ADAU1761BCPZ-RL [ADI]

SigmaDSP Stereo, Low Power, 96 kHz, 24-Bit Audio Codec with Integrated PLL; 的SigmaDSP立体声,低功耗, 96 kHz的24位音频编解码器集成PLL
ADAU1761BCPZ-RL
型号: ADAU1761BCPZ-RL
厂家: ADI    ADI
描述:

SigmaDSP Stereo, Low Power, 96 kHz, 24-Bit Audio Codec with Integrated PLL
的SigmaDSP立体声,低功耗, 96 kHz的24位音频编解码器集成PLL

解码器 编解码器 消费电路 商用集成电路 PC
文件: 总92页 (文件大小:1103K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SigmaDSP Stereo, Low Power, 96 kHz,  
24-Bit Audio Codec with Integrated PLL  
ADAU1761  
FEATURES  
GENERAL DESCRIPTION  
SigmaDSP 28-/56-bit, 50 MIPS digital audio processor  
Fully programmable with SigmaStudio graphical tool  
24-bit stereo audio ADC and DAC: >98 dB SNR  
Sampling rates from 8 kHz to 96 kHz  
The ADAU1761 is a low power, stereo audio codec with  
integrated digital audio processing that supports stereo 48 kHz  
record and playback at 14 mW from a 1.8 V analog supply. The  
stereo audio ADCs and DACs support sample rates from 8 kHz  
Low power: 7 mW record, 7 mW playback, 48 kHz at 1.8 V  
6 analog input pins, configurable for single-ended or  
differential inputs  
Flexible analog input/output mixers  
Stereo digital microphone input  
Analog outputs: 2 differential stereo, 2 single-ended stereo,  
1 mono headphone output driver  
PLL supporting input clocks from 8 MHz to 27 MHz  
Analog automatic level control (ALC)  
Microphone bias reference voltage  
to 96 kHz as well as a digital volume control.  
The SigmaDSP® core features 28-bit processing (56-bit double  
precision). The processor allows system designers to compensate  
for the real-world limitations of microphones, speakers, amplifiers,  
and listening environments, resulting in a dramatic improvement  
in the perceived audio quality through equalization, multiband  
compression, limiting, and third-party branded algorithms.  
The SigmaStudio™ graphical development tool is used to program  
the ADAU1761. This software includes audio processing blocks  
such as filters, dynamics processors, mixers, and low level DSP  
functions for fast development of custom signal flows.  
Analog and digital I/O: 1.8 V to 3.65 V  
I2C and SPI control interfaces  
Digital audio serial data I/O: stereo and time-division  
multiplexing (TDM) modes  
Software-controllable clickless mute  
Software power-down  
GPIO pins for digital controls and outputs  
32-lead, 5 mm × 5 mm LFCSP  
−40°C to +85°C operating temperature range  
The record path includes an integrated microphone bias circuit  
and six inputs. The inputs can be mixed and muxed before the  
ADC, or they can be configured to bypass the ADC. The  
ADAU1761 includes a stereo digital microphone input.  
The ADAU1761 includes five high power output drivers (two  
differential and three single-ended), supporting stereo head-  
phones, an earpiece, or other output transducer. AC-coupled  
or capless configurations are supported. Individual fine level  
controls are supported on all analog outputs. The output mixer  
stage allows for flexible routing of audio.  
APPLICATIONS  
Smartphones/multimedia phones  
Digital still cameras/digital video cameras  
Portable media players/portable audio players  
Phone accessories products  
FUNCTIONAL BLOCK DIAGRAM  
HP JACK  
DETECTION  
REGULATOR  
ADAU1761  
JACKDET/MICIN  
LAUX  
LINP  
LINN  
LOUTP  
LOUTN  
LHP  
DAC  
DAC  
ADC  
ADC  
DAC  
INPUT  
DIGITAL DIGITAL  
FILTERS FILTERS  
MIXERS  
OUTPUT  
MIXERS  
MONOOUT  
RHP  
RINP  
RINN  
ALC  
ADC  
ROUTP  
ROUTN  
RAUX  
2
I C/SPI  
CONTROL PORT  
MICROPHONE  
BIAS  
SERIAL DATA  
INPUT/OUTPUT PORTS  
MICBIAS  
PLL  
MCLK  
ADDR0/ ADDR1/ SCL/ SDA/  
CDATA CCLK COUT  
CLATCH  
Figure 1.  
Rev. C  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 www.analog.com  
Fax: 781.461.3113 ©2009–2010 Analog Devices, Inc. All rights reserved.  
 
 
 
ADAU1761  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Playback Signal Path ...................................................................... 35  
Output Signal Paths ................................................................... 35  
Headphone Output .................................................................... 36  
Pop-and-Click Suppression ...................................................... 37  
Line Outputs ............................................................................... 37  
Control Ports................................................................................... 38  
Burst Mode Writing and Reading............................................ 38  
I2C Port ........................................................................................ 38  
SPI Port........................................................................................ 41  
Serial Data Input/Output Ports .................................................... 42  
Applications Information.............................................................. 44  
Power Supply Bypass Capacitors.............................................. 44  
GSM Noise Filter........................................................................ 44  
Grounding................................................................................... 44  
Exposed Pad PCB Design ......................................................... 44  
DSP Core ......................................................................................... 45  
Signal Processing........................................................................ 45  
Architecture ................................................................................ 45  
Program Counter ....................................................................... 45  
Features........................................................................................ 45  
Startup.......................................................................................... 45  
Numeric Formats ....................................................................... 46  
Programming.............................................................................. 46  
Program RAM, Parameter RAM, and Data RAM..................... 47  
Program RAM ............................................................................ 47  
Parameter RAM.......................................................................... 47  
Data RAM ................................................................................... 47  
Read/Write Data Formats ......................................................... 47  
Software Safeload ....................................................................... 48  
Software Slew.............................................................................. 49  
General-Purpose Input/Output.................................................... 50  
GPIO Pins Set from the Control Port...................................... 50  
Control Registers............................................................................ 51  
Control Register Details ............................................................ 52  
Outline Dimensions....................................................................... 92  
Ordering Guide .......................................................................... 92  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 3  
Specifications..................................................................................... 4  
Analog Performance Specifications........................................... 4  
Power Supply Specifications........................................................ 7  
Typical Current Consumption.................................................... 8  
Typical Power Management Measurements ............................. 9  
Digital Filters............................................................................... 10  
Digital Input/Output Specifications......................................... 10  
Digital Timing Specifications ................................................... 11  
Digital Timing Diagrams........................................................... 12  
Absolute Maximum Ratings.......................................................... 14  
Thermal Resistance .................................................................... 14  
ESD Caution................................................................................ 14  
Pin Configuration and Function Descriptions........................... 15  
Typical Performance Characteristics ........................................... 17  
System Block Diagrams ................................................................. 20  
Theory of Operation ...................................................................... 23  
Startup, Initialization, and Power................................................. 24  
Power-Up Sequence ................................................................... 24  
Power Reduction Modes............................................................ 24  
Digital Power Supply.................................................................. 24  
Input/Output Power Supply...................................................... 24  
Clock Generation and Management........................................ 24  
Clocking and Sampling Rates ....................................................... 26  
Core Clock................................................................................... 26  
Sampling Rates............................................................................ 27  
PLL ............................................................................................... 27  
Record Signal Path.......................................................................... 29  
Input Signal Paths....................................................................... 29  
Analog-to-Digital Converters................................................... 31  
Automatic Level Control (ALC)................................................... 32  
ALC Parameters.......................................................................... 32  
Noise Gate Function .................................................................. 33  
Rev. C | Page 2 of 92  
ADAU1761  
REVISION HISTORY  
9/10—Rev. B to Rev. C  
Changes to Figure 1...........................................................................1  
Changes to SPI Port Section ..........................................................41  
Changes to Serial Data Input/Output Ports Section  
and Table 25 .....................................................................................42  
Added Figure 57..............................................................................42  
Changes to Architecture Section and Figure 67..........................45  
Added Startup Section....................................................................45  
Changes to Parameter RAM Section and Data RAM Section ..47  
Changes to Table 33 ........................................................................51  
Changes to R2: Digital Microphone/Jack Detection Control,  
16,392 (0x4008) Section and Table 36..........................................54  
Changes to Table 42 ........................................................................58  
Changes to Table 43 ........................................................................59  
Changes to R15: Serial Port Control 0, 16,405 (0x4015)  
5/10—Rev. A to Rev. B  
Changes to Burst Mode Writing and Reading Section ..............38  
Changes to Table 33 ........................................................................51  
Added R67: Dejitter Control, 16,438 (0x4036) Section .............79  
12/09—Rev. 0 to Rev. A  
Changes to Features Section ............................................................1  
Change to General Description Section.........................................1  
Changes to Table 1 ............................................................................6  
Change to Table 5............................................................................10  
Changes to Figure 6.........................................................................13  
Changes to Table 10 ........................................................................15  
Changes to Captions of Figure 15, Figure 16, Figure 18, and  
Figure 19...........................................................................................18  
Changes to Captions of Figure 21 and Figure 24........................19  
Added Figure 25; Renumbered Sequentially...............................19  
Change to Figure 26........................................................................20  
Change to Figure 27........................................................................21  
Change to Figure 28........................................................................22  
Change to Theory of Operation Section......................................23  
Changes to Power Reduction Modes Section and  
Case 1: PLL Is Bypassed Section ...................................................24  
Changes to PLL Lock Acquisition Section...................................25  
Changes to Core Clock Section and Figure 30............................26  
Change to Sampling Rates Section................................................27  
Changes to Input Signal Paths Section and Figure 32................29  
Changes to Figure 33 and Figure 34 .............................................30  
Changes to ADC Full-Scale Level Section...................................31  
Change to Automatic Level Control (ALC) Section...................32  
Changes to Output Signal Paths Section......................................35  
Changes to Headphone Output Section.......................................36  
Changes to Jack Detection Section, Pop-and-Click  
Section and Table 49.......................................................................63  
Change to Table 50..........................................................................64  
Changes to Table 51, R18: Converter Control 1, 16,408  
(0x4018) Section, and Table 52 .....................................................65  
Changes to Table 60, R27: Playback L/R Mixer Right (Mixer 6)  
Line Output Control, 16,417 (0x4021) Section, and Table 61...71  
Changes to Table 62, R29: Playback Headphone Left Volume  
Control, 16,419 (0x4023) Section, and Table 63 .........................72  
Changes to Table 64 ........................................................................73  
Changes to R42: Jack Detect Pin Control, 16,433 (0x4031)  
Section and Table 76.......................................................................79  
Changes to R57: DSP Sampling Rate Setting, 16,619 (0x40EB)  
Section and Table 81.......................................................................81  
Change to Table 85..........................................................................83  
Change to Table 88..........................................................................84  
Changes to R66: Clock Enable 1, 16,634 (0x40FA) Section  
and Table 90 .....................................................................................85  
1/09—Revision 0: Initial Version  
Suppression Section, and Line Outputs Section .........................37  
Changes to Control Ports Section and I2C Port Section............38  
Added Burst Mode Writing and Reading Section ......................38  
Rev. C | Page 3 of 92  
 
ADAU1761  
SPECIFICATIONS  
Supply voltage (AVDD) = 3.3 V, TA = 25°C, master clock = 12.288 MHz (48 kHz fS, 256 × fS mode), input sample rate = 48 kHz, measurement  
bandwidth = 20 Hz to 20 kHz, word width = 24 bits, CLOAD (digital output) = 20 pF, ILOAD (digital output) = 2 mA, VIH = 2 V, VIL = 0.8 V,  
unless otherwise noted. Performance of all channels is identical, exclusive of the interchannel gain mismatch and interchannel phase  
deviation specifications.  
ANALOG PERFORMANCE SPECIFICATIONS  
Specifications guaranteed at 25°C (ambient).  
Table 1.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
ANALOG-TO-DIGITAL CONVERTERS  
ADC performance excludes mixers  
and PGA  
ADC Resolution  
All ADCs  
24  
0.375  
95  
Bits  
dB  
dB  
Digital Attenuation Step  
Digital Attenuation Range  
INPUT RESISTANCE  
Single-Ended Line Input  
−12 dB gain  
0 dB gain  
6 dB gain  
−12 dB gain  
0 dB gain  
35.25 dB gain  
All gains  
83  
21  
10.5  
84.5  
53  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
PGA Inverting Inputs  
2
105  
PGA Noninverting Inputs  
SINGLE-ENDED LINE INPUT  
Full-Scale Input Voltage (0 dB)  
Scales linearly with AVDD  
AVDD = 1.8 V  
AVDD = 3.3 V  
AVDD/3.3  
0.55 (1.56)  
1.0 (2.83)  
V rms  
V rms (V p-p)  
V rms (V p-p)  
Dynamic Range  
With A-Weighted Filter (RMS)  
20 Hz to 20 kHz, −60 dB input  
AVDD = 1.8 V  
94  
99  
91  
96  
dB  
dB  
dB  
dB  
AVDD = 3.3 V  
AVDD = 1.8 V  
AVDD = 3.3 V  
No Filter (RMS)  
Total Harmonic Distortion + Noise  
−1 dBFS  
AVDD = 1.8 V  
AVDD = 3.3 V  
−88  
−90  
dB  
dB  
Signal-to-Noise Ratio  
With A-Weighted Filter (RMS)  
AVDD = 1.8 V  
AVDD = 3.3 V  
AVDD = 1.8 V  
AVDD = 3.3 V  
94  
99  
91  
96  
3
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
mV  
%
No Filter (RMS)  
Gain per Step  
Total Gain Range  
Mute Attenuation  
Interchannel Gain Mismatch  
Offset Error  
Gain Error  
Interchannel Isolation  
Power Supply Rejection Ratio  
−12  
+6  
−87  
0.005  
0
−12  
68  
dB  
CM capacitor = 20 μF  
100 mV p-p @ 217 Hz  
100 mV p-p @ 1 kHz  
65  
67  
dB  
dB  
Rev. C | Page 4 of 92  
 
 
ADAU1761  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
PSEUDO-DIFFERENTIAL PGA INPUT  
Full-Scale Input Voltage (0 dB)  
Scales linearly with AVDD  
AVDD = 1.8 V  
AVDD = 3.3 V  
AVDD/3.3  
0.55 (1.56)  
1.0 (2.83)  
V rms  
V rms (V p-p)  
V rms (V p-p)  
Dynamic Range  
With A-Weighted Filter (RMS)  
20 Hz to 20 kHz, −60 dB input  
AVDD = 1.8 V  
92  
98  
90  
95  
dB  
dB  
dB  
dB  
AVDD = 3.3 V  
AVDD = 1.8 V  
AVDD = 3.3 V  
No Filter (RMS)  
Total Harmonic Distortion + Noise  
−1 dBFS  
AVDD = 1.8 V  
AVDD = 3.3 V  
−88  
−89  
dB  
dB  
Signal-to-Noise Ratio  
With A-Weighted Filter (RMS)  
AVDD = 1.8 V  
AVDD = 3.3 V  
AVDD = 1.8 V  
AVDD = 3.3 V  
PGA gain  
92  
98  
90  
95  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
mV  
%
No Filter (RMS)  
Volume Control Step  
Volume Control Range  
PGA Boost  
Mute Attenuation  
Interchannel Gain Mismatch  
Offset Error  
Gain Error  
Interchannel Isolation  
Common-Mode Rejection Ratio  
0.75  
PGA gain  
−12  
+35.25  
20  
−87  
0.005  
0
−14  
83  
dB  
dB  
dB  
100 mV rms, 1 kHz  
100 mV rms, 20 kHz  
Differential PGA inputs  
Scales linearly with AVDD  
AVDD = 1.8 V  
65  
65  
FULL DIFFERENTIAL PGA INPUT  
Full-Scale Input Voltage (0 dB)  
AVDD/3.3  
0.55 (1.56)  
1.0 (2.83)  
V rms  
V rms (V p-p)  
V rms (V p-p)  
AVDD = 3.3 V  
Dynamic Range  
With A-Weighted Filter (RMS)  
20 Hz to 20 kHz, −60 dB input  
AVDD = 1.8 V  
92  
98  
90  
95  
dB  
dB  
dB  
dB  
AVDD = 3.3 V  
AVDD = 1.8 V  
AVDD = 3.3 V  
No Filter (RMS)  
Total Harmonic Distortion + Noise  
−1 dBFS  
AVDD = 1.8 V  
AVDD = 3.3 V  
−70  
−78  
dB  
dB  
Signal-to-Noise Ratio  
With A-Weighted Filter (RMS)  
AVDD = 1.8 V  
AVDD = 3.3 V  
AVDD = 1.8 V  
AVDD = 3.3 V  
PGA gain  
92  
98  
90  
95  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
mV  
%
No Filter (RMS)  
Volume Control Step  
Volume Control Range  
PGA Boost  
Mute Attenuation  
Interchannel Gain Mismatch  
Offset Error  
0.75  
PGA gain  
−12  
+35.25  
20  
−87  
0.005  
0
Gain Error  
−14  
Rev. C | Page 5 of 92  
ADAU1761  
Parameter  
Test Conditions/Comments  
Min  
Typ  
83  
65  
Max  
Unit  
dB  
dB  
Interchannel Isolation  
Common-Mode Rejection Ratio  
100 mV rms, 1 kHz  
100 mV rms, 20 kHz  
MBIEN = 1  
65  
dB  
MICROPHONE BIAS  
Bias Voltage  
0.65 × AVDD  
AVDD = 1.8 V, MBI = 1  
AVDD = 3.3 V, MBI = 1  
AVDD = 1.8 V, MBI = 0  
AVDD = 3.3 V, MBI = 0  
AVDD = 3.3 V, MBI = 0, MPERF = 1  
AVDD = 3.3 V, 1 kHz to 20 kHz  
MBI = 0, MPERF = 0  
MBI = 0, MPERF = 1  
MBI = 1, MPERF = 0  
MBI = 1, MPERF = 1  
1.17  
2.145  
1.62  
2.97  
V
V
V
V
0.90 × AVDD  
Bias Current Source  
Noise in the Signal Bandwidth  
3
mA  
42  
85  
25  
37  
nV/√Hz  
nV/√Hz  
nV/√Hz  
nV/√Hz  
DIGITAL-TO-ANALOG CONVERTERS  
DAC performance excludes mixers and  
headphone amplifier  
DAC Resolution  
All DACs  
24  
0.375  
95  
Bits  
dB  
dB  
Digital Attenuation Step  
Digital Attenuation Range  
DAC TO LINE OUTPUT  
Full-Scale Output Voltage (0 dB)  
Scales linearly with AVDD  
AVDD = 1.8 V  
AVDD = 3.3 V  
Line output volume control  
Line output volume control  
AVDD/3.3  
0.50 (1.41)  
0.92 (2.60)  
0.75  
1
−87  
V rms  
V rms (V p-p)  
V rms (V p-p)  
dB  
dB  
dB  
Analog Volume Control Step  
Analog Volume Control Range  
Mute Attenuation  
−57  
+6  
Dynamic Range  
20 Hz to 20 kHz, −60 dB input, line  
output mode  
With A-Weighted Filter (RMS)  
No Filter (RMS)  
AVDD = 1.8 V  
AVDD = 3.3 V  
AVDD = 1.8 V  
AVDD = 3.3 V  
−1 dBFS, line output mode  
AVDD = 1.8 V  
AVDD = 3.3 V  
96  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
101  
93.5  
98  
Total Harmonic Distortion + Noise  
−90  
−92  
Signal-to-Noise Ratio  
With A-Weighted Filter (RMS)  
Line output mode  
AVDD = 1.8 V  
96  
dB  
dB  
dB  
dB  
AVDD = 3.3 V  
101  
93.5  
98  
No Filter (RMS)  
AVDD = 1.8 V  
AVDD = 3.3 V  
Power Supply Rejection Ratio  
CM capacitor = 20 μF  
100 mV p-p @ 217 Hz  
100 mV p-p @ 1 kHz  
56  
70  
3
dB  
dB  
%
Gain Error  
Interchannel Gain Mismatch  
Offset Error  
Interchannel Isolation  
0.005  
0
100  
dB  
mV  
dB  
1 kHz, 0 dBFS input signal  
Rev. C | Page 6 of 92  
ADAU1761  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
DAC TO HEADPHONE/EARPIECE  
OUTPUT  
PO = output power per channel  
Full-Scale Output Voltage (0 dB)  
Scales linearly with AVDD  
AVDD = 1.8 V  
AVDD = 3.3 V  
AVDD/3.3  
0.50 (1.41)  
0.92 (2.60)  
V rms  
V rms (V p-p)  
V rms (V p-p)  
Total Harmonic Distortion + Noise  
16 Ω load  
−4 dBFS  
AVDD = 1.8 V, PO = 6.4 mW  
AVDD = 3.3 V, PO = 21.1 mW  
AVDD = 1.8 V, PO = 3.8 mW  
AVDD = 3.3 V, PO = 10.6 mW  
CM capacitor = 20 μF  
100 mV p-p @ 217 Hz  
100 mV p-p @ 1 kHz  
−76  
−82  
−82  
−82  
dB  
dB  
dB  
dB  
32 Ω load  
Power Supply Rejection Ratio  
56  
67  
dB  
dB  
Interchannel Isolation  
1 kHz, 0 dBFS input signal, 32 Ω load,  
AVDD = 3.3 V  
Referred to GND  
Referred to CM (capless headphone  
mode)  
73  
50  
dB  
dB  
REFERENCE  
Common-Mode Reference Output  
CM pin  
AVDD/2  
V
POWER SUPPLY SPECIFICATIONS  
Table 2.  
Parameter  
SUPPLIES  
Voltage  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
DVDDOUT  
AVDD  
IOVDD  
1.56  
3.3  
3.3  
V
V
V
1.8  
1.63  
3.65  
3.65  
Digital I/O Current (IOVDD = 1.8 V)  
Slave Mode  
20 pF capacitive load on all digital pins  
fS = 48 kHz  
fS = 96 kHz  
fS = 8 kHz  
fS = 48 kHz  
fS = 96 kHz  
fS = 8 kHz  
0.25  
0.48  
0.07  
0.62  
1.23  
0.11  
mA  
mA  
mA  
mA  
mA  
mA  
Master Mode  
Digital I/O Current (IOVDD = 3.3 V)  
Slave Mode  
20 pF capacitive load on all digital pins  
fS = 48 kHz  
fS = 96 kHz  
fS = 8 kHz  
fS = 48 kHz  
0.48  
0.9  
0.13  
1.51  
3
mA  
mA  
mA  
mA  
mA  
mA  
Master Mode  
fS = 96 kHz  
fS = 8 kHz  
0.27  
Analog Current (AVDD)  
See Table 3  
Rev. C | Page 7 of 92  
 
 
ADAU1761  
TYPICAL CURRENT CONSUMPTION  
Master clock = 12.288 MHz, input sample rate = 48 kHz, input tone = 1 kHz, normal power management settings, ADC input @ −1 dBFS,  
DAC input @ 0 dBFS. For total power consumption, add the IOVDD current listed in Table 2.  
Table 3.  
Typical AVDD Current  
Consumption (mA)  
Operating Voltage  
Audio Path  
Clock Generation  
Direct MCLK  
Integer PLL  
Direct MCLK  
Integer PLL  
Direct MCLK  
Integer PLL  
Direct MCLK  
Integer PLL  
Direct MCLK  
Integer PLL  
Direct MCLK  
Integer PLL  
Direct MCLK  
Integer PLL  
Direct MCLK  
Integer PLL  
Direct MCLK  
Integer PLL  
Direct MCLK  
Integer PLL  
Direct MCLK  
Integer PLL  
Direct MCLK  
Integer PLL  
AVDD = IOVDD = 3.3 V  
Record stereo differential to ADC  
5.24  
6.57  
5.55  
6.90  
55.5  
56.8  
30.9  
32.25  
56.75  
58  
DAC stereo playback to line output (10 kΩ)  
DAC stereo playback to headphone (16 Ω)  
DAC stereo playback to headphone (32 Ω)  
DAC stereo playback to capless headphone (32 Ω)  
Record aux stereo bypass to line output (10 kΩ)  
Record stereo differential to ADC  
1.9  
3.3  
AVDD = IOVDD = 1.8 V  
4.25  
5.55  
4.7  
DAC stereo playback to line output (10 kΩ)  
DAC stereo playback to headphone (16 Ω)  
DAC stereo playback to headphone (32 Ω)  
DAC stereo playback to capless headphone (32 Ω)  
Record aux stereo bypass to line output (10 kΩ)  
5.7  
30.81  
32  
18.3  
19.5  
32.6  
33.7  
1.9  
3.07  
Rev. C | Page 8 of 92  
 
ADAU1761  
TYPICAL POWER MANAGEMENT MEASUREMENTS  
Master clock = 12.288 MHz, integer PLL, input sample rate = 48 kHz, input tone = 1 kHz. Pseudo-differential input to ADCs, DACs to  
line output with 10 kΩ load. ADC input @ −1 dBFS, DAC input @ 0 dBFS. In Table 4, the mixer boost and power management conditions  
are set for MXBIAS[1:0], ADCBIAS[1:0], HPBIAS[1:0], and DACBIAS[1:0]. RBIAS[1:0] and PBIAS[1:0] do not have an extreme power  
saving mode and are therefore set for power saving mode in the extreme power saving rows in Table 4.  
Table 4.  
Typical  
Power Management  
Setting  
Mixer Boost  
Setting  
AVDD Current  
Consumption (mA) THD + N (dB)  
Typical ADC  
Typical Line Output  
THD + N (dB)  
Operating Voltage  
AVDD = IOVDD = 3.3 V Normal (default)  
Normal operation 9.6  
−91  
−92.5  
−92.5  
−92.5  
−92.5  
−87  
Boost Level 1  
Boost Level 2  
Boost Level 3  
9.75  
9.92  
−91.5  
−91.5  
−91.5  
−84.5  
−84.8  
−84.8  
−85  
10.25  
Extreme power saving  
Normal operation 7.09  
Boost Level 1  
Boost Level 2  
Boost Level 3  
7.19  
7.29  
7.49  
−87.1  
−87.1  
−87.1  
−90  
Power saving  
Normal operation 7.67  
−89.5  
−89.5  
−89.8  
−89.8  
−91  
Boost Level 1  
Boost Level 2  
Boost Level 3  
7.77  
7.86  
8.07  
−90  
−90  
−90  
Enhanced performance Normal operation 10.55  
−93.5  
−93.5  
−93.5  
−93.5  
−91.2  
−91.2  
−91.2  
−91.2  
−86  
Boost Level 1  
Boost Level 2  
Boost Level 3  
10.74  
10.93  
11.33  
−91  
−91  
−91  
AVDD = IOVDD = 1.8 V Normal (default)  
Normal operation 8.1  
−88  
Boost Level 1  
Boost Level 2  
Boost Level 3  
8.26  
8.41  
8.73  
−88  
−88  
−88  
Extreme power saving  
Normal operation 5.73  
−85  
Boost Level 1  
Boost Level 2  
Boost Level 3  
5.82  
5.91  
6.1  
−85.4  
−85.5  
−85.5  
−86  
−86  
−86  
−86  
Power saving  
Normal operation 6.27  
−89.4  
−89.5  
−89.5  
−89.5  
−91.5  
−91.5  
−91.5  
−91.5  
Boost Level 1  
Boost Level 2  
Boost Level 3  
6.36  
6.46  
6.65  
−86.1  
−86.3  
−86.3  
−88  
Enhanced performance Normal operation 9.01  
Boost Level 1  
Boost Level 2  
Boost Level 3  
9.2  
9.38  
9.76  
−88  
−88  
−88  
Rev. C | Page 9 of 92  
 
