ADAU1772BCPZ [ADI]

Four ADC, Two DAC Low Power Codec;
ADAU1772BCPZ
型号: ADAU1772BCPZ
厂家: ADI    ADI
描述:

Four ADC, Two DAC Low Power Codec

商用集成电路
文件: 总117页 (文件大小:6246K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Four ADC, Two DAC Low Power Codec  
with Audio Processor  
ADAU1772  
Data Sheet  
Low power (15 mW for typical noise cancelling solution)  
I2C and SPI control interfaces, self-boot from I2C EEPROM  
7 MP pins supporting dual stereo digital microphone inputs,  
stereo PDM output, mute, DSP bypass, push-button  
volume controls, and parameter bank switching  
FEATURES  
Programmable audio processing engine  
192 kHz processing path  
Biquad filters, limiters, volume controls, mixing  
Low latency, 24-bit ADCs and DACs  
102 dB SNR (signal through PGA and ADC  
with A-weighted filter)  
107 dB combined SNR (signal through DAC and headphone  
with A-weighted filter)  
Serial port sample rates from 8 kHz to 192 kHz  
38 μs analog-to-analog latency  
APPLICATIONS  
Noise cancelling handsets, headsets, and headphones  
Bluetooth ANC handsets, headsets, and headphones  
Personal navigation devices  
Digital still and video cameras  
4 single-ended analog inputs—configurable as microphone  
or line inputs  
GENERAL DESCRIPTION  
The ADAU1772 is a codec with four inputs and two outputs that  
incorporates a digital processing engine to perform filtering,  
level control, signal level monitoring, and mixing. The path  
from the analog input to the DSP core to the analog output is  
optimized for low latency and is ideal for noise cancelling headsets.  
With the addition of just a few passive components, a crystal,  
and an EEPROM for booting, the ADAU1772 provides a  
complete headset solution.  
Dual stereo digital microphone inputs  
Stereo analog audio output—single-ended or differential,  
configurable as either line output or headphone driver  
PLL supporting any input clock rate from 8 MHz to 27 MHz  
Full-duplex, asynchronous sample rate converters (ASRCs)  
Power supplies  
Analog and digital I/O of 1.8 V to 3.3 V  
Digital signal processing (DSP) core of 1.1 V to 1.8 V  
FUNCTIONAL BLOCK DIAGRAM  
MICBIAS0  
MICBIAS1  
MICROPHONE  
BIAS GENERATORS  
POWER  
MANAGEMENT  
LDO  
REGULATOR  
ADAU1772  
AIN0REF  
AIN0  
ADC_SDATA1/CLKOUT/MP6  
XTALI/MCLKIN  
PGA  
CLOCK  
OSCILLATOR  
ADC  
MODULATOR  
PLL  
ADC  
DECIMATOR  
XTALO  
AIN1REF  
AIN1  
HPOUTLP/LOUTLP  
HPOUTLN/LOUTLN  
PGA  
DAC  
DAC  
ADC  
MODULATOR  
ADC  
INPUT/OUTPUT  
SIGNAL  
DECIMATOR  
STEREO PDM  
MODULATOR  
ROUTING  
DMIC0_1/MP4  
DMIC2_3/MP5  
DIGITAL  
MICROPHONE  
INPUTS  
HPOUTRP/LOUTRP  
HPOUTRN/LOUTRN  
AIN2REF  
AIN2  
ADC  
DECIMATOR  
PGA  
DAC_SDATA/MP0  
ADC_SDATA0/PDMOUT/MP1  
BCLK/MP2  
ADC  
MODULATOR  
SERIAL  
INPUT/  
OUTPUT  
PORT  
BIDIRECTIONAL  
ASRCS  
LRCLK/MP3  
DSP CORE:  
BIQUAD FILTERS,  
LIMITERS,  
VOLUME CONTROLS,  
MIXING  
AIN3REF  
AIN3  
ADC  
DECIMATOR  
PGA  
2
ADC  
MODULATOR  
I C/SPI CONTROL  
INTERFACE AND SELF-BOOT  
CM  
Figure 1.  
Rev. C  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2012–2014 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
ADAU1772* PRODUCT PAGE QUICK LINKS  
Last Content Update: 02/23/2017  
COMPARABLE PARTS  
View a parametric search of comparable parts.  
DESIGN RESOURCES  
ADAU1772 Material Declaration  
PCN-PDN Information  
EVALUATION KITS  
Quality And Reliability  
ADAU1772 Evaluation Board  
Symbols and Footprints  
ADUSB2EBZ Evaluation Board  
DISCUSSIONS  
View all ADAU1772 EngineerZone Discussions.  
DOCUMENTATION  
Data Sheet  
SAMPLE AND BUY  
Visit the product page to see pricing options.  
ADAU1772: Four ADC, Two DAC Low Power Codec with  
Audio Processor Data Sheet  
User Guides  
UG-477: Evaluating the ADAU1772 Four ADC, Two DAC  
Low Power Codec with Audio Processor  
TECHNICAL SUPPORT  
Submit a technical question or find your regional support  
number.  
TOOLS AND SIMULATIONS  
ADAU1772 IBIS Model  
DOCUMENT FEEDBACK  
Submit feedback for this data sheet.  
This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not  
trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.  
ADAU1772  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Control Port .................................................................................... 40  
I2C Port ........................................................................................ 40  
SPI Port........................................................................................ 43  
Self-Boot...................................................................................... 44  
Multipurpose Pins.......................................................................... 45  
Push-Button Volