clamp Range (VCH)  
Positive Clamp Voltage Droop  
−1.5  
0.0  
−300 +10  
+4.0  
6.0  
V
V
D
D
P
+300 mV  
+300 mV  
+250 mV  
PMU enabled, FIMI, Range A, PE disabled, PMU clamps  
enabled, VCH = 5 V,VCL = −1 V, PMU force 2 mA and 32 mA  
into open; ∆V seen at DUTx pin  
PMU enabled, FIMI, Range A, PE disabled, PMU clamps  
enabled, VCH = 5 V,VCL = −1 V, PMU force −2 mA and −32 mA  
into open; ∆V seen at DUTx pin  
PMU enabled, FIMI, Range B, PE disabled, PMU clamps enabled,  
PMU force 1 mA into open; VCH errors at calibration points 0 V  
and 5 V; VCL errors at the calibration points 0 V and 4 V  
PMU enabled, FIMI, Range B, PE disabled, PMU clamps enabled,  
PMU force 1 mA into open; after two-point gain/offset  
calibration; measured over PMU clamp range  
Negative Clamp Voltage Droop  
Uncalibrated Accuracy  
INL  
−300 −10  
P
−250  
−70  
100  
P
5
1
+70  
mV  
mV  
P
DUTGND Voltage Accuracy  
SETTLING/SWITCHING TIMES  
CT  
Over 0.1 V range; measured at end points of PMU clamp  
functional range  
SCAP = 330 pF, FFCAP = 220 pF  
Voltage Force Settling Time to  
0.1% of Final Value:  
PMU enabled, FV, PE disabled, program PMUDAC steps of  
500 mV and 5.0 V; simulation of worst case, 2000 pF load,  
PMUDAC step of 5.0 V  
Range A, 200 pF and  
2000 pF Load  
Range B, 200 pF and  
2000 pF Load  
Range C, 200 pF and  
2000 pF Load  
Range D, 200 pF and  
2000 pF Load  
15  
ꢀs  
ꢀs  
ꢀs  
ꢀs  
ꢀs  
S
S
S
S
S
20  
124  
1015  
3455  
Range E, 200 pF and  
2000 pF Load  
Voltage Force Settling Time to  
1.0% of Final Value:  
PMU enabled, FV, PE disabled, start with PMUDAC  
programmed to 0.0 V, program PMUDAC to 500 mV  
Range A, 200 pF and  
2000 pF Load  
Range B, 200 pF and  
2000 pF Load  
Range C, 200 pF and  
2000 pF Load  
14  
14  
14  
ꢀs  
ꢀs  
ꢀs  
CB  
CB  
CB  
Range D, 200 pF Load  
Range D, 2000 pF Load  
Range E, 200 pF Load  
Range E, 2000 pF Load  
45  
45  
45  
225  
ꢀs  
ꢀs  
ꢀs  
ꢀs  
CB  
CB  
CB  
CB  
Voltage Force Settling Time to  
1.0% of Final Value:  
PMU enabled, FV, PE disabled, start with PMUDAC  
programmed to 0.0 V, program PMUDAC to 5.0 V  
Range A, 200 pF and  
2000 pF Load  
4.0  
ꢀs  
CB  
Range B, 200 pF Load  
Range B, 2000 pF Load  
Range C, 200 pF Load  
Range C, 2000 pF Load  
Range D, 200 pF Load  
Range D, 2000 pF Load  
Range E, 200 pF Load  
Range E, 2000 pF Load  
4.2  
4.2  
5.8  
19  
ꢀs  
ꢀs  
ꢀs  
ꢀs  
ꢀs  
ꢀs  
ꢀs  
ꢀs  
CB  
CB  
CB  
CB  
CB  
CB  
CB  
CB  
50  
210  
360  
610  
Rev. 0 | Page 15 of 56  
ADATE305  
Test  
Parameter  
Min  
Typ  
Max  
Unit  
Level Conditions/Comments  
Current Force Settling Time to  
0.1% of Final Value  
PMU enabled, FI, PE disabled, start with PMUDAC  
programmed to 0 current, program PMUDAC to FS current  
Range A, 200 pF in Parallel  
with 120 Ω  
Range B, 200 pF in Parallel  
with 1.5 kΩ  
Range C, 200 pF in Parallel  
with 15.0 kΩ  
Range D, 200 pF in Parallel  
with 150 kΩ  
8.2  
ꢀs  
ꢀs  
ꢀs  
ꢀs  
ꢀs  
S
S
S
S
S
9.4  
30  
281  
2668  
Range E, 200 pF in Parallel  
with 1.5 MΩ  
Current Force Settling Time to  
1.0% of Final Value:  
PMU enabled, FI, PE disabled, start with PMUDAC  
programmed to 0 current, program PMUDAC to FS current  
Range A, 200 pF in Parallel  
with 120 Ω  
Range B, 200 pF in Parallel  
with 1.5 kΩ  
Range C, 200 pF in Parallel  
with 15.0 kΩ  
Range D, 200 pF in Parallel  
with 150 kΩ  
4.2  
4.3  
8.1  
205  
505  
ꢀs  
ꢀs  
ꢀs  
ꢀs  
ꢀs  
CB  
CB  
CB  
CB  
CB  
Range E, 200 pF in Parallel  
with 1.5 MΩ  
INTERACTION AND CROSSTALK  
Measure Voltage Channel-to-  
Channel Crosstalk  
0.125  
%FSR  
%FSR  
CT  
CT  
PMU enabled, FIMV, PE disabled, Range B, forcing 0 mA into  
0 V load; other channel: Range A, forcing a step of 0 mA to 25 mA  
into 0 V load; report ∆V of MEASOUT01 pin under test;  
0.125% × 8.0 V = 10 mV  
PMU enabled, FVMI, PE disabled, Range E, forcing 0 V into  
0 mA current load; other channel: Range E, forcing a step of 0 V  
to 5 V into 0 mA current load; report ∆V of MEASOUT01 pin  
under test; 0.01% × 5.0 V = 0.5 mV  
Measure Current Channel-to-  
Channel Crosstalk  
0.01  
EXTERNAL SENSE (PMUS_CHX)  
Table 8.  
Test  
Parameter  
Min  
Typ  
Max  
Unit  
Level Conditions/Comments  
EXTERNAL SENSE (PMUS_CHX)  
Voltage Range  
Input Leakage Current  
−1.5  
−20  
+6.0  
+20  
V
nA  
D
P
Tested at −1.5 V and +6.0 V  
DUTGND INPUT  
Table 9.  
Test  
Parameter  
Min  
Typ  
Max  
Unit  
Level Conditions/Comments  
DUTGND INPUT  
Input Voltage Range, Referenced to GND  
Input Bias Current  
−0.1  
+0.1  
100  
V
μA  
D
P
1
Tested at −100 mV and +100 mV  
Rev. 0 | Page 16 of 56  
 
ADATE305  
SERIAL PERIPHERAL INTERFACE  
Table 10.  
Test  
Parameter  
Min  
Typ Max  
Unit  
Level Conditions/Comments  
SERIAL PERIPHERAL INTERFACE  
Serial Input Logic High  
Serial Input Logic Low  
Input Bias Current  
SCLK Clock Rate  
SCLK Pulse Width  
1.8  
0
−10  
VCC  
0.7  
+10  
V
V
PF  
PF  
P
PF  
CT  
CB  
PF  
1
50  
9
μA  
MHz  
ns  
mV  
V
Tested at 0.0 V and 3.3 V  
SCLK Crosstalk on DUTx Pin  
Serial Output Logic High  
8
PE disabled, PMU FV enabled and forcing 0 V  
Sourcing 2 mA  
VCC − 0.4  
0
VCC  
0.8  
Serial Output Logic Low  
Update Time  
V
μs  
PF  
D
Sinking 2 mA  
10  
Maximum delay time required for the part to enter a stable state after  
a serial bus command is loaded  
HVOUT DRIVER  
Table 11.  
Test  
Level  
Parameter  
Min  
Typ  
Max  
Unit  
Conditions/Comments  
VHH BUFFER  
Voltage Range  
VHH = (VT + 1 V) × 2 + DUTGND  
VPLUS = 16.75 V nominal; in this condition, VHVOUT max = 13.5  
V
VHH mode enabled, RCV active, VHH level = full scale,  
sourcing 15 mA  
VHH mode enabled, RCV active, VHH level = zero scale,  
sinking 15 mA  
VHH mode enabled, RCV active, VHVOUT error measured at  
the calibration points of 7 V and 12 V  
Measured at calibration points  
VHH mode enabled, RCV active, after two-point gain/offset  
calibration; range/number of DAC bits as measured at the  
calibration points of 7 V and 12 V  
VHH mode enabled, RCV active, after two-point gain/offset  
calibration; measured over VHH range of 5.9 V to 13.5 V  
5.9  
VPLUS − 3.25  
V
D
P
P
P
Output High  
13.5  
V
Output Low  
5.9  
V
Accuracy Uncalibrated  
−500  
−30  
100  
+500  
mV  
Offset Tempco  
Resolution  
1
mV/°C  
mV  
CT  
PF  
1.21  
1.5  
INL  
15  
1
+30  
mV  
mV  
P
DUTGND Voltage Accuracy  
Output Resistance  
CT  
P
Over 0.1 V range; measured at end points of VHH  
functional range  
VHH mode enabled, RCV active, source: VHH = 10.0 V,  
IHVOUT= 0 mA and 15 mA; sink: VHH = 6.5 V, IHVOUT = 0 mA and  
−15 mA; ∆V/∆I  
1
10  
DC Output Current Limit  
Source  
DC Output Current Limit Sink  
60  
100  
−60  
mA  
mA  
ns  
P
VHH mode enabled, RCV active, VHH = 10.0 V, short HVOUT  
pin to 5.9 V, measure current  
VHH mode enabled, RCV active, VHH = 6.5 V, short HVOUT  
pin to 14.1 V, measure current  
VHH mode enabled, toggle RCV, VHH = 13.5 V, VL = VH =  
3.0 V; 20% to 80%, for DATA = high and DATA = low  
VHH mode enabled, toggle RCV, VHH = 13.5 V, VL = VH =  
3.0 V; 20% to 80%, for DATA = high and DATA = low  
−100  
P
Rise Time (From VL or VH to  
VHH)  
Fall Time (From VHH to VL or  
VH)  
Preshoot, Overshoot, and  
Undershoot  
200  
26  
CB  
CB  
CB  
ns  
125  
mV  
VHH mode enabled, toggle RCV, VHH = 13.5 V, VL = VH =  
3.0 V; for DATA = high and DATA = low  
Rev. 0 | Page 17 of 56  
 
ADATE305  
Test  
Level  
Parameter  
Min  
Typ  
Max  
Unit  
Conditions/Comments  
VL/VH BUFFER  
Voltage Range  
Accuracy Uncalibrated  
−0.1  
−500  
+6.0  
+500  
V
mV  
D
P
100  
VHH mode enabled, RCV inactive, error measured at the  
calibration points 0 V and 5 V  
Offset Tempco  
Resolution  
1
0.61  
mV/°C  
mV  
CT  
PF  
Measured at calibration points  
0.75  
+20  
VHH mode enabled, RCV inactive, after two-point  
gain/offset calibration; range/number of DAC bits as  
measured at the calibration points 0 V and 5 V  
VHH mode enabled, RCV inactive, after two-point  
gain/offset calibration; measured over range of −0.1 V to  
+6.0 V  
Over 0.1 V range; measured at end points of VH and VL,  
functional range  
VHH mode enabled, RCV inactive, source: VH = 3.0 V, IHVOUT  
= 1 mA and 50 mA; sink: VL = 2.0 V, IHVOUT = −1 mA and −50  
mA; ∆V/∆I  
INL  
−20  
46  
4
mV  
P
DUTGND Voltage Accuracy  
Output Resistance  
2
mV  
Ω
CT  
P
48  
50  
DC Output Current Limit  
Source  
DC Output Current Limit Sink  
60  
100  
−60  
mA  
mA  
ns  
P
VHH mode enabled, RCV inactive, VH = 6.0 V, short HVOUT  
pin to −0.1 V, DATA high, measure current  
VHH mode enabled, RCV inactive, VL = −0.1 V, short HVOUT  
pin to 6.0 V, DATA low, measure current  
VHH mode enabled, RCV inactive, VL = 0.0 V, VH = 3.0 V,  
toggle DATA; 20% to 80%  
VHH mode enabled, RCV inactive, VL = 0.0 V, VH = 3.0 V,  
toggle DATA; 20% to 80%  
−100  
P
Rise Time (VL to VH)  
10.0  
11.3  
54  
CB  
CB  
CB  
Fall Time (VH to VL)  
ns  
Preshoot, Overshoot, and  
Undershoot  
mV  
VHH mode enabled, RCV inactive, VL = 0.0 V, VH = 3.0 V,  
toggle DATA  
OVERVOLTAGE DETECTOR (OVD)  
Table 12.  
Test  
Level  
Parameter  
Min  
Typ  
Max  
Unit  
Conditions/Comments  
DC CHARACTERISTICS  
Programmable Voltage Range  
Accuracy Uncalibrated  
−3.0  
−200  
+7.0  
+200  
V
mV  
D
P
OVD offset errors measured at programmed levels of +7.0 V  
and −3.0 V  
Hysteresis  
112  
mV  
CB  
LOGIC OUTPUT CHARACTERISTICS  
Off State Leakage  
10  
1000  
0.7  
nA  
V
P
Disable OVD alarm, apply 3.3 V to OVD pin, measure  
leakage current  
Activate alarm, force 100 μA into OVD pin, measure active  
alarm voltage  
For OVD high: DUTx = 0 V to 6 V swing, OVD high = 3.0 V,  
OVD low = −3.0 V; for OVD low: DUTx = 0 V to 6 V swing,  
OVD high = 7.0 V, OVD low = 3.0 V  
Max On Voltage @ 100 μA  
Propagation Delay  
0.2  
1.6  
P
μs  
CB  
16-BIT DAC MONITOR MUX  
Table 13.  
Test  
Level  
Parameter  
Min  
Typ  
Max  
Unit  
Conditions/Comments  
DC CHARACTERISTICS  
Programmable Voltage Range  
Output Resistance  
−2.5  
+7.5  
V
kΩ  
D
CT  
16  
PMUDAC = 0.0 V, FV, I = 0, 200 μA; ∆V/∆I  
Rev. 0 | Page 18 of 56  
 
ADATE305  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Table 14.  
For liquid cooled applications, θJC = 1.1°C/W.  
Parameter  
Rating  
Supply Voltages  
Table 15. Thermal Resistance  
Airflow  
Positive Supply Voltage (VDD to GND)  
Positive VCC Supply Voltage (VCC to GND)  
Negative Supply Voltage (VSS to GND)  
Supply Voltage Difference (VDD to VSS)  
Reference Ground (DUTGND to GND)  
AGND to DGND  
VPLUS Supply Voltage (VPLUS to GND)  
Input Voltages  
Input Common-Mode Voltage  
Short-Circuit Voltage1  
−0.5 V to +11.0 V  
−0.5 V to +4.0 V  
−6.25 V to +0.5 V  
−1.0 V to +16.5 V  
−0.5 V to +0.5 V  
−0.5 V to +0.5 V  
−0.5 V to +17.5 V  
θJA  
33  
30  
Unit  
°C/W  
°C/W  
°C/W  
Natural Convection  
1 meter per second  
2 meters per second  
28.5  
EXPLANATION OF TEST LEVELS  
D
Definition  
VSS to VDD  
−3.0 V to +8.0 V  
0.0 V to VCC  
0.0 V to VCC  
−0.5 V to +5.5 V  
S
Design verification simulation  
100% production tested  
High Speed Input Voltage2  
High Speed Differential Input Voltage3  
VREF  
P
PF  
Functionally checked during production test  
DUTx I/O Pin Current  
CT Characterized on tester  
CB Characterized on bench  
DCL Maximum Short-Circuit Current4  
140 mA  
Temperature  
Operating Temperature, Junction  
Storage Temperature Range  
125°C  
−65°C to +150°C  
ESD CAUTION  
1 RL = 0 Ω, VDUT continuous short-circuit condition, (VH, VL, VT, high-Z, VCOM,  
clamp modes).  
2 DATAxP, DATAxN, RCVxP, RCVxN, under source R = 0 Ω.  
3 DATAxP to DATAxN, RCVxP, RCVxN.  
4 RL = 0 Ω, VDUTx = –3 V to +8 V; DCL current limit. Continuous short-circuit  
condition. ADATE305 must current limit and survive continuous short circuit.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. 0 | Page 19 of 56  
 
 
 
 
 
ADATE305  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76  
75  
74  
NC  
NC  
1
NC  
NC  
PIN 1  
2
73 HVOUT  
TEMPSENSE  
VDD/VDD_TMPSNS  
SCAP1  
3
72  
VPLUS  
4
71  
SCAP0  
5
70  
FFCAP_0B  
6
FFCAP_1B  
VDD  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
VDD  
7
OVD_CH0  
DATA0N  
8
OVD_CH1  
DATA1N  
9
DATA0P  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
DATA1P  
FFCAP_1A  
VSS  
FFCAP_0A  
VSS  
ADATE305  
TOP VIEW  
(Not to Scale)  
RCV0N  
RCV1N  
RCV0P  
RCV1P  
AGND  
AGND  
COMP_QL0P  
COMP_QL0N  
COMP_VTT0  
COMP_QH0P  
COMP_QH0N  
COMP_QL1P  
COMP_QL1N  
COMP_VTT1  
COMP_QH1P  
COMP_QH1N  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
NC  
NC  
NC  
NC  
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50  
NOTES  
1. NC = NO CONNECT.  
2. EXPOSED PAD IS CONNEC TED TO V  
.
SS  
Figure 2. Pin Configuration  
Table 16. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
2
3
4
5
6
7
NC  
NC  
No Connect. No physical connection to die.  
No Connect. No physical connection to die.  
Temperature Sense Output.  
TEMPSENSE  
VDD/VDD_TMPSNS  
SCAP1  
FFCAP_1B  
VDD  
Temperature Sense Supply +10.0 V.  
PMU Stability Capacitor Connection Channel 1 (330 pF).  
PMU Feed Forward Capacitor Connection B Channel 1 (220 pF).  
Supply +10.0 V.  
8
9
10  
11  
12  
OVD_CH1  
DATA1N  
DATA1P  
FFCAP_1A  
VSS  
Overvoltage Detection Flag Output Channel 1.  
Driver Data Input (Negative) Channel 1.  
Driver Data Input (Positive) Channel 1.  
PMU Feedforward Capacitor Connection A Channel 1 (220 pF).  
Supply −5.75 V.  
Rev. 0 | Page 20 of 56  
 
ADATE305  
Pin No.  
13  
14  
Mnemonic  
RCV1N  
RCV1P  
Description  
Receive Data Input (Negative) Channel 1.  
Receive Data Input (Positive) Channel 1.  
Analog Ground.  
15  
AGND  
16  
17  
18  
19  
20  
21  
COMP_QL1P  
COMP_QL1N  
COMP_VTT1  
COMP_QH1P  
COMP_QH1N  
AGND  
Low-Side Comparator Output (Positive) Channel 1.  
Low-Side Comparator Output (Negative) Channel 1.  
Comparator Supply Channel 1.  
High-Side Comparator Output (Positive) Channel 1.  
High-Side Comparator Output (Negative) Channel 1.  
Analog Ground.  
22  
AGND  
Analog Ground.  
23  
AGND  
Analog Ground.  
24  
25  
26  
27  
NC  
NC  
NC  
NC  
No Connect. No physical connection to die.  
No Connect. No physical connection to die.  
No Connect. No physical connection to die.  
No Connect. No physical connection to die.  
28  
MEASOUT01/TEMP SENSE  
Shared Muxed Output. Muxed output shared by PMU MEASOUT Channel 0, PMU  
MEASOUT Channel 1, and the temperature sense and temperature sense GND  
reference.  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
DUTGND  
AGND  
AGND  
CS  
Device Under Test Ground Reference.  
Analog Ground.  
Analog Ground.  
Serial Peripheral Interface (SPI®) Chip Select.  
16-Bit DAC Monitor Mux Output.  
Supply 5.75 V.  
Supply +10.0 V.  
Digital Ground.  
Serial Programmable Interface (SPI) Data Output.  
Serial Programmable Interface (SPI) Clock.  
Serial Programmable Interface (SPI) Data Input.  
Supply +10.0 V.  
Supply +3.3 V.  
Supply 5.75 V.  
Serial Peripheral Interface (SPI) Reset.  
Analog Ground.  
Analog Ground.  
Analog Ground.  
+5 V DAC Reference Voltage.  
DAC Ground Reference.  
No Connect. No physical connection to die.  
No Connect. No physical connection to die.  
No Connect. No physical connection to die.  
No Connect. No physical connection to die.  
Analog Ground.  
DAC16_MON  
VSS  
VDD  
DGND  
SDOUT  
SCLK  
SDIN  
VDD  
VCC  
VSS  
RST  
AGND  
AGND  
AGND  
VREF  
VREF_GND  
NC  
NC  
NC  
NC  
AGND  
AGND  
AGND  
Comp_QH0N  
Comp_QH0P  
Comp_VTT0  
Comp_QL0N  
Comp_QL0P  
AGND  
RCV0P  
Analog Ground.  
Analog Ground.  
High-Side Comparator Output (Negative) Channel 0.  
High-Side Comparator Output (Positive) Channel 0.  
Comparator Supply Channel 0.  
Low-Side Comparator Output (Negative) Channel 0.  
Low-Side Comparator Output (Positive) Channel 0.  
Analog Ground.  
Receive Data Input (Positive) Channel 0.  
Rev. 0 | Page 21 of 56  
ADATE305  
Pin No.  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
EP  
Mnemonic  
RCV0N  
VSS  
FFCAP_0A  
DATA0P  
DATA0N  
OVD_CH0  
VDD  
FFCAP_0B  
SCAP0  
VPLUS  
HVOUT  
NC  
NC  
NC  
NC  
PMUS_CH0  
VSS  
VDD  
VSSO_0 (DRIVE)  
DUT0  
VDDO_0 (DRIVE)  
AGND  
AGND  
VSS  
VDD  
AGND  
VDD  
VSS  
AGND  
AGND  
VDDO_1 (DRIVE)  
DUT1  
VSSO_1 (DRIVE)  
VDD  
VSS  
PMUS_CH1  
NC  
NC  
Description  
Receive Data Input (Negative) Channel 0.  
Supply 5.75 V.  
PMU Feedforward Capacitor Connection A Channel 0 (220 pF).  
Driver Data Input (Positive) Channel 0.  
Driver Data Input (Negative) Channel 0.  
Overvoltage Detection Flag Output Channel 0.  
Supply +10.0 V.  
PMU Feedforward Capacitor Connection B Channel 0 (220 pF).  
PMU Stability Capacitor Connection Channel 0 (330 pF).  
Supply +16.75 V.  
High Voltage Driver Output.  
No Connect. No physical connection to die.  
No Connect. No physical connection to die.  
No Connect. No physical connection to die.  
No Connect. No physical connection to die.  
PMU External Sense Path Channel 0.  
Supply 5.75 V.  
Supply +10.0 V.  
Driver Output Supply 5.75 V Channel 0.  
Device Under Test Channel 0.  
Driver Output Supply +10.0 V Channel 0.  
Analog Ground.  
Analog Ground.  
Supply 5.75 V.  
Supply +10.0 V.  
Analog Ground.  
Supply +10.0 V.  
Supply 5.75 V.  
Analog Ground.  
Analog Ground.  
Driver Output Supply +10.0 V Channel 1.  
Device Under Test Channel 1.  
Driver Output Supply 5.75 V Channel 1.  
Supply +10.0 V.  
Supply 5.75 V.  
PMU External Sense Path Channel 1.  
No Connect. No physical connection to die.  
No Connect. No physical connection to die.  
Exposed Pad. The exposed pad is connected to VSS.  
Rev. 0 | Page 22 of 56  
ADATE305  
TYPICAL PERFORMANCE CHARACTERISTICS  
0.30  
1.6  
1.4  
1.2  
3V  
0.5V  
0.25  
0.20  
0.15  
1.0  
0.8  
0.6  
0.4  
0.2  
2V  
1V  
0.2V  
0.10  
0.05  
0
0
–0.2  
–0.05  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
0
2
4
6
8
10  
12  
14  
16  
18  
TIME (ns)  
TIME (ns)  
Figure 3. Driver Small Signal Response; VH = 0.2 V, 0.5 V;  
VL = 0.0 V; 50 Ω Termination  
Figure 6. 50 MHz Driver Response; VH = 1.0 V, 2.0 V, 3.0 V;  
VL = 0.0 V, 50 Ω Termination  
1.6  
1.8  
3V  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
3V  
2V  
1V  
2V  
1V  
–0.2  
–0.2  
0
2
4
6
8
10  
12  
14  
16  
18  
0
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19  
TIME (ns)  
TIME (ns)  
Figure 4. Driver Large Signal Response; VH = 1.0 V, 2.0 V, 3.0 V;  
VL = 0.0 V; 50 Ω Termination  
Figure 7. 100 MHz Driver Response; VH = 1.0 V, 2.0 V, 3.0 V;  
VL = 0.0 V; 50 Ω Termination  
1.6  
6
3V  
5V  
1.4  
1.2  
1.0  
0.8  
5
4
2V  
3V  
3
2
0.6  
0.4  
0.2  
0
1V  
1V  
1
0
–1  
0
1
2
3
4
5
6
7
8
9
10  
0
2
4
6
8
10  
12  
14  
16  
18  
TIME (ns)  
TIME (ns)  
Figure 5. Driver Large Signal Response; VH = 1.0 V, 3.0 V, 5.0 V;  
VL = 0 .0 V; 500 Ω Termination  
Figure 8. Response at 200 MH; VH = 1.0 V, 2.0 V, 3.0 V;  
VL = 0.0 V; 50 Ω Termination  
Rev. 0 | Page 23 of 56  
 
ADATE305  
0.6  
0.5  
1.6  
1.4  
1.2  
3V  
0.4  
0.3  
0.2  
0.1  
0
1.0  
0.8  
0.6  
0.4  
0.2  
0
2V  
1V  
0.5V  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5  
TIME (ns)  
TIME (ns)  
Figure 12. Driver Active (VH and VL) to and from VTERM Transition;  
VH = 1.0 V, VT = 0.5 V, VL = 0.0 V  
Figure 9. 300 MHz Driver Response; VH = 0.5 V, 1.0 V, 2.0 V, 3.0 V;  
VL = 0.0 V; 50 Ω Termination  
1.2  
0.9  
3V  
0.8  
1.0  
0.7  
2V  
0.8  
0.6  
0.4  
0.2  
0
0.6  
0.5  
1V  
0.4  
0.3  
0.5V  
0.2  
0.1  
0
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
TIME (ns)  
TIME (ns)  
Figure 10. 400 MHz Driver Response; VH = 0.5 V, 1.0 V, 2.0 V, 3.0 V;  
VL = 0.0 V; 50 Ω Termination  
Figure 13. Driver Active (VH and VL) to and from VTERM Transition;  
VH = 2.0 V, VT = 1.0 V, VL = 0.0 V  
1.2  
1.6  
1.4  
1.2  
1.0  
1.0  
0.8  
0.6  
0.8  
0.6  
0.4  
0.4  
0.2  
0
0.2  
0
–0.2  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
200  
250  
300  
350  
400  
450  
500  
550  
600  
FREQUENCY (MHz)  
TIME (ns)  
Figure 11. Driver Toggle Rate, VH = 2.0 V, VL = 0.0 V, 50 Ω Termination  
Figure 14. Driver Active (VH and VL) to and from VTERM Transition;  
VH = 3.0 V, VT = 1.5 V, VL = 0.0 V  
Rev. 0 | Page 24 of 56  
ADATE305  
20  
40  
20  
2V NEG  
0
0.2V NEG  
0.2V POS  
0
–20  
–20  
2V POS  
–40  
–60  
–40  
–60  
–80  
–80  
–100  
1
2
3
4
5
6
7
8 9 10  
1
2
3
4
5
6
7
8 9 10  
PULSEWIDTH (ns)  
PULSEWIDTH (ns)  
Figure 15. Driver Minimum Pulse Width; VH = 0.2 V, VL = 0.0 V  
Figure 18. Driver Minimum Pulse Width; VH = 2.0 V, VL = 0.0 V  
20  
40  
20  
3V POS  
3V NEG  
0
0.5V NEG  
0.5V POS  
0
–20  
–20  
–40  
–60  
–40  
–60  
–80  
–100  
1
2
3
4
5
6
7
8
9 10  
1
2
3
4
5
6
7
8 9 10  
PULSEWIDTH (ns)  
PULSE WIDTH (ns)  
Figure 19. Driver Minimum Pulse Width; VH = 3.0 V, VL = 0.0 V  
Figure 16. Driver Minimum Pulse Width; VH = 0.5 V, VL = 0.0 V  
1.5  
1.0  
10  
1V NEG  
0
0.5  
–10  
1V POS  
0
–20  
–0.5  
–1.0  
–1.5  
–2.0  
–30  
–40  
–50  
–60  
–2  
–1  
0
1
2
3
4
5
6
7
1
2
3
4
5
6
7
8 9 10  
DRIVER OUTPUT VOLTAGE (V)  
PULSEWIDTH (ns)  
Figure 20. Driver VH Linearity Error  
Figure 17. Driver Minimum Pulse Width; VH = 1.0 V, VL = 0.0 V  
Rev. 0 | Page 25 of 56  
ADATE305  
1.5  
1.0  
0.5  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
–0.5  
–1.0  
–1.5  
10  
0
–10  
–2  
–2  
–1  
0
1
2
3
4
5
6
–1  
0
1
2
3
4
5
6
DRIVER OUTPUT VOLTAGE (V)  
V
(V)  
DUTx  
Figure 21. Driver VL Linearity Error  
Figure 24. Driver Output Current Limit; Driver Programmed to −2.0 V;  
VDUTx Swept from −2.0 V to +6.0 V  
0
1.5  
–10  
1.0  
0.5  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
0
–0.5  
–1.0  
–1.5  
–2.0  
–90  
–100  
–2  
–1  
0
1
2
3
4
5
6
–2  
–1  
0
1
2
3
4
5
6
V
(V)  
DUTx  
DRIVER OUTPUT VOLTAGE (V)  
Figure 22. Driver VT Linearity Error  
Figure 25. Driver Output Current Limit; Driver Programmed to 6.0 V;  
VDUTx Swept from −2.0 V to +6.0 V  
48.5  
48.0  
47.5  
47.0  
46.5  
46.0  
–722  
–723  
–724  
–725  
–726  
–727  
–728  
–729  
–730  
–60  
–40  
–20  
0
20  
40  
60  
–1  
0
1
2
3
4
5
6
DRIVER OUTPUT CURRENT (mA)  
VL PROGRAMMED VOLTAGE (V)  
Figure 26. HVOUT VL Linearity Error  
Figure 23. Driver Output Resistance vs. Output Current  
Rev. 0 | Page 26 of 56  
ADATE305  
1.0  
0.8  
0.6  
6
4
RISE INPUT  
2
RISE SHMOO  
0
–2  
–4  
–6  
–8  
0.4  
0.2  
0
FALL SHMOO  
FALL INPUT  
–10  
–12  
0
0.6  
1.2  
1.8  
2.4  
3.0  
5
6
7
8
9
10  
11  
12  
13  
14  
TIME (ns)  
VL PROGRAMMED VOLTAGE (V)  
Figure 30. Comparator Shmoo, 1.0 V Input, 1.0 ns (10% to 90%) Input,  
50 Ω Terminated  
Figure 27. HVOUT VHH Linearity Error  
1.6  
80  
70  
60  
50  
40  
30  
20  
10  
0
RISE INPUT  
1.2  
RISE SHMOO  
0.8  
FALL SHMOO  
0.4  
FALL INPUT  
0
–10  
–1  
0
1
2
3
4
5
6
0
0.6  
1.2  
TIME (ns)  
1.8  
2.4  
3.0  
V
(V)  
HVOUT  
Figure 28. HVOUT VH Current Limit; VH = −0.1 V;  
VHVOUT Swept from −0.1 V to +6.0 V  
Figure 31. Comparator Shmoo, 1.5 V Input, 1.5 ns (10% to 90%) Input,  
50 Ω Terminated  
80  
1.6  
RISE INPUT  
60  
40  
20  
0
1.2  
RISE SHMOO  
0.8  
–20  
–40  
–60  
–80  
FALL SHMOO  
0.4  
0
FALL INPUT  
2.4  
5
6
7
8
9
10  
11  
(V)  
12  
13  
14  
15  
0
0.6  
1.2  
TIME (ns)  
1.8  
3.0  
V
HVOUT  
Figure 32. Comparator Shmoo, 1.5 V Input, 1.2 ns (10% to 90%) Input,  
50 Ω Terminated  
Figure 29. HVOUT VHH Current Limit; VHH = 10.0 V;  
VHVOUT Swept from −5.9 V to +14.1 V  
Rev. 0 | Page 27 of 56  
ADATE305  
100  
75  
1.6  
RISE INPUT  
TOTAL  
1.2  
0.8  
0.4  
50  
RISE SHMOO  
25  
0
RISING  
FALLING  
FALL SHMOO  
FALL INPUT  
2.4  
–25  
0
0
–50  
0.5  
0.6  
1.2  
TIME (ns)  
1.8  
3.0  
1.0  
1.5  
2.0  
2.5  
INPUT SLEW RATE (10%-90%) (ns)  
Figure 33. Comparator Shmoo, 1.5 V Input, 1.0 ns (10% to 90%) Input,  
50 Ω Terminated  
Figure 36. Comparator Slew Rate Dispersion, Input Swing = 1.5 V,  
Comparator Threshold = 0.75 V  
1.6  
1.6  
COMP_QH0P  
RISE INPUT  
1.4  
COMP_QH0N  
1.2  
1.0  
0.8  
0.6  
1.2  
RISE SHMOO  
0.8  
0.4  
0.4  
0.2  
FALL SHMOO  
FALL INPUT  
0
0
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
0
0.6  
1.2  
1.8  
2.4  
3.0  
TIME (ns)  
TIME (ns)  
Figure 34. Comparator Shmoo, 1.5 V Input, 0.625 ns (10% to 90%) Input,  
50 Ω Terminated  
Figure 37. Comparator Output Waveform, COMP_QH0P, COMP_QH0N  
10  
0.8  
0.6  
0.4  
0.2  
0
–10  
–20  
0
–0.2  
–0.4  
–30  
1V POS  
–40  
–0.6  
–0.8  
–50  
1V NEG  
–60  
–1.0  
–1.2  
–1.4  
–70  
–80  
1
2
3
4
5
6
7
8
9 10  
–2  
–1  
0
1
2
3
4
5
6
PULSEWIDTH (ns)  
PROGRAMMED THRESHOLD VOLTAGE (V)  
Figure 35. Comparator Minimum Pulse Width, 1.0 V  
Figure 38. Comparator Threshold Linearity  
Rev. 0 | Page 28 of 56  
ADATE305  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.8  
0.6  
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1  
–2  
–1  
0
1
2
3
4
5
6
–2  
–1  
0
1
2
3
4
5
VCOM VOLTAGE (V)  
INPUT COMMON-MODE VOLTAGE (V)  
Figure 39. Differential Comparator CMRR  
Figure 42. Active Load VCOM Linearity  
15  
10  
5
3.4  
3.2  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
0
–5  
–10  
–15  
–2  
–1  
0
1
2
3
4
5
6
–2  
–1  
0
1
2
3
4
5
6
V
(V)  
V
(V)  
DUTx  
DUTx  
Figure 40. Active Load Commutation Response; VCOM = 2.0 V;  
IOH = IOL = 12 mA  
Figure 43. DUTx Pin Leakage in Low Leakage Mode  
6
4
2
0
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
–2  
–4  
–6  
–8  
–0.5  
–2  
–1  
0
1
2
3
4
5
6
0
2
4
6
8
10  
12  
V
(V)  
ACTIVE LOAD CURRENT (mA)  
DUTx  
Figure 41. Active Load Current Linearity  
Figure 44. DUTx Pin Leakage in High-Z Mode  
Rev. 0 | Page 29 of 56  
ADATE305  
40  
0.008  
0.006  
0.004  
0.002  
0
20  
0
–20  
–40  
–60  
–80  
–0.002  
–0.004  
–0.006  
–100  
–120  
–140  
–0.020 –0.015 –0.010 –0.005  
0
0.005 0.010 0.015 0.020  
–40  
–30  
–20  
–10  
0
10  
20  
30  
40  
PMU OUTPUT CURRENT (mA)  
PMU OUTPUT CURRENT (mA)  
Figure 48. PMU Force Current Range D Linearity  
Figure 45. PMU Force Current Range A Linearity  
0.0005  
0.0004  
0.0003  
0.0002  
0.8  
0.6  
0.4  
0.2  
0
0.0001  
0
–0.0001  
–0.2  
–0.4  
–0.0002  
–0.0003  
–0.0004  
–0.0005  
–0.0006  
–0.6  
–0.8  
–0.0020 –0.0015 –0.0010 –0.0050  
0
0.0050 0.0010 0.0015 0.0020  
–2.0  
–1.5  
–1.0  
–0.5  
0
0.5  
1.0  
1.5  
2.0  
PMU OUTPUT CURRENT (mA)  
PMU OUTPUT CURRENT (mA)  
Figure 49. PMU Force Current Range E Linearity  
Figure 46. PMU Force Current Range B Linearity  
5
4
0.08  
0.06  
0.04  
0.02  
0
3
2
1
0
–1  
–0.02  
–0.04  
–0.06  
–2  
–3  
–4  
–40  
–30  
–20  
–10  
0
10  
20  
30  
40  
–0.20 –0.15 –0.10 –0.05  
0
0.05  
0.10  
0.15  
0.20  
I
(mA)  
PMU OUTPUT CURRENT (mA)  
DUTx  
Figure 47. PMU Force Current Range C Linearity  
Figure 50. PMU Force Voltage Range A Output Voltage Error at 6.0 V vs.  
Output Current  
Rev. 0 | Page 30 of 56  
ADATE305  
5
4
10  
0
3
–10  
–20  
–30  
–40  
–50  
–60  
2
1
0
–1  
–2  
–3  
–4  
–40  
–30  
–20  
–10  
0
10  
20  
30  
40  
–2  
–1  
0
1
2
3
4
5
6
I
(mA)  
V
(V)  
DUTx  
DUTx  
Figure 51. PMU FV Range A Output Voltage Error at −1.5 V vs. Output Current  
Figure 54. PMU FI Range A Output Current Error at −32 mA vs. Output  
Voltage; Output Voltage Is Pulled Externally  
10  
0.6  
0.4  
0
–10  
–20  
–30  
–40  
–50  
–60  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–2  
–1  
0
1
2
3
4
5
6
–2.0  
–1.5  
–1.0  
–0.5  
0
0.5  
1.0  
1.5  
2.0  
V
(V)  
I
(mA)  
DUTx  
DUTx  
Figure 52. PMU FV Range B Output Voltage Error at 6.0 V vs. Output Current  
Figure 55. PMU FI Range A Output Current Error at +32 mA vs. Output  
Voltage; Output Voltage Is Pulled Externally  
0.6  
0.4  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–0.1  
–0.2  
–2.0  
–1.5  
–1.0  
–0.5  
0
0.5  
1.0  
1.5  
2.0  
–2  
–1  
0
1
2
3
4
5
6
I
(mA)  
V
(V)  
DUTx  
DUTx  
Figure 53. PMU FV Range B Output Voltage Error at −1.5 V vs. Output Current  
Figure 56. PMU FI Range B Output Current Error at −2 mA vs. Output Voltage;  
Output Voltage Is Pulled Externally  
Rev. 0 | Page 31 of 56  
ADATE305  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
0
–0.1  
–0.2  
–2  
–1  
0
1
2
3
4
5
6
–2  
–1  
0
1
2
3
4
5
V
(V)  
V
(V)  
DUTx  
DUTx  
Figure 57. PMU FI Range B Output Current Error at +2 mA vs. Output Voltage;  
Output Voltage Is Pulled Externally  
Figure 60. PMU Measure Current CMRR, Externally Pulling 1 mA, FVMI; Error  
of MI vs. External 1 mA  
0.0015  
0.0010  
0.0005  
0
–0.0005  
–0.0010  
–2  
–1  
0
1
2
3
4
5
6
960ps/DIV  
V
(V)  
DUTx  
Figure 58. PMU FI Range E Output Current Error at −2 μA vs. Output Voltage;  
Output Voltage Is Pulled Externally  
Figure 61. Eye Diagram, 200 Mbps, PRBS31; VH = 1.0 V, VL = 0.0 V  
0.0016  
0.0014  
0.0012  
0.0010  
0.0008  
0.0006  
0.0004  
0.0002  
0
–0.0002  
–2  
–1  
0
1
2
3
4
5
6
400ps/DIV  
V
(V)  
DUTx  
Figure 59. PMU FI Range E Output Current Error at +2 μA vs. Output Voltage;  
Output Voltage Is Pulled Externally  
Figure 62. Eye Diagram, 400 Mbps, PRBS31; VH = 1.0 V, VL = 0.0 V  
Rev. 0 | Page 32 of 56  
ADATE305  
250ps/DIV  
400ps/DIV  
Figure 63. Eye Diagram, 600 Mbps, PRBS31; VH = 1.0 V, VL = 0.0 V  
Figure 65. Eye Diagram, 400 Mbps, PRBS31; VH = 2.0 V, VL = 0.0 V  
200ps/DIV  
250ps/DIV  
Figure 66. Eye Diagram, 600 Mbps, PRBS31; VH = 2.0 V, VL = 0.0 V  
Figure 64. Eye Diagram, 800 Mbps, PRBS31; VH = 1.0 V, VL = 0.0 V  
Rev. 0 | Page 33 of 56  
ADATE305  
SPI DETAILS  
tCH  
SCLK  
tCL  
tCSSA  
tCSSD  
tCSHA  
tCSHD  
CS  
tCSW  
tDH  
tDS  
DATA[15]  
DATA[14]  
ADDR[1]  
ADDR[0]  
CH[1]  
R/W  
LAST  
SDIN  
DO_15  
DO_14  
DO_13  
DO_12  
DO_2  
DO_1  
DO_0  
LAST  
SDOUT  
LAST  
LAST  
LAST  
LAST  
LAST  
t
DO  
Figure 67. SPI Timing Diagram  
Table 17. Serial Peripheral Interface Timing Requirements  
Symbol  
Parameter  
Min  
9.0  
9.0  
3.0  
3.0  
3.0  
3.0  
3.0  
3.0  
Max  
Unit  
tCH  
tCL  
SCLK minimum high  
SCLK minimum low  
ns  
ns  
ns  
tCSHA  
tCSSA  
tCSHD  
tCSSD  
tDH  
CS  
CS  
CS  
CS  
assert hold  
ns  
assert setup  
deassert hold  
deassert setup  
ns  
ns  
SDIN hold  
SDIN setup  
ns  
ns  
tDS  
tDO  
SDOUT Data Out  
15.0  
ns  
1
tCSW  
CS  
CS  
2
SCLK cycles  
SCLK cycles  
SCLK cycles  
minimum between assertions  
minimum directly after a read request  
3
tCSTP  
CS  
16  
Minimum delay after is deasserted before SCLK can be  
stopped (not shown in Figure 67); this allows any internal  
operations to complete  
1 An extra cycle is needed after a read request to prime the read data into the SPI shift register.  
Rev. 0 | Page 34 of 56  
 
 
 
ADATE305  
DEFINITION OF SPI WORD  
Table 18. Channel Selection  
The SPI can accept variable length words, depending on the  
operation. At most, the word length equals 24 bits: 16 bits of  
data, two channel selects, one R/W selector, and a 5-bit address.  
Channel 1 Channel 0 Channel Selected  
0
0
NOP (no channel selected, no register  
changes)  
0
1
1
1
0
1
Channel 0 selected  
Channel 1 selected  
Channel 0 and Channel 1 selected  
Depending on the operation, the data can be smaller or, in the  
case of a read operation, nonexistent.  
Table 19. R/W Definition  
R/W  
Description  
0
Current register specified by address shifts out of  
SDOUT on next shift operation  
1
Current data is written to the register specified by  
address and channel select  
Example 1: 16-Bit Write  
Write 16 bits of data to a register or DAC; ignore unused MSBs. For example, Bit 15 and Bit 14 are ignored, and Bit 13 through Bit 0 are  
applied to the 14-bit DAC.  
DATA[15:0]  
DATA[13:0]  
DATA[1:0]  
CH[1:0]  
R/W  
ADDR[4:0]  
Figure 68. 16-Bit Write  
Example 2: 14-Bit Write  
Write 14 bits of data to the DAC.  
CH[1:0]  
R/W  
ADDR[4:0]  
Figure 69. 14-Bit Write  
Example 3a: 2-Bit Write  
Write two bits of data to the 2-bit register.  
CH[1:0]  
R/W  
ADDR[4:0]  
Figure 70. 2-Bit Write  
Example 3b: 2-Bit Write  
Write two bits of data to the 2-bit register. Bit 15 through Bit 2 are ignored and Bit 1 through Bit 0 are applied to the register.  
DATA[15:0]  
CH[1:0]  
R/W  
ADDR[4:0]  
Figure 71. 2-Bit Write  
Example 4: Read Request  
Read request and follow with a second instruction (could be NOP) to clock out the data.  
CH[1:0]  
CH[1:0]  
R/W = 0  
R/W  
ADDR[4:0]  
ADDR[4:0]  
DATA[15:0]  
Figure 72. Read Request  
Rev. 0 | Page 35 of 56  
 
ADATE305  
WRITE OPERATION  
CS  
INPUT  
SCLK  
INPUT  
DATA[15] DATA[14] DATA[13]  
DATA[2] DATA[1] DATA[0] CH[1]  
CH[0]  
17  
R/W  
18  
ADDR[4] ADDR[3] ADDR[2] ADDR[1] ADDR[0]  
X
SDIN  
INPUT  
0
1
2
13  
14  
15  
16  
19  
20  
21  
22  
23  
24  
25  
SDOUT  
OUTPUT  
X
NOTES  
1. R/W = 1.  
2. X = DON’T CARE.  
Figure 73. 16-Bit SPI Write  
CS  
INPUT  
SCLK  
INPUT  
DATA[1] DATA[0] CH[1]  
CH[0]  
3
R/W  
4
ADDR[4] ADDR[3] ADDR[2] ADDR[1] ADDR[0]  
X
SDIN  
INPUT  
0
1
2
5
6
7
8
9
10  
11  
SDOUT  
OUTPUT  
X
NOTES  
1. R/W = 1.  
2. X = DON’T CARE.  
Figure 74. 2-Bit SPI Write  
Rev. 0 | Page 36 of 56  
 
ADATE305  
back the previous specified data. The NOP address can be used  
for this read if there is no need to write/read another register. To  
maintain the clarity of the operation, it is strongly recommended  
that the NOP address be used for all reads.  
READ OPERATION  
The read operation is a two-stage operation. First, a word is  
shifted in, specifying which register to read.  
for three clock cycles, and then a second word is shifted in to  
obtain the readback data. This second word can be either  
another operation or an NOP address. If another operation is  
shifted in, it needs to shift in at least eight bits of data to read  
CS  
is deasserted  
Any register read that is fewer than 16 bits has zeroes filled in  
the top bits to make it a 16-bit word.  
CS  
INPUT  
SCLK  
INPUT  
SDIN  
INPUT  
READ INSTRUCTION  
X
NOP  
X
SDOUT  
OUTPUT  
X
READ DATA  
X
NOTES  
1. X = DON’T CARE.  
Figure 75. SPI Read Overview  
CS  
INPUT  
SCLK  
INPUT  
SDIN  
INPUT  
ADDR[4] ADDR[3] ADDR[2] ADDR[1] ADDR[0]  
19 20 21 22 23  
DATA[15:0], VALUE IS A DON’T CARE  
13 14  
CH[1]  
16  
CH[0]  
17  
R/W  
18  
X
0
1
2
15  
24  
25  
SDOUT  
OUTPUT  
X
NOTES  
1. X = DON’T CARE.  
Figure 76. SPI Read—Details of Read Request  
CS  
INPUT  
SCLK  
INPUT  
SDIN  
DATA[15:0], VALUE IS A DON’T CARE  
13 14  
CH[1]  
16  
CH[0]  
17  
R/W = 1  
18  
ADDR[4:0] = 0x00 (NOP)  
X
INPUT  
0
1
2
15  
19  
20  
21  
X
22  
23  
24  
25  
SDOUT  
OUTPUT  
RDATA[2] RDATA[1] RDATA[0]  
RDATA[15] RDATA[14]  
NOTES  
1. RDATA IS THE REGISTER VALUE BEING READ.  
2. X = DON’T CARE.  
Figure 77. SPI Read—Details of Read Out  
Rev. 0 | Page 37 of 56  
 
ADATE305  
RST  
by utilizing the  
pin. To initiate the reset operation, deassert  
RESET OPERATION  
RST  
CS  
pin  
the  
pin for a minimum of 100 ns and deassert the  
The ADATE305 contains an asynchronous reset feature. The  
ADATE305 can be reset to the default values shown in Table 20  
for a minimum of two SCLK cycles.  
100ns  
MINIMUM  
RST  
CS  
SCLK  
MINIMUM OF TWO SCLK EDGES AFTER ASSERTING RST BEFORE RESUMING NORMAL OPERATION.  
Figure 78. Reset Operation  
Rev. 0 | Page 38 of 56  
 
ADATE305  
REGISTER MAP  
The ADDR[4:0] bits determine the destination register of the data being written to the ADATE305.  
Table 20. Register Selection  
DATA[15:0]  
N/A1  
CH[1:0]  
R/W  
N/A  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
ADDR[4:0]  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
Register Selected  
NOP  
VH DAC level  
VL DAC level  
VT/VCOM DAC level  
VOL DAC level  
VOH DAC level  
VCH DAC level  
VCL DAC level  
V(IOH ) DAC level  
V(IOL ) DAC level  
OVD high level  
OVD low level  
Reset State  
N/A  
N/A  
DATA[13:0]  
DATA[13:0]  
DATA[13:0]  
DATA[13:0]  
DATA[13:0]  
DATA[13:0]  
DATA[13:0]  
DATA[13:0]  
DATA[13:0]  
DATA[13:0]  
DATA[13:0]  
DATA[15:0]  
DATA[2:0]  
DATA[2:0]  
DATA[9:0]  
DATA[2:0]  
DATA[0]  
CH[1:0]  
CH[1:0]  
CH[1:0]  
CH[1:0]  
CH[1:0]  
CH[1:0]  
CH[1:0]  
CH[1:0]  
CH[1:0]  
CH[1]  
4096d  
4096d  
4096d  
4096d  
4096d  
4096d  
4096d  
4096d  
4096d  
4096d  
4096d  
16384d  
000b  
000b  
0d  
CH[0]  
CH[1:0]  
CH[1:0]  
CH[1:0]  
CH[1:0]  
CH[1:0]  
CH[1:0]  
CH[1:0]  
CH[1:0]  
CH[1:0]  
N/A  
PMUDAC level  
PE/PMU enable  
Channel state  
PMU state  
PMU measure enable  
Differential comparator enable  
16-bit DAC monitor  
OVD_CHx alarm mask  
OVD_CHx alarm state  
Reserved  
000b  
0b  
00b  
01b  
N/A  
DATA[1:0]  
DATA[1:0]  
DATA[2:0]  
N/A  
0x11  
0x12  
0x13  
0x14 to 0x1F  
N/A  
N/A  
1 N/A means not applicable.  
Rev. 0 | Page 39 of 56  
 
 
 
ADATE305  
DETAILS OF REGISTERS  
Table 21. PE/PMU Enable (ADDR[4:0] = 0x0C)  
Bit  
Name  
Description  
DATA[2]  
PMU enable  
0 = disable PMU force output and clamps, place PMU in MV mode  
1 = enable PMU force output  
When set to 0, the PMU state bits are ignored, except for PMU sense path (Data[7])  
0 = normal driver operation  
1 = force driver to VT  
See Table 29 for complete functionality of this bit  
0 = enable driver functions  
DATA[1]  
DATA[0]  
Force VT  
PE disable  
1 = disable driver (low leakage)  
See Table 29 for complete functionality of this bit  
Table 22. Channel State (ADDR[4:0] = 0x0D)  
Bit  
Name  
Description  
DATA[2]  
HV mode select  
0 = HV driver in low impedance.  
1 = enable HV driver.  
This bit affects Channel 0 only. Ensure that the Channel 0 bit in SPI write is active.  
Channel 1 bit in SPI write is don’t care.  
DATA[1]  
DATA[0]  
Load enable  
0 = disable load.  
1 = enable load.  
See Table 29 for complete functionality of this bit.  
0 = enable Driver high-Z function.  
1 = enable Driver VTERM function.  
See Table 29 for complete functionality of this bit.  
Driver high-Z or VT  
Table 23. PMU State (ADDR[4:0] = 0x0E)1, 2  
Bit  
Name  
Description  
DATA[9:8]  
PMU input selection  
00 = VDUTGND (calibrated for 0.0 V voltage reference)  
01 = 2.5 V + VDUTGND (calibrated for 0.0 A current reference)  
1X = PMUDAC  
DATA[7]  
PMU sense path  
0 = internal sense  
1 = external sense  
DATA[6]  
DATA[5]  
Reserved  
PMU clamp enable  
0 = disable clamps  
1 = enable clamps  
DATA[4]  
DATA[3]  
DATA[2:0]  
PMU measure voltage or current  
PMU force voltage or current  
PMU range  
0 = measure voltage mode  
1 = measure current mode  
0 = force voltage mode  
1 = force current mode  
0XX = 2 μA range  
100 = 20 μA range  
101 = 200 μA range  
110 = 2 mA range  
111 = 32 mA range  
1 Note that when ADDR[4:0] = 0x0C, the PMU enable bit (DATA[2]) = 0, PMU force outputs and clamps are disabled, and the PMU is placed into measure voltage mode.  
PMU State DATA[9:8] and DATA[6:0] are ignored, and only the DATA[7] PMU sense path is valid.  
2 X = don’t care.  
Rev. 0 | Page 40 of 56  
 
 
ADATE305  
Table 24. PMU Measure Enable (ADDR[4:0] = 0x0F)1  
Bit  
Name  
Description  
DATA[2:1]  
MEASOUT01 select  
00 = PMU MEASOUT Channel 0  
01 = PMU MEASOUT Channel 1  
10 = Temp sensor ground reference  
11 = Temp sensor  
DATA[0]  
MEASOUT01 output enable  
0 = MEASOUT01 is tristated  
1 = MEASOUT01 is enabled  
1 This register is written to or read from when either of the CH[1:0] bits is 1.  
Table 25. Differential Comparator Enable (ADDR[4:0] = 0x10)1  
Bit  
Name  
Description  
DATA[0]  
Differential Comparator Enable  
0 = differential comparator is disabled; the Channel 0 normal window  
comparator (NWC) outputs are located on Channel 0  
1 = differential comparator is enabled; the differential comparator outputs  
are located on Channel 0  
1 This register is written to or read from when either of the CH[1:0] bits is 1.  
Table 26. DAC16_MON (16-Bit DAC Monitor) (ADDR[4:0] = 0x11)1  
Bit  
Name  
Description  
DATA[1]  
16-Bit DAC mux enable  
0 = 16-bit DAC mux is tristated  
1 = 16-bit DAC mux is enabled  
0 = 16-bit DAC Channel 0  
1 = 16-bit DAC Channel 1  
DATA[0]  
16-Bit DAC mux select  
1 This register is written to or read from when either of the CH[1:0] bits is 1.  
Table 27. OVD_CHx Alarm Mask (ADDR[4:0] = 0x12)  
Bit  
Name  
Description  
DATA[1]  
PMU mask  
0 = disable PMU alarm flag  
1 = enable PMU alarm flag  
0 = disable OVD alarm flag  
1 = enable OVD alarm flag  
DATA[0]  
OVD mask  
Table 28. OVD_CHx Alarm State (ADDR[4:0] = 0x13)1  
Bit  
Name  
Description  
DATA[2]  
PMU clamp flag  
0 = PMU is not clamped  
1 = PMU is clamped  
DATA[1]  
DATA[0]  
OVD high flag  
OVD low flag  
0 = DUT voltage < OVD high voltage  
1 = DUT voltage > OVD high voltage  
0 = DUT voltage > OVD low voltage  
1 = DUT voltage < OVD low voltage  
1 This register is a read-only register.  
Rev. 0 | Page 41 of 56  
 
 
 
ADATE305  
USER INFORMATION  
Table 29. Driver and Load Truth Table1  
Registers  
Load Enable  
DATA[1]  
Signals  
PE Disable  
DATA[0]  
Force VT  
DATA[1]  
Driver High-Z/VT  
DATA[0]  
ADDR[4:0] = 0x0C ADDR[4:0] = 0x0C ADDR[4:0] = 0x0D ADDR[4:0] = 0x0D DATAx RCVx Driver State  
Load State  
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
X
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
X
X
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
X
X
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
X
X
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
X
X
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
High-Z without clamps Power-down  
VT  
Power-down  
Power-down  
Power-down  
Power-down  
Power-down  
Power-down  
Power-down  
Power-down  
Power-down  
Active off  
VL  
High-Z with clamps  
VH  
High-Z with clamps  
VL  
VT  
VH  
VT  
VL  
High-Z with clamps  
Active on  
VH  
Active off  
High-Z with clamps  
VL  
Active on  
Active on  
High-Z with clamps  
VH  
Active on  
Active on  
High-Z with clamps  
Active on  
1 X = don’t care.  
Table 30. HVOUT Truth Table1  
HVOUT Mode Select  
DATA[2]  
ADDR[4:0] =0x0D  
Channel 0  
RCV  
Channel 0  
DATA  
HVOUT Driver Output  
1
1
1
0
1
0
0
X
X
0
1
X
VHH mode; VHH = (VT + 1 V) × 2 + DUTGND (Channel 0 VT DAC)  
VL (Channel 0 VL DAC)  
VH (Channel 0 VH DAC)  
Disabled (HVOUT pin set to 0 V low impedance)  
1 X = don’t care.  
Table 31. Comparator Truth Table  
Differential  
Comparator Enable  
DATA[0]  
ADDR[4:0] = 0x10  
COMP_QH0  
COMP_QL0  
COMP_QH1  
COMP_QL1  
0
Normal window mode  
Logic high: VOH0 < VDUT0  
Logic low: VOH0 > VDUT0  
Normal window mode  
Logic high: VOL0 < VDUT0  
Logic low: VOL0 > VDUT0  
Normal window mode  
Normal window mode  
Logic high: VOH1 < VDUT1 Logic high: VOL1 < VDUT1  
Logic low: VOH1 > VDUT1 Logic low: VOL1 > VDUT1  
1
Differential comparator mode Differential comparator mode Normal window mode  
Normal window mode  
Logic high: VOH0 < VDUT0 − VDUT1 Logic high: VOL0 < VDUT0 − VDUT1 Logic high: VOH1 < VDUT1 Logic high: VOL1 < VDUT1  
Logic low: VOH0 > VDUT0 − VDUT1  
Logic low: VOL0 > VDUT0 − VDUT1  
Logic low: VOH1 > VDUT1 Logic low: VOL1 > VDUT1  
Rev. 0 | Page 42 of 56  
 
 
 
ADATE305  
−3.0 V to +7.0 V and tracks DUTGND. Controls the  
OVD levels.  
−2.5 V to +7.5 V and does not track DUTGND. Controls  
the IOH and IOL levels.  
DETAILS OF DACS vs. LEVELS  
There are ten 14-bit DACs per channel. These DACs provide  
levels for the driver, comparator, load currents, VHH buffer, OVD,  
and clamp levels. There are three versions of output levels as  
follows:  
There is one 16-bit DAC per channel. This DAC provides the  
levels for the PMU. The output level is as follows:  
−2.5 V to +7.5 V and tracks DUTGND. Controls the VH,  
VL, VT/VCOM/VHH, VOH, VOL, VCH, and VCL levels.  
−2.5 V to +7.5 V and tracks DUTGND; controls the  
PMU levels.  
Table 32. Level Transfer Functions  
Programmable Range1  
DAC Transfer Function  
(All 0s to All 1s)  
Levels  
VOUT = 2.0 × (VREF VREF_GND) × (Code/(214)) – 0.5 × (VREF VREF_GND) + VDUTGND  
−2.5 V to +7.5 V  
VH, VL, VT/VCOM,  
VOL, VOH, VCH, VCL  
Code = [VOUT VDUTGND + 0.5 × (VREF VREF_GND)] × [(214)/(2.0 × (VREF VREF_GND))]  
VOUT = 4.0 × (VREF − VREF_GND) × (Code/(214)) − 1.0 × (VREF VREF_GND) + 2.0 + VDUTGND  
Code = [VOUT VDUTGND − 2.0 + 1.0 × (VREF − VREF_GND)] × [(214)/(4.0 × (VREF VREF_GND))]  
−3.0 V to +17.0 V  
−3.0 V to +7.0 V  
VHH  
VOUT = 2.0 × (VREF VREF_GND) × (Code/(214)) − 0.6 × (VREF VREF_GND) + VDUTGND  
OVD  
Code = [VOUT VDUTGND + 0.6 × (VREF VREF_GND)] × [(214)/(2.0 × (VREF VREF_GND))]  
IOUT = [2.0 × (VREF VREF_GND) × (Code/(214)) − 0.5 × (VREF VREF_GND)] × (0.012/5.0)  
Code = [(IOUT × (5.0/0.012)) + 0.5 × (VREF VREF_GND)] × [(214)/(2.0 × (VREF VREF_GND))]  
−6 mA to +18 mA  
−2.5 V to +7.5 V  
IOH, IOL  
PMUDAC  
VOUT = 2.0 × (VREF VREF_GND) × (Code/(216)) – 0.5 × (VREF VREF_GND) + VDUTGND  
Code = [VOUT VDUTGND + 0.5 × (VREF VREF_GND)] × [(216)/(2.0 × (VREF VREF_GND))]  
IOUT = [2.0 × (VREF VREF_GND) × (Code/(216)) – 0.5 × (VREF VREF_GND) − 2.5] × (0.050/5.0)  
Code = [(IOUT × (5.0/0.050)) + 2.5 + 0.5 × (VREF VREF_GND)] × [(216)/(2.0 × (VREF VREF_GND))]  
−50 mA to +50 mA  
−4 mA to +4 mA  
−400 μA to +400 μA  
−40 μA to +40 μA  
−4 μA to +4 μA  
PMUDAC  
(PMU FI Range A)  
PMUDAC  
(PMU FI Range B)  
PMUDAC  
(PMU FI Range C)  
PMUDAC  
(PMU FI Range D)  
IOUT = [2.0 × (VREF VREF_GND) × (Code/(216)) – 0.5 × (VREF VREF_GND) − 2.5] × (0.004/5.0)  
Code = [(IOUT × (5.0/0.004)) + 2.5 + 0.5 × (VREF VREF_GND)] × [(216)/(2.0 × (VREF VREF_GND))]  
IOUT = [2.0 × (VREF VREF_GND) × (Code/(216)) – 0.5 × (VREF VREF_GND) − 2.5] × (0.0004/5.0)  
Code = [(IOUT × (5.0/0.0004)) + 2.5 + 0.5 × (VREF VREF_GND)] × [(216)/(2.0 × (VREF VREF_GND))]  
IOUT = [2.0 × (VREF VREF_GND) × (Code/(216)) – 0.5 × (VREF VREF_GND) − 2.5] × (0.00004/5.0)  
Code = [(IOUT × (5.0/0.00004)) + 2.5 + 0.5 × (VREF VREF_GND)] × [(216)/(2.0 × (VREF VREF_GND))]  
IOUT = [2.0 × (VREF VREF_GND) × (Code/(216)) – 0.5 × (VREF VREF_GND) − 2.5] × (0.000004/5.0)  
Code = [(IOUT × (5.0/0.000004)) + 2.5 + 0.5 × (VREF VREF_GND)] × [(216)/(2.0 × (VREF VREF_GND))]  
PMUDAC  
(PMU FI Range E)  
1 Programmable range includes a margin outside of the specified part performance, allowing for offset/gain calibration.  
Table 33. Load Transfer Functions  
Load Level  
Transfer Function1  
V(IOL)/5 V × 12 mA  
V(IOH)/5 V × 12 mA  
IOL  
IOH  
1 V(IOH), V(IOL) DAC levels are not referenced to DUTGND.  
Table 34. PMU Transfer Functions  
PMU Mode  
Transfer Functions  
Force Voltage  
VOUT = PMUDAC  
Measure Voltage  
Force Current  
VMEASOUT01 = VDUTx (internal sense) or VMEASOUT01 = VPMUS_CHx (external sense)  
IOUT = [PMUDAC − (VREF/2)]/(R1 × 5)  
VMEASOUT01 = (VREF/2) + VDUTGND + (IDUTx × 5 × R1)  
Measure Current  
1 R = 15.5 Ω for Range A; 250 Ω for Range B; 2.5 kΩ for Range C; 25 kΩ for Range D; 250 kΩ for Range E.  
Rev. 0 | Page 43 of 56  
 
 
ADATE305  
Table 35. PMU User Required Capacitors  
Table 36. Temperature Sensor  
Capacitor Location  
Temperature  
Output  
220 pF  
220 pF  
330 pF  
330 pF  
Across Pin 70 (FFCAP_0B) and Pin 65 (FFCAP_0A)  
0 K  
0 V  
Across Pin 6 (FFCAP_1B) and Pin 11 (FFCAP_1A)  
Between GND and Pin 71 (SCAP0)  
300 K  
x K  
3 V  
(x K) × 10 mV/K  
Between GND and Pin 5 (SCAP1)  
Table 37. Power Supply Ranges  
Parameter  
Range 1  
+10.0 V  
−5.25 V  
Range 2  
+10.0 V  
−5.75 V  
Nominal VDD  
Nominal VSS  
Driver  
VH range  
−1.4 V to +6.0 V  
−1.5 V to +5.9 V  
−1.5 V to +6.0 V  
7.5 V  
−1.9 V to +6.0 V  
VL range  
−2.0 V to +5.9 V  
−2.0 V to +6.0 V  
8.0 V  
VT range  
Functional Amplitude  
Reflection Clamp  
VCH Range  
−1.0 V to +6.0 V  
−1.5 V to +5.0 V  
−1.5 V to +6.0 V  
−1.25 V to +5.75 V  
−1.5 V to +6.0 V  
−2.0 V to +5.0 V  
−2.0 V to +6.0 V  
−1.75 V to +5.75 V  
VCL Range  
Comparator Input Voltage Range  
Active Load VCOM Range  
PMU  
Force Voltage Range  
Measure Voltage Range  
Force Current Voltage Range  
Measure Current Voltage Range  
Low Clamp Range  
High Clamp Range  
−1.5 V to +6.0 V  
−1.5 V to +6.0 V  
−1.5 V to +6.0 V  
−1.5 V to +6.0 V  
−1.5 V to +4.0 V  
0.0 V to +6.0 V  
−2.0 V to +6.0 V  
−2.0 V to +6.0 V  
−2.0 V to +6.0 V  
−2.0 V to +6.0 V  
−2.0 V to +4.0 V  
0.0 V to +6.0 V  
Rev. 0 | Page 44 of 56  
 
ADATE305  
Table 38. Default Test Conditions (Range 1)  
Name  
Default Test Condition  
VH DAC Level  
+2.0 V  
VL DAC Level  
+0.0 V  
VT/VCOM DAC Level  
VOL DAC Level  
VOH DAC Level  
VCH DAC Level  
VCL DAC Level  
+1.0 V  
−1.0 V  
+6.0 V  
+7.5 V  
−2.5 V  
IOH DAC Level  
0.0 A  
IOL DAC Level  
0.0 A  
OVD Low DAC Level  
OVD High DAC Level  
PMUDAC DAC Level  
PE/PMU Enable  
Channel State  
−2.5 V  
+6.5 V  
0.0 V  
0x0000: PMU disabled, VT not forced through driver, PE enabled  
0x0000: HV mode disabled, load disabled, VTERM inactive  
0x0000: Input of DUTGND, internal sense, clamps disabled, FVMV, Range E  
0x0000: MEASOUT01 pin tristated  
0x0000: Normal window comparator mode  
0x0000: DAC16_MON tristated  
PMU State  
PMU Measure Enable  
Differential Comparator Enable  
16-Bit DAC Monitor  
OVD_CHx Alarm Mask  
Data Input  
0x0000: disable alarm functions  
Logic low  
Receive Input  
Logic low  
DUTx Pin  
Unterminated  
Comparator Output  
Unterminated  
Rev. 0 | Page 45 of 56  
 
ADATE305  
PMU disable to PMU enable.  
PMU force voltage mode to PMU force current mode.  
PMU force current mode to PMU force voltage mode.  
RECOMMENDED PMU MODE SWITCHING  
SEQUENCES  
To minimize any possible aberrations and voltage spikes on the  
DUT output, specific mode switching sequences are  
recommended for the following transitions:  
PMU Disable to PMU Enable  
Note that in Table 39 through Table 49, X indicates the don’t care bit.  
Step 1. Table 39 lists the state of the registers in PMU disabled mode.  
Table 39.  
Register  
Bits  
Setting  
PE/PMU Enable Register, ADDR[4:0] = 0x0C  
PMU State Register, ADDR[4:0] = 0x0E  
DATA[2]  
DATA[9:8]  
DATA[7]  
DATA[6]  
DATA[5]  
DATA[4]  
DATA[3]  
DATA[2:0]  
0
XX  
X
X
X
X
X
XXX  
Step 2. Write to Register ADDR[4:0] = 0x0E (see Table 40).  
Table 40.  
Register  
Bits  
Setting  
Comments  
PMU State Register, ADDR[4:0] = 0x0E  
DATA[9:8]  
DATA[7]  
DATA[6]  
DATA[5]  
DATA[4]  
DATA[3]  
1X or 00  
Set desired input selection  
X
X
X
X
0
This bit must be set to force voltage mode to reduce  
aberrations  
DATA[2:0]  
XXX  
Set desired range  
Step 3. Write to Register ADDR[4:0] = 0x0C (see Table 41).  
Table 41.  
Register  
Bits  
Setting  
Comments  
PE/PMU Enable Register, ADDR[4:0] = 0x0C  
DATA[2]  
1
PMU is now enabled in force voltage mode  
PMU Force Voltage Mode to PMU Force Current Mode  
Step 1. Table 42 lists the state of registers in force voltage mode.  
Table 42.  
Register  
Bits  
Setting  
PE/PMU Enable Register, ADDR[4:0] = 0x0C  
PMU State Register, ADDR[4:0] = 0x0E  
DATA[2]  
DATA[9:8]  
DATA[7]  
DATA[6]  
DATA[5]  
DATA[4]  
DATA[3]  
DATA[2:0]  
1
XX  
X
X
X
X
0
XXX  
Rev. 0 | Page 46 of 56  
 
 
 
 
 
ADATE305  
Step 2. Write to Register ADDR[4:0] = 0x0E (see Table 43).  
Table 43.  
Register  
Bits  
Setting  
Comments  
PMU State Register, ADDR[4:0] = 0x0E  
DATA[9:8]  
DATA[7]  
DATA[6]  
DATA[5]  
DATA[4]  
DATA[3]  
DATA[2:0]  
01  
X
Set 2.5 V + DUTGND input selection  
X
X
X
1
Set to force current mode  
0XX  
2 μA range has the minimum offset current  
Step 3. Write to Register ADDR[4:0] = 0x0B (see Table 44).  
Table 44.  
Register  
Bits  
DATA[15:0]  
Setting  
Comments  
VIN 16-Bit DAC, ADDR[4:0] = 0x0B  
X
Update the VIN 16-Bit DAC register to the  
desired value  
Step 4. Write to Register ADDR[4:0] = 0x0E (see Table 45).  
Table 45.  
Register  
Bits  
Setting  
Comments  
PMU State Register, ADDR[4:0] = 0x0E  
DATA[9:8]  
DATA[7]  
DATA[6]  
DATA[5]  
DATA[4]  
DATA[3]  
DATA[2:0]  
1X  
X
X
X
X
Set VIN input selection  
1
XXX  
Set to the desired current range  
Transition from PMU Force Current Mode to PMU Force Voltage Mode  
Step 1. Table 46 lists the state of the registers in force current mode.  
Table 46.  
Register  
Bits  
Setting  
PE/PMU Enable Register, ADDR[4:0] = 0x0C  
PMU State Register, ADDR[4:0] = 0x0E  
DATA[2]  
DATA[9:8]  
DATA[7]  
DATA[6]  
DATA[5]  
DATA[4]  
DATA[3]  
DATA[2:0]  
1
XX  
X
X
X
X
1
XXX  
Step 2. Write to Register ADDR[4:0] = 0x0E (see Table 47).  
Table 47.  
Register  
Bits  
Setting  
Comments  
PMU State Register, ADDR[4:0] = 0x0E  
DATA[9:8]  
DATA[7]  
DATA[6]  
DATA[5]  
DATA[4]  
DATA[3]  
DATA[2:0]  
00  
X
X
X
X
Set DUTGND input selection  
0
XXX  
Set to force voltage mode  
Set to the desired current range  
Rev. 0 | Page 47 of 56  
 
 
 
 
 
ADATE305  
Step 3. Write to Register ADDR[4:0] = 0x0B (see Table 48).  
Table 48.  
Register  
Bits  
Setting  
Comments  
VIN 16-Bit DAC, ADDR[4:0] = 0x0B  
DATA[15:0]  
X
Update the VIN 16-Bit DAC register to the desired value  
Step 4. Write to Register ADDR[4:0] = 0x0E (see Table 49).  
Table 49.  
Register  
Bits  
Setting  
Comments  
PMU State Register, ADDR[4:0] = 0x0E  
DATA[9:8]  
DATA[7]  
DATA[6]  
DATA[5]  
DATA[4]  
DATA[3]  
DATA[2:0]  
1X  
X
X
X
X
Set VIN input selection  
0
XXX  
Force voltage mode  
Rev. 0 | Page 48 of 56  
 
 
ADATE305  
BLOCK DIAGRAMS  
VCL VCH  
PE DISABLE DATA[0] (ADDR[4:0] = 0x0C)  
FORCES SWITCH OPEN WHEN 1  
VH  
VL  
R
= 47  
OUT  
(TRIMMED)  
DUT  
DRIVER  
DATA  
VT  
DRIVER HIGH-Z/VT DATA[0]  
(ADDR[4:0] = 0x0D)  
VT BUFFER WHEN 1  
HIGH-Z BUFFER WHEN 0  
V(IOH)  
RCV  
VCOM  
FORCE VT DATA[1] (ADDR[4:0] = 0x0C)  
OVERRIDES THE RCV PIN AND FORCES  
VTERM MODE ON THE DRIVER AND LOAD  
POWER-DOWN MODE  
V(IOL)  
LOAD ENABLE DATA[1] (ADDR[4:0] = 0x0D)  
FORCES SWITCHES OPEN AND POWERS  
DOWN LOAD WHEN 0  
Figure 79. Driver and Load Block Diagram  
~5  
VHH = (VT + 1V) × 2 + DUTGND  
HVOUT  
VH  
VL  
48ꢀ  
DATA  
RCV (SHOWN IN  
RCV = 0 STATE)  
HV MODE SELECT DATA[2]  
(ADDR [4:0] = 0x0D) DISABLES  
HV DRIVER AND FORCES  
0V ON HVOUT WHEN 0  
Figure 80. HVOUT Driver Output Stage  
Rev. 0 | Page 49 of 56  
 
ADATE305  
VOH0  
VOH  
NWC  
+
DUT0  
COMP_QH0  
2:1  
MUX  
+
VOL  
NWC  
VOL0  
VOH0  
DIFFERENTIAL  
COMPARATOR ENABLE  
DATA[0] (ADDR[4:0] = 0x10)  
VOH  
DMC  
COMP_QL0  
2:1  
MUX  
+
DUT0–  
DUT1  
DUT1  
DIFFERENTIAL  
BUFFER  
+
VOL  
DMC  
VOL0  
NOTES  
1. DIFFERENTIAL COMPARATOR ONLY ON CHANNEL 0.  
Figure 81. Comparator Block Diagram  
COMPARATOR  
OUTPUT (AB)  
VTT = 3.3V  
RECEIVER  
OUT HIGH = 1.55V  
OUT CM = 1.42V  
OUT LOW = 1.30V  
50  
50ꢀ  
100ꢀ  
GND  
Figure 82. Comparator Output Scheme  
Rev. 0 | Page 50 of 56  
ADATE305  
PMU SENSE PATH DATA[7]  
(ADDR[4:0] = 0x0E)  
PMU MEASURE V/I DATA[4]  
(ADDR[4:0] = 0x0E)  
EXTERNAL DUT  
SENSE PIN  
MEASURE V  
MEASURE I  
MEASOUT01 SELECT DATA[2:1]  
(ADDR[4:0] = 0x0F)  
MUX  
MUX  
PMU FORCE V/I DATA[3]  
(ADDR[4:0] = 0x0E)  
MEASURE  
OUT  
CH[1] PMU V/I  
IN-AMP G = 5  
10kꢀ  
TEMP SENSE  
GND REF  
TEMP SENSE  
REF  
2.5 + DUTGND  
MUX  
MUX  
MEASOUT01 OUTPUT  
ENABLE DATA[0]  
(ADDR[4:0] = 0x0F)  
ONE PER DEVICE  
DUTx  
225kꢀ  
22.5kꢀ  
2.25kꢀ  
250ꢀ  
15.5ꢀ  
2µA  
20µA  
200µA  
32mA BUFFER  
32mA  
2mA  
PMU INPUT SELECTION DATA[9:8]  
(ADDR[4:0] = 0x0E)  
MV  
VIN  
2.5V + DUTGND  
DUTGND  
FFCAP_xA  
FFCAP_xB  
330pF  
SCAPx  
(EXTERNAL)  
MUX  
PMU CLAMP ENABLE DATA[5]  
(ADDR[4:0] = 0x0E)  
CRA = 220pF  
VCH  
MEASURE V  
(AT OUTPUT OF  
SENSE MUX)  
VCL  
NOTES  
1. SWITCHES CONNECTED WITH DOTTED LINES REPRESENT PMU RANGE DATA[2:0] (ADDR[4:0] = 0x0E); WHEN PMU ENABLE DATA[2] = 0 (ADDR[4:0] = 0x0C), ALL  
SWITCHES OPEN AND PMU POWERS DOWN.  
2. THE EXTERNAL SENSE PATH MUST CLOSE THE LOOP TO ENABLE THE CLAMPS TO OPERATE CORRECTLY.  
3. 32mA RANGE HAS ITS OWN OUTPUT BUFFER.  
4. 32mA BUFFER TRISTATES WHEN NOT IN USE.  
Figure 83. PMU Block Diagram  
Rev. 0 | Page 51 of 56  
ADATE305  
(ADDR[4:0] = 0x12) DATA[0]  
OVD MASK ENABLES OVD  
FLAGS TO ALARM OVD_CHx PIN  
1
6.5V  
OVD HIGH LEVEL  
DAC (ADDR[4:0] = 0x0A, CH[1])  
OVD_CHx  
SHORT-CIRCUIT  
CURRENT = 100µA  
DUT  
ADATE305  
1
–2.5V  
OVD LOW LEVEL  
DAC (ADDR[4:0] = 0x0A, CH[0])  
PMU  
V/I CLAMP  
FLAG  
(ADDR[4:0] = 0x12) DATA[1]  
PMU MASK ENABLES PMU V/I  
FLAG TO ALARM OVD_CHx PIN  
2
(ADDR[4:0] = 0x13) DATA[2] DATA[1] DATA[0]  
1
THE OVD HIGH/LOW LEVEL DAC IS SHARED BY EACH CHANNEL; THEREFORE, ONLY ONE OVD HIGH/LOW VOLTAGE  
LEVEL CAN BE SET PER CHIP. THE OVD DACs PROVIDE A VOLTAGE RANGE OF –3V TO +7V. THE RECOMMENDED  
HIGH/LOW SETTINGS ARE +6.5V/–2.5V. (THESE VALUES NEED TO BE PROGRAMMED BY THE USER UPON STARTUP/RESET.)  
THIS IS A READ ONLY REGISTER THAT ALLOWS THE USER TO DETERMINE THE CAUSE OF THE ACTIVE OVD FLAG.  
2
Figure 84. OVD Block Diagram  
Rev. 0 | Page 52 of 56  
ADATE305  
OUTLINE DIMENSIONS  
16.00 BSC SQ  
1.20  
MAX  
0.75  
0.60  
0.45  
14.00 BSC SQ  
76  
100  
1
75  
PIN 1  
8.00  
BSC SQ  
EXPOSED  
PAD  
0° MIN  
1.05  
1.00  
0.95  
0.20  
0.09  
TOP VIEW  
(PINS DOWN)  
51  
25  
26  
7°  
50  
3.5°  
0.15  
0.05  
0°  
0.50 BSC  
LEAD PITCH  
VIEW A  
0.27  
0.22  
0.17  
SEATING  
PLANE  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.08 MAX  
COPLANARITY  
SECTION OF THIS DATA SHEET.  
VIEW A  
ROTATED 90° CCW  
COMPLIANT TO JEDEC STANDARDS MS-026-AED-HU  
Figure 85. 100-Lead, Thin Quad Flatpack, Exposed Pad [TQFP_EP]  
(SV-100-7)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
ADATE305BSVZ1  
Temperature Range  
Package Description  
Package Option  
−40°C to +85°C  
100-Lead, Thin Quad Flatpack, Exposed Pad [TQFP_EP]  
SV-100-7  
1 Z = RoHS Compliant Part.  
Rev. 0 | Page 53 of 56  
 
ADATE305  
NOTES  
Rev. 0 | Page 54 of 56  
ADATE305  
NOTES  
Rev. 0 | Page 55 of 56  
ADATE305  
NOTES  
©2008 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D07280-0-8/08(0)  
Rev. 0 | Page 56 of 56  

相关型号:

ADATE318

600 MHz Dual Integrated DCL with PPMU, VHH Drive Capability, Level Setting DACs, and On-Chip
ADI

ADATE318BCPZ

600 MHz Dual Integrated DCL with PPMU, VHH Drive Capability, Level Setting DACs, and On-Chip
ADI

ADATE320

1.25 GHz Dual Integrated DCL
ADI

ADATE320-1KCPZ

1.25 GHz Dual Integrated DCL
ADI

ADATE320KCPZ

1.25 GHz Dual Integrated DCL
ADI

ADAU1301

Tape and Reel Packaging
ADI

ADAU1328

2 ADC/8 DAC with PLL, 192 kHz, 24-Bit Codec
ADI

ADAU1328BSTZ

2 ADC/8 DAC with PLL, 192 kHz, 24-Bit Codec
ADI

ADAU1328BSTZ-RL

2 ADC/8 DAC with PLL, 192 kHz, 24-Bit Codec
ADI

ADAU1361

Audio Codec with Integrated PLL
ADI

ADAU1361BCPZ

Stereo, Low Power, 96 kHz, 24-Bit Audio Codec with Integrated PLL
ADI

ADAU1361BCPZ

SPECIALTY CONSUMER CIRCUIT, QCC32, 5 X 5 MM, ROHS COMPLIANT, MO-220VHHD-2, LFCSP-32
ROCHESTER