ADAU1761  
DIGITAL FILTERS  
Table 5.  
Parameter  
Mode  
Factor  
Min  
Typ  
Max  
Unit  
ADC DECIMATION FILTER  
Pass Band  
Pass-Band Ripple  
Transition Band  
Stop Band  
All modes, typ @ 48 kHz  
0.4375 fS  
21  
0.015  
24  
27  
67  
479  
kHz  
dB  
kHz  
kHz  
dB  
0.5 fS  
0.5625 fS  
Stop-Band Attenuation  
Group Delay  
22.9844/fS  
ꢀs  
DAC INTERPOLATION FILTER  
Pass Band  
48 kHz mode, typ @ 48 kHz  
96 kHz mode, typ @ 96 kHz  
48 kHz mode, typ @ 48 kHz  
96 kHz mode, typ @ 96 kHz  
48 kHz mode, typ @ 48 kHz  
96 kHz mode, typ @ 96 kHz  
48 kHz mode, typ @ 48 kHz  
96 kHz mode, typ @ 96 kHz  
48 kHz mode, typ @ 48 kHz  
96 kHz mode, typ @ 96 kHz  
48 kHz mode, typ @ 48 kHz  
96 kHz mode, typ @ 96 kHz  
0.4535 fS  
0.3646 fS  
22  
35  
kHz  
kHz  
dB  
Pass-Band Ripple  
Transition Band  
Stop Band  
0.01  
0.05  
dB  
0.5 fS  
0.5 fS  
0.5465 fS  
0.6354 fS  
24  
48  
26  
61  
69  
68  
521  
115  
kHz  
kHz  
kHz  
kHz  
dB  
dB  
ꢀs  
ꢀs  
Stop-Band Attenuation  
Group Delay  
25/fS  
11/fS  
DIGITAL INPUT/OUTPUT SPECIFICATIONS  
−40°C < TA < +85°C, IOVDD = 3.3 V 10ꢀ.  
Table 6.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
INPUT SPECIFICATIONS  
Input Voltage High (VIH)  
Input Voltage Low (VIL)  
Input Leakage  
0.7 × IOVDD  
V
V
0.3 × IOVDD  
Pull-Ups/Pull-Downs Disabled  
IIH @ VIH = 3.3 V  
IIL @ VIL = 0 V  
IIL @ VIL = 0 V (MCLK pin)  
IIH @ VIH = 3.3 V  
IIL @ VIL = 0 V  
−0.17  
−0.17  
−13.5  
−0.7  
−13.5  
2.7  
+0.17  
+0.17  
−0.5  
+0.7  
−0.5  
8.3  
ꢀA  
ꢀA  
ꢀA  
ꢀA  
ꢀA  
ꢀA  
ꢀA  
pF  
Pull-Ups Enabled  
Pull-Downs Enabled  
IIH @ VIH = 3.3 V  
IIL @ VIL = 0 V  
−0.18  
+0.18  
5
Input Capacitance  
OUTPUT SPECIFICATIONS  
Output Voltage High (VOH)  
Output Voltage Low (VOL)  
IOH = 2 mA @ 3.3 V, 0.85 mA @ 1.8 V  
IOL = 2 mA @ 3.3 V, 0.85 mA @ 1.8 V  
0.8 × IOVDD  
V
V
0.1 × IOVDD  
Rev. C | Page 10 of 92  
 
 
 
ADAU1761  
DIGITAL TIMING SPECIFICATIONS  
−40°C < TA < +85°C, IOVDD = 3.3 V 10ꢀ.  
Table 7. Digital Timing  
Limit  
Parameter  
Unit  
Description  
tMIN  
tMAX  
MASTER CLOCK  
tMP  
tMP  
tMP  
74  
37  
24.7  
18.5  
488  
244  
162.7  
122  
ns  
ns  
ns  
ns  
MCLK period, 256 × fS mode.  
MCLK period, 512 × fS mode.  
MCLK period, 768 × fS mode.  
MCLK period, 1024 × fS mode.  
tMP  
SERIAL PORT  
tBIL  
tBIH  
tLIS  
tLIH  
5
5
5
5
5
5
ns  
ns  
ns  
ns  
ns  
ns  
ns  
BCLK pulse width low.  
BCLK pulse width high.  
LRCLK setup. Time to BCLK rising.  
LRCLK hold. Time from BCLK rising.  
DAC_SDATA setup. Time to BCLK rising.  
DAC_SDATA hold. Time from BCLK rising.  
tSIS  
tSIH  
tSODM  
SPI PORT  
fCCLK  
tCCPL  
tCCPH  
tCLS  
50  
10  
ADC_SDATA delay. Time from BCLK falling in master mode.  
MHz  
ns  
ns  
CCLK frequency.  
CCLK pulse width low.  
CCLK pulse width high.  
CLATCH setup. Time to CCLK rising.  
CLATCH hold. Time from CCLK rising.  
CLATCH pulse width high.  
10  
10  
5
ns  
tCLH  
10  
10  
5
ns  
tCLPH  
tCDS  
tCDH  
ns  
ns  
ns  
ns  
CDATA setup. Time to CCLK rising.  
CDATA hold. Time from CCLK rising.  
COUT three-stated. Time from CLATCH rising.  
5
tCOD  
50  
I2C PORT  
fSCL  
tSCLH  
tSCLL  
tSCS  
tSCH  
tDS  
tSCR  
tSCF  
400  
kHz  
ꢀs  
ꢀs  
ꢀs  
ꢀs  
ns  
ns  
ns  
ns  
ns  
ꢀs  
SCL frequency.  
SCL high.  
SCL low.  
Setup time; relevant for repeated start condition.  
Hold time. After this period, the first clock is generated.  
Data setup time.  
SCL rise time.  
SCL fall time.  
0.6  
1.3  
0.6  
0.6  
100  
300  
300  
300  
300  
tSDR  
tSDF  
tBFT  
SDA rise time.  
SDA fall time.  
0.6  
Bus-free time. Time between stop and start.  
RLOAD = 1 MΩ, CLOAD = 14 pF.  
Digital microphone clock fall time.  
Digital microphone clock rise time.  
Digital microphone delay time for valid data.  
Digital microphone delay time for data three-stated.  
DIGITAL MICROPHONE  
tDCF  
tDCR  
tDDV  
tDDH  
10  
10  
30  
12  
ns  
ns  
ns  
ns  
22  
0
Rev. C | Page 11 of 92  
 
ADAU1761  
DIGITAL TIMING DIAGRAMS  
tLIH  
tBIH  
BCLK  
tBIL  
tLIS  
LRCLK  
tSIS  
DAC_SDATA  
LEFT-JUSTIFIED  
MODE  
MSB  
MSB – 1  
tSIH  
tSIS  
DAC_SDATA  
I S MODE  
2
MSB  
tSIH  
tSIS  
tSIS  
DAC_SDATA  
RIGHT-JUSTIFIED  
MODE  
LSB  
MSB  
tSIH  
tSIH  
8-BIT CLOCKS  
(24-BIT DATA)  
12-BIT CLOCKS  
(20-BIT DATA)  
14-BIT CLOCKS  
(18-BIT DATA)  
16-BIT CLOCKS  
(16-BIT DATA)  
Figure 2. Serial Input Port Timing  
tBIH  
BCLK  
tBIL  
LRCLK  
tSODM  
MSB  
ADC_SDATA  
LEFT-JUSTIFIED  
MODE  
MSB – 1  
tSODM  
MSB  
ADC_SDATA  
I S MODE  
2
tSODM  
ADC_SDATA  
RIGHT-JUSTIFIED  
MODE  
LSB  
MSB  
8-BIT CLOCKS  
(24-BIT DATA)  
12-BIT CLOCKS  
(20-BIT DATA)  
14-BIT CLOCKS  
(18-BIT DATA)  
16-BIT CLOCKS  
(16-BIT DATA)  
Figure 3. Serial Output Port Timing  
Rev. C | Page 12 of 92  
 
ADAU1761  
tCLS  
tCLH  
tCLPH  
tCCPL  
tCCPH  
CLATCH  
CCLK  
CDATA  
tCDH  
tCDS  
COUT  
tCOD  
Figure 4. SPI Port Timing  
tDS  
tSCH  
tSCH  
SDA  
SCL  
tSCR  
tSCLH  
tSCS  
tBFT  
tSCLL tSCF  
Figure 5. I2C Port Timing  
tDCF  
tDCR  
CLK  
tDDH  
tDDH  
tDDV  
tDDV  
DATA1/  
DATA2  
DATA1  
DATA2  
DATA1  
DATA2  
Figure 6. Digital Microphone Timing  
Rev. C | Page 13 of 92  
 
ADAU1761  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Table 8.  
θJA represents thermal resistance, junction-to-ambient; θJC repre-  
sents thermal resistance, junction-to-case. All characteristics are  
for a 4-layer board.  
Parameter  
Rating  
Power Supply (AVDD)  
−0.3 V to +3.65 V  
20 mA  
−0.3 V to AVDD + 0.3 V  
−0.3 V to IOVDD + 0.3 V  
−40°C to +85°C  
−65°C to +150°C  
Input Current (Except Supply Pins)  
Analog Input Voltage (Signal Pins)  
Digital Input Voltage (Signal Pins)  
Operating Temperature Range  
Storage Temperature Range  
Table 9. Thermal Resistance  
Package Type  
θJA  
θJC  
Unit  
32-Lead LFCSP  
50.1  
17  
°C/W  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
ESD CAUTION  
Rev. C | Page 14 of 92  
 
 
 
ADAU1761  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
IOVDD  
MCLK  
ADDR0/CLATCH  
JACKDET/MICIN  
MICBIAS  
1
2
3
4
5
6
7
8
24 DVDDOUT  
23 AVDD  
22 AGND  
21 MONOOUT  
20 LHP  
19 RHP  
18 LOUTP  
17 LOUTN  
PIN 1  
INDICATOR  
ADAU1761  
TOP VIEW  
(Not to Scale)  
LAUX  
CM  
AVDD  
NOTES  
1. THE EXPOSED PAD IS CONNECTED INTERNALLY TO THE  
ADAU1761 GROUNDS. FOR INCREASED RELIABILITY OF THE  
SOLDER JOINTS AND MAXIMUM THERMAL CAPABILITY, IT IS  
RECOMMENDED THAT THE PAD BE SOLDERED TO THE  
GROUND PLANE.  
Figure 7. Pin Configuration  
Table 10. Pin Function Descriptions  
Pin No.  
Mnemonic  
Type1  
Description  
1
IOVDD  
PWR  
Supply for Digital Input and Output Pins. The digital output pins are supplied from IOVDD,  
which also sets the highest input voltage that should be seen on the digital input pins.  
IOVDD should be set between 1.8 V and 3.3 V. The current draw of this pin is variable because  
it is dependent on the loads of the digital outputs. IOVDD should be decoupled to DGND  
with a 100 nF capacitor and a 10 μF capacitor.  
2
3
MCLK  
ADDR0/CLATCH  
D_IN  
D_IN  
External Master Clock Input.  
I2C Address Bit 0 (ADDR0).  
SPI Latch Signal (CLATCH). Must go low at the beginning of an SPI transaction and high at the  
end of a transaction. Each SPI transaction can take a different number of CCLKs to complete,  
depending on the address and read/write bit that are sent at the beginning of the SPI  
transaction.  
4
JACKDET/MICIN  
D_IN  
Detect Insertion/Removal of Headphone Plug (JACKDET).  
Digital Microphone Stereo Input (MICIN).  
5
6
7
MICBIAS  
LAUX  
CM  
A_OUT  
A_IN  
A_OUT  
Bias Voltage for Electret Microphone.  
Left Channel Single-Ended Auxiliary Input. Biased at AVDD/2.  
AVDD/2 V Common-Mode Reference. A 10 μF to 47 μF standard decoupling capacitor should  
be connected between this pin and AGND to reduce crosstalk between the ADCs and DACs.  
This pin can be used to bias external analog circuits, as long as they are not drawing current  
from CM (for example, the noninverting input of an op amp).  
8
9
AVDD  
AGND  
PWR  
PWR  
1.8 V to 3.65 V Analog Supply for DAC and Microphone Bias. This pin should be decoupled  
locally to AGND with a 100 nF capacitor.  
Analog Ground. The AGND and DGND pins can be tied together on a common ground plane.  
AGND should be decoupled locally to AVDD with a 100 nF capacitor.  
10  
11  
12  
13  
14  
15  
16  
17  
18  
LINP  
LINN  
RINP  
RINN  
RAUX  
ROUTP  
ROUTN  
LOUTN  
LOUTP  
A_IN  
A_IN  
A_IN  
A_IN  
Left Channel Noninverting Input or Single-Ended Input 0. Biased at AVDD/2.  
Left Channel Inverting Input or Single-Ended Input 1. Biased at AVDD/2.  
Right Channel Noninverting Input or Single-Ended Input 2. Biased at AVDD/2.  
Right Channel Inverting Input or Single-Ended Input 3. Biased at AVDD/2.  
Right Channel Single-Ended Auxiliary Input. Biased at AVDD/2.  
Right Line Output, Positive. Biased at AVDD/2.  
Right Line Output, Negative. Biased at AVDD/2.  
Left Line Output, Negative. Biased at AVDD/2.  
Left Line Output, Positive. Biased at AVDD/2.  
A_IN  
A_OUT  
A_OUT  
A_OUT  
A_OUT  
Rev. C | Page 15 of 92  
 
ADAU1761  
Pin No.  
19  
20  
Mnemonic  
Type1  
Description  
RHP  
LHP  
MONOOUT  
A_OUT  
A_OUT  
A_OUT  
Right Headphone Output. Biased at AVDD/2.  
Left Headphone Output. Biased at AVDD/2.  
Mono Output or Virtual Ground for Capless Headphone. Biased at AVDD/2 when set as mono  
output.  
21  
22  
23  
24  
AGND  
PWR  
PWR  
PWR  
Analog Ground. The AGND and DGND pins can be tied together on a common ground plane.  
AGND should be decoupled locally to AVDD with a 100 nF capacitor.  
1.8 V to 3.3 V Analog Supply for ADC, Output Driver, and Input to Digital Supply Regulator.  
This pin should be decoupled locally to AGND with a 100 nF capacitor.  
Digital Core Supply Decoupling Point. The digital supply is generated from an on-board  
regulator and does not require an external supply. DVDDOUT should be decoupled to DGND  
with a 100 nF capacitor and a 10 μF capacitor.  
AVDD  
DVDDOUT  
25  
DGND  
PWR  
Digital Ground. The AGND and DGND pins can be tied together on a common ground plane.  
DGND should be decoupled to DVDDOUT and to IOVDD with 100 nF capacitors and 10 μF  
capacitors.  
26  
27  
28  
29  
30  
31  
ADC_SDATA/GPIO1 D_IO  
DAC_SDATA/GPIO0 D_IO  
ADC Serial Output Data (ADC_SDATA).  
General-Purpose Input/Output 1 (GPIO1).  
DAC Serial Input Data (DAC_SDATA).  
General-Purpose Input/Output 0 (GPIO0).  
Serial Data Port Bit Clock (BCLK).  
General-Purpose Input/Output 2 (GPIO2).  
Serial Data Port Frame Clock (LRCLK).  
General-Purpose Input/Output 3 (GPIO3).  
I2C Address Bit 1 (ADDR1).  
BCLK/GPIO2  
LRCLK/GPIO3  
ADDR1/CDATA  
SDA/COUT  
D_IO  
D_IO  
D_IN  
D_IO  
SPI Data Input (CDATA).  
I2C Data (SDA). This pin is a bidirectional open-collector input/output. The line connected to  
this pin should have a 2 kΩ pull-up resistor.  
SPI Data Output (COUT). This pin is used for reading back registers and memory locations. It is  
three-state when an SPI read is not active.  
32  
EP  
SCL/CCLK  
D_IN  
I2C Clock (SCL). This pin is always an open-collector input when in I2C control mode. The line  
connected to this pin should have a 2 kΩ pull-up resistor.  
SPI Clock (CCLK). This pin can run continuously or be gated off between SPI transactions.  
Exposed Pad. The exposed pad is connected internally to the ADAU1761 grounds. For  
increased reliability of the solder joints and maximum thermal capability, it is recommended  
that the pad be soldered to the ground plane. See the Exposed Pad PCB Design section for  
more information.  
Exposed Pad  
1 A_IN = analog input, A_OUT = analog output, D_IN = digital input, D_IO = digital input/output, PWR = power.  
Rev. C | Page 16 of 92  
ADAU1761  
TYPICAL PERFORMANCE CHARACTERISTICS  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
–30  
–35  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
–95  
–100  
–105  
6
4
2
0
–60  
–50  
–40  
–30  
–20  
–10  
0
–60  
–50  
–40  
–30  
–20  
–10  
0
DIGITAL 1kHz INPUT SIGNAL (dBFS)  
DIGITAL 1kHz INPUT SIGNAL (dBFS)  
Figure 8. Headphone Amplifier Power vs. Input Level, 16 Ω Load  
Figure 11. Headphone Amplifier THD + N vs. Input Level, 16 Ω Load  
18  
16  
14  
12  
10  
8
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
6
4
2
0
–60  
–50  
–40  
–30  
–20  
–10  
0
–60  
–50  
–40  
–30  
–20  
–10  
0
DIGITAL 1kHz INPUT SIGNAL (dBFS)  
DIGITAL 1kHz INPUT SIGNAL (dBFS)  
Figure 9. Headphone Amplifier Power vs. Input Level, 32 Ω Load  
Figure 12. Headphone Amplifier THD + N vs. Input Level, 32 Ω Load  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
0.04  
0.02  
0
–0.02  
–0.04  
–0.06  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
0
0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40  
FREQUENCY (NORMALIZED TO fS  
FREQUENCY (NORMALIZED TO fS  
)
)
Figure 10. ADC Decimation Filter, 64× Oversampling, Normalized to fS  
Figure 13. ADC Decimation Filter Pass-Band Ripple, 64× Oversampling,  
Normalized to fS  
Rev. C | Page 17 of 92  
 
 
ADAU1761  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0.10  
0.08  
0.06  
0.04  
0.02  
0
–0.02  
–0.04  
–0.06  
–0.08  
–0.10  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
0
0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50  
FREQUENCY (NORMALIZED TO fS  
FREQUENCY (NORMALIZED TO fS  
)
)
Figure 14. ADC Decimation Filter, 128× Oversampling, Normalized to fS  
Figure 17. ADC Decimation Filter Pass-Band Ripple, 128× Oversampling,  
Normalized to fS  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0.04  
0.02  
0
0.02  
0.04  
0.06  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
0
0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40  
FREQUENCY (NORMALIZED TO fS  
FREQUENCY (NORMALIZED TO fS  
)
)
Figure 15. ADC Decimation Filter, 128× Oversampling, Double-Rate Mode,  
Normalized to fS  
Figure 18. ADC Decimation Filter Pass-Band Ripple, 128× Oversampling,  
Double-Rate Mode, Normalized to fS  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
0.20  
0.15  
0.10  
0.05  
0
–0.05  
–0.10  
–0.15  
–0.20  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
0
0.05  
0.10  
0.15  
0.20  
0.25  
0.30  
0.35  
0.40  
FREQUENCY (NORMALIZED TO fS  
)
FREQUENCY (NORMALIZED TO fS  
)
Figure 16. DAC Interpolation Filter, 64× Oversampling, Double-Rate Mode,  
Normalized to fS  
Figure 19. DAC Interpolation Filter Pass-Band Ripple, 64× Oversampling,  
Double-Rate Mode, Normalized to fS  
Rev. C | Page 18 of 92  
ADAU1761  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0.05  
0.04  
0.03  
0.02  
0.01  
0
–0.01  
–0.02  
–0.03  
–0.04  
–0.05  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
0
0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50  
FREQUENCY (NORMALIZED TO fS  
FREQUENCY (NORMALIZED TO fS  
)
)
Figure 20. DAC Interpolation Filter, 128× Oversampling, Normalized to fS  
Figure 23. DAC Interpolation Filter Pass-Band Ripple, 128× Oversampling,  
Normalized to fS  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
0.20  
0.15  
0.10  
0.05  
0
–0.05  
–0.10  
–0.15  
–0.20  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
0
0.05  
0.10  
0.15  
0.20  
0.25  
0.30  
0.35  
0.40  
FREQUENCY (NORMALIZED TO fS  
)
FREQUENCY (NORMALIZED TO fS  
)
Figure 21. DAC Interpolation Filter, 128× Oversampling, Double-Rate Mode,  
Normalized to fS  
Figure 24. DAC Interpolation Filter Pass-Band Ripple, 128× Oversampling,  
Double-Rate Mode, Normalized to fS  
12  
11  
10  
9
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
8
7
6
5
4
3
2
1
0
0
100 200 300 400 500 600 700 800 900 1000 1100  
INSTRUCTIONS  
GAIN (dB)  
Figure 22. Typical DSP Current Draw  
Figure 25. Input Impedance vs. Gain for Analog Inputs  
Rev. C | Page 19 of 92  
 
ADAU1761  
SYSTEM BLOCK DIAGRAMS  
FROM VOLTAGE  
REGULATOR  
(1.8V TO 3.3V)  
10µF  
+
0.1µF  
10µF  
+
10µF  
+
0.1µF  
0.1µF  
0.1µF  
1.2nH  
9.1pF  
THE INPUT CAPACITOR VALUE DEPENDS ON THE  
INPUT IMPEDANCE, WHICH VARIES WITH THE  
VOLUME SETTING.  
DVDDOUT  
IOVDD  
AVDD  
AVDD  
10µF  
LOUTP  
LOUTN  
RHP  
EARPIECE  
SPEAKER  
LINP  
LINN  
LEFT  
MICROPHONE  
10µF  
CAPLESS  
HEADPHONE  
OUTPUT  
MONOOUT  
LHP  
2k  
ROUTP  
ROUTN  
ADAU1761  
MICBIAS  
EARPIECE  
SPEAKER  
2kΩ  
10µF  
RINN  
RINP  
RIGHT  
MICROPHONE  
10µF  
ADC_SDATA/GPIO1  
JACK  
DETECTION  
SIGNAL  
JACKDET/MICIN  
DAC_SDATA/GPIO0  
LRCLK/GPIO3  
SERIAL DATA  
BCLK/GPIO2  
AUX LEFT  
10µF  
10µF  
1kΩ  
LAUX  
RAUX  
ADDR1/CDATA  
SDA/COUT  
SYSTEM  
CONTROLLER  
SCL/CCLK  
AUX RIGHT  
1kΩ  
ADDR0/CLATCH  
49.9Ω  
MCLK  
CM  
+
CLOCK  
SOURCE  
0.1µF  
10µF  
Figure 26. System Block Diagram  
Rev. C | Page 20 of 92  
 
ADAU1761  
FROM VOLTAGE  
REGULATOR  
(1.8V TO 3.3V)  
10µF  
+
0.1µF  
10µF  
+
10µF  
+
0.1µF  
0.1µF  
0.1µF  
1.2nH  
9.1pF  
THE INPUT CAPACITOR VALUE DEPENDS ON THE  
INPUT IMPEDANCE, WHICH VARIES WITH THE  
VOLUME SETTING.  
DVDDOUT  
MICBIAS  
IOVDD  
AVDD  
AVDD  
LOUTP  
LOUTN  
RHP  
V
DD  
EARPIECE  
SPEAKER  
SINGLE-ENDED  
ANALOG  
MICROPHONE  
10µF  
LINN  
LINP  
OUTPUT  
CAPLESS  
HEADPHONE  
OUTPUT  
CM  
MONOOUT  
LHP  
GND  
ADAU1761  
ROUTP  
ROUTN  
EARPIECE  
SPEAKER  
V
DD  
10µF  
SINGLE-ENDED  
ANALOG  
MICROPHONE  
RINN  
RINP  
OUTPUT  
CM  
GND  
ADC_SDATA/GPIO1  
JACK  
DETECTION  
SIGNAL  
JACKDET/MICIN  
DAC_SDATA/GPIO0  
LRCLK/GPIO3  
SERIAL DATA  
BCLK/GPIO2  
10µF  
AUX LEFT  
1k  
LAUX  
RAUX  
ADDR1/CDATA  
SDA/COUT  
10µF  
SYSTEM  
CONTROLLER  
SCL/CCLK  
AUX RIGHT  
1kΩ  
ADDR0/CLATCH  
49.9Ω  
MCLK  
CM  
+
CLOCK  
SOURCE  
0.1µF  
10µF  
Figure 27. System Block Diagram with Analog Microphones  
Rev. C | Page 21 of 92  
ADAU1761  
FROM VOLTAGE  
REGULATOR  
(1.8V TO 3.3V)  
10µF  
+
0.1µF  
10µF  
+
10µF  
+
0.1µF  
0.1µF  
0.1µF  
1.2nH  
9.1pF  
CAPLESS  
DVDDOUT  
IOVDD  
AVDD  
AVDD  
HEADPHONE  
OUTPUT  
MICBIAS  
RHP  
MONOOUT  
LHP  
BCLK  
CM  
2.5V TO 5.0V  
CLK  
LINP  
LINN  
RINN  
0.1µF  
10µF  
V
DATA  
DIGITAL  
DD  
MICROPHONE  
0.1µF  
VDD  
VDD  
22nF  
22nF  
R
R
EXT  
L/R SELECT  
GND  
RINP  
LOUTP  
LOUTN  
INL+  
INL–  
ADAU1761  
OUTL+  
OUTL–  
LEFT  
SPEAKER  
EXT  
SSM2306  
CLASS-D 2W  
BCLK  
STEREO SPEAKER  
DRIVER  
CLK  
22nF  
22nF  
R
R
EXT  
ROUTP  
ROUTN  
INR+  
RIGHT  
SPEAKER  
OUTR+  
EXT  
OUTR–  
INR–  
V
DATA  
DIGITAL  
DD  
MICROPHONE  
SD GND  
GND  
0.1µF  
L/R SELECT  
GND  
JACKDET/MICIN  
LAUX  
ADC_SDATA/GPIO1  
DAC_SDATA/GPIO0  
LRCLK/GPIO3  
10µF  
10µF  
AUX LEFT  
1k  
SERIAL DATA  
BCLK/GPIO2  
RAUX  
MCLK  
ADDR1/CDATA  
SDA/COUT  
SYSTEM  
CONTROLLER  
AUX RIGHT  
1kΩ  
SCL/CCLK  
49.9Ω  
ADDR0/CLATCH  
CLOCK  
SOURCE  
CM  
+
0.1µF  
10µF  
Figure 28. System Block Diagram with Digital Microphones and SSM2306 Class-D Speaker Driver  
Rev. C | Page 22 of 92  
ADAU1761  
THEORY OF OPERATION  
The ADAU1761 is a low power audio codec with an integrated  
stream-oriented DSP core, making it an all-in-one package that  
offers high quality audio, low power, small size, and many  
advanced features. The stereo ADC and stereo DAC each have  
an SNR of at least +98 dB and a THD + N of at least −90 dB.  
The serial data port is compatible with I2S, left-justified, right-  
justified, and TDM modes for interfacing to digital audio data.  
The operating voltage range is 1.8 V to 3.65 V, with an on-board  
regulator generating the internal digital supply voltage.  
The SigmaStudio software is used to program and control the  
SigmaDSP through the control port. Along with designing and  
tuning a signal flow, the tools can be used to configure all of the  
DSP registers. The SigmaStudio graphical interface allows any-  
one with digital or analog audio processing knowledge to easily  
design DSP signal flow and port it to a target application. At the  
same time, it provides enough flexibility and programmability  
for an experienced DSP programmer to have in-depth control  
of the design. In SigmaStudio, the user can connect graphical  
blocks (such as biquad filters, dynamics processors, mixers, and  
delays), compile the design, and load the program and parameter  
files into the ADAU1761 memory through the control port.  
Signal processing blocks available in the provided libraries  
include the following:  
The record signal path includes very flexible input configurations  
that can accept differential and single-ended analog microphone  
inputs as well as a digital microphone input. A microphone bias  
pin provides seamless interfacing to electret microphones. Input  
configurations can accept up to six single-ended analog signals  
or variations of stereo differential or stereo single-ended signals  
with two additional auxiliary single-ended inputs. Each input  
signal has its own programmable gain amplifier (PGA) for volume  
adjustment and can be routed directly to the playback path output  
mixers, bypassing the ADCs. An automatic level control (ALC)  
can also be implemented to keep the recording volume constant.  
Enhanced stereo capture  
Single- and double-precision biquad filters  
FIR filters  
Dynamics processors with peak or rms detection for mono  
and multichannel dynamics  
Mixers and splitters  
Tone and noise generators  
Fixed and variable gain  
Loudness  
Delay  
Stereo enhancement  
Dynamic bass boost  
Noise and tone sources  
Level detectors  
The ADCs and DACs are high quality, 24-bit Σ-Δ converters  
that operate at selectable 64× or 128× oversampling ratios. The  
base sampling rate of the converters is set by the input clock rate  
and can be further scaled with the converter control register  
settings. The converters can operate at sampling frequencies  
from 8 kHz to 96 kHz. The ADCs and DACs also include very  
fine-step digital volume controls.  
The playback path allows input signals and DAC outputs to be  
mixed into various output configurations. Headphone drivers  
are available for a stereo headphone output, and the other output  
pins are capable of differentially driving an earpiece speaker.  
Capless headphone outputs are possible with the use of the  
mono output as a virtual ground connection. The stereo line  
outputs can be used as either single-ended or differential  
outputs and as an optional mix-down mono output.  
Additional processing blocks are always being developed.  
Analog Devices also provides proprietary and third-party  
algorithms for applications such as matrix decoding, bass  
enhancement, and surround virtualizers. Contact Analog  
Devices (www.analog.com) for information about licensing  
these algorithms.  
The ADAU1761 can generate its internal clocks from a wide  
range of input clocks by using the on-board fractional PLL.  
The PLL accepts inputs from 8 MHz to 27 MHz.  
The DSP core introduces many features that make this codec  
unique and optimized for audio processing. The program and  
parameter RAMs can be loaded with custom audio processing  
signal flow built using the SigmaStudio graphical programming  
software from Analog Devices, Inc. The values stored in the  
parameter RAM control individual signal processing blocks,  
such as equalization filters, dynamics processors, audio delays,  
and mixer levels.  
The ADAU1761 is provided in a small, 32-lead, 5 mm × 5 mm  
LFCSP with an exposed bottom pad.  
Rev. C | Page 23 of 92  
 
ADAU1761  
STARTUP, INITIALIZATION, AND POWER  
This section describes the procedure for properly starting up  
the ADAU1761. The following sequence provides a high level  
approach to the proper initiation of the system.  
POWER REDUCTION MODES  
Sections of the ADAU1761 chip can be turned on and off as  
needed to reduce power consumption. These include the ADCs,  
the DACs, the PLL, and the DSP core.  
1. Apply power to the ADAU1761.  
2. Lock the PLL to the input clock (if using the PLL).  
3. Enable the core clock.  
In addition, the control registers can be used to configure some  
functions for power saving, normal, or enhanced performance  
operation. See the Control Registers section for more  
information.  
4. Load the register settings.  
See the Startup section for more information about the proper  
start-up sequence.  
The digital filters of the ADCs and DACs can each be set to over-  
sampling ratios of 64× or 128× (default). Setting the oversampling  
ratios to 64× for these filters lowers power consumption with a  
minimal impact on performance. See the Digital Filters section  
for specifications; see the Typical Performance Characteristics  
section for graphs of these filters.  
POWER-UP SEQUENCE  
The ADAU1761 uses a power-on reset (POR) circuit to  
reset the registers upon power-up. The POR monitors the  
DVDDOUT pin and generates a reset signal whenever power  
is applied to the chip. During the reset, the ADAU1761 is set  
to the default values documented in the register map (see the  
Control Registers section). Typically, with a 10 μF capacitor on  
AVDD, the POR takes approximately 14 ms.  
DIGITAL POWER SUPPLY  
The digital power supply for the ADAU1761 is generated from  
an internal regulator. This regulator generates a 1.5 V supply  
internally. The only external connection to this regulator is the  
DVDDOUT bypassing point. A 100 nF capacitor and a 10 μF  
capacitor should be connected between this pin and DGND.  
1.5V  
1.35V  
DVDDOUT  
0.95V  
INPUT/OUTPUT POWER SUPPLY  
AVDD  
The power for the digital output pins is supplied from IOVDD,  
and this pin also sets the highest input voltage that should be  
seen on the digital input pins. IOVDD should be set between  
1.8 V and 3.3 V; no digital input signal should be at a voltage  
level higher than the one on IOVDD. The current draw of this  
pin is variable because it depends on the loads of the digital  
outputs. IOVDD should be decoupled to DGND with a 100 nF  
capacitor and a 10 μF capacitor.  
PART READY  
POR  
POR  
ACTIVE  
POR  
FINISHED  
POR ACTIVE  
Figure 29. Power-On Reset Sequence  
CLOCK GENERATION AND MANAGEMENT  
The PLL lock time is dependent on the MCLK rate. Typical  
lock times are provided in Table 11. The DSP can be enabled  
immediately after the PLL is locked.  
The ADAU1761 uses a flexible clocking scheme that enables the  
use of many different input clock rates. The PLL can be bypassed  
or used, resulting in two different approaches to clock manage-  
ment. For more information about clocking schemes, PLL  
configuration, and sampling rates, see the Clocking and  
Sampling Rates section.  
Table 11. PLL Lock Times  
PLL Mode  
Fractional  
Fractional  
Integer  
Fractional  
Fractional  
Fractional  
Fractional  
Fractional  
Fractional  
Integer  
MCLK Frequency  
Lock Time (Typical)  
3.5 ms  
3.0 ms  
2.96 ms  
2.4 ms  
2.4 ms  
2.98 ms  
2.98 ms  
2.98 ms  
2.95 ms  
2.96 ms  
2.4 ms  
8 MHz  
12 MHz  
12.288 MHz  
13 MHz  
14.4 MHz  
19.2 MHz  
19.68 MHz  
19.8 MHz  
24 MHz  
24.576 MHz  
26 MHz  
27 MHz  
Case 1: PLL Is Bypassed  
If the PLL is bypassed, the core clock is derived directly from  
the MCLK input. The rate of this clock must be set properly in  
Register R0 (clock control register, Address 0x4000) using the  
INFREQ[1:0] bits. When the PLL is bypassed, supported external  
clock rates are 256 × fS, 512 × fS, 768 × fS, and 1024 × fS, where fS  
is the base sampling rate. The core clock of the chip is off until  
the core clock enable bit (COREN) is asserted. If a clock slower  
than 1024 × fS is directly input to the ADAU1761 (bypassing the  
PLL), the number of available SigmaDSP processing cycles is  
reduced and the DSPSR bits in Register R57 (Address 0x40EB)  
should be adjusted accordingly.  
Fractional  
Fractional  
2.4 ms  
Rev. C | Page 24 of 92  
 
 
 
 
 
 
 
ADAU1761  
Case 2: PLL Is Used  
To program the PLL during initialization or reconfiguration of  
the clock setting, the following procedure must be followed:  
The core clock to the entire chip is off during the PLL lock  
acquisition period. The user can poll the lock bit to determine  
when the PLL has locked. After lock is acquired, the ADAU1761  
can be started by asserting the core clock enable bit (COREN)  
in Register R0 (clock control register, Address 0x4000). This bit  
enables the core clock to all the internal blocks of the ADAU1761.  
1. Power down the PLL.  
2. Reset the PLL control register.  
3. Start the PLL.  
4. Poll the lock bit.  
5. Assert the core clock enable bit after the PLL lock  
is acquired.  
PLL Lock Acquisition  
The PLL control register (Register R1, Address 0x4002) is a  
48-bit register where all bits must be written with a single  
continuous write to the control port.  
During the lock acquisition period, only Register R0 (Address  
0x4000) and Register R1 (Address 0x4002) are accessible through  
the control port. Because all other registers require a valid master  
clock for reading and writing, do not attempt to access any other  
register. Any read or write is prohibited until the core clock  
enable bit (COREN) and the lock bit are both asserted.  
Rev. C | Page 25 of 92  
ADAU1761  
CLOCKING AND SAMPLING RATES  
R57: DSP SAMPLING  
RATE SETTING  
DSPSR[3:0]  
fS/0.5, 1, 1.5, 2, 3, 4, 6  
ADCs  
DACs  
R0: CLOCK  
CONTROL REGISTER  
R1: PLL CONTROL REGISTER  
R17: CONVERTER  
SAMPLING RATE  
÷ X  
MCLK  
× (R + N/M)  
CORE  
CLOCK  
INFREQ[1:0]  
CONVSR[2:0]  
fS/0.5, 1, 1.5, 2, 3, 4, 6  
256 × fS, 512 × fS  
768 × fS, 1024 × fS  
,
CLKSRC  
R64: SERIAL PORT  
SAMPLING RATE  
SERIAL  
DATA INPUT/  
OUTPUT PORT  
SPSR[2:0]  
fS/0.5, 1, 1.5, 2, 3, 4, 6  
ADC_SDATA/GPIO1  
BCLK/GPIO2  
LRCLK/GPIO3  
DAC_SDATA/GPIO0  
Figure 30. Clock Tree Diagram  
To utilize the maximum amount of DSP instructions, the core  
clock should run at a rate of 1024 × fS.  
CORE CLOCK  
Clocks for the converters, the serial ports, and the DSP are  
derived from the core clock. The core clock can be derived  
directly from MCLK or it can be generated by the PLL. The  
CLKSRC bit (Bit 3 in Register R0, Address 0x4000) determines  
the clock source.  
Table 12. Clock Control Register (Register R0, Address 0x4000)  
Bits  
Bit Name  
Settings  
3
CLKSRC  
0: Direct from MCLK pin (default)  
1: PLL clock  
[2:1]  
0
INFREQ[1:0]  
COREN  
00: 256 × fS (default)  
01: 512 × fS  
10: 768 × fS  
The INFREQ[1:0] bits should be set according to the expected  
input clock rate selected by CLKSRC; this value also determines  
the core clock rate and the base sampling frequency, fS.  
11: 1024 × fS  
For example, if the input to CLKSRC = 49.152 MHz (from  
PLL), then  
0: Core clock disabled (default)  
1: Core clock enabled  
INFREQ[1:0] = 1024 × fS  
fS = 49.152 MHz/1024 = 48 kHz  
The PLL output clock rate is always 1024 × fS, and the clock  
control register automatically sets the INFREQ[1:0] bits to  
1024 × fS when using the PLL. When using a direct clock, the  
INFREQ[1:0] frequency should be set according to the MCLK  
pin clock rate and the desired base sampling frequency.  
Rev. C | Page 26 of 92  
 
 
 
ADAU1761  
PLL  
SAMPLING RATES  
The PLL uses the MCLK as a reference to generate the core  
clock. PLL settings are set in Register R1 (PLL control register,  
Address 0x4002). Depending on the MCLK frequency, the PLL  
must be set for either integer or fractional mode. The PLL can  
accept input frequencies in the range of 8 MHz to 27 MHz.  
The ADCs, DACs, and serial port share a common sampling  
rate that is set in Register R17 (Converter Control 0 register,  
Address 0x4017). The CONVSR[2:0] bits set the sampling rate  
as a ratio of the base sampling frequency. The DSP sampling  
rate is set in Register R57 (DSP sampling rate setting register,  
Address 0x40EB) using the DSPSR[3:0] bits, and the serial port  
sampling rate is set in Register R64 (serial port sampling rate  
register, Address 0x40F8) using the SPSR[2:0] bits.  
All six bytes in the PLL control register must be written with a  
single continuous write to the control port.  
TO PLL  
CLOCK DIVIDER  
÷ X  
MCLK  
× (R + N/M)  
It is recommended that the sampling rates for the converters,  
serial ports, and DSP be set to the same value, unless appropriate  
compensation filtering is done within the DSP. Table 13 and  
Table 14 list the sampling rate divisions for common base  
sampling rates.  
Figure 31. PLL Block Diagram  
Integer Mode  
Integer mode is used when the MCLK is an integer (R) multiple  
of the PLL output (1024 × fS).  
Table 13. 48 kHz Base Sampling Rate Divisions  
For example, if MCLK = 12.288 MHz and fS = 48 kHz, then  
PLL required output = 1024 × 48 kHz = 49.152 MHz  
R = 49.152 MHz/12.288 MHz = 4  
Base Sampling  
Frequency  
Sampling Rate Scaling Sampling Rate  
fS = 48 kHz  
fS/1  
fS/6  
48 kHz  
8 kHz  
In integer mode, the values set for N and M are ignored.  
Fractional Mode  
fS/4  
fS/3  
fS/2  
fS/1.5  
fS/0.5  
12 kHz  
16 kHz  
24 kHz  
32 kHz  
96 kHz  
Fractional mode is used when the MCLK is a fractional  
(R + (N/M)) multiple of the PLL output.  
For example, if MCLK = 12 MHz and fS = 48 kHz, then  
PLL required output = 1024 × 48 kHz = 49.152 MHz  
R + (N/M) = 49.152 MHz/12 MHz = 4 + (12/125)  
Table 14. 44.1 kHz Base Sampling Rate Divisions  
Base Sampling  
Frequency  
Sampling Rate Scaling Sampling Rate  
Common fractional PLL parameter settings for 44.1 kHz and  
48 kHz sampling rates can be found in Table 16 and Table 17.  
fS = 44.1 kHz  
fS/1  
fS/6  
fS/4  
fS/3  
fS/2  
fS/1.5  
fS/0.5  
44.1 kHz  
7.35 kHz  
11.025 kHz  
14.7 kHz  
22.05 kHz  
29.4 kHz  
88.2 kHz  
The PLL outputs a clock in the range of 41 MHz to 54 MHz,  
which should be taken into account when calculating PLL  
values and MCLK frequencies.  
Table 15. PLL Control Register (Register R1, Address 0x4002)  
Bits  
Bit Name  
Description  
[47:32]  
M[15:0]  
Denominator of the fractional PLL: 16-bit binary number  
0x00FD: M = 253 (default)  
[31:16]  
[14:11]  
N[15:0]  
R[3:0]  
Numerator of the fractional PLL: 16-bit binary number  
0x000C: N = 12 (default)  
Integer part of PLL: four bits, only values 2 to 8 are valid  
0010: R = 2 (default)  
0011: R = 3  
0100: R = 4  
0101: R = 5  
0110: R = 6  
0111: R = 7  
1000: R = 8  
Rev. C | Page 27 of 92  
 
 
 
ADAU1761  
Bits  
Bit Name  
Description  
[10:9]  
X[1:0]  
PLL input clock divider  
00: X = 1 (default)  
01: X = 2  
10: X = 3  
11: X = 4  
8
1
0
Type  
Lock  
PLL operation mode  
0: Integer (default)  
1: Fractional  
PLL lock (read-only bit)  
0: PLL unlocked (default)  
1: PLL locked  
PLLEN  
PLL enable  
0: PLL disabled (default)  
1: PLL enabled  
Table 16. Fractional PLL Parameter Settings for fS = 44.1 kHz (PLL Output = 45.1584 MHz = 1024 × fS)  
MCLK Input (MHz)  
Input Divider (X)  
Integer (R)  
Denominator (M)  
Numerator (N)  
R2: PLL Control Setting (Hex)  
0x0271 0193 2901  
0x0271 01DD 1901  
0x1FBD 0F09 1901  
0x007D 0022 3301  
0x007D 0058 2301  
0x0401 025C 2301  
0x055F 0304 2301  
0x0271 01DD 1B01  
0x1FBD 0F09 1B01  
0x0753 0287 1B01  
8
12  
13  
14.4  
19.2  
19.68  
19.8  
24  
1
1
1
2
2
2
2
2
2
2
5
3
3
6
4
4
4
3
3
3
625  
625  
8125  
125  
125  
1025  
1375  
625  
8125  
1875  
403  
477  
3849  
34  
88  
604  
772  
477  
3849  
647  
26  
27  
Table 17. Fractional PLL Parameter Settings for fS = 48 kHz (PLL Output = 49.152 MHz = 1024 × fS)  
MCLK Input (MHz)  
Input Divider (X)  
Integer (R)  
Denominator (M)  
Numerator (N)  
R2: PLL Control Setting (Hex)  
0x007D 0012 3101  
0x007D 000C 2101  
0x0659 04F5 1901  
0x004B 003E 3301  
0x0019 0003 2B01  
0x00CD 00CC 2301  
0x0339 031C 2301  
0x007D 000C 2301  
0x0659 04F5 1B01  
0x0465 02D1 1B01  
8
12  
13  
14.4  
19.2  
19.68  
19.8  
24  
1
1
1
2
2
2
2
2
2
2
6
4
3
6
5
4
4
4
3
3
125  
125  
1625  
75  
18  
12  
1269  
62  
3
204  
796  
12  
1269  
721  
25  
205  
825  
125  
1625  
1125  
26  
27  
Table 18. Integer PLL Parameter Settings for fS = 48 kHz (PLL Output = 49.152 MHz = 1024 × fS)  
MCLK Input (MHz)  
Input Divider (X)  
Integer (R)  
Denominator (M)  
Numerator (N)  
R2: PLL Control Setting (Hex)1  
0xXXXX XXXX 2001  
12.288  
24.576  
1
1
4
2
Don’t care  
Don’t care  
Don’t care  
Don’t care  
0xXXXX XXXX 1001  
1 X = don’t care.  
Rev. C | Page 28 of 92  
 
 
 
ADAU1761  
RECORD SIGNAL PATH  
MICIN LEFT  
DIGITAL  
MICROPHONE  
INTERFACE  
JACKDET/MICIN  
MICIN RIGHT  
LINNG[2:0]  
MIXER 1  
(LEFT RECORD  
MIXER)  
–12dB TO +6dB  
LDBOOST[1:0]  
PGA  
LINN  
LEFT  
ADC  
MUTE/0dB/20dB  
LINPG[2:0]  
–12dB TO  
+35.25dB  
LINP  
–12dB TO +6dB  
MIXER 1  
INSEL  
OUTPUT  
(TO PLAYBACK  
MIXER)  
ALCSEL[2:0]  
LDVOL[5:0]  
ALC  
CONTROL  
DECIMATOR/  
ALC/  
DIGITAL  
VOLUME  
MX1AUXG[2:0]  
LAUX  
RAUX  
–12dB TO +6dB  
AUXILIARY  
BYPASS  
MX2AUXG[2:0]  
–12dB TO +6dB  
RINPG[2:0]  
MIXER 2  
OUTPUT  
(TO PLAYBACK  
MIXER)  
–12dB TO +6dB  
RDBOOST[1:0]  
PGA  
RINP  
RINN  
RIGHT  
ADC  
MUTE/0dB/20dB  
RINNG[2:0]  
MIXER 2  
–12dB TO  
+35.25dB  
(RIGHT RECORD  
MIXER)  
INSEL  
–12dB TO +6dB  
ALCSEL[2:0]  
RDVOL[5:0]  
ALC  
CONTROL  
Figure 32. Record Signal Path  
Signals are inverted through the PGAs and the mixers. The  
result of this inversion is that differential signals input through  
the PGA are output from the ADCs at the same polarity as they  
are input. Single-ended inputs that pass through the mixer but  
not through the PGA are inverted. The ADCs are noninverting.  
INPUT SIGNAL PATHS  
The ADAU1761 can accept both line level and microphone  
inputs. The analog inputs can be configured in a single-ended  
or differential configuration. There is also an input for a digital  
microphone. The analog inputs are biased at AVDD/2. Unused  
input pins should be connected to CM.  
The input impedance of the analog inputs varies with the gain  
of the PGA. This impedance ranges from 1.7 kΩ at the 35.25 dB  
gain setting to 80.4 kΩ at the −12 dB setting. This range is shown  
in Figure 25.  
Each of the six analog inputs has individual gain controls (boost  
or cut). The input signals are mixed and routed to an ADC. The  
mixed input signals can also bypass the ADCs and be routed  
directly to the playback mixers. Left channel inputs are mixed  
before the left ADC; however, it is possible to route the mixed  
analog signal around the ADC and output it into a left or right  
output channel. The same capabilities apply to the right channel  
and the right ADC.  
Rev. C | Page 29 of 92  
 
 
 
ADAU1761  
Analog Microphone Inputs  
Analog Line Inputs  
For microphone inputs, configure the part in either stereo  
pseudo-differential mode or stereo full differential mode.  
Line input signals can be accepted by any analog input. It is  
possible to route signals on the RINN, RINP, LINN, and LINP  
pins around the differential amplifier to their own amplifier and  
to use these pins as single-ended line inputs by disabling the  
LDEN and RDEN bits (Bit 0 in Register R8, Address 0x400E,  
and Bit 0 in Register R9, Address 0x400F). Figure 35 depicts a  
stereo single-ended line input using the RINN and LINN pins.  
The LINN and LINP pins are the inverting and noninverting  
inputs for the left channel, respectively. The RINN and RINP  
pins are the inverting and noninverting inputs for the right  
channel, respectively.  
For a differential microphone input, connect the positive signal  
to the noninverting input of the PGA and the negative signal to  
the inverting input of the PGA, as shown in Figure 33. The PGA  
settings are controlled with Register R8 (left differential input  
volume control register, Address 0x400E) and Register R9 (right  
differential input volume control register, Address 0x400F). The  
PGA must first be enabled by setting the RDEN and LDEN bits.  
The LAUX and RAUX pins are single-ended line inputs. They  
can be used together as a stereo single-ended auxiliary input, as  
shown in Figure 35. These inputs can bypass the input gain  
control, mixers, and ADCs to directly connect to the output  
playback mixers (see auxiliary bypass in Figure 32).  
ADAU1761  
LINNG[2:0]  
ADAU1761  
LINN  
LEFT LINE  
LEFT  
INPUT  
PGA  
LDBOOST[1:0]  
LINP  
–12dB TO +6dB  
LEFT  
LINN  
LAUX  
MICROPHONE  
LEFT AUX  
INPUT  
MUTE/  
AUXILIARY  
BYPASS  
0dB/20dB  
–12dB TO  
+35.25dB  
2kꢀ  
2kꢀ  
RAUX  
RIGHT AUX  
MICBIAS  
INPUT  
RINNG[2:0]  
RINN  
RIGHT LINE  
RIGHT  
PGA  
INPUT  
RDBOOST[1:0]  
RINN  
RINP  
–12dB TO +6dB  
RIGHT  
MICROPHONE  
Figure 35. Stereo Single-Ended Line Input with Stereo Auxiliary Bypass  
MUTE/  
0dB/20dB  
–12dB TO  
+35.25dB  
Figure 33. Stereo Differential Microphone Configuration  
The PGA can also be used for single-ended microphone inputs.  
Connect LINP and/or RINP to the CM pin. In this configura-  
tion, the signal connects to the inverting input of the PGA,  
LINN and/or RINN, as shown in Figure 34.  
ADAU1761  
LEFT  
PGA  
LDBOOST[1:0]  
LINN  
LEFT  
MICROPHONE  
LINP  
MUTE/  
0dB/20dB  
CM  
–12dB TO  
+35.25dB  
2kꢀ  
2kꢀ  
MICBIAS  
RIGHT  
PGA  
RDBOOST[1:0]  
RINP  
RINN  
RIGHT  
MICROPHONE  
MUTE/  
0dB/20dB  
–12dB TO  
+35.25dB  
Figure 34. Stereo Single-Ended Microphone Configuration  
Rev. C | Page 30 of 92  
 
 
 
ADAU1761  
Digital Microphone Input  
Microphone Bias  
When using a digital microphone connected to the JACKDET/  
MICIN pin, the JDFUNC[1:0] bits in Register R2 (Address 0x4008)  
must be set to 10 to enable the microphone input and disable the  
jack detection function. The ADAU1761 must operate in master  
mode and source BCLK to the input clock of the digital micro-  
phone. The DSPRUN bit must also be asserted in Register R62  
(DSP run register, Address 0x40F6) for digital microphone  
operation.  
The MICBIAS pin provides a voltage reference for electret analog  
microphones. The MICBIAS voltage is set in Register R10  
(record microphone bias control register, Address 0x4010). In  
this register, the MICBIAS output can be enabled or disabled.  
Additional options include high performance operation and a  
gain boost. The gain boost provides two different voltage biases:  
0.65 × AVDD or 0.90 × AVDD. When enabled, the high perfor-  
mance bit increases supply current to the microphone bias  
circuit to decrease rms input noise.  
The digital microphone signal bypasses record path mixers and  
ADCs and is routed directly into the decimation filters. The  
digital microphone and ADCs share decimation filters and,  
therefore, both cannot be used simultaneously. The digital  
microphone input select bit, INSEL, can be set in Register R19  
(ADC control register, Address 0x4019). Figure 36 depicts the  
digital microphone interface and signal routing.  
The MICBIAS pin can also be used to cleanly supply voltage  
to digital microphones or analog microphones with separate  
power supply pins.  
ANALOG-TO-DIGITAL CONVERTERS  
The ADAU1761 uses two 24-bit Σ-Δ analog-to-digital con-  
verters (ADCs) with selectable oversampling ratios of 64× or  
128× (selected by Bit 3 in Register R17, Address 0x4017).  
JACKDET/MICIN  
R2: DIGITAL MICROPHONE/  
JACK DETECTION  
CONTROL  
ADC Full-Scale Level  
JDFUNC[1:0]  
The full-scale input to the ADCs (0 dBFS) depends on AVDD.  
At AVDD = 3.3 V, the full-scale input level is 1.0 V rms. This  
full-scale analog input will output a digital signal at −1.38 dBFS.  
This gain offset is built into the ADAU1761 to prevent clipping.  
The full-scale input level scales linearly with the level of AVDD.  
TO JACK  
DETECTION  
CIRCUIT  
DIGITAL MICROPHONE  
INTERFACE  
RIGHT  
ADC  
LEFT  
RIGHT  
CHANNEL CHANNEL  
For single-ended and pseudo-differential signals, the full-scale  
value corresponds to the signal level at the pins, 0 dBFS.  
LEFT  
ADC  
The full differential full-scale input level is measured after the  
differential amplifier, which corresponds to −6 dBFS at each pin.  
R19: ADC CONTROL  
INSEL  
Signal levels above the full-scale value cause the ADCs to clip.  
Digital ADC Volume Control  
DECIMATORS  
The digital ADC volume can be attenuated before DSP pro-  
cessing using Register R20 (left input digital volume register,  
Address 0x401A) and Register R21 (right input digital volume  
register, Address 0x401B).  
Figure 36. Digital Microphone Interface Block Diagram  
High-Pass Filter  
By default, a high-pass filter is used in the ADC path to remove  
dc offsets; this filter can be enabled or disabled in Register R19  
(ADC control register, Address 0x4019). At fS = 48 kHz, the  
corner frequency of this high-pass filter is 2 Hz.  
Rev. C | Page 31 of 92  
 
 
ADAU1761  
AUTOMATIC LEVEL CONTROL (ALC)  
The ADAU1761 contains a hardware automatic level control  
(ALC). The ALC is designed to continuously adjust the PGA  
gain to keep the recording volume constant as the input level  
varies.  
ALCATCK[3:0]: The ALC attack time sets how fast the  
ALC starts attenuating after a sudden increase in input  
level above the ALC target. Although it may seem that  
the attack time should be set as fast as possible to avoid  
clipping on transients, using a moderate value results in  
better overall sound quality. If the value is too fast, the  
ALC overreacts to very short transients, causing audible  
gain-pumping effects, which sounds worse than using a  
moderate value that allows brief periods of clipping on  
transients. A typical setting for music recording is 384 ms.  
A typical setting for voice recording is 24 ms.  
ALCHOLD[3:0]: These bits set the ALC hold time. When  
the output signal falls below the target output level, the  
gain is not increased unless the output remains below the  
target level for the period of time set by the hold time bits.  
The hold time is used to prevent the gain from modulating  
on a steady low frequency sine wave signal, which would  
cause distortion.  
ALCDEC[3:0]: The ALC decay time sets how fast the ALC  
increases the PGA gain after a sudden decrease in input level  
below the ALC target. A very slow setting can be used if the  
main function of the ALC is to set a music recording level.  
A faster setting can be used if the function of the ALC is to  
compress the dynamic range of a voice recording. Using a  
very fast decay time can cause audible artifacts such as noise  
pumping or distortion. A typical setting for music recording  
is 24.58 sec. A typical setting for voice recording is 1.54 sec.  
ALCMAX[2:0]: The maximum ALC gain bits are used to  
limit the maximum gain that can be programmed into the  
ALC. This can be used to prevent excessive noise in the  
recording for small input signals. Note that setting this  
register to a low value may prevent the ALC from reaching  
its target output level, but this behavior is often desirable to  
achieve the best overall sound.  
For optimal noise performance, the ALC uses the analog PGA  
to adjust the gain instead of using a digital method. This ensures  
that the ADC noise is not amplified at low signal levels.  
Extremely small gain step sizes are used to ensure high audio  
quality during gain changes.  
To use the ALC function, the inputs must be applied either  
differentially or pseudo-differentially to input pins LINN and  
LINP, for the left channel, and RINN and RINP, for the right  
channel. The ALC function is not available for the auxiliary line  
input pins, LAUX and RAUX.  
A block diagram of the ALC block is shown in Figure 37. The  
ALC logic receives the ADC output signals and analyzes these  
digital signals to set the PGA gain. The ALC control registers  
are used to control the time constants and output levels, as  
described in this section.  
ANALOG  
LEFT  
INPUT  
ADC  
LEFT  
PGA  
SERIAL  
PORTS  
–12dB TO +35.25dB  
0.75dB STEP SIZE  
MUTE  
ANALOG  
INPUT  
RIGHT  
RIGHT  
ADC  
2
I C  
ALC  
DIGITAL  
CONTROL  
Figure 37. ALC Architecture  
ALC PARAMETERS  
The ALC function is controlled with the ALC control registers  
(Address 0x4011 through Address 0x4014) using the following  
parameters:  
ALCSEL[2:0]: The ALC select bits are used to enable the  
ALC and set the mode to left only, right only, stereo, or  
DSP. In stereo mode, the greater of the left or right inputs  
is used to calculate the gain, and the same gain is then  
applied to both the left and right channels. In DSP mode,  
the PGA gain is controlled by the SigmaDSP core.  
ALCTARG[3:0]: The ALC target is the desired input  
recording level that the ALC attempts to achieve.  
Figure 38 shows the dynamic behavior of the PGA gain for a  
tone-burst input. The target output is achieved for three differ-  
ent input levels, with the effect of attack, hold, and decay shown  
in the figure. Note that for very small signals, the maximum PGA  
gain may prevent the ALC from achieving its target level; in the  
same way, for very large inputs, the minimum PGA gain may  
prevent the ALC from achieving its target level (assuming that  
the target output level is set to a very low value). The effects of  
the PGA gain limit are shown in the input/output graph of  
Figure 39.  
Rev. C | Page 32 of 92  
 
 
 
ADAU1761  
the threshold for 250 ms before the noise gate operates.  
Hysteresis is used so that the threshold for coming out of the  
mute state is 6 dB higher than the threshold for going into the  
mute state. There are four operating modes for the noise gate.  
INPUT  
Noise Gate Mode 0 (see Figure 40) is selected by setting the  
NGTYP[1:0] bits to 00. In this mode, the current state of the  
PGA gain is held at its current state when the noise gate logic is  
activated. This prevents a large increase in background noise  
during periods of silence. When using this mode, it is advisable  
to use a relatively slow decay time. This is because the noise gate  
takes at least 250 ms to activate, and if the PGA gain has already  
increased to a large value during this time, the value at which  
the gain is held will be large.  
GAIN  
OUTPUT  
THRESHOLD  
INPUT  
HOLD DECAY  
TIME TIME  
ATTACK  
TIME  
Figure 38. Basic ALC Operation  
ANALOG  
GAIN  
MAX GAIN = 30dB  
MAX GAIN = 24dB  
MAX GAIN = 18dB  
250ms  
GAIN HELD  
INTERNAL  
NOISE GATE  
ENABLE SIGNAL  
MIN PGA  
GAIN POINT  
DIGITAL  
MUTE  
TARGET  
OUTPUT  
INPUT LEVEL (dB)  
Figure 39. Effect of Varying the Maximum Gain Parameter  
Figure 40. Noise Gate Mode 0 (PGA Gain Hold)  
NOISE GATE FUNCTION  
When using the ALC, one potential problem is that for small  
input signals, the PGA gain can become very large. A side effect  
of this is that the noise is amplified along with the signal of  
interest. To avoid this situation, the ADAU1761 noise gate can  
be used. The noise gate cuts off the ADC output when its signal  
level is below a set threshold. The noise gate is controlled using  
the following parameters in the ALC Control 3 register  
(Address 0x4014):  
Noise Gate Mode 1 (see Figure 41) is selected by setting the  
NGTYP[1:0] bits to 01. In this mode, the ADAU1761 does a  
simple digital mute of the ADC output. Although this mode  
completely eliminates any background noise, the effect of an  
abrupt mute may not be pleasant to the ear.  
THRESHOLD  
INPUT  
NGTYP[1:0]: The noise gate type is set to one of four  
modes by writing to the NGTYP[1:0] bits.  
NGEN: The noise gate function is enabled by writing to the  
NGEN bit.  
NGTHR[4:0]: The threshold for muting the output is set by  
writing to the NGTHR[4:0] bits.  
ANALOG  
GAIN  
250ms  
INTERNAL  
NOISE GATE  
ENABLE SIGNAL  
DIGITAL  
MUTE  
One common problem with noise gate functions is chatter,  
where a small signal that is close to the noise gate threshold  
varies in amplitude, causing the noise gate function to open and  
close rapidly. This causes an unpleasant sound.  
OUTPUT  
To reduce this effect, the noise gate in the ADAU1761 uses a  
combination of a timeout period and hysteresis. The timeout  
period is set to 250 ms, so the signal must consistently be below  
Figure 41. Noise Gate Mode 1 (Digital Mute)  
Rev. C | Page 33 of 92  
 
 
 
 
 
ADAU1761  
Noise Gate Mode 2 (see Figure 42) is selected by setting the  
NGTYP[1:0] bits to 10. In this mode, the ADAU1761 improves  
the sound of the noise gate operation by first fading the PGA  
gain over a period of about 100 ms to the minimum PGA gain  
value. The ADAU1761 does not do a hard mute after the fade is  
complete, so some small background noise will still exist.  
Noise Gate Mode 3 (see Figure 43) is selected by setting the  
NGTYP[1:0] bits to 11. This mode is the same as Mode 2 except  
that at the end of the PGA fade gain interval, a digital mute is  
performed. In general, this mode is the best-sounding mode,  
because the audible effect of the digital hard mute is reduced by  
the fact that the gain has already faded to a low level before the  
mute occurs.  
THRESHOLD  
THRESHOLD  
INPUT  
INPUT  
ANALOG  
ANALOG  
GAIN  
250ms  
GAIN  
250ms  
MIN GAIN  
100ms  
MIN GAIN  
100ms  
INTERNAL  
NOISE GATE  
ENABLE SIGNAL  
INTERNAL  
NOISE GATE  
ENABLE SIGNAL  
DIGITAL  
MUTE  
DIGITAL  
MUTE  
OUTPUT  
OUTPUT  
Figure 43. Noise Gate Mode 3 (Analog Fade/Digital Mute)  
Figure 42. Noise Gate Mode 2 (Analog Fade)  
Rev. C | Page 34 of 92  
 
 
ADAU1761  
PLAYBACK SIGNAL PATH  
MX3G1[3:0]  
LEFT INPUT MIXER  
–15dB TO +6dB  
MX3G2[3:0]  
RIGHT INPUT MIXER  
–15dB TO +6dB  
MIXER 3  
(LEFT  
PLAYBACK  
MIXER)  
MX3AUXG[3:0]  
LHPVOL[5:0]  
LAUX  
LHP  
–15dB TO +6dB  
–57dB TO +6dB  
LOUTVOL[5:0]  
MIXER 5  
(LEFT L/R  
PLAYBACK  
MIXER)  
LEFT DAC  
LOUTP  
MX3LM  
MX3RM  
–57dB TO +6dB  
MX5G3[1:0]  
RIGHT DAC  
–1  
LOUTN  
MX6G3[1:0]  
MONOVOL[5:0]  
MX7[1:0]  
MIXER 7  
(MONO MIXER)  
MONOOUT  
ROUTN  
–57dB TO +6dB  
–1  
MX4G1[3:0]  
MIXER 6  
(RIGHT L/R  
PLAYBACK  
MIXER)  
LEFT INPUT MIXER  
–15dB TO +6dB  
ROUTVOL[5:0]  
MX5G4[1:0]  
MX4G2[3:0]  
ROUTP  
RHP  
–57dB TO +6dB  
RIGHT INPUT MIXER  
–15dB TO +6dB  
MX6G4[1:0]  
MX4AUXG[3:0]  
RHPVOL[5:0]  
RAUX  
–15dB TO +6dB  
–57dB TO +6dB  
MIXER 4  
(RIGHT  
PLAYBACK  
MIXER)  
LEFT DAC  
MX4LM  
MX4RM  
RIGHT DAC  
Figure 44. Playback Signal Path  
Routing Flexibility  
OUTPUT SIGNAL PATHS  
The playback path contains five mixers (Mixer 3 to Mixer 7)  
that perform the following functions:  
The outputs of the ADAU1761 can be configured as a variety of  
differential or single-ended outputs. All analog output pins are  
capable of driving headphone or earpiece speakers. There are  
selectable output paths for stereo signals or a downmixed mono  
output. The line outputs can drive a load of at least 10 kΩ or can  
be put into HP mode to drive headphones or earpiece speakers.  
The analog output pins are biased at AVDD/2.  
Mix signals from the record path and the DACs.  
Mix or swap the left and right channels.  
Mix a mono signal or generate a common-mode output.  
Mixer 3 and Mixer 4 are dedicated to mixing signals from the  
record path and the DACs. Each of these two mixers can accept  
signals from the left and right DACs, the left and right input  
mixers, and the dedicated channel auxiliary input. Signals  
coming from the record path can be boosted or cut before the  
playback mixer.  
With a 0 dBFS digital input and AVDD = 1.8 V, the full-scale  
output level is 500 mV rms; when AVDD = 3.3 V, the full-scale  
output level is 920 mV rms.  
Signals are inverted through the mixers and volume controls.  
The result of this inversion is that the polarity of the differential  
outputs and the headphone outputs is preserved. The single-  
ended mono output is inverted. The DACs are noninverting.  
For example, the MX4G2[3:0] bits set the gain from the output  
of Mixer 2 (right record channel) to the input of Mixer 4, hence  
the naming convention.  
Signals coming from the DACs have digital volume attenu-  
ation controls set in Register R20 (left input digital volume  
register, Address 0x401A) and Register R21 (right input digital  
volume register, Address 0x401B).  
Rev. C | Page 35 of 92  
 
 
ADAU1761  
Headphone Output Power-Up/Power-Down Sequencing  
HEADPHONE OUTPUT  
To prevent pops when turning on the headphone outputs, the  
user must wait at least 4 ms to unmute these outputs after  
enabling the headphone output with the HPMODE bit. This is  
because of an internal capacitor that must charge before these  
outputs can be used. Figure 46 and Figure 47 illustrate the  
headphone power-up/power-down sequencing.  
The LHP and RHP pins can be driven by either a line output  
driver or a headphone driver by setting the HPMODE bit in  
Register R30 (playback headphone right volume control register,  
Address 0x4024). The headphone outputs can drive a load of at  
least 16 Ω.  
Separate volume controls for the left and right channels range  
from −57 dB to +6 dB. Slew can be applied to all the playback  
volume controls using the ASLEW[1:0] bits in Register R34  
(playback pop/click suppression register, Address 0x4028).  
For capless headphones, configure the MONOOUT pin before  
unmuting the headphone outputs.  
USER  
DEFINED  
4ms  
Capless Headphone Configuration  
HPMODE  
The headphone outputs can be configured in a capless output  
configuration with the MONOOUT pin used as a dc virtual  
ground reference. Figure 45 depicts a typical playback path in  
a capless headphone configuration. Table 19 lists the register  
settings for this configuration. As shown in this table, the  
MONOOUT pin outputs common mode (AVDD/2), which  
is used as the virtual headphone reference.  
1 = HEADPHONE  
RHPM AND LHPM  
1 = UNMUTE  
INTERNAL  
PRECHARGE  
LHPVOL[5:0]  
Figure 46. Headphone Output Power-Up Timing  
MIXER 3  
MX3LM  
LEFT  
DAC  
LHP  
MX3EN  
USER DEFINED  
RHPM AND LHPM  
0 = MUTE  
MONOM  
MIXER 7  
MONOOUT  
MX7[1:0]  
MX7EN  
MOMODE  
HPMODE  
0 = LINE OUTPUT  
RHPVOL[5:0]  
MIXER 4  
MX4EN  
MX4RM  
RIGHT  
DAC  
Figure 47. Headphone Output Power-Down Timing  
RHP  
Ground-Centered Headphone Configuration  
The headphone outputs can also be configured as ground-  
centered outputs by placing coupling capacitors on the LHP  
and RHP pins. Ground-centered headphones should use the  
AGND pin as the ground reference.  
Figure 45. Capless Headphone Configuration Diagram  
Table 19. Capless Headphone Register Settings  
Register  
Bit Name  
DACEN[1:0]  
MX3EN  
Setting  
R36  
R22  
11 = both DACs on  
1 = enable Mixer 3  
When the headphone outputs are configured in this manner,  
the capacitors create a high-pass filter on the outputs. The  
corner frequency of this filter, at which point its attenuation  
is 3 dB, is calculated by the following formula:  
MX3LM  
MX4EN  
1 = unmute left DAC input  
1 = enable Mixer 4  
R24  
R28  
R33  
R29  
R30  
MX4RM  
MX7EN  
1 = unmute right DAC input  
1 = enable Mixer 7  
f
3dB = 1/(2π × R × C)  
MX7[1:0]  
MONOM  
MOMODE  
00 = common-mode output  
1 = unmute mono output  
1 = headphone output  
where:  
C is the capacitor value.  
R is the impedance of the headphones.  
LHPVOL[5:0] Desired volume for LHP output  
For a typical headphone impedance of 16 Ω and a 47 μF  
capacitor, the corner frequency is 211 Hz.  
LHPM  
HPMODE  
1 = unmute left headphone output  
1 = headphone output  
RHPVOL[5:0] Desired volume for RHP output  
RHPM 1 = unmute right headphone output  
Rev. C | Page 36 of 92  
 
 
 
 
 
ADAU1761  
Jack Detection  
LINE OUTPUTS  
When the JACKDET/MICIN pin is set to the jack detect func-  
tion, a flag on this pin can be used to mute the line outputs  
when headphones are plugged into the jack. This pin can be  
configured in Register R2 (digital microphone/jack detection  
control register, Address 0x4008). The JDFUNC[1:0] bits set the  
functionality of the JACKDET/MICIN pin.  
The line output pins (LOUTP, LOUTN, ROUTP, and ROUTN)  
can be used to drive both differential and single-ended loads. In  
their default settings, these pins can drive typical line loads of  
10 kΩ or greater, but they can also be put into headphone mode  
by setting the LOMODE bit in Register R31 (playback line output  
left volume control register, Address 0x4025) and the ROMODE  
bit in Register R32 (playback line output right volume control  
register, Address 0x4026). In headphone mode, the line output  
pins are capable of driving headphone and earpiece speakers of  
16 Ω or greater. The output impedance of the line outputs is  
approximately 1 kΩ.  
Additional settings for jack detection include debounce time  
(JDDB[1:0] bits) and detection polarity (JDPOL bit). Because  
the jack detection and digital microphone share a pin, both  
functions cannot be used simultaneously.  
POP-AND-CLICK SUPPRESSION  
When the line output pins are used in single-ended mode,  
LOUTP and ROUTP should be used to output the signals, and  
LOUTN and ROUTN should be left unconnected.  
Upon power-up, precharge circuitry is enabled to suppress pops  
and clicks. After power-up, the precharge circuitry can be put  
into a low power mode using the POPMODE bit in Register R34  
(playback pop/click suppression register, Address 0x4028).  
The volume controls for these outputs range from −57 dB to  
+6 dB. Slew can be applied to all the playback volume controls  
using the ASLEW[1:0] bits in Register R34 (playback pop/click  
suppression register, Address 0x4028).  
The precharge time depends on the capacitor value on the CM  
pin and the RC time constant of the load. For a typical line output  
load, the precharge time is between 2 ms and 3 ms. After this  
precharge time, the POPMODE bit can be set to low power mode.  
The MX5G4[1:0], MX5G3[1:0], MX6G3[1:0], and MX6G4[1:0]  
bits can all provide a 6 dB gain boost to the line outputs. This  
gain boost allows single-ended output signals to achieve 0 dBV  
(1.0 V rms) and differential output signals to achieve up to  
6 dBV (2.0 V rms). For more information, see Register R26  
(playback L/R mixer left (Mixer 5) line output control register,  
Address 0x4020) and Register R27 (playback L/R mixer right  
(Mixer 6) line output control register, Address 0x4021).  
Changing any register settings that affect the signal path can  
cause pops and clicks on the analog outputs. To avoid these pops  
and clicks, mute the appropriate outputs using Register R29 to  
Register R32 (Address 0x4023 to Address 0x4026). Unmute the  
analog outputs after the changes are made.  
MX5G3[1:0]  
LOUTVOL[5:0]  
MIXER 3  
MIXER 5  
LEFT DAC  
LOUTP  
–1  
–1  
LOUTN  
ROUTN  
MX6G4[1:0]  
ROUTVOL[5:0]  
MIXER 4  
MIXER 6  
RIGHT DAC  
ROUTP  
Figure 48. Differential Line Output Configuration  
Rev. C | Page 37 of 92  
 
 
ADAU1761  
CONTROL PORTS  
The ADAU1761 can operate in one of two control modes:  
The registers in the ADAU1761 are one byte wide with the  
exception of the PLL control register, which is six bytes wide.  
The autoincrement feature knows the word length at each  
subaddress, so the subaddress does not need to be specified  
manually for each address in a burst write.  
I2C control  
SPI control  
The ADAU1761 has both a 4-wire SPI control port and a  
2-wire I2C bus control port. Both ports can be used to set the  
registers. The part defaults to I2C mode, but it can be put into  
The subaddresses are autoincremented by 1 following each read  
or write of a data-word, regardless of whether there is a valid regis-  
ter or RAM word at that address. Address holes in the register  
map can be written to or read from without consequence. In the  
ADAU1761, these address holes exist at Address 0x4001, Address  
0x4003 to Address 0x4007, Address 0x402E, Address 0x4032 to  
Address 0x4035, Address 0x4037 to Address 0x40BF, Address  
0x40C5, Address 0x40CA to Address 0x40CF, Address 0x40D5  
to Address 0x40EA, and Address 0x40EC to Address 0x40F1. A  
single-byte write to these registers is ignored by the ADAU1761,  
and a read returns a single byte 0x00.  
CLATCH  
SPI control mode by pulling the  
pin low three times.  
The control port is capable of full read/write operation for all  
addressable registers. The ADAU1761 must have a valid master  
clock in order to write to all registers except for Register R0  
(Address 0x4000) and Register R1 (Address 0x4002).  
All addresses can be accessed in both a single-address mode  
or a burst mode. The first byte (Byte 0) of a control port write  
contains the 7-bit chip address plus the R/ bit. The next two  
W
bytes (Byte 1 and Byte 2) together form the subaddress of the  
register location within the ADAU1761. This subaddress must  
be two bytes long because the memory locations within the  
ADAU1761 are directly addressable and their sizes exceed the  
range of single-byte addressing. All subsequent bytes (starting  
with Byte 3) contain the data, such as control port data, program  
data, or parameter data. The number of bytes per word depends  
on the type of data that is being written.  
I2C PORT  
The ADAU1761 supports a 2-wire serial (I2C-compatible)  
microprocessor bus driving multiple peripherals. Two pins,  
serial data (SDA) and serial clock (SCL), carry information  
between the ADAU1761 and the system I2C master controller.  
In I2C mode, the ADAU1761 is always a slave on the bus,  
meaning that it cannot initiate a data transfer. Each slave device  
W
is recognized by a unique address. The address and R/ byte  
The ADAU1761 has several mechanisms for updating signal pro-  
cessing parameters in real time without causing pops or clicks. If  
large blocks of data need to be downloaded, the output of the DSP  
core can be halted (using the DSPRUN bit in the DSP run register,  
Address 0x40F6), new data can be loaded, and the device can be  
restarted. This is typically done during the booting sequence at  
start-up or when loading a new program into RAM.  
format is shown in Table 21. The address resides in the first  
seven bits of the I2C write. Bits[5:6] of the I2C address for the  
ADAU1761 are set by the levels on the ADDR1 and ADDR0  
pins. The LSB of the address—the R/ bit—specifies either a  
read or write operation. Logic Level 1 corresponds to a read  
operation, and Logic Level 0 corresponds to a write operation.  
W
The control port pins are multifunctional, depending on the  
mode in which the part is operating. Table 20 describes these  
multiple functions.  
2
Write  
Table 21. ADAU1761 I C Address and Read/  
Byte Format  
Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5  
Bit 6 Bit 7  
0
1
1
1
0
ADDR1 ADDR0 R/W  
Table 20. Control Port Pin Functions  
The SDA and SCL pins should each have a 2 kꢁ pull-up resistor  
on the line connected to it. The voltage on these signal lines  
should not be higher than IOVDD (1.8 V to 3.3 V).  
Pin Name  
SCL/CCLK  
SDA/COUT  
I2C Mode  
SPI Mode  
SCL: input clock  
CCLK: input clock  
COUT: output  
SDA: open-collector  
input/output  
I2C Address Bit 1: input  
Addressing  
Initially, each device on the I2C bus is in an idle state and  
monitors the SDA and SCL lines for a start condition and  
the proper address. The I2C master initiates a data transfer by  
establishing a start condition, defined by a high-to-low transition  
on SDA while SCL remains high. This indicates that an address/  
data stream follows. All devices on the bus respond to the start  
condition and shift the next eight bits (the 7-bit address plus the  
ADDR1/CDATA  
ADDR0/CLATCH I2C Address Bit 0: input  
CDATA: input  
CLATCH: input  
BURST MODE WRITING AND READING  
Burst mode addressing, where the subaddresses are automatically  
incremented at word boundaries, can be used for writing large  
amounts of data to contiguous registers. This increment happens  
automatically after a single-word write or read unless a stop condi-  
W
R/ bit) MSB first. The device that recognizes the transmitted  
2
CLATCH  
tion is encountered (I C) or  
is brought high (SPI). A  
address responds by pulling the data line low during the ninth  
clock pulse. This ninth bit is known as an acknowledge bit. All  
other devices withdraw from the bus at this point and return to  
the idle condition.  
burst write starts like a single-word write, but following the first  
data-word, the data-word for the next immediate address can be  
written immediately without sending its two-byte address.  
Rev. C | Page 38 of 92  
 
 
 
 
 
ADAU1761  
W
the user should only issue one start condition, one stop condition,  
or a single stop condition followed by a single start condition. If  
an invalid subaddress is issued by the user, the ADAU1761 does  
not issue an acknowledge and returns to the idle condition.  
The R/ bit determines the direction of the data. A Logic 0 on  
the LSB of the first byte means that the master will write infor-  
mation to the peripheral, whereas a Logic 1 means that the  
master will read information from the peripheral after writing  
the subaddress and repeating the start address. A data transfer  
takes place until a stop condition is encountered. A stop  
condition occurs when SDA transitions from low to high while  
SCL is held high. Figure 49 shows the timing of an I2C write,  
and Figure 50 shows an I2C read.  
If the user exceeds the highest subaddress while in autoincrement  
mode, one of two actions is taken. In read mode, the ADAU1761  
outputs the highest subaddress register contents until the master  
device issues a no acknowledge, indicating the end of a read. A  
no acknowledge condition is where the SDA line is not pulled  
low on the ninth clock pulse on SCL. If the highest subaddress  
location is reached while in write mode, the data for the invalid  
byte is not loaded into any subaddress register, a no acknowledge  
is issued by the ADAU1761, and the part returns to the idle  
condition.  
Stop and start conditions can be detected at any stage during the  
data transfer. If these conditions are asserted out of sequence with  
normal read and write operations, the ADAU1761 immediately  
jumps to the idle condition. During a given SCL high period,  
SCL  
0
1
1
1
SDA  
R/W  
0
ADDR1 ADDR0  
ACK BY  
ADAU1761  
ACK BY  
ADAU1761  
START BY  
MASTER  
FRAME 2  
SUBADDRESS BYTE 1  
FRAME 1  
CHIP ADDRESS BYTE  
SCL  
(CONTINUED)  
SDA  
(CONTINUED)  
ACK BY  
ADAU1761  
ACK BY STOP BY  
ADAU1761 MASTER  
FRAME 4  
DATA BYTE 1  
FRAME 3  
SUBADDRESS BYTE 2  
Figure 49. I2C Write to ADAU1761 Clocking  
SCL  
SDA  
0
1
1
1
0
R/W  
ACK BY  
ADAU1761  
ADDR1 ADDR0  
ACK BY  
ADAU1761  
START BY  
MASTER  
FRAME 1  
CHIP ADDRESS BYTE  
FRAME 2  
SUBADDRESS BYTE 1  
SCL  
(CONTINUED)  
SDA  
(CONTINUED)  
0
1
1
1
0
R/W  
ACK BY  
ADAU1761  
ADDR1 ADDR0  
ACK BY  
ADAU1761  
REPEATED  
START BY MASTER  
FRAME 3  
SUBADDRESS BYTE 2  
FRAME 4  
CHIP ADDRESS BYTE  
SCL  
(CONTINUED)  
SDA  
(CONTINUED)  
ACK BY  
STOP BY  
MASTER MASTER  
FRAME 5  
READ DATA BYTE 1  
Figure 50. I2C Read from ADAU1761 Clocking  
Rev. C | Page 39 of 92  
 
 
ADAU1761  
I2C Read and Write Operations  
This causes the ADAU1761 SDA to reverse and begin driving  
data back to the master. The master then responds every ninth  
pulse with an acknowledge pulse to the ADAU1761.  
Figure 51 shows the format of a single-word write operation.  
Every ninth clock pulse, the ADAU1761 issues an acknowledge  
by pulling SDA low.  
Figure 54 shows the format of a burst mode read sequence. This  
figure shows an example of a read from sequential single-byte  
registers. The ADAU1761 increments its subaddress register  
after every byte because the requested subaddress corresponds  
to a register or memory area with a 1-byte word length. The  
ADAU1761 always decodes the subaddress and sets the auto-  
increment circuit so that the address increments after the  
appropriate number of bytes.  
Figure 52 shows the format of a burst mode write sequence. This  
figure shows an example of a write to sequential single-byte  
registers. The ADAU1761 increments its subaddress register  
after every byte because the requested subaddress corresponds  
to a register or memory area with a 1-byte word length.  
Figure 53 shows the format of a single-word read operation. Note  
W
that the first R/ bit is 0, indicating a write operation. This is  
Figure 51 to Figure 54 use the following abbreviations:  
S = start bit  
P = stop bit  
AM = acknowledge by master  
AS = acknowledge by slave  
because the subaddress still needs to be written to set up the  
internal address. After the ADAU1761 acknowledges the receipt  
of the subaddress, the master must issue a repeated start command  
W
followed by the chip address byte with the R/ bit set to 1 (read).  
S
S
S
S
Chip address,  
R/W = 0  
AS  
Subaddress high byte  
AS  
Subaddress low byte  
AS  
Data Byte 1  
P
Figure 51. Single-Word I2C Write Format  
Chip address, AS Subaddress AS Subaddress AS Data  
AS Data  
Byte 2  
AS Data  
Byte 3  
AS Data  
Byte 4  
AS  
P
R/W = 0  
high byte  
low byte  
Byte 1  
Figure 52. Burst Mode I2C Write Format  
Chip address,  
R/W = 0  
AS  
Subaddress high  
byte  
AS  
Subaddress low  
byte  
AS  
S
Chip address,  
R/W = 1  
AS  
Data  
P
Byte 1  
Figure 53. Single-Word I2C Read Format  
Chip address,  
R/W = 0  
AS Subaddress AS Subaddress AS  
high byte low byte  
S
Chip address,  
R/W = 1  
AS Data  
Byte 1  
AM Data  
Byte 2  
AM  
P
Figure 54. Burst Mode I2C Read Format  
Rev. C | Page 40 of 92  
 
 
 
 
ADAU1761  
W
Chip Address R/  
SPI PORT  
By default, the ADAU1761 is in I2C mode, but it can be put into  
W
The LSB of the first byte of an SPI transaction is a R/ bit. This bit  
determines whether the communication is a read (Logic Level 1)  
or a write (Logic Level 0). This format is shown in Table 22.  
CLATCH  
SPI control mode by pulling  
low three times. This is  
done by performing three dummy writes to the SPI port (the  
ADAU1761 does not acknowledge these three writes). Beginning  
with the fourth SPI write, data can be written to or read from  
the IC. The ADAU1761 can be taken out of SPI mode only by a  
full reset initiated by power-cycling the IC.  
Write  
Table 22. ADAU1761 SPI Address and Read/  
Byte Format  
Bit 0  
Bit 1  
Bit 2  
Bit 3  
Bit 4  
Bit 5  
Bit 6  
Bit 7  
0
0
0
0
0
0
0
R/W  
CLATCH  
The SPI port uses a 4-wire interface, consisting of the  
CCLK, CDATA, and COUT signals, and it is always a slave port.  
CLATCH  
,
Subaddress  
The 16-bit subaddress word is decoded into a location in one of  
the registers. This subaddress is the location of the appropriate  
register. The MSBs of the subaddress are zero-padded to bring  
the word to a full 2-byte length.  
The  
signal should go low at the beginning of a trans-  
action and high at the end of a transaction. The CCLK signal  
latches CDATA on a low-to-high transition. COUT data is shifted  
out of the ADAU1761 on the falling edge of CCLK and should  
be clocked into a receiving device, such as a microcontroller, on  
the CCLK rising edge. The CDATA signal carries the serial input  
data, and the COUT signal carries the serial output data. The  
COUT signal remains three-state until a read operation is requested.  
This allows other SPI-compatible peripherals to share the same  
readback line. All SPI transactions have the same basic format  
shown in Table 23. A timing diagram is shown in Figure 4. All  
data should be written MSB first.  
Data Bytes  
The number of data bytes varies according to the register being  
accessed. During a burst mode write, an initial subaddress is  
written followed by a continuous sequence of data for consecu-  
tive register locations.  
A sample timing diagram for a single-word SPI write operation  
to a register is shown in Figure 55. A sample timing diagram of  
a single-word SPI read operation is shown in Figure 56. The  
COUT pin goes from being three-state to being driven at the  
beginning of Byte 3. In this example, Byte 0 to Byte 2 contain  
W
the addresses and R/ bit, and subsequent bytes carry the data.  
Table 23. Generic Control Word Format  
Byte 0  
Byte 1  
Byte 2  
Byte 3  
Byte 41  
chip_adr[6:0], R/W  
subaddr[15:8]  
subaddr[7:0]  
data  
data  
1 Continues to end of data.  
CLATCH  
CCLK  
CDATA  
BYTE 0  
BYTE 1  
BYTE 2  
BYTE 3  
Figure 55. SPI Write to ADAU1761 Clocking (Single-Word Write Mode)  
CLATCH  
CCLK  
CDATA  
COUT  
BYTE 1  
BYTE 0  
BYTE 2  
HIGH-Z  
HIGH-Z  
DATA  
Figure 56. SPI Read from ADAU1761 Clocking (Single-Word Read Mode)  
Rev. C | Page 41 of 92  
 
 
 
 
 
 
ADAU1761  
SERIAL DATA INPUT/OUTPUT PORTS  
The flexible serial data input and output ports of the ADAU1761  
can be set to accept or transmit data in 2-channel format or in  
a 4-channel or 8-channel TDM stream to interface to external  
ADCs or DACs. Data is processed in twos complement, MSB  
first format. The left channel data field always precedes the right  
channel data field in 2-channel streams. In TDM mode, Slot 0  
to Slot 3 are in the first half of the audio frame, and Slot 4 to  
Slot 7 are in the second half of the frame. The serial modes and  
the position of the data in the frame are set in Register R15 to  
Register R18 (serial port and converter control registers,  
Address 0x4015 to Address 0x4018).  
The serial port can operate with an arbitrary number of BCLK  
transitions in each LRCLK frame. The LRCLK in TDM mode  
can be input to the ADAU1761 either as a 50ꢀ duty cycle clock  
or as a bit-wide pulse.  
When the LRCLK is set as a pulse, a 47 pF capacitor should be  
connected between the LRCLK pin and ground (see Figure 57).  
This capacitor is necessary in both master and slave modes to  
properly align the LRCLK signal to the serial data stream.  
ADAU1761  
LRCLK  
47pF  
If the PLL of the ADAU1761 is not used, the serial data clocks  
must be synchronous with the ADAU1761 master clock input.  
The LRCLK and BCLK pins are used to clock both the serial  
input and output ports. The ADAU1761 can be set as the master  
or the slave in a system. Because there is only one set of serial  
data clocks, the input and output ports must always be both  
master or both slave.  
BCLK  
Figure 57. LRCLK Capacitor Alignment, TDM Pulse Mode  
In TDM 8 mode, the ADAU1761 can be a master for fS up to  
48 kHz. Table 24 lists the modes in which the serial output port  
can function.  
Register R15 and Register R16 (serial port control registers,  
Address 0x4015 and Address 0x4016) allow control of clock  
polarity and data input modes. The valid data formats are I2S,  
left-justified, right-justified (24-/20-/18-/16-bit), and TDM. In  
all modes except for the right-justified modes, the serial port  
inputs an arbitrary number of bits up to a limit of 24. Extra bits  
do not cause an error, but they are truncated internally.  
Table 24. Serial Output Port Master/Slave Mode Capabilities  
2-Channel Modes (I2S, Left-  
fS  
Justified, Right-Justified)  
8-Channel TDM  
Master and slave  
Slave  
48 kHz  
96 kHz  
Master and slave  
Master and slave  
Table 25 describes the proper configurations for standard audio  
data formats.  
Table 25. Data Format Configurations  
LRCLK Mode  
(LRMOD)  
BCLK Polarity  
(BPOL)  
BCLK Cycles/Audio Data Delay from LRCLK  
Format  
LRCLK Polarity (LRPOL)  
Frame (BPF[2:0])  
Edge (LRDEL[1:0])  
I2S  
Frame begins on falling edge 50% duty cycle Data changes  
on falling edge  
32 to 64  
Delayed from LRCLK edge  
by 1 BCLK  
(see Figure 58)  
Left-Justified (see Frame begins on rising edge  
Figure 59)  
50% duty cycle Data changes  
on falling edge  
50% duty cycle Data changes  
on falling edge  
32 to 64  
32 to 64  
64 to 256  
64 to 256  
Aligned with LRCLK edge  
Right-Justified  
(see Figure 60)  
Frame begins on rising edge  
Delayed from LRCLK edge  
by 8 or 16 BCLKs  
Delayed from start of word  
clock by 1 BCLK  
Delayed from start of word  
clock by 1 BCLK  
TDM with Clock  
(see Figure 61)  
Frame begins on falling edge 50% duty cycle Data changes  
on falling edge  
TDM with Pulse  
(see Figure 62)  
Frame begins on rising edge  
Pulse  
Data changes  
on falling edge  
Rev. C | Page 42 of 92  
 
 
 
 
ADAU1761  
LEFT CHANNEL  
LRCLK  
BCLK  
RIGHT CHANNEL  
MSB  
LSB  
LSB  
SDATA  
MSB  
1/fS  
Figure 58. I2S Mode—16 Bits to 24 Bits per Channel  
RIGHT CHANNEL  
LEFT CHANNEL  
LRCLK  
BCLK  
MSB  
LSB  
MSB  
LSB  
SDATA  
1/fS  
Figure 59. Left-Justified Mode—16 Bits to 24 Bits per Channel  
RIGHT CHANNEL  
LEFT CHANNEL  
LRCLK  
BCLK  
SDATA  
MSB  
LSB  
MSB  
LSB  
1/fS  
Figure 60. Right-Justified Mode—16 Bits to 24 Bits per Channel  
LRCLK  
256 BCLKs  
BCLK  
32 BCLKs  
SLOT 0  
SDATA  
SLOT 1  
SLOT 2  
SLOT 3  
SLOT 4  
SLOT 5  
SLOT 6  
SLOT 7  
LRCLK  
BCLK  
SDATA  
MSB  
MSB – 1 MSB – 2  
Figure 61. TDM 8 Mode  
LRCLK  
BCLK  
MSB TDM  
MSB TDM  
CH  
0
SDATA  
CH  
8
SLOT 0  
SLOT 1  
SLOT 2  
SLOT 3  
SLOT 4  
SLOT 5  
SLOT 6  
SLOT 7  
32  
BCLKs  
Figure 62. TDM 8 Mode with Pulse Word Clock  
Rev. C | Page 43 of 92  
 
 
 
 
 
ADAU1761  
APPLICATIONS INFORMATION  
POWER SUPPLY BYPASS CAPACITORS  
GROUNDING  
Each analog and digital power supply pin should be bypassed to  
its nearest appropriate ground pin with a single 100 nF capaci-  
tor. The connections to each side of the capacitor should be as  
short as possible, and the trace should stay on a single layer with  
no vias. For maximum effectiveness, locate the capacitor equi-  
distant from the power and ground pins or, when equidistant  
placement is not possible, slightly closer to the power pin.  
Thermal connections to the ground planes should be made  
on the far side of the capacitor.  
A single ground plane should be used in the application layout.  
Components in an analog signal path should be placed away  
from digital signals.  
EXPOSED PAD PCB DESIGN  
The ADAU1761 has an exposed pad on the underside of the  
LFCSP. This pad is used to couple the package to the PCB for  
heat dissipation when using the outputs to drive earpiece or  
headphone loads. When designing a board for the ADAU1761,  
special consideration should be given to the following:  
Each supply signal on the board should also be bypassed with a  
single bulk capacitor (10 μF to 47 μF).  
VDD GND  
A copper layer equal in size to the exposed pad should be  
on all layers of the board, from top to bottom, and should  
connect somewhere to a dedicated copper board layer (see  
Figure 65).  
Vias should be placed to connect all layers of copper,  
allowing for efficient heat and energy conductivity. For an  
example, see Figure 66, which has nine vias arranged in a  
3 inch × 3 inch grid in the pad area.  
CAPACITOR  
TO VDD  
TOP  
GROUND  
POWER  
BOTTOM  
TO GND  
Figure 63. Recommended Power Supply Bypass Capacitor Layout  
VIAS  
COPPER SQUARES  
Figure 65. Exposed Pad Layout Example, Side View  
GSM NOISE FILTER  
In mobile phone applications, excessive 217 Hz GSM noise on  
the analog supply pins can degrade the audio quality. To avoid  
this problem, it is recommended that an L-C filter be used in  
series with the bypass capacitors for the AVDD pins. This filter  
should consist of a 1.2 nH inductor and a 9.1 pF capacitor in  
series between AVDD and ground, as shown in Figure 64.  
10µF  
+
0.1µF  
0.1µF  
1.2nH 9.1pF  
Figure 66. Exposed Pad Layout Example, Top View  
AVDD  
AVDD  
Figure 64. GSM Filter on the Analog Supply Pins  
Rev. C | Page 44 of 92  
 
 
 
 
 
 
 
ADAU1761  
DSP CORE  
SIGNAL PROCESSING  
PROGRAM COUNTER  
The ADAU1761 is designed to provide all audio signal processing  
functions commonly used in stereo or mono low power record  
and playback systems. The signal processing flow is designed  
using the SigmaStudio software, which allows graphical entry  
and real-time control of all signal processing functions.  
The execution of instructions in the core is governed by a program  
counter, which sequentially steps through the addresses of the  
program RAM. The program counter starts every time that a  
new audio frame is clocked into the core. SigmaStudio inserts  
a jump-to-start command at the end of every program. The  
program counter increments sequentially until it reaches this  
command and then jumps to the program start address and  
waits for the next audio frame to clock into the core.  
Many of the signal processing functions are coded using full,  
56-bit, double-precision arithmetic data. The input and output  
word lengths of the DSP core are 24 bits. Four extra headroom  
bits are used in the processor to allow internal gains of up to  
24 dB without clipping. Additional gains can be achieved by  
initially scaling down the input signal in the DSP signal flow.  
FEATURES  
The SigmaDSP core was designed specifically for audio processing  
and therefore includes several features intended for maximizing  
efficiency. These include hardware decibel conversion and audio-  
specific ROM constants.  
ARCHITECTURE  
The DSP core consists of a simple 28-/56-bit multiply-accumulate  
(MAC) unit with two sources: a data source and a coefficient  
source. The data source can come from the data RAM, a ROM  
table of commonly used constant values, or the audio inputs to  
the core. The coefficient source can come from the parameter  
RAM or from a ROM table of commonly used constant values.  
STARTUP  
Before the DSPRUN bit is set or any settings are written to the  
parameter RAM, the DSP core must be enabled by setting the  
DSPEN bit in Register R61 (Address 0x40F5).  
The following steps should be performed every time that a new  
program is loaded to the SigmaDSP core, or any time that the  
DSPRUN bit is disabled and reenabled.  
The two sources are multiplied in a 28-bit fixed-point multiplier  
and then the signal is input to the 56-bit adder; the result is usually  
stored in one of three 56-bit accumulator registers. The accumu-  
lators can be output from the core (in 28-bit format) or can  
optionally be written back into the data or parameter RAMs.  
1. Set the DSPSR[3:0] bits in Register R57 (Address 0x40EB)  
to 1111 (none).  
2. Set the DSPRUN bit in Register R62 (Address 0x40F6) to 0.  
3. Download the rest of the registers, the program RAM, and  
the parameter RAM.  
4. Set the DSPRUN bit in Register R62 to 1.  
5. Set the DSPSR[3:0] bits in Register R57 to the operational  
setting (default value is 0001).  
DATA SOURCE  
(DATA RAM,  
ROM CONSTANTS,  
AUDIO INPUTS)  
COEFFICIENT SOURCE  
(PARAMETER RAM,  
ROM CONSTANTS)  
28  
28  
28  
Changing any register setting or RAM can cause pops and  
clicks on the analog outputs. To avoid these pops and clicks,  
mute the appropriate outputs using Register R29 to Register R32  
(Address 0x4023 to Address 0x4026). Unmute the analog out-  
puts after the startup procedure is completed.  
56  
TRUNCATOR  
56  
56  
DATA OPERATIONS  
(ACCUMULATORS (3), dB CONVERSION,  
BIT OPERATORS, BIT SHIFTER, ...)  
56  
TRUNCATOR  
28  
OUTPUTS  
Figure 67. Simplified DSP Core Architecture  
Rev. C | Page 45 of 92  
 
 
 
 
 
ADAU1761  
The serial port accepts up to 24 bits on the input and is sign-  
extended to the full 28 bits of the DSP core. This allows internal  
gains of up to 24 dB without internal clipping.  
NUMERIC FORMATS  
DSP systems commonly use a standard numeric format.  
Fractional numeric systems are specified by an A.B format,  
where A is the number of bits to the left of the decimal point  
and B is the number of bits to the right of the decimal point.  
A digital clipper circuit is used between the output of the DSP  
core and the DACs or serial port outputs (see Figure 68). This  
circuit clips the top four bits of the signal to produce a 24-bit  
output with a range of 1.0 (minus 1 LSB) to −1.0. Figure 68  
shows the maximum signal levels at each point in the data flow  
in both binary and decibel levels.  
The ADAU1761 uses numeric format 5.23 for both the  
parameter and data values.  
Numeric Format 5.23  
Linear range: −16.0 to (+16.0 − 1 LSB)  
4-BIT SIGN EXTENSION  
Examples:  
SIGNAL  
DIGITAL  
CLIPPER  
SERIAL  
PORT  
PROCESSING  
(5.23 FORMAT)  
DATA IN  
1000 0000 0000 0000 0000 0000 0000 = −16.0  
1110 0000 0000 0000 0000 0000 0000 = −4.0  
1111 1000 0000 0000 0000 0000 0000 = −1.0  
1111 1110 0000 0000 0000 0000 0000 = −0.25  
1111 1111 0011 0011 0011 0011 0011 = −0.1  
1111 1111 1111 1111 1111 1111 1111 = (1 LSB below 0)  
0000 0000 0000 0000 0000 0000 0000 = 0  
0000 0000 1100 1100 1100 1100 1101 = 0.1  
0000 0010 0000 0000 0000 0000 0000 = 0.25  
0000 1000 0000 0000 0000 0000 0000 = 1.0  
0010 0000 0000 0000 0000 0000 0000 = 4.0  
0111 1111 1111 1111 1111 1111 1111 = (16.0 − 1 LSB)  
1.23  
(0dB)  
1.23  
(0dB)  
1.23  
(0dB)  
5.23  
(24dB)  
5.23  
(24dB)  
Figure 68. Numeric Precision and Clipping Structure  
PROGRAMMING  
On power-up, the ADAU1761 must be configured with a clock-  
ing scheme and then loaded with register settings. After the codec  
signal path is set up, the DSP core can be programmed. There  
are 1024 instruction cycles per audio sample, resulting in an  
internal clock rate of 49.152 MHz when fS = 48 kHz.  
The part can be programmed easily using SigmaStudio, a graphical  
tool provided by Analog Devices (see Figure 69). No knowledge  
of writing line-level DSP code is required. More information  
about SigmaStudio can be found at www.analog.com.  
Figure 69. SigmaStudio Screen Shot  
Rev. C | Page 46 of 92  
 
 
 
 
ADAU1761  
PROGRAM RAM, PARAMETER RAM, AND DATA RAM  
Table 26. RAM Map and Read/Write Modes  
Memory  
Size  
Address Range  
Read  
Yes  
Yes  
Write  
Yes  
Yes  
Write Modes  
Direct, safeload  
Direct  
Parameter RAM  
Program RAM  
1024 × 32  
1024 × 40  
0 to 1023 (0x0000 to 0x03FF)  
2048 to 3071 (0x0800 to 0x0BFF)  
Table 26 shows the RAM map (the ADAU1761 register map is  
provided in the Control Registers section). The address space  
encompasses a set of registers and three RAMs: program,  
parameter, and data. The program RAM and parameter RAM  
are not initialized on power-up and are in an unknown state  
until written to.  
When implementing blocks, such as delays, that require large  
amounts of data RAM space, data RAM utilization should be  
taken into account. The SigmaDSP core processes delay times  
in one-sample increments; therefore, the total pool of delay  
available to the user equals 4096 multiplied by the sample  
period. For a fS,DSP of 48 kHz, the pool of available delay is a  
maximum of about 86 ms, where fS,DSP is the DSP core sampling  
rate. In practice, this much data memory is not available to the  
user because every block in a design uses a few data memory  
locations for its processing. In most DSP programs, this does  
not significantly affect the total delay time. The SigmaStudio  
compiler manages the data RAM and indicates whether the  
number of addresses needed in the design exceeds the maxi-  
mum number available.  
PROGRAM RAM  
The program RAM contains the 40-bit operation codes that  
are executed by the core. The SigmaStudio compiler calculates  
maximum instructions per frame for a project and generates an  
error when the value exceeds the maximum allowable instructions  
per frame based on the sample rate of the signals in the core.  
Because the end of a program contains a jump-to-start command,  
the unused program RAM space does not need to be filled with  
no-operation (NOP) commands.  
READ/WRITE DATA FORMATS  
The read/write formats of the control port are designed to be  
byte oriented to allow for easy programming of common micro-  
controller chips. To fit into a byte-oriented format, 0s are added  
to the data fields before the MSB to extend the data-word to  
eight bits. For example, 28-bit words written to the parameter  
RAM are preceded by four leading 0s to equal 32 bits (four bytes);  
40-bit words written to the program RAM are not preceded by  
0s because they are already a full five bytes. These zero-padded  
data fields are appended to a 3-byte field consisting of a 7-bit  
chip address, a read/write bit, and a 16-bit RAM/register address.  
The control port knows how many data bytes to expect based  
on the address given in the first three bytes.  
PARAMETER RAM  
The parameter RAM is 32 bits wide and occupies Address 0  
to Address 1023. Each parameter is padded with four 0s before  
the MSB to extend the 28-bit word to a full 4-byte width. The  
data format of the parameter RAM is twos complement, 5.23.  
This means that the coefficients can range from +16.0 (minus  
1 LSB) to −16.0, with 1.0 represented by the binary word  
0000 1000 0000 0000 0000 0000 0000 or by the hexadecimal  
word 0x00 0x80 0x00 0x00.  
The parameter RAM can be written to directly or with a safe-  
load write. The direct write mode of operation is typically used  
during a complete new loading of the RAM using burst mode  
addressing to avoid any clicks or pops in the outputs. Note that  
this mode can be used during live program execution, but because  
there is no handshaking between the core and the control port,  
the parameter RAM is unavailable to the DSP core during control  
writes, resulting in pops and clicks in the audio stream.  
The total number of bytes for a single-location write command  
can vary from one byte (for a control register write) to five bytes  
(for a program RAM write). Burst mode can be used to fill  
contiguous register or RAM locations. A burst mode write begins  
by writing the address and data of the first RAM or register location  
to be written. Rather than ending the control port transaction  
(by issuing a stop command in I2C mode or by bringing the  
SigmaStudio automatically assigns the first eight positions to  
safeload parameters; therefore, project-specific parameters start  
at Address 0x0008.  
CLATCH  
signal high in SPI mode after the data-word), as  
would be done in a single-address write, the next data-word  
can be written immediately without specifying its address. The  
ADAU1761 control port autoincrements the address of each write  
even across the boundaries of the different RAMs and registers.  
Table 28 and Table 30 show examples of burst mode writes.  
The parameter RAM should not be written to until the DSPEN  
bit has been set in Register R61 (Address 0x40F5).  
DATA RAM  
The ADAU1761 data RAM is used to store audio data-words for  
processing, as well as certain run-time parameters. SigmaStudio  
provides the data and address information for writing to and  
reading from the data RAM.  
Rev. C | Page 47 of 92  
 
 
 
 
 
 
ADAU1761  
Table 27. Parameter RAM Read/Write Format (Single Address)  
Byte 0  
Byte 1  
Byte 2  
Byte 3  
Bytes[4:6]  
chip_adr[6:0], R/W  
param_adr[15:8]  
param_adr[7:0]  
0000, param[27:24]  
param[23:0]  
Table 28. Parameter RAM Block Read/Write Format (Burst Mode)  
Byte 0  
Byte 1  
Byte 2  
Byte 3  
Bytes[4:6]  
Bytes[7:10]  
param_adr + 1  
Bytes[11:14]  
chip_adr[6:0], R/W param_adr[15:8]  
param_adr[7:0]  
0000, param[27:24]  
param[23:0]  
<—param_adr—>  
param_adr + 2  
Table 29. Program RAM Read/Write Format (Single Address)  
Byte 0  
Byte 1  
Byte 2  
Bytes[3:7]  
chip_adr[6:0], R/W  
prog_adr[15:8]  
prog_adr[7:0]  
prog[39:0]  
Table 30. Program RAM Block Read/Write Format (Burst Mode)  
Byte 0  
Byte 1  
Byte 2  
Bytes[3:7]  
Bytes[8:12]  
prog_adr + 1  
Bytes[13:17]  
prog_adr + 2  
chip_adr[6:0], R/W prog_adr[15:8]  
prog_adr[7:0]  
prog[39:0]  
<—prog_adr—>  
Parameter RAM Address 0x0001 to Address 0x0005 are the five  
data slots for storing the data to be safeloaded. The safeload  
parameter space contains five data slots by default because most  
standard signal processing algorithms have five parameters or less.  
SOFTWARE SAFELOAD  
To update parameters in real time while avoiding pop and click  
noises on the output, the ADAU1761 uses a software safeload  
mechanism. The software safeload mechanism enables the  
SigmaDSP core to load new parameters into RAM while guar-  
anteeing that the parameters are not in use. This prevents an  
undesirable condition where an instruction could execute with  
a mix of old and new parameters.  
Address 0x0006 is the target address in parameter RAM (with  
an offset of −1). This designates the first address to be written.  
If more than one word is written, the address increments auto-  
matically for each data-word. Up to five sequential parameter  
RAM locations can be updated with safeload during each audio  
frame. The target address offset of −1 is used because the write  
address is calculated relative to the address of the data, which  
starts at Address 0x0001. Therefore, to update a parameter at  
Address 0x000A, the target address is 0x0009.  
SigmaStudio sets up the necessary code and parameters auto-  
matically for new projects. The safeload code, along with other  
initialization code, fills the first 39 locations in program RAM.  
The first eight parameter RAM locations (Address 0x0000 to  
Address 0x0007) are configured by default in SigmaStudio as  
described in Table 31.  
Address 0x0007 designates the number of words to be written  
into the parameter RAM during the safeload. A biquad filter  
uses all five safeload data addresses. A simple mono gain cell  
uses only one safeload data address. Writing to Address 0x0007  
also triggers the safeload write to occur in the next audio frame.  
Table 31. Software Safeload Parameter RAM Defaults  
Address (Hex)  
Function  
0x0000  
Modulo RAM size  
0x0001  
Safeload Data 1  
The safeload mechanism is software based and executes once  
per audio frame. Therefore, system designers must take care  
when designing the communication protocol. A delay equal to  
or greater than the sampling period (the inverse of sampling  
frequency) is required between each safeload write. A sample  
rate of 48 kHz equates to a delay of at least 21 μs. If this delay  
is not observed, the downloaded data is corrupted.  
0x0002  
0x0003  
0x0004  
0x0005  
0x0006  
0x0007  
Safeload Data 2  
Safeload Data 3  
Safeload Data 4  
Safeload Data 5  
Safeload target address (offset of −1)  
Number of words to write/safeload trigger  
Address 0x0000, which controls the modulo RAM size, is set  
by SigmaStudio and is based on the dynamic address generator  
mode of the project.  
Rev. C | Page 48 of 92  
 
 
 
ADAU1761  
SOFTWARE SLEW  
Because algorithms that use software slew generally require more  
RAM than their nonslew equivalents, they should be used only  
in situations where a parameter will change during operation of  
the device.  
When the values of signal processing parameters are changed  
abruptly in real time, they sometimes cause pop and click  
sounds to appear on the audio outputs. To avoid pops and  
clicks, some algorithms in SigmaStudio implement a software  
slew functionality. Algorithms using software slew set a target  
value for a parameter and continuously update the value of that  
parameter until it reaches the target.  
Figure 70 shows an example of volume slew applied to a sine wave.  
SLEW  
CURVE  
NEW TARGET  
VALUE  
INITIAL  
VALUE  
The target value takes an additional space in parameter RAM,  
and the current value of the parameter is updated in the non-  
modulo section of data RAM. Assignment of parameters and  
nonmodulo data RAM is handled by the SigmaStudio compiler  
and does not need to be programmed manually.  
Figure 70. Example of Volume Slew  
Slew parameters can follow several different curves, including  
an RC-type curve and a linear curve. These curve types are  
coded into each algorithm and cannot be modified by the user.  
Rev. C | Page 49 of 92  
 
 
ADAU1761  
GENERAL-PURPOSE INPUT/OUTPUT  
The serial data input/output pins (Pin 26 to Pin 29) are shared  
with the general-purpose input/output function. Each of these  
four pins can be set to only one of these functions. The function  
of these pins is set in the serial data/GPIO pin configuration  
register (Register R60, Address 0x40F4).  
If many LEDs are required, use an external driver. When the  
GPIO pins are configured as open-collector outputs, they  
should be pulled up to a maximum voltage equal to the voltage  
set on IOVDD.  
The configuration of the GPIO functions is set up in the  
GPIO pin control registers (Register R48 to Register R51,  
Address 0x40C6 to Address 0x40C9).  
The GPIOx pins can be used as inputs or outputs. These pins  
are readable and can be set through the control port or directly  
by the SigmaDSP core. When configured as inputs, the GPIOx  
pins can be used with push-button switches or rotary encoders  
to control DSP program settings. These pins can also be used  
with digital outputs to drive LEDs or external logic to indicate  
the status of internal signals and control other devices. Examples  
of this use include indicating signal overload, signal present,  
and button press confirmation.  
GPIO PINS SET FROM THE CONTROL PORT  
The GPIO pins can also be configured to be directly controlled  
from the I2C/SPI control port. When the pins are set to this  
mode, four memory locations are enabled for the GPIO pin  
settings. The physical settings on the GPIO pins mirror the  
settings of the LSB of these 4-byte-wide memory locations.  
When configured as an output, each GPIO pin can typically  
drive 2 mA, which is enough current to directly drive some  
high efficiency LEDs. Standard LEDs require about 20 mA of  
current and can be driven from a GPIO output with an external  
transistor or buffer. Because of problems that can arise from  
simultaneously driving or sinking a large amount of current on  
many pins, avoid connecting high efficiency LEDs directly to  
many or all of the GPIO pins when designing the application.  
Table 32. GPIOx Pin Memory Settings (Set from Control Port)  
Memory Location  
Decimal  
1568  
1569  
1570  
1571  
Hex  
Bits[31:1]  
Reserved  
Reserved  
Reserved  
Reserved  
Bit 0  
0x0620  
0x0621  
0x0622  
0x0623  
GPIO0SET  
GPIO1SET  
GPIO2SET  
GPIO3SET  
Rev. C | Page 50 of 92  
 
 
 
ADAU1761  
CONTROL REGISTERS  
Table 33. Register Map  
Reg Address Name  
Bit 7  
Bit 6  
Bit 5  
Reserved  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Default  
R0  
R1  
0x4000  
0x4002  
Clock control  
PLL control  
CLKSRC  
INFREQ[1:0]  
COREN  
00000000  
00000000  
11111101  
00000000  
00001100  
00010000  
00000000  
00000000  
00000000  
00000000  
00000000  
00000000  
00000000  
00000000  
00000000  
00000000  
00000000  
00000000  
00000000  
00000000  
00000000  
00000000  
00000000  
00000000  
00010000  
00000000  
00000000  
00000000  
00000000  
00000000  
00000000  
00000000  
00000000  
00000000  
00000010  
00000010  
00000010  
00000010  
M[15:8]  
M[7:0]  
N[15:8]  
N[7:0]  
Reserved  
R[3:0]  
X[1:0]  
Lock  
Type  
Reserved  
PLLEN  
JDPOL  
Reserved  
MX1EN  
R2  
0x4008  
0x4009  
0x400A  
0x400B  
0x400C  
0x400D  
0x400E  
0x400F  
0x4010  
0x4011  
0x4012  
0x4013  
0x4014  
0x4015  
0x4016  
0x4017  
0x4018  
0x4019  
0x401A  
0x401B  
0x401C  
0x401D  
0x401E  
0x401F  
0x4020  
0x4021  
0x4022  
0x4023  
0x4024  
0x4025  
0x4026  
0x4027  
0x4028  
0x4029  
0x402A  
0x402B  
0x402C  
0x402D  
0x402F  
0x4030  
0x4031  
0x4036  
0x40C0  
0x40C1  
0x40C2  
0x40C3  
Dig mic/jack detect  
Rec power mgmt  
Rec Mixer Left 0  
Rec Mixer Left 1  
Rec Mixer Right 0  
Rec Mixer Right 1  
Left diff input vol  
Right diff input vol  
Record mic bias  
ALC 0  
JDDB[1:0]  
JDFUNC[1:0]  
Reserved  
RBIAS[1:0]  
R3  
Reserved  
Reserved  
MXBIAS[1:0]  
LINPG[2:0]  
ADCBIAS[1:0]  
LDBOOST[1:0]  
RDBOOST[1:0]  
R4  
LINNG[2:0]  
R5  
Reserved  
MX1AUXG[2:0]  
R6  
Reserved  
RINPG[2:0]  
RINNG[2:0]  
MX2EN  
R7  
Reserved  
MX2AUXG[2:0]  
LDMUTE  
R8  
LDVOL[5:0]  
RDVOL[5:0]  
LDEN  
RDEN  
MBIEN  
R9  
RDMUTE  
R10  
R11  
R12  
R13  
R14  
R15  
R16  
R17  
R18  
R19  
R20  
R21  
R22  
R23  
R24  
R25  
R26  
R27  
R28  
R29  
R30  
R31  
R32  
R33  
R34  
R35  
R36  
R37  
R38  
R39  
R40  
R41  
R42  
R67  
R43  
R44  
R45  
R46  
Reserved  
MPERF  
MBI  
Reserved  
PGASLEW[1:0]  
ALCMAX[2:0]  
ALCSEL[2:0]  
ALC 1  
ALCHOLD[3:0]  
ALCATCK[3:0]  
NGTYP[1:0] NGEN  
ALCTARG[3:0]  
ALCDEC[3:0]  
NGTHR[4:0]  
ALC 2  
ALC 3  
Serial Port 0  
Reserved  
Reserved  
Reserved  
SPSRS  
LRMOD  
BPOL  
LRPOL  
CHPF[1:0]  
MS  
Serial Port 1  
BPF[2:0]  
ADTDM  
DAOSR  
DATDM  
ADOSR  
MSBP  
INSEL  
LRDEL[1:0]  
CONVSR[2:0]  
Converter 0  
DAPAIR[1:0]  
Converter 1  
Reserved  
ADPAIR[1:0]  
ADCEN[1:0]  
ADC control  
ADCPOL  
MX3RM  
HPF  
DMPOL  
DMSW  
Left digital vol  
Right digital vol  
Play Mixer Left 0  
Play Mixer Left 1  
Play Mixer Right 0  
Play Mixer Right 1  
Play L/R mixer left  
Play L/R mixer right  
Play L/R mixer mono  
Play HP left vol  
Play HP right vol  
Line output left vol  
Line output right vol  
Play mono output  
Pop/click suppress  
Play power mgmt  
DAC Control 0  
DAC Control 1  
DAC Control 2  
Serial port pad  
Control Port Pad 0  
Control Port Pad 1  
Jack detect pin  
Dejitter control  
LADVOL[7:0]  
RADVOL[7:0]  
Reserved  
Reserved  
MX3LM  
MX4LM  
MX3AUXG[3:0]  
MX3EN  
MX3G2[3:0]  
MX3G1[3:0]  
MX4RM  
MX4AUXG[3:0]  
MX4EN  
MX4G2[3:0]  
MX4G1[3:0]  
MX5G3[1:0]  
MX6G3[1:0]  
MX7[1:0]  
LHPM  
Reserved  
Reserved  
MX5G4[1:0]  
MX6G4[1:0]  
MX5EN  
MX6EN  
MX7EN  
HPEN  
Reserved  
LHPVOL[5:0]  
RHPVOL[5:0]  
LOUTVOL[5:0]  
ROUTVOL[5:0]  
MONOVOL[5:0]  
RHPM  
HPMODE  
LOMODE  
ROMODE  
LOUTM  
ROUTM  
MONOM  
ASLEW[1:0]  
PREN  
MOMODE 00000010  
Reserved  
POPMODE POPLESS  
DACBIAS[1:0] PBIAS[1:0]  
DACPOL DEMPH  
Reserved  
PLEN  
00000000  
00000000  
00000000  
00000000  
00000000  
10101010  
10101010  
00000000  
00001000  
00000011  
00000000  
00000000  
00000000  
00000000  
HPBIAS[1:0]  
DACMONO[1:0]  
Reserved  
DACEN[1:0]  
LDAVOL[7:0]  
RDAVOL[7:0]  
ADCSDP[1:0]  
CDATP[1:0]  
DACSDP[1:0]  
CLCHP[1:0]  
Reserved  
Reserved  
DEJIT[7:0]  
LRCLKP[1:0]  
BCLKP[1:0]  
SDAP[1:0]  
SCLP[1:0]  
SDASTR  
Reserved  
Reserved  
JDSTR  
JDP[1:0]  
Cyclic redundancy  
check  
CRC[31:24]  
CRC[23:16]  
CRC[15:8]  
CRC[7:0]  
Rev. C | Page 51 of 92  
 
 
ADAU1761  
Reg Address Name  
Bit 7  
Bit 6  
Bit 5  
Reserved  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Default  
R47  
R48  
R49  
R50  
R51  
R52  
R53  
R54  
R55  
R56  
R57  
0x40C4  
0x40C6  
0x40C7  
0x40C8  
0x40C9  
0x40D0  
0x40D1  
0x40D2  
0x40D3  
0x40D4  
0x40EB  
CRC enable  
Reserved  
CRCEN  
00000000  
00000000  
00000000  
00000000  
00000000  
00000000  
00000000  
00000000  
00000000  
00000000  
00000001  
GPIO0 pin control  
GPIO1 pin control  
GPIO2 pin control  
GPIO3 pin control  
Watchdog enable  
Watchdog value  
GPIO0[3:0]  
GPIO1[3:0]  
GPIO2[3:0]  
GPIO3[3:0]  
Reserved  
Reserved  
Reserved  
Reserved  
DOGEN  
DOGER  
DOG[23:16]  
DOG[15:8]  
DOG[7:0]  
Watchdog error  
Reserved  
DSP sampling rate  
setting  
Reserved  
Reserved  
Reserved  
Reserved  
DSPSR[3:0]  
SINRT[3:0]  
R58  
R59  
R60  
0x40F2  
0x40F3  
0x40F4  
Serial input route  
control  
00000000  
00000000  
00000000  
Serial output route  
control  
SOUTRT[3:0]  
Serial data/GPIO  
pin configuration  
LRGP3  
BGP2  
SDOGP1  
SDIGP0  
R61  
R62  
R63  
R64  
0x40F5  
0x40F6  
0x40F7  
0x40F8  
DSP enable  
DSP run  
Reserved  
Reserved  
MOSLW  
DSPEN  
00000000  
00000000  
00000000  
00000000  
DSPRUN  
LHPSLW  
DSP slew modes  
Reserved  
SLEWPD  
ROSLW  
LOSLW  
INTPD  
RHPSLW  
SPSR[2:0]  
Serial port  
sampling rate  
Reserved  
ALCPD  
R65  
R66  
0x40F9  
0x40FA  
Clock Enable 0  
Clock Enable 1  
Reserved  
DECPD  
SOUTPD  
SINPD  
CLK1  
SPPD  
CLK0  
00000000  
00000000  
Reserved  
CONTROL REGISTER DETAILS  
All registers except for the PLL control register are 1-byte write and read registers.  
R0: Clock Control, 16,384 (0x4000)  
Bit 7  
Bit 6  
Bit 5  
Reserved  
Table 34. Clock Control Register  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
COREN  
CLKSRC  
INFREQ[1:0]  
Bits  
Bit Name  
Description  
3
CLKSRC  
Clock source select.  
0 = direct from MCLK pin (default).  
1 = PLL clock.  
[2:1]  
INFREQ[1:0]  
Input clock frequency. Sets the core clock rate that generates the core clock. If the PLL is used, this value is  
automatically set to 1024 × fS.  
Setting  
00  
01  
Input Clock Frequency  
256 × fS (default)  
512 × fS  
10  
768 × fS  
11  
1024 × fS  
0
COREN  
Core clock enable. Only the R0 and R1 registers can be accessed when this bit is set to 0 (core clock disabled).  
0 = core clock disabled (default).  
1 = core clock enabled.  
Rev. C | Page 52 of 92  
 
ADAU1761  
R1: PLL Control, 16,386 (0x4002)  
Byte  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
M[15:8]  
Bit 2  
Bit 1  
Bit 0  
0
1
2
3
4
5
M[7:0]  
N[15:8]  
N[7:0]  
Reserved  
R[3:0]  
Reserved  
X[1:0]  
Lock  
Type  
PLLEN  
Table 35. PLL Control Register  
Byte  
Bits  
[7:0]  
[7:0]  
Bit Name  
M[15:8]  
M[7:0]  
Description  
0
1
PLL denominator MSB. This value is concatenated with M[7:0] to make up a 16-bit number.  
PLL denominator LSB. This value is concatenated with M[15:8] to make up a 16-bit number.  
M[15:8] (MSB)  
00000000  
M[7:0] (LSB)  
00000000  
Value of M  
0
00000000  
11111101  
253 (default)  
11111111  
11111111  
65,535  
2
3
[7:0]  
[7:0]  
N[15:8]  
N[7:0]  
PLL numerator MSB. This value is concatenated with N[7:0] to make up a 16-bit number.  
PLL numerator LSB. This value is concatenated with N[15:8] to make up a 16-bit number.  
N[15:8] (MSB)  
N[7:0] (LSB)  
00000000  
Value of N  
00000000  
0
00000000  
00001100  
12 (default)  
11111111  
11111111  
65,535  
4
[6:3]  
R[3:0]  
PLL integer setting.  
Setting  
Value of R  
0010  
2 (default)  
0011  
0100  
0101  
0110  
0111  
1000  
3
4
5
6
7
8
4
[2:1]  
X[1:0]  
PLL input clock divider.  
Setting  
00  
Value of X  
1 (default)  
01  
10  
11  
2
3
4
4
5
5
0
1
0
Type  
Lock  
Type of PLL. When set to integer mode, the values of M and N are ignored.  
0 = integer (default).  
1 = fractional.  
PLL lock. This read-only bit is flagged when the PLL has finished locking.  
0 = PLL unlocked (default).  
1 = PLL locked.  
PLLEN  
PLL enable.  
0 = PLL disabled (default).  
1 = PLL enabled.  
Rev. C | Page 53 of 92  
ADAU1761  
R2: Digital Microphone/Jack Detection Control, 16,392 (0x4008)  
Bit 7  
Bit 6  
JDDB[1:0]  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Reserved  
Bit 1  
Bit 0  
JDFUNC[1:0]  
JDPOL  
Table 36. Digital Microphone/Jack Detection Control Register  
Bits  
Bit Name  
Description  
[7:6]  
JDDB[1:0]  
Jack detect debounce time.  
Setting  
00  
01  
Debounce Time  
5 ms (default)  
10 ms  
10  
20 ms  
11  
40 ms  
[5:4]  
JDFUNC[1:0]  
JACKDET/MICIN pin function. Enables or disables the jack detect function or configures the pin for a digital  
microphone input.  
Setting  
00  
01  
Pin Function  
Jack detect off (default)  
Jack detect on  
10  
11  
Digital microphone input  
Reserved  
0
JDPOL  
Jack detect polarity. Detects high or low signal.  
0 = detect high signal (default).  
1 = detect low signal.  
R3: Record Power Management, 16,393 (0x4009)  
This register manages the power consumption for the record path. In particular, the current distribution for the mixer boosts, ADCs,  
record path mixers, and PGAs can be set to one of four modes. These settings are normal operation, power saving mode, enhanced  
performance mode, and extreme power saving mode. Each of these modes draws current from a central bias. Enhanced performance  
mode offers the highest performance with the trade-off of higher power consumption.  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reserved  
MXBIAS[1:0]  
ADCBIAS[1:0]  
RBIAS[1:0]  
Reserved  
Table 37. Record Power Management Register  
Bits  
Bit Name  
Description  
[6:5]  
MXBIAS[1:0]  
Mixer amplifier bias boost. Sets the boost level for the bias current of the record path mixers. In some cases,  
the boost level enhances the THD + N performance.  
Setting  
00  
01  
Boost Level  
Normal operation (default)  
Boost Level 1  
10  
Boost Level 2  
11  
Boost Level 3  
[4:3]  
[2:1]  
ADCBIAS[1:0]  
RBIAS[1:0]  
ADC bias control. Sets the bias current for the ADCs based on the mode of operation selected.  
Setting  
00  
01  
10  
11  
ADC Bias Control  
Normal operation (default)  
Extreme power saving  
Enhanced performance  
Power saving  
Record path bias control. Sets the bias current for the PGAs and mixers in the record path.  
Setting  
00  
01  
Record Path Bias Control  
Normal operation (default)  
Reserved  
10  
11  
Enhanced performance  
Power saving  
Rev. C | Page 54 of 92  
ADAU1761  
R4: Record Mixer Left (Mixer 1) Control 0, 16,394 (0x400A)  
This register controls the gain of single-ended inputs for the left channel record path. The left channel record mixer is referred to as Mixer 1.  
Bit 7  
Bit 6  
Bit 5  
LINPG[2:0]  
Bit 4  
Bit 3  
Bit 2  
LINNG[2:0]  
Bit 1  
Bit 0  
Reserved  
MX1EN  
Table 38. Record Mixer Left (Mixer 1) Control 0 Register  
Bits  
Bit Name  
Description  
[6:4]  
LINPG[2:0]  
Gain for a left channel single-ended input from the LINP pin, input to Mixer 1.  
Setting  
000  
001  
010  
011  
Gain  
Mute (default)  
−12 dB  
−9 dB  
−6 dB  
−3 dB  
0 dB  
100  
101  
110  
3 dB  
111  
6 dB  
[3:1]  
LINNG[2:0]  
Gain for a left channel single-ended input from the LINN pin, input to Mixer 1.  
Setting  
000  
001  
010  
011  
Gain  
Mute (default)  
−12 dB  
−9 dB  
−6 dB  
−3 dB  
0 dB  
100  
101  
110  
3 dB  
111  
6 dB  
0
MX1EN  
Left channel mixer enable in the record path. Referred to as Mixer 1.  
0 = mixer disabled (default).  
1 = mixer enabled.  
Rev. C | Page 55 of 92  
ADAU1761  
R5: Record Mixer Left (Mixer 1) Control 1, 16,395 (0x400B)  
This register controls the gain boost of the left channel differential PGA input and the gain for the left channel auxiliary input in the  
record path. The left channel record mixer is referred to as Mixer 1.  
Bit 7  
Bit 6  
Reserved  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
LDBOOST[1:0]  
MX1AUXG[2:0]  
Table 39. Record Mixer Left (Mixer 1) Control 1 Register  
Bits  
Bit Name  
Description  
[4:3]  
LDBOOST[1:0]  
Left channel differential PGA input gain boost, input to Mixer 1. The left differential input uses the LINP (positive  
signal) and LINN (negative signal) pins.  
Setting  
00  
01  
Gain Boost  
Mute (default)  
0 dB  
10  
20 dB  
11  
Reserved  
[2:0]  
MX1AUXG[2:0] Left single-ended auxiliary input gain from the LAUX pin in the record path, input to Mixer 1.  
Setting  
000  
001  
Auxiliary Input Gain  
Mute (default)  
−12 dB  
−9 dB  
010  
011  
−6 dB  
100  
−3 dB  
101  
0 dB  
110  
3 dB  
111  
6 dB  
Rev. C | Page 56 of 92  
ADAU1761  
R6: Record Mixer Right (Mixer 2) Control 0, 16,396 (0x400C)  
This register controls the gain of single-ended inputs for the right channel record path. The right channel record mixer is referred to as  
Mixer 2.  
Bit 7  
Bit 6  
Bit 5  
RINPG[2:0]  
Bit 4  
Bit 3  
Bit 2  
RINNG[2:0]  
Bit 1  
Bit 0  
Reserved  
MX2EN  
Table 40. Record Mixer Right (Mixer 2) Control 0 Register  
Bits  
Bit Name  
Description  
[6:4]  
RINPG[2:0]  
Gain for a right channel single-ended input from the RINP pin, input to Mixer 2.  
Setting  
000  
001  
010  
011  
Gain  
Mute (default)  
−12 dB  
−9 dB  
−6 dB  
−3 dB  
0 dB  
100  
101  
110  
3 dB  
111  
6 dB  
[3:1]  
RINNG[2:0]  
Gain for a right channel single-ended input from the RINN pin, input to Mixer 2.  
Setting  
000  
001  
010  
011  
Gain  
Mute (default)  
−12 dB  
−9 dB  
−6 dB  
−3 dB  
0 dB  
100  
101  
110  
3 dB  
111  
6 dB  
0
MX2EN  
Right channel mixer enable in the record path. Referred to as Mixer 2.  
0 = mixer disabled (default).  
1 = mixer enabled.  
Rev. C | Page 57 of 92  
ADAU1761  
R7: Record Mixer Right (Mixer 2) Control 1, 16,397 (0x400D)  
This register controls the gain boost of the right channel differential PGA input and the gain for the right channel auxiliary input in the  
record path. The right channel record mixer is referred to as Mixer 2.  
Bit 7  
Bit 6  
Reserved  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
RDBOOST[1:0]  
MX2AUXG[2:0]  
Table 41. Record Mixer Right (Mixer 2) Control 1 Register  
Bits  
Bit Name  
Description  
[4:3]  
RDBOOST[1:0]  
Right channel differential PGA input gain boost, input to Mixer 2. The right differential input uses the RINP  
(positive signal) and RINN (negative signal) pins.  
Setting  
00  
01  
Gain Boost  
Mute (default)  
0 dB  
10  
20 dB  
11  
Reserved  
[2:0]  
MX2AUXG[2:0] Right single-ended auxiliary input gain from the RAUX pin in the record path, input to Mixer 2.  
Setting  
000  
001  
Auxiliary Input Gain  
Mute (default)  
−12 dB  
−9 dB  
010  
011  
−6 dB  
100  
−3 dB  
101  
0 dB  
110  
3 dB  
111  
6 dB  
R8: Left Differential Input Volume Control, 16,398 (0x400E)  
This register enables the differential path and sets the volume control for the left differential PGA input.  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
LDMUTE  
LDEN  
LDVOL[5:0]  
Table 42. Left Differential Input Volume Control Register  
Bits  
Bit Name  
Description  
[7:2]  
LDVOL[5:0]  
Left channel differential PGA input volume control. The left differential input uses the LINP (positive signal) and  
LINN (negative signal) pins. Each step corresponds to a 0.75 dB increase in gain. See Table 92 for a complete list  
of the volume settings.  
Setting  
000000  
000001  
Volume  
−12 dB (default)  
−11.25 dB  
010000  
0 dB  
111110  
111111  
34.5 dB  
35.25 dB  
1
0
LDMUTE  
LDEN  
Left differential input mute control.  
0 = mute (default).  
1 = unmute.  
Left differential PGA enable. When enabled, the LINP and LINN pins are used as a full differential pair. When  
disabled, these two pins are configured as two single-ended inputs with the signals routed around the PGA.  
0 = disabled (default).  
1 = enabled.  
Rev. C | Page 58 of 92  
ADAU1761  
R9: Right Differential Input Volume Control, 16,399 (0x400F)  
This register enables the differential path and sets the volume control for the right differential PGA input.  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
RDMUTE  
RDEN  
RDVOL[5:0]  
Table 43. Right Differential Input Volume Control Register  
Bits  
Bit Name  
Description  
[7:2]  
RDVOL[5:0]  
Right channel differential PGA input volume control. The right differential input uses the RINP (positive signal)  
and RINN (negative signal) pins. Each step corresponds to a 0.75 dB increase in gain. See Table 92 for a complete  
list of the volume settings.  
Setting  
000000  
000001  
Volume  
−12 dB (default)  
−11.25 dB  
010000  
0 dB  
111110  
111111  
34.5 dB  
35.25 dB  
1
0
RDMUTE  
RDEN  
Right differential input mute control.  
0 = mute (default).  
1 = unmute.  
Right differential PGA enable. When enabled, the RINP and RINN pins are used as a full differential pair. When  
disabled, these two pins are configured as two single-ended inputs with the signals routed around the PGA.  
0 = disabled (default).  
1 = enabled.  
R10: Record Microphone Bias Control, 16,400 (0x4010)  
This register controls the MICBIAS pin settings for biasing electret type analog microphones.  
Bit 7  
Bit 6  
Bit 5  
Reserved  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
MPERF  
MBI  
Reserved  
MBIEN  
Table 44. Record Microphone Bias Control Register  
Bits  
Bit Name  
Description  
3
MPERF  
Microphone bias is enabled for high performance or normal operation. High performance operation sources  
more current to the microphone.  
0 = normal operation (default).  
1 = high performance.  
2
0
MBI  
Microphone voltage bias as a fraction of AVDD.  
0 = 0.90 × AVDD (default).  
1 = 0.65 × AVDD.  
MBIEN  
Enables the MICBIAS output.  
0 = disabled (default).  
1 = enabled.  
Rev. C | Page 59 of 92  
ADAU1761  
R11: ALC Control 0, 16,401 (0x4011)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
ALCSEL[2:0]  
Bit 0  
PGASLEW[1:0]  
ALCMAX[2:0]  
Table 45. ALC Control 0 Register  
Bits  
Bit Name  
Description  
[7:6]  
PGASLEW[1:0]  
PGA volume slew time when the ALC is off. The slew time is the period of time that a volume increase or decrease  
takes to ramp up or ramp down to the target volume set in Register R8 (left differential input volume control)  
and Register R9 (right differential input volume control).  
Setting  
00  
01  
Slew Time  
24 ms (default)  
48 ms  
10  
96 ms  
11  
Off  
[5:3]  
ALCMAX[2:0]  
The maximum ALC gain sets a limit to the amount of gain that the ALC can provide to the input signal. This  
protects small signals from excessive amplification.  
Setting  
000  
001  
Maximum ALC Gain  
−12 dB (default)  
−6 dB  
010  
0 dB  
011  
6 dB  
100  
12 dB  
101  
18 dB  
110  
24 dB  
111  
30 dB  
[2:0]  
ALCSEL[2:0]  
ALC select. These bits set the channels that are controlled by the ALC. When set to right only, the ALC responds  
only to the right channel input and controls the gain of the right PGA amplifier only. When set to left only, the  
ALC responds only to the left channel input and controls the gain of the left PGA amplifier only. When set to  
stereo, the ALC responds to the greater of the left or right channel and controls the gain of both the left and  
right PGA amplifiers. DSP control allows the PGA gain to be set within the DSP or from external GPIO inputs.  
These bits must be off if manual control of the volume is desired.  
Setting  
000  
001  
Channels  
Off (default)  
Right only  
Left only  
010  
011  
Stereo  
100  
101  
110  
111  
DSP control  
Reserved  
Reserved  
Reserved  
Rev. C | Page 60 of 92  
ADAU1761  
R12: ALC Control 1, 16,402 (0x4012)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ALCHOLD[3:0]  
ALCTARG[3:0]  
Table 46. ALC Control 1 Register  
Bits  
Bit Name  
Description  
[7:4]  
ALCHOLD[3:0]  
ALC hold time. The ALC hold time is the amount of time that the ALC waits after a decrease in input level before  
increasing the gain to achieve the target level. The recommended minimum setting is 21 ms (0011) to prevent  
distortion of low frequency signals. The hold time doubles with every 1-bit increase.  
Setting  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
Hold Time  
2.67 ms (default)  
5.34 ms  
10.68 ms  
21.36 ms  
42.72 ms  
85.44 ms  
170.88 ms  
341.76 ms  
683.52 ms  
1.367 sec  
2.7341 sec  
5.4682 sec  
10.936 sec  
21.873 sec  
43.745 sec  
87.491 sec  
[3:0]  
ALCTARG[3:0]  
ALC target. The ALC target sets the desired ADC input level. The PGA gain is adjusted by the ALC to reach this  
target level. The recommended target level is between −16 dB and −10 dB to accommodate transients without  
clipping the ADC.  
Setting  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
ALC Target  
−28.5 dB (default)  
−27 dB  
−25.5 dB  
−24 dB  
−22.5 dB  
−21 dB  
−19.5 dB  
−18 dB  
−16.5 dB  
−15 dB  
−13.5 dB  
−12 dB  
−10.5 dB  
−9 dB  
−7.5 dB  
−6 dB  
Rev. C | Page 61 of 92  
ADAU1761  
R13: ALC Control 2, 16,403 (0x4013)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ALCATCK[3:0]  
ALCDEC[3:0]  
Table 47. ALC Control 2 Register  
Bits  
Bit Name  
Description  
[7:4]  
ALCATCK[3:0]  
ALC attack time. The attack time sets how fast the ALC starts attenuating after an increase in input level above  
the target. A typical setting for music recording is 384 ms, and a typical setting for voice recording is 24 ms.  
Setting  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
Attack Time  
6 ms (default)  
12 ms  
24 ms  
48 ms  
96 ms  
192 ms  
384 ms  
768 ms  
1.54 sec  
3.07 sec  
6.14 sec  
12.29 sec  
24.58 sec  
49.15 sec  
98.30 sec  
196.61 sec  
[3:0]  
ALCDEC[3:0]  
ALC decay time. The decay time sets how fast the ALC increases the PGA gain after a decrease in input level  
below the target. A typical setting for music recording is 24.58 seconds, and a typical setting for voice recording  
is 1.54 seconds.  
Setting  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
Decay Time  
24 ms  
48 ms  
96 ms  
192 ms  
384 ms  
768 ms  
1.54 sec  
3.07 sec  
6.14 sec  
12.29 sec  
24.58 sec  
49.15 sec  
98.30 sec  
196.61 sec  
393.22 sec  
786.43 sec  
Rev. C | Page 62 of 92  
ADAU1761  
R14: ALC Control 3, 16,404 (0x4014)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
NGTHR[4:0]  
Bit 1  
Bit 0  
NGEN  
NGTYP[1:0]  
Table 48. ALC Control 3 Register  
Bits  
Bit Name  
Description  
[7:6]  
NGTYP[1:0]  
Noise gate type. When the input signal falls below the threshold for 250 ms, the noise gate can hold a constant  
PGA gain, mute the ADC output, fade the PGA gain to the minimum gain value, or fade then mute.  
Setting  
00  
Noise Gate  
Hold PGA constant (default)  
01  
10  
11  
Mute ADC output (digital mute)  
Fade to PGA minimum value (analog fade)  
Fade then mute (analog fade/digital mute)  
5
NGEN  
Noise gate enable.  
0 = disabled (default).  
1 = enabled.  
[4:0]  
NGTHR[4:0]  
Noise gate threshold. When the input signal falls below the threshold for 250 ms, the noise gate is activated.  
A 1 LSB increase corresponds to a −1.5 dB change. See Table 93 for a complete list of the threshold settings.  
Setting  
00000  
00001  
Threshold  
−76.5 dB (default)  
−75 dB  
11110  
11111  
−31.5 dB  
−30 dB  
R15: Serial Port Control 0, 16,405 (0x4015)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
CHPF[1:0]  
Bit 0  
Reserved  
SPSRS  
LRMOD  
BPOL  
LRPOL  
MS  
Table 49. Serial Port Control 0 Register  
Bits  
Bit Name  
Description  
6
SPSRS  
Serial port sampling rate source.  
0 = converter rate set in Register R17 (default).  
1 = DSP rate set in Register R57.  
5
4
LRMOD  
BPOL  
LRCLK mode sets the LRCLK for either a 50% duty cycle or a pulse. The pulse mode should be at least 1 BCLK wide.  
0 = 50% duty cycle (default).  
1 = pulse mode.  
BCLK polarity sets the BCLK edge that triggers a change in audio data. This can be set for the falling or rising  
edge of the BCLK.  
0 = falling edge (default).  
1 = rising edge.  
3
LRPOL  
LRCLK polarity sets the LRCLK edge that triggers the beginning of the left channel audio frame. This can be set  
for the falling or rising edge of the LRCLK.  
0 = falling edge (default).  
1 = rising edge.  
[2:1]  
CHPF[1:0]  
Channels per frame sets the number of channels per LRCLK frame.  
Setting  
00  
01  
Channels per LRCLK Frame  
Stereo (default)  
TDM 4  
10  
TDM 8  
11  
Reserved  
0
MS  
Serial data port bus mode. Both LRCLK and BCLK are master of the serial port when set in master mode and are  
serial port slave in slave mode.  
0 = slave mode (default).  
1 = master mode.  
Rev. C | Page 63 of 92  
ADAU1761  
R16: Serial Port Control 1, 16,406 (0x4016)  
Bit 7  
Bit 6  
BPF[2:0]  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ADTDM  
DATDM  
MSBP  
LRDEL[1:0]  
Table 50. Serial Port Control 1 Register  
Bits  
Bit Name  
Description  
[7:5]  
BPF[2:0]  
Number of bit clock cycles per LRCLK audio frame.  
Setting  
000  
001  
Bit Clock Cycles  
64 (default)  
Reserved  
48  
010  
011  
128  
100  
256  
101  
110  
111  
Reserved  
Reserved  
Reserved  
4
ADTDM  
DATDM  
MSBP  
ADC serial audio data channel position in TDM mode.  
0 = left first (default).  
1 = right first.  
3
DAC serial audio data channel position in TDM mode.  
0 = left first (default).  
1 = right first.  
2
MSB position in the LRCLK frame.  
0 = MSB first (default).  
1 = LSB first.  
[1:0]  
LRDEL[1:0]  
Data delay from LRCLK edge (in BCLK units).  
Setting  
00  
Delay (Bit Clock Cycles)  
1 (default)  
01  
0
10  
8
11  
16  
Rev. C | Page 64 of 92  
ADAU1761  
R17: Converter Control 0, 16,407 (0x4017)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reserved  
DAOSR  
ADOSR  
DAPAIR[1:0]  
CONVSR[2:0]  
Table 51. Converter Control 0 Register  
Bits  
Bit Name  
Description  
[6:5]  
DAPAIR[1:0]  
On-chip DAC serial data selection in TDM 4 or TDM 8 mode.  
Setting  
00  
01  
Pair  
First pair (default)  
Second pair  
Third pair  
10  
11  
Fourth pair  
4
DAOSR  
DAC oversampling ratio. This bit cannot be set for 64× when CONVSR[2:0] is set to 96 kHz.  
0 = 128× (default).  
1 = 64×.  
3
ADOSR  
ADC oversampling ratio. This bit cannot be set for 64× when CONVSR[2:0] is set to 96 kHz.  
0 = 128× (default).  
1 = 64×.  
[2:0]  
CONVSR[2:0]  
Converter sampling rate. The ADCs and DACs operate at the sampling rate set in this register. The converter rate  
selected is a ratio of the base sampling rate, fS. The base sampling rate is determined by the operating frequency  
of the core clock.  
Setting  
000  
001  
Sampling Rate  
Base Sampling Rate (fS = 48 kHz)  
fS  
fS/6  
48 kHz, base (default)  
8 kHz  
010  
fS/4  
12 kHz  
011  
fS/3  
16 kHz  
100  
fS/2  
24 kHz  
101  
110  
111  
fS/1.5  
fS/0.5  
Reserved  
32 kHz  
96 kHz  
R18: Converter Control 1, 16,408 (0x4018)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Reserved  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ADPAIR[1:0]  
Table 52. Converter Control 1 Register  
Bits  
Bit Name  
Description  
[1:0]  
ADPAIR[1:0]  
On-chip ADC serial data selection in TDM 4 or TDM 8 mode.  
Setting  
00  
01  
Pair  
First pair (default)  
Second pair  
Third pair  
10  
11  
Fourth pair  
Rev. C | Page 65 of 92  
ADAU1761  
R19: ADC Control, 16,409 (0x4019)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reserved  
ADCPOL  
HPF  
DMPOL  
DMSW  
INSEL  
ADCEN[1:0]  
Table 53. ADC Control Register  
Bits  
Bit Name  
Description  
6
ADCPOL  
Invert input polarity.  
0 = normal (default).  
1 = inverted.  
5
4
3
HPF  
ADC high-pass filter select. At 48 kHz, f3dB = 2 Hz.  
0 = off (default).  
1 = on.  
DMPOL  
DMSW  
Digital microphone data polarity swap.  
0 = invert polarity.  
1 = normal (default).  
Digital microphone channel swap. Normal operation sends the left channel on the rising edge of the clock and  
the right channel on the falling edge of the clock.  
0 = normal (default).  
1 = swap left and right channels.  
2
INSEL  
Digital microphone input select. When asserted, the on-chip ADCs are off, BCLK is master at 128 × fS, and  
ADC_SDATA is expected to have left and right channels interleaved.  
0 = digital microphone inputs off, ADCs enabled (default).  
1 = digital microphone inputs enabled, ADCs off.  
[1:0]  
ADCEN[1:0]  
ADC enable.  
Setting  
00  
01  
ADCs Enabled  
Both off (default)  
Left on  
10  
Right on  
11  
Both on  
R20: Left Input Digital Volume, 16,410 (0x401A)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
LADVOL[7:0]  
Table 54. Left Input Digital Volume Register  
Bits  
Bit Name  
Description  
[7:0]  
LADVOL[7:0]  
Controls the digital volume attenuation for left channel inputs from either the left ADC or the left digital  
microphone input. Each bit corresponds to a 0.375 dB step with slewing between settings. See Table 94 for a  
complete list of the volume settings.  
Setting  
00000000  
00000001  
00000010  
Volume Attenuation  
0 dB (default)  
−0.375 dB  
−0.75 dB  
11111110  
11111111  
−95.25 dB  
−95.625 dB  
Rev. C | Page 66 of 92  
ADAU1761  
R21: Right Input Digital Volume, 16,411 (0x401B)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
RADVOL[7:0]  
Table 55. Right Input Digital Volume Register  
Bits  
Bit Name  
Description  
[7:0]  
RADVOL[7:0]  
Controls the digital volume attenuation for right channel inputs from either the right ADC or the right digital  
microphone input. Each bit corresponds to a 0.375 dB step with slewing between settings. See Table 94 for a  
complete list of the volume settings.  
Setting  
00000000  
00000001  
00000010  
Volume Attenuation  
0 dB (default)  
−0.375 dB  
−0.75 dB  
11111110  
11111111  
−95.25 dB  
−95.625 dB  
R22: Playback Mixer Left (Mixer 3) Control 0, 16,412 (0x401C)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reserved  
MX3RM  
MX3LM  
MX3EN  
MX3AUXG[3:0]  
Table 56. Playback Mixer Left (Mixer 3) Control 0 Register  
Bits  
Bit Name  
Description  
6
MX3RM  
Mixer input mute. Mutes the right DAC input to the left channel playback mixer (Mixer 3).  
0 = muted (default).  
1 = unmuted.  
5
MX3LM  
Mixer input mute. Mutes the left DAC input to the left channel playback mixer (Mixer 3).  
0 = muted (default).  
1 = unmuted.  
[4:1]  
MX3AUXG[3:0] Mixer input gain. Controls the left channel auxiliary input gain to the left channel playback mixer (Mixer 3).  
Setting  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
Gain  
Mute (default)  
−15 dB  
−12 dB  
−9 dB  
−6 dB  
−3 dB  
0 dB  
3 dB  
6 dB  
0
MX3EN  
Mixer 3 enable.  
0 = disabled (default).  
1 = enabled.  
Rev. C | Page 67 of 92  
ADAU1761  
R23: Playback Mixer Left (Mixer 3) Control 1, 16,413 (0x401D)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
MX3G2[3:0]  
MX3G1[3:0]  
Table 57. Playback Mixer Left (Mixer 3) Control 1 Register  
Bits  
Bit Name  
Description  
[7:4]  
MX3G2[3:0]  
Bypass gain control. The signal from the right channel record mixer (Mixer 2) bypasses the converters and gain  
can be applied before the left playback mixer (Mixer 3).  
Setting  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
Gain  
Mute (default)  
−15 dB  
−12 dB  
−9 dB  
−6 dB  
−3 dB  
0 dB  
3 dB  
6 dB  
[3:0]  
MX3G1[3:0]  
Bypass gain control. The signal from the left channel record mixer (Mixer 1) bypasses the converters and gain  
can be applied before the left playback mixer (Mixer 3).  
Setting  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
Gain  
Mute (default)  
−15 dB  
−12 dB  
−9 dB  
−6 dB  
−3 dB  
0 dB  
3 dB  
6 dB  
Rev. C | Page 68 of 92  
ADAU1761  
R24: Playback Mixer Right (Mixer 4) Control 0, 16,414 (0x401E)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reserved  
MX4RM  
MX4LM  
MX4EN  
MX4AUXG[3:0]  
Table 58. Playback Mixer Right (Mixer 4) Control 0 Register  
Bits  
Bit Name  
Description  
6
MX4RM  
Mixer input mute. Mutes the right DAC input to the right channel playback mixer (Mixer 4).  
0 = muted (default).  
1 = unmuted.  
5
MX4LM  
Mixer input mute. Mutes the left DAC input to the right channel playback mixer (Mixer 4).  
0 = muted (default).  
1 = unmuted.  
[4:1]  
MX4AUXG[3:0] Mixer input gain. Controls the right channel auxiliary input gain to the right channel playback mixer (Mixer 4).  
Setting  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
Gain  
Mute (default)  
−15 dB  
−12 dB  
−9 dB  
−6 dB  
−3 dB  
0 dB  
3 dB  
6 dB  
0
MX4EN  
Mixer 4 enable.  
0 = disabled (default).  
1 = enabled.  
Rev. C | Page 69 of 92  
ADAU1761  
R25: Playback Mixer Right (Mixer 4) Control 1, 16,415 (0x401F)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
MX4G2[3:0]  
MX4G1[3:0]  
Table 59. Playback Mixer Right (Mixer 4) Control 1 Register  
Bits  
Bit Name  
Description  
[7:4]  
MX4G2[3:0]  
Bypass gain control. The signal from the right channel record mixer (Mixer 2) bypasses the converters and gain  
can be applied before the right playback mixer (Mixer 4).  
Setting  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
Gain  
Mute (default)  
−15 dB  
−12 dB  
−9 dB  
−6 dB  
−3 dB  
0 dB  
3 dB  
6 dB  
[3:0]  
MX4G1[3:0]  
Bypass gain control. The signal from the left channel record mixer (Mixer 1) bypasses the converters and gain  
can be applied before the right playback mixer (Mixer 4).  
Setting  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
Gain  
Mute (default)  
−15 dB  
−12 dB  
−9 dB  
−6 dB  
−3 dB  
0 dB  
3 dB  
6 dB  
Rev. C | Page 70 of 92  
ADAU1761  
R26: Playback L/R Mixer Left (Mixer 5) Line Output Control, 16,416 (0x4020)  
Bit 7  
Bit 6  
Reserved  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
MX5EN  
MX5G4[1:0]  
MX5G3[1:0]  
Table 60. Playback L/R Mixer Left (Mixer 5) Line Output Control Register  
Bits  
Bit Name  
Description  
[4:3]  
MX5G4[1:0]  
Mixer input gain boost. The signal from the right channel playback mixer (Mixer 4) can be enabled and boosted  
in the playback L/R mixer left (Mixer 5).  
Setting  
00  
Gain Boost  
Mute (default)  
01  
10  
11  
0 dB output (−6 dB gain on each of the two inputs)  
6 dB output (0 dB gain on each of the two inputs)  
Reserved  
[2:1]  
MX5G3[1:0]  
Mixer input gain boost. The signal from the left channel playback mixer (Mixer 3) can be enabled and boosted in  
the playback L/R mixer left (Mixer 5).  
Setting  
00  
Gain Boost  
Mute (default)  
01  
10  
11  
0 dB output (−6 dB gain on each of the two inputs)  
6 dB output (0 dB gain on each of the two inputs)  
Reserved  
0
MX5EN  
Mixer 5 enable.  
0 = disabled (default).  
1 = enabled.  
R27: Playback L/R Mixer Right (Mixer 6) Line Output Control, 16,417 (0x4021)  
Bit 7  
Bit 6  
Reserved  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
MX6EN  
MX6G4[1:0]  
MX6G3[1:0]  
Table 61. Playback L/R Mixer Right (Mixer 6) Line Output Control Register  
Bits  
Bit Name  
Description  
[4:3]  
MX6G4[1:0]  
Mixer input gain boost. The signal from the right channel playback mixer (Mixer 4) can be enabled and boosted  
in the playback L/R mixer right (Mixer 6).  
Setting  
00  
Gain Boost  
Mute (default)  
01  
10  
11  
0 dB output (−6 dB gain on each of the two inputs)  
6 dB output (0 dB gain on each of the two inputs)  
Reserved  
[2:1]  
MX6G3[1:0]  
Mixer input gain boost. The signal from the left channel playback mixer (Mixer 3) can be enabled and boosted in  
the playback L/R mixer right (Mixer 6).  
Setting  
00  
Gain Boost  
Mute (default)  
01  
10  
11  
0 dB output (−6 dB gain on each of the two inputs)  
6 dB output (0 dB gain on each of the two inputs)  
Reserved  
0
MX6EN  
Mixer 6 enable.  
0 = disabled (default).  
1 = enabled.  
Rev. C | Page 71 of 92  
ADAU1761  
R28: Playback L/R Mixer Mono Output (Mixer 7) Control, 16,418 (0x4022)  
Bit 7  
Bit 6  
Bit 5  
Reserved  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
MX7[1:0]  
Bit 0  
MX7EN  
Table 62. Playback L/R Mixer Mono Output (Mixer 7) Control Register  
Bits  
Bit Name  
Description  
[2:1]  
MX7[1:0]  
L/R mono playback mixer (Mixer 7). Mixes the left and right playback mixers (Mixer 3 and Mixer 4) with either a  
0 dB or 6 dB gain boost. Additionally, this mixer can operate as a common-mode output, which is used as the  
virtual ground in a capless headphone configuration.  
Setting  
00  
01  
10  
11  
Gain Boost  
Common-mode output (default)  
0 dB output (−6 dB gain on each of the two inputs)  
6 dB output (0 dB gain on each of the two inputs)  
Reserved  
0
MX7EN  
Mixer 7 enable.  
0 = disabled (default).  
1 = enabled.  
R29: Playback Headphone Left Volume Control, 16,419 (0x4023)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
LHPVOL[5:0]  
LHPM  
HPEN  
Table 63. Playback Headphone Left Volume Control Register  
Bits  
Bit Name  
Description  
[7:2]  
LHPVOL[5:0]  
Headphone volume control for left channel, LHP output. Each 1-bit step corresponds to a 1 dB increase in volume.  
See Table 95 for a complete list of the volume settings.  
Setting  
000000  
Volume  
−57 dB (default)  
111001  
0 dB  
111111  
6 dB  
1
0
LHPM  
HPEN  
Headphone mute for left channel, LHP output (active low).  
0 = mute.  
1 = unmute (default).  
Headphone volume control enable. Logical OR with the HPMODE bit in Register R30. If either the HPEN bit or  
the HPMODE bit is set to 1, the headphone output is enabled.  
0 = disabled (default).  
1 = enabled.  
Rev. C | Page 72 of 92  
ADAU1761  
R30: Playback Headphone Right Volume Control, 16,420 (0x4024)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
HPMODE  
RHPVOL[5:0]  
RHPM  
Table 64. Playback Headphone Right Volume Control Register  
Bits  
Bit Name  
Description  
[7:2]  
RHPVOL[5:0]  
Headphone volume control for right channel, RHP output. Each 1-bit step corresponds to a 1 dB increase in  
volume. See Table 95 for a complete list of the volume settings.  
Setting  
000000  
Volume  
−57 dB (default)  
111001  
0 dB  
111111  
6 dB  
1
0
RHPM  
Headphone mute for right channel, RHP output (active low).  
0 = mute.  
1 = unmute (default).  
HPMODE  
RHP and LHP output mode. These pins can be configured for either line outputs or headphone outputs. Logical  
OR with the HPEN bit in Register R29. If either the HPMODE bit or the HPEN bit is set to 1, the headphone output  
is enabled.  
0 = enable line output (default).  
1 = enable headphone output.  
R31: Playback Line Output Left Volume Control, 16,421 (0x4025)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
LOUTM  
LOMODE  
LOUTVOL[5:0]  
Table 65. Playback Line Output Left Volume Control Register  
Bits  
Bit Name  
Description  
[7:2]  
LOUTVOL[5:0]  
Line output volume control for left channel, LOUTN and LOUTP outputs. Each 1-bit step corresponds to a 1 dB  
increase in volume. See Table 95 for a complete list of the volume settings.  
Setting  
000000  
Volume  
−57 dB (default)  
111001  
0 dB  
111111  
6 dB  
1
0
LOUTM  
Line output mute for left channel, LOUTN and LOUTP outputs (active low).  
0 = mute.  
1 = unmute (default).  
LOMODE  
Line output mode for left channel, LOUTN and LOUTP outputs. These pins can be configured for either line  
outputs or headphone outputs. To drive earpiece speakers, set this bit to 1 (headphone output).  
0 = line output (default).  
1 = headphone output.  
Rev. C | Page 73 of 92  
ADAU1761  
R32: Playback Line Output Right Volume Control, 16,422 (0x4026)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ROUTM  
ROMODE  
ROUTVOL[5:0]  
Table 66. Playback Line Output Right Volume Control Register  
Bits  
Bit Name  
Description  
[7:2]  
ROUTVOL[5:0]  
Line output volume control for right channel, ROUTN and ROUTP outputs. Each 1-bit step corresponds to a 1 dB  
increase in volume. See Table 95 for a complete list of the volume settings.  
Setting  
000000  
Volume  
−57 dB (default)  
111001  
0 dB  
111111  
6 dB  
1
0
ROUTM  
Line output mute for right channel, ROUTN and ROUTP outputs (active low).  
0 = mute.  
1 = unmute (default).  
ROMODE  
Line output mode for right channel, ROUTN and ROUTP outputs. These pins can be configured for either line  
outputs or headphone outputs. To drive earpiece speakers, set this bit to 1 (headphone output).  
0 = line output (default).  
1 = headphone output.  
R33: Playback Mono Output Control, 16,423 (0x4027)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
MONOM  
MOMODE  
MONOVOL[5:0]  
Table 67. Playback Mono Output Control Register  
Bits  
Bit Name  
Description  
[7:2]  
MONOVOL[5:0] Mono output volume control. Each 1-bit step corresponds to a 1 dB increase in volume. If MX7[1:0] in Register R28  
is set for common-mode output, volume control is disabled. See Table 95 for a complete list of the volume  
settings.  
Setting  
000000  
Volume  
−57 dB (default)  
111001  
0 dB  
111111  
6 dB  
1
0
MONOM  
Mono output mute (active low).  
0 = mute.  
1 = unmute (default).  
MOMODE  
Headphone mode enable. If MX7[1:0] in Register R28 is set for common-mode output for a capless headphone  
configuration, this bit should be set to 1 ( headphone output).  
0 = line output (default).  
1 = headphone output.  
Rev. C | Page 74 of 92  
ADAU1761  
R34: Playback Pop/Click Suppression, 16,424 (0x4028)  
Bit 7  
Bit 6  
Reserved  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POPMODE  
POPLESS  
Reserved  
ASLEW[1:0]  
Table 68. Playback Pop/Click Suppression Register  
Bits  
Bit Name  
Description  
4
POPMODE  
Pop suppression circuit power saving mode. The pop suppression circuits charge faster in normal operation;  
however, after they are charged, they can be put into low power operation.  
0 = normal (default).  
1 = low power.  
3
POPLESS  
Pop suppression disable. The pop suppression circuits are enabled by default. They can be disabled to save  
power; however, disabling the circuits increases the risk of pops and clicks.  
0 = enabled (default).  
1 = disabled.  
[2:1]  
ASLEW[1:0]  
Analog volume slew rate for playback volume controls.  
Setting  
00  
01  
Slew Rate  
21.25 ms (default)  
42.5 ms  
10  
85 ms  
11  
Off  
R35: Playback Power Management, 16,425 (0x4029)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
HPBIAS[1:0]  
PREN  
PLEN  
DACBIAS[1:0]  
PBIAS[1:0]  
Table 69. Playback Power Management Register  
Bits  
Bit Name  
Description  
[7:6]  
HPBIAS[1:0]  
Headphone bias control.  
Setting  
Headphone Bias Control  
Normal operation (default)  
Extreme power saving  
Enhanced performance  
Power saving  
00  
01  
10  
11  
[5:4]  
[3:2]  
DACBIAS[1:0]  
PBIAS[1:0]  
DAC bias control.  
Setting  
00  
01  
10  
11  
DAC Bias Control  
Normal operation (default)  
Extreme power saving  
Enhanced performance  
Power saving  
Playback path channel bias control.  
Setting  
00  
01  
Playback Path Bias Control  
Normal operation (default)  
Reserved  
10  
11  
Enhanced performance  
Power saving  
1
0
PREN  
PLEN  
Playback right channel enable.  
0 = disabled (default).  
1 = enabled.  
Playback left channel enable.  
0 = disabled (default).  
1 = enabled.  
Rev. C | Page 75 of 92  
ADAU1761  
R36: DAC Control 0, 16,426 (0x402A)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Reserved  
Bit 2  
Bit 1  
Bit 0  
DACPOL  
DEMPH  
DACMONO[1:0]  
DACEN[1:0]  
Table 70. DAC Control 0 Register  
Bits  
Bit Name  
Description  
[7:6]  
DACMONO[1:0]  
DAC mono mode. The DAC channels can be set to mono mode within the DAC and output on the left  
channel, the right channel, or both channels.  
Setting  
00  
Mono Mode  
Stereo (default)  
01  
10  
11  
Left channel in mono mode  
Right channel in mono mode  
Both channels in mono mode  
5
DACPOL  
DEMPH  
Invert input polarity of the DACs.  
0 = normal (default).  
1 = inverted.  
2
DAC de-emphasis filter enable. The de-emphasis filter is designed for use with a sampling rate of 44.1 kHz only.  
0 = disabled (default).  
1 = enabled.  
[1:0]  
DACEN[1:0]  
DAC enable.  
Setting  
00  
01  
DACs Enabled  
Both off (default)  
Left on  
10  
Right on  
11  
Both on  
R37: DAC Control 1, 16,427 (0x402B)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
LDAVOL[7:0]  
Table 71. DAC Control 1 Register  
Bits  
Bit Name  
Description  
[7:0]  
LDAVOL[7:0]  
Controls the digital volume attenuation for left channel inputs from the left DAC. Each bit corresponds to a  
0.375 dB step with slewing between settings. See Table 94 for a complete list of the volume settings.  
Setting  
00000000  
00000001  
00000010  
Volume Attenuation  
0 dB (default)  
−0.375 dB  
−0.75 dB  
11111110  
11111111  
−95.25 dB  
−95.625 dB  
Rev. C | Page 76 of 92  
ADAU1761  
R38: DAC Control 2, 16,428 (0x402C)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
RDAVOL[7:0]  
Table 72. DAC Control 2 Register  
Bits  
Bit Name  
Description  
[7:0]  
RDAVOL[7:0]  
Controls the digital volume attenuation for right channel inputs from the right DAC. Each bit corresponds to a  
0.375 dB step with slewing between settings. See Table 94 for a complete list of the volume settings.  
Setting  
00000000  
00000001  
00000010  
Volume Attenuation  
0 dB (default)  
−0.375 dB  
−0.75 dB  
11111110  
11111111  
−95.25 dB  
−95.625 dB  
R39: Serial Port Pad Control, 16,429 (0x402D)  
The optional pull-up/pull-down resistors are nominally 250 kΩ. When enabled, these pull-up/pull-down resistors set the serial port  
signals to a defined state when the signal source becomes three-state.  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ADCSDP[1:0]  
DACSDP[1:0]  
LRCLKP[1:0]  
BCLKP[1:0]  
Table 73. Serial Port Pad Control Register  
Bits  
Bit Name  
Description  
[7:6]  
ADCSDP[1:0]  
ADC_SDATA pad pull-up/pull-down configuration.  
Setting  
00  
Configuration  
Pull-up  
01  
Reserved  
10  
11  
None (default)  
Pull-down  
[5:4]  
[3:2]  
[1:0]  
DACSDP[1:0]  
LRCLKP[1:0]  
BCLKP[1:0]  
DAC_SDATA pad pull-up/pull-down configuration.  
Setting  
00  
Configuration  
Pull-up  
01  
Reserved  
10  
11  
None (default)  
Pull-down  
LRCLK pad pull-up/pull-down configuration.  
Setting  
00  
Configuration  
Pull-up  
01  
Reserved  
10  
11  
None (default)  
Pull-down  
BCLK pad pull-up/pull-down configuration.  
Setting  
00  
Configuration  
Pull-up  
01  
Reserved  
10  
11  
None (default)  
Pull-down  
Rev. C | Page 77 of 92  
ADAU1761  
R40: Control Port Pad Control 0, 16,431 (0x402F)  
The optional pull-up/pull-down resistors are nominally 250 kΩ. When enabled, these pull-up/pull-down resistors set the control port  
signals to a defined state when the signal source becomes three-state.  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
SCLP[1:0]  
Bit 1  
Bit 0  
SDAP[1:0]  
CDATP[1:0]  
CLCHP[1:0]  
Table 74. Control Port Pad Control 0 Register  
Bits  
Bit Name  
Description  
[7:6]  
CDATP[1:0]  
CDATA pad pull-up/pull-down configuration.  
Setting  
00  
Configuration  
Pull-up  
01  
Reserved  
10  
11  
None (default)  
Pull-down  
[5:4]  
[3:2]  
[1:0]  
CLCHP[1:0]  
SCLP[1:0]  
SDAP[1:0]  
CLATCH pad pull-up/pull-down configuration.  
Setting  
00  
Configuration  
Pull-up  
01  
Reserved  
10  
11  
None (default)  
Pull-down  
SCL/CCLK pad pull-up/pull-down configuration.  
Setting  
00  
Configuration  
Pull-up  
01  
Reserved  
10  
11  
None (default)  
Pull-down  
SDA/COUT pad pull-up/pull-down configuration.  
Setting  
00  
Configuration  
Pull-up  
01  
Reserved  
10  
11  
None (default)  
Pull-down  
R41: Control Port Pad Control 1, 16,432 (0x4030)  
With IOVDD set to 3.3 V, the low and high drive strengths of the SDA/COUT pin are approximately 2.0 mA and 4.0 mA, respectively.  
With IOVDD set to 1.8 V, the low and high drive strengths are approximately 0.8 mA and 1.7 mA, respectively. The high drive strength  
mode may be useful for generating a stronger ACK pulse in I2C mode, if needed.  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Reserved  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
SDASTR  
Table 75. Control Port Pad Control 1 Register  
Bits  
Bit Name  
Description  
0
SDASTR  
SDA/COUT pin drive strength.  
0 = low (default).  
1 = high.  
Rev. C | Page 78 of 92  
ADAU1761  
R42: Jack Detect Pin Control, 16,433 (0x4031)  
With IOVDD set to 3.3 V, the low and high drive strengths of the JACKDET/MICIN pin are approximately 2.0 mA and 4.0 mA, respectively.  
With IOVDD set to 1.8 V, the low and high drive strengths are approximately 0.8 mA and 1.7 mA, respectively. The optional pull-up/  
pull-down resistors are nominally 250 kΩ. When enabled, these pull-up/pull-down resistors set the input signals to a defined state when  
the signal source becomes three-state.  
Bit 7  
Bit 6  
Reserved  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
JDP[1:0]  
Bit 1  
Bit 0  
Reserved  
JDSTR  
Reserved  
Table 76. Jack Detect Pin Control Register  
Bits  
Bit Name  
Description  
5
JDSTR  
JACKDET/MICIN pin drive strength.  
0 = low (default).  
1 = high.  
[3:2]  
JDP[1:0]  
JACKDET/MICIN pad pull-up/pull-down configuration.  
Setting  
00  
Configuration  
Pull-up  
01  
Reserved  
10  
11  
None (default)  
Pull-down  
R67: Dejitter Control, 16,438 (0x4036)  
The dejitter control register allows the size of the dejitter window to be set, and also allows all dejitter circuits in the device to be activated or  
bypassed. Dejitter circuits protect against duplicate samples or skipped samples due to jitter from the serial ports in slave mode. Disabling  
and reenabling certain subsystems in the device—that is, the ADCs, serial ports, SigmaDSP core, and DACs—during operation can cause  
the associated dejitter circuits to fail. As a result, audio data fails to be output to the next subsystem in the device.  
When the serial ports are in master mode, the dejitter circuit can be bypassed by setting the dejitter window to 0. When the serial ports  
are in slave mode, the dejitter circuit can be reinitialized prior to outputting audio from the device, guaranteeing that audio is output to  
the next subsystem in the device. Any time that audio must pass through the ADCs, serial port, sound engine/DSP core, or DACs, the  
dejitter circuit can be bypassed and reset by setting the dejitter window size to 0. In this way, the dejitter circuit can be immediately  
reactivated, without a wait period, by setting the dejitter window size to the default value of 3.  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
DEJIT[7:0]  
Bit 2  
Bit 1  
Bit 0  
Table 77. Dejitter Control Register  
Bits  
Bit Name  
Description  
Dejitter window size.  
Window Size  
00000000  
[7:0]  
DEJIT[7:0]  
Core Clock Cycles  
0
00000011  
00000101  
3 (default)  
5
Rev. C | Page 79 of 92  
ADAU1761  
R43 to R47: Cyclic Redundancy Check Registers, 16,576 to 16,580 (0x40C0 to 0x40C4)  
The cyclic redundancy check (CRC) constantly checks the validity of the program RAM contents. SigmaStudio generates a 32-bit hash  
sum, which must be written to four consecutive read-only 8-bit register locations. CRC must then be enabled. Every 1024 frames (21 ms  
at 48 kHz), the IC generates its own 32-bit code and compares it to the one stored in these registers. If the codes do not match, a GPIO pin  
is set high (CRC flag). This output flag must be enabled using the output CRC error sticky setting in the GPIO pin control register (see  
Table 79). The 1-bit CRC error flag is reset when the CRCEN bit goes low. For example, a GPIO pin can be connected to an interrupt pin  
on an external microcontroller, which triggers a rewrite of the corrupted memory.  
By default, CRC is disabled (the CRCEN bit is set to 0). To enable continuous CRC checking, the user can set the CRCEN bit to 1 after  
loading a program and sending the correct CRC, which is calculated by SigmaStudio. If an error occurs, it can be cleared by setting the  
CRCEN bit low, fixing the error (presumably by reloading the program), and then setting the CRCEN bit high again.  
Address  
0x40C0  
0x40C1  
0x40C2  
0x40C3  
0x40C4  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
CRC[31:24]  
CRC[23:16]  
CRC[15:8]  
CRC[7:0]  
Bit 2  
Bit 1  
Bit 0  
Reserved  
CRCEN  
Table 78. Cyclic Redundancy Check Registers  
Address  
Register  
R43  
R44  
R45  
R46  
Bit Name  
CRC[31:24]  
CRC[23:16]  
CRC[15:8]  
CRC[7:0]  
Description  
Decimal  
16,576  
16,577  
16,578  
16,579  
16,580  
Hex  
0x40C0  
0x40C1  
0x40C2  
0x40C3  
0x40C4  
CRC hash sum, Bits[31:24] (read-only register)  
CRC hash sum, Bits[23:16] (read-only register)  
CRC hash sum, Bits[15:8] (read-only register)  
CRC hash sum, Bits[7:0] (read-only register)  
R47  
CRCEN  
CRC enable  
0 = disabled (default)  
1 = enabled  
Rev. C | Page 80 of 92  
ADAU1761  
R48 to R51: GPIO Pin Control, 16,582 to 16,585 (0x40C6 to 0x40C9)  
The GPIO pin control register sets the functionality of each GPIO pin as shown in Table 79. The GPIO functions use the same pins as the  
serial port and must be enabled in the serial data/GPIO pin configuration register (Address 0x40F4). When the GPIO pins are set to  
I2C/SPI port control mode, the pins are set through writes to memory locations described in Table 32. The value of the optional internal  
pull-up is nominally 250 kΩ.  
The output CRC error and output watchdog error settings are sticky, that is, once set, they remain set until the ADAU1761 is reset.  
Address  
0x40C6  
0x40C7  
0x40C8  
0x40C9  
Bit 7  
Bit 6  
Bit 5  
Reserved  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
GPIO0[3:0]  
GPIO1[3:0]  
GPIO2[3:0]  
GPIO3[3:0]  
Bit 0  
Reserved  
Reserved  
Reserved  
Table 79. GPIO Pin Functionality Bit Settings  
GPIOx[3:0] Bits  
GPIO Pin Function  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
Input without debounce (default)  
Input with debounce (0.3 ms)  
Input with debounce (0.6 ms)  
Input with debounce (0.9 ms)  
Input with debounce (5 ms)  
Input with debounce (10 ms)  
Input with debounce (20 ms)  
Input with debounce (40 ms)  
Input controlled by I2C/SPI port  
Output set by I2C/SPI port, with pull-up  
Output set by I2C/SPI port, no pull-up  
Output set by DSP core, with pull-up  
Output set by DSP core, no pull-up  
Reserved  
1110  
Output CRC error (sticky)  
1111  
Output watchdog error (sticky)  
Table 80. GPIO Pin Control Registers  
Address  
Register  
R48  
R49  
R50  
R51  
Bit Name  
GPIO0[3:0]  
GPIO1[3:0]  
GPIO2[3:0]  
GPIO3[3:0]  
Description  
Decimal  
16,582  
16,583  
16,584  
16,585  
Hex  
0x40C6  
0x40C7  
0x40C8  
0x40C9  
GPIO 0 pin function (see Table 79)  
GPIO 1 pin function (see Table 79)  
GPIO 2 pin function (see Table 79)  
GPIO 3 pin function (see Table 79)  
Rev. C | Page 81 of 92  
 
ADAU1761  
R52 to R56: Watchdog Registers, 16,592 to 16,596 (0x40D0 to 0x40D4)  
A program counter watchdog is used when the core does block processing (which can span several samples). The watchdog flags an error  
if the program counter reaches a specific 24-bit value (ranging from 0x000000 to 0xFFFFFF) that is set in the register map. This value  
consists of three consecutive 8-bit register locations. The error flag sends a high signal to one of the GPIO pins. The watchdog function  
must be enabled by setting the DOGEN bit high in Register R52 (Address 0x40D0).  
The watchdog error bit (DOGER) is the 1-bit watchdog error flag that can be sent to a GPIO pin, as described in Table 79. This error flag  
can connect, for example, to an interrupt pin on a microcontroller in the system. The flag is reset when the DOGEN bit goes low. This  
flag can also be read back over the control port from Register R56 (Address 0x40D4).  
Address  
0x40D0  
0x40D1  
0x40D2  
0x40D3  
0x40D4  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Reserved  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
DOGEN  
DOG[23:16]  
DOG[15:8]  
DOG[7:0]  
Reserved  
DOGER  
Table 81. Watchdog Registers  
Address  
Hex  
Register  
Bit Name  
Description  
Decimal  
R52  
16,592  
0x40D0  
DOGEN  
Watchdog enable bit.  
0 = disabled (default).  
1 = enabled.  
R53  
R54  
R55  
16,593  
16,594  
16,595  
0x40D1  
0x40D2  
0x40D3  
DOG[23:16] Watchdog value, Bits[23:16] (MSB).  
DOG[15:8]  
DOG[7:0]  
Watchdog value, Bits[15:8].  
Watchdog value, Bits[7:0].  
DOG[23:16]  
00000000  
DOG[15:8]  
DOG[7:0]  
Hex Value  
00000000  
00000000  
0x000000 (default)  
11111111  
11111111  
11111111  
0xFFFFFF  
R56  
16,596  
0x40D4  
DOGER  
Watchdog error (read-only bit).  
0 = no error (default).  
1 = error.  
R57: DSP Sampling Rate Setting, 16,619 (0x40EB)  
Bit 7  
Bit 6  
Bit 5  
Reserved  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
DSPSR[3:0]  
Bit 0  
Table 82. DSP Sampling Rate Setting Register  
Bits  
Bit Name  
Description  
[3:0]  
DSPSR[3:0]  
SigmaDSP core sampling rate. The DSP sampling rate is a ratio of the base sampling rate, fS. The base sampling rate  
is determined by the operating frequency of the core clock. For most applications, the SigmaDSP core sampling  
rate should equal the converter sampling rate (set using the CONVSR[2:0] bits in Register R17) and the serial  
port sampling rate (set using the SPSR[2:0] bits in Register R64).  
Setting  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1111  
Sampling Rate  
Base Sampling Rate (fS = 48 kHz)  
fS/0.5  
fS  
fS/1.5  
fS/2  
fS/3  
fS/4  
fS/6  
96 kHz, base  
48 kHz (default)  
32 kHz  
24 kHz  
16 kHz  
12 kHz  
8 kHz  
Serial input data rate  
Serial output data rate  
None  
Rev. C | Page 82 of 92  
ADAU1761  
R58: Serial Input Route Control, 16,626 (0x40F2)  
Bit 7  
Bit 6  
Bit 5  
Reserved  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
SINRT[3:0]  
Table 83. Serial Input Route Control Register  
Bits  
Bit Name  
Description  
[3:0]  
SINRT[3:0]  
Serial data input routing. This register sets the input where the DACs receive serial data. This location can be  
from the DSP or from any TDM slot on the serial port.  
Setting  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
Routing  
DSP to DACs [L, R] (default)  
Serial input [L0, R0] to DACs [L, R]  
Reserved  
Serial input [L1, R1] to DACs [L, R]  
Reserved  
Serial input [L2, R2] to DACs [L, R]  
Reserved  
Serial input [L3, R3] to DACs [L, R]  
Reserved  
Serial input [R0, L0] to DACs [L, R]  
Reserved  
Serial input [R1, L1] to DACs [L, R]  
Reserved  
Serial input [R2, L2] to DACs [L, R]  
Reserved  
Serial input [R3, L3] to DACs [L, R]  
R59: Serial Output Route Control, 16,627 (0x40F3)  
Bit 7  
Bit 6  
Bit 5  
Reserved  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
SOUTRT[3:0]  
Table 84. Serial Output Route Control Register  
Bits  
Bit Name  
Description  
[3:0]  
SOUTRT[3:0]  
Serial data output routing. This register sets the output where the ADCs send serial data. This location can be to  
the DSP or to any TDM slot on the serial port.  
Setting  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
Routing  
ADCs [L, R] to DSP (default)  
ADCs [L, R] to serial output [L0, R0]  
Reserved  
ADCs [L, R] to serial output [L1, R1]  
Reserved  
ADCs [L, R] to serial output [L2, R2]  
Reserved  
ADCs [L, R] to serial output [L3, R3]  
Reserved  
ADCs [L, R] to serial output [R0, L0]  
Reserved  
ADCs [L, R] to serial output [R1, L1]  
Reserved  
ADCs [L, R] to serial output [R2, L2]  
Reserved  
ADCs [L, R] to serial output [R3, L3]  
Rev. C | Page 83 of 92  
ADAU1761  
R60: Serial Data/GPIO Pin Configuration, 16,628 (0x40F4)  
The serial data/GPIO pin configuration register controls the functionality of the serial data port pins. If the bits in this register are set to 1,  
these pins are configured as GPIO interfaces to the SigmaDSP. If these bits are set to 0, they are configured as serial data I/O port pins.  
Bit 7  
Bit 6  
Bit 5  
Reserved  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
LRGP3  
SDIGP0  
BGP2  
SDOGP1  
Table 85. Serial Data/GPIO Pin Configuration Register  
Bits  
Bit Name  
Description  
3
LRGP3  
LRCLK or GPIO3 pin configuration select.  
0 = LRCLK enabled (default).  
1 = GPIO3 enabled.  
2
1
0
BGP2  
BCLK or GPIO2 pin configuration select.  
0 = BCLK enabled (default).  
1 = GPIO2 enabled.  
SDOGP1  
SDIGP0  
ADC_SDATA or GPIO1 pin configuration select.  
0 = ADC_SDATA enabled (default).  
1 = GPIO1 enabled.  
DAC_SDATA or GPIO0 pin configuration select.  
0 = DAC_SDATA enabled (default).  
1 = GPIO0 enabled.  
R61: DSP Enable, 16,629 (0x40F5)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Reserved  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
DSPEN  
Table 86. DSP Enable Register  
Bits  
Bit Name  
Description  
0
DSPEN  
Enables the DSP. Set this bit before writing to the parameter RAM and before setting the DSPRUN bit in  
Register R62 (Address 0x40F6).  
0 = DSP disabled (default).  
1 = DSP enabled.  
R62: DSP Run, 16,630 (0x40F6)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Reserved  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
DSPRUN  
Table 87. DSP Run Register  
Bits  
Bit Name  
Description  
0
DSPRUN  
Run the DSP. Set the DSPEN bit in Register R61 (Address 0x40F5) before setting this bit.  
0 = DSP off (default).  
1 = run the DSP.  
Rev. C | Page 84 of 92  
ADAU1761  
R63: DSP Slew Modes, 16,631 (0x40F7)  
The DSP slew modes register sets the slew source for each output. The slew source can be either the DSP (digital slew) or the codec (analog  
slew). When these bits are set to Logic 0, the codec provides volume slew according to the ASLEW[1:0] bits in Register R34 (playback  
pop/click suppression register, Address 0x4028). When these bits are set to Logic 1, the slew is provided and defined by the DSP program,  
disabling the codec volume slew.  
Bit 7  
Bit 6  
Reserved  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
MOSLW  
RHPSLW  
LHPSLW  
ROSLW  
LOSLW  
Table 88. DSP Slew Modes Register  
Bits  
Bit Name  
Description  
4
MOSLW  
Mono output slew generation.  
0 = codec (default).  
1 = DSP.  
3
2
1
0
ROSLW  
LOSLW  
Line output right slew generation.  
0 = codec (default).  
1 = DSP.  
Line output left slew generation.  
0 = codec (default).  
1 = DSP.  
RHPSLW  
LHPSLW  
Headphone right slew generation.  
0 = codec (default).  
1 = DSP.  
Headphone left slew generation.  
0 = codec (default).  
1 = DSP.  
R64: Serial Port Sampling Rate, 16,632 (0x40F8)  
Bit 7  
Bit 6  
Bit 5  
Reserved  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
SPSR[2:0]  
Table 89. Serial Port Sampling Rate Register  
Bits  
Bit Name  
Description  
[2:0]  
SPSR[2:0]  
Serial port sampling rate. The serial port sampling rate is a ratio of the base sampling rate, fS. The base sampling  
rate is determined by the operating frequency of the core clock. For most applications, the serial port sampling  
rate should equal the converter sampling rate (set using the CONVSR[2:0] bits in Register R17) and the DSP sampling  
rate (set using the DSPSR[3:0] bits in Register R57).  
Setting  
000  
001  
Sampling Rate  
Base Sampling Rate (fS = 48 kHz)  
fS  
fS/6  
48 kHz, base (default)  
8 kHz  
010  
fS/4  
12 kHz  
011  
fS/3  
16 kHz  
100  
fS/2  
24 kHz  
101  
110  
111  
fS/1.5  
fS/0.5  
Reserved  
32 kHz  
96 kHz  
Rev. C | Page 85 of 92  
ADAU1761  
R65: Clock Enable 0, 16,633 (0x40F9)  
This register disables or enables the digital clock engine for different blocks within the ADAU1761. For maximum power saving, use this  
register to disable blocks that are not being used.  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reserved  
SLEWPD  
ALCPD  
DECPD  
SOUTPD  
SPPD  
INTPD  
SINPD  
Table 90. Clock Enable 0 Register  
Bits  
Bit Name  
Description  
6
SLEWPD  
Codec slew digital clock engine enable. When powered down, the analog playback path volume controls are  
disabled and stay set to their current state.  
0 = powered down (default).  
1 = enabled.  
5
4
3
2
1
0
ALCPD  
DECPD  
SOUTPD  
INTPD  
SINPD  
SPPD  
ALC digital clock engine enable.  
0 = powered down (default).  
1 = enabled.  
Decimator resync (dejitter) digital clock engine enable.  
0 = powered down (default).  
1 = enabled.  
Serial routing outputs digital clock engine enable.  
0 = powered down (default).  
1 = enabled.  
Interpolator resync (dejitter) digital clock engine enable.  
0 = powered down (default).  
1 = enabled.  
Serial routing inputs digital clock engine enable.  
0 = powered down (default).  
1 = enabled.  
Serial port digital clock engine enable.  
0 = powered down (default).  
1 = enabled.  
R66: Clock Enable 1, 16,634 (0x40FA)  
This register enables Digital Clock Generator 0 and Digital Clock Generator 1. Digital Clock Generator 0 generates sample rates for the  
ADCs, DACs, and DSP. Digital Clock Generator 1 generates BCLK and LRCLK for the serial port when the part is in master mode. For  
maximum power saving, use this register to disable clocks that are not being used.  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Reserved  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
CLK0  
CLK1  
Table 91. Clock Enable 1 Register  
Bits  
Bit Name  
Description  
1
CLK1  
Digital Clock Generator 1.  
0 = off (default).  
1 = on.  
0
CLK0  
Digital Clock Generator 0.  
0 = off (default).  
1 = on.  
Rev. C | Page 86 of 92  
ADAU1761  
Table 92. R8 and R9 Volume Settings  
Volume Setting (dB)  
Binary Value  
000000  
000001  
000010  
000011  
000100  
000101  
000110  
000111  
001000  
001001  
001010  
001011  
001100  
001101  
001110  
001111  
010000  
010001  
010010  
010011  
010100  
010101  
010110  
010111  
011000  
011001  
011010  
011011  
011100  
011101  
011110  
011111  
100000  
100001  
100010  
100011  
100100  
100101  
100110  
100111  
101000  
101001  
101010  
101011  
101100  
101101  
101110  
101111  
110000  
110001  
110010  
Binary Value  
110011  
110100  
110101  
110110  
110111  
111000  
111001  
111010  
111011  
111100  
111101  
111110  
111111  
Volume Setting (dB)  
−12  
−11.25  
−10.5  
−9.75  
−9  
−8.25  
−7.5  
−6.75  
−6  
−5.25  
−4.5  
−3.75  
−3  
−2.25  
−1.5  
−0.75  
0
0.75  
1.5  
2.25  
3
3.75  
4.5  
5.25  
6
6.75  
7.5  
8.25  
9
9.75  
10.5  
11.25  
12  
12.75  
13.5  
14.25  
15  
15.75  
16.5  
17.25  
18  
18.75  
19.5  
20.25  
21  
21.75  
22.5  
23.25  
24  
24.75  
25.5  
26.25  
27  
27.75  
28.5  
29.25  
30  
30.75  
31.5  
32.25  
33  
33.75  
34.5  
35.25  
Table 93. R14 Noise Gate Threshold  
Noise Gate Threshold (dB)  
Binary Value  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
11111  
−76.5  
−75  
−73.5  
−72  
−70.5  
−69  
−67.5  
−66  
−64.5  
−63  
−61.5  
−60  
−58.5  
−57  
−55.5  
−54  
−52.5  
−51  
−49.5  
−48  
−46.5  
−45  
−43.5  
−42  
−40.5  
−39  
−37.5  
−36  
−34.5  
−33  
−31.5  
−30  
Rev. C | Page 87 of 92  
 
 
ADAU1761  
Table 94. R20, R21, R37, and R38 Volume Settings  
Binary Value  
00000000  
00000001  
00000010  
00000011  
00000100  
00000101  
00000110  
00000111  
00001000  
00001001  
00001010  
00001011  
00001100  
00001101  
00001110  
00001111  
00010000  
00010001  
00010010  
00010011  
00010100  
00010101  
00010110  
00010111  
00011000  
00011001  
00011010  
00011011  
00011100  
00011101  
00011110  
00011111  
00100000  
00100001  
00100010  
00100011  
00100100  
00100101  
00100110  
00100111  
00101000  
00101001  
00101010  
00101011  
00101100  
00101101  
00101110  
00101111  
Volume Attenuation (dB)  
0
Binary Value  
00110000  
00110001  
00110010  
00110011  
00110100  
00110101  
00110110  
00110111  
00111000  
00111001  
00111010  
00111011  
00111100  
00111101  
00111110  
00111111  
01000000  
01000001  
01000010  
01000011  
01000100  
01000101  
01000110  
01000111  
01001000  
01001001  
01001010  
01001011  
01001100  
01001101  
01001110  
01001111  
01010000  
01010001  
01010010  
01010011  
01010100  
01010101  
01010110  
01010111  
01011000  
01011001  
01011010  
01011011  
01011100  
01011101  
01011110  
01011111  
Volume Attenuation (dB)  
−18  
−0.375  
−0.75  
−18.375  
−18.75  
−19.125  
−19.5  
−1.125  
−1.5  
−1.875  
−2.25  
−19.875  
−20.25  
−20.625  
−21  
−2.625  
−3  
−3.375  
−3.75  
−21.375  
−21.75  
−22.125  
−22.5  
−4.125  
−4.5  
−4.875  
−5.25  
−22.875  
−23.25  
−23.625  
−24  
−5.625  
−6  
−6.375  
−6.75  
−24.375  
−24.75  
−25.125  
−25.5  
−7.125  
−7.5  
−7.875  
−8.25  
−25.875  
−26.25  
−26.625  
−27  
−8.625  
−9  
−9.375  
−9.75  
−27.375  
−27.75  
−28.125  
−28.5  
−10.125  
−10.5  
−10.875  
−11.25  
−11.625  
−12  
−28.875  
−29.25  
−29.625  
−30  
−12.375  
−12.75  
−13.125  
−13.5  
−30.375  
−30.75  
−31.125  
−31.5  
−13.875  
−14.25  
−14.625  
−15  
−31.875  
−32.25  
−32.625  
−33  
−15.375  
−15.75  
−16.125  
−16.5  
−33.375  
−33.75  
−34.125  
−34.5  
−16.875  
−17.25  
−17.625  
−34.875  
−35.25  
−35.625  
Rev. C | Page 88 of 92  
 
ADAU1761  
Binary Value  
01100000  
01100001  
01100010  
01100011  
01100100  
01100101  
01100110  
01100111  
01101000  
01101001  
01101010  
01101011  
01101100  
01101101  
01101110  
01101111  
01110000  
01110001  
01110010  
01110011  
01110100  
01110101  
01110110  
01110111  
01111000  
01111001  
01111010  
01111011  
01111100  
01111101  
01111110  
01111111  
10000000  
10000001  
10000010  
10000011  
10000100  
10000101  
10000110  
10000111  
10001000  
10001001  
10001010  
10001011  
10001100  
10001101  
10001110  
10001111  
10010000  
Volume Attenuation (dB)  
−36  
Binary Value  
10010001  
10010010  
10010011  
10010100  
10010101  
10010110  
10010111  
10011000  
10011001  
10011010  
10011011  
10011100  
10011101  
10011110  
10011111  
10100000  
10100001  
10100010  
10100011  
10100100  
10100101  
10100110  
10100111  
10101000  
10101001  
10101010  
10101011  
10101100  
10101101  
10101110  
10101111  
10110000  
10110001  
10110010  
10110011  
10110100  
10110101  
10110110  
10110111  
10111000  
10111001  
10111010  
10111011  
10111100  
10111101  
10111110  
10111111  
11000000  
11000001  
Volume Attenuation (dB)  
−54.375  
−54.75  
−55.125  
−55.5  
−36.375  
−36.75  
−37.125  
−37.5  
−55.875  
−56.25  
−56.625  
−57  
−37.875  
−38.25  
−38.625  
−39  
−57.375  
−57.75  
−58.125  
−58.5  
−39.375  
−39.75  
−40.125  
−40.5  
−58.875  
−59.25  
−59.625  
−60  
−40.875  
−41.25  
−41.625  
−42  
−60.375  
−60.75  
−61.125  
−61.5  
−42.375  
−42.75  
−43.125  
−43.5  
−61.875  
−62.25  
−62.625  
−63  
−43.875  
−44.25  
−44.625  
−45  
−63.375  
−63.75  
−64.125  
−64.5  
−45.375  
−45.75  
−46.125  
−46.5  
−64.875  
−65.25  
−65.625  
−66  
−46.875  
−47.25  
−47.625  
−48  
−66.375  
−66.75  
−67.125  
−67.5  
−48.375  
−48.75  
−49.125  
−49.5  
−67.875  
−68.25  
−68.625  
−69  
−49.875  
−50.25  
−50.625  
−51  
−69.375  
−69.75  
−70.125  
−70.5  
−51.375  
−51.75  
−52.125  
−52.5  
−70.875  
−71.25  
−71.625  
−72  
−52.875  
−53.25  
−53.625  
−54  
−72.375  
Rev. C | Page 89 of 92  
ADAU1761  
Binary Value  
11000010  
11000011  
11000100  
11000101  
11000110  
11000111  
11001000  
11001001  
11001010  
11001011  
11001100  
11001101  
11001110  
11001111  
11010000  
11010001  
11010010  
11010011  
11010100  
11010101  
11010110  
11010111  
11011000  
11011001  
11011010  
11011011  
11011100  
11011101  
11011110  
11011111  
11100000  
11100001  
11100010  
11100011  
11100100  
11100101  
11100110  
11100111  
11101000  
11101001  
11101010  
11101011  
11101100  
11101101  
11101110  
11101111  
11110000  
11110001  
11110010  
Volume Attenuation (dB)  
−72.75  
−73.125  
−73.5  
Binary Value  
11110011  
11110100  
11110101  
11110110  
11110111  
11111000  
11111001  
11111010  
11111011  
11111100  
11111101  
11111110  
11111111  
Volume Attenuation (dB)  
−91.125  
−91.5  
−91.875  
−92.25  
−73.875  
−74.25  
−74.625  
−75  
−92.625  
−93  
−93.375  
−93.75  
−75.375  
−75.75  
−76.125  
−76.5  
−94.125  
−94.5  
−94.875  
−95.25  
−76.875  
−77.25  
−77.625  
−78  
−95.625  
Table 95. R29 through R33 Volume Settings  
−78.375  
−78.75  
−79.125  
−79.5  
Binary Value  
000000  
000001  
000010  
000011  
000100  
000101  
000110  
000111  
001000  
001001  
001010  
001011  
001100  
001101  
001110  
001111  
010000  
010001  
010010  
010011  
010100  
010101  
010110  
010111  
011000  
011001  
011010  
011011  
011100  
011101  
011110  
011111  
100000  
Volume Setting (dB)  
−57  
−56  
−55  
−54  
−53  
−52  
−51  
−50  
−49  
−48  
−47  
−46  
−45  
−44  
−43  
−42  
−41  
−40  
−39  
−38  
−37  
−36  
−35  
−34  
−33  
−32  
−31  
−30  
−29  
−28  
−27  
−26  
−25  
−79.875  
−80.25  
−80.625  
−81  
−81.375  
−81.75  
−82.125  
−82.5  
−82.875  
−83.25  
−83.625  
−84  
−84.375  
−84.75  
−85.125  
−85.5  
−85.875  
−86.25  
−86.625  
−87  
−87.375  
−87.75  
−88.125  
−88.5  
−88.875  
−89.25  
−89.625  
−90  
−90.375  
−90.75  
Rev. C | Page 90 of 92  
 
ADAU1761  
Binary Value  
100001  
100010  
100011  
100100  
100101  
100110  
100111  
101000  
101001  
101010  
101011  
101100  
101101  
101110  
101111  
110000  
110001  
110010  
110011  
110100  
110101  
110110  
110111  
111000  
111001  
111010  
111011  
111100  
111101  
111110  
111111  
Volume Setting (dB)  
−24  
−23  
−22  
−21  
−20  
−19  
−18  
−17  
−16  
−15  
−14  
−13  
−12  
−11  
−10  
−9  
−8  
−7  
−6  
−5  
−4  
−3  
−2  
−1  
0
1
2
3
4
5
6
Rev. C | Page 91 of 92  
ADAU1761  
OUTLINE DIMENSIONS  
5.00  
BSC SQ  
0.60 MAX  
0.60 MAX  
PIN 1  
INDICATOR  
25  
24  
32  
1
PIN 1  
INDICATOR  
0.50  
BSC  
EXPOSED  
PAD  
(BOTTOM VIEW)  
3.65  
3.50 SQ  
3.35  
TOP  
VIEW  
4.75  
BSC SQ  
0.50  
0.40  
0.30  
17  
16  
8
9
0.25 MIN  
0.80 MAX  
0.65 TYP  
3.50 REF  
12° MAX  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
1.00  
0.85  
0.80  
0.30  
0.23  
0.18  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
0.20 REF  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-220-VHHD-2  
Figure 71. 32-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
5 mm × 5 mm Body, Very Thin Quad  
(CP-32-4)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
ADAU1761BCPZ  
ADAU1761BCPZ-R7  
ADAU1761BCPZ-RL  
EVAL-ADAU1761Z  
Temperature Range Package Description  
Package Option  
CP-32-4  
CP-32-4  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
32-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
32-Lead Lead Frame Chip Scale Package [LFCSP_VQ], 7”Tape and Reel  
32-Lead Lead Frame Chip Scale Package [LFCSP_VQ], 13”Tape and Reel  
Evaluation Board  
CP-32-4  
1 Z = RoHS Compliant Part.  
©2009–2010 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D07680-0-9/10(C)  
Rev. C | Page 92 of 92  
 

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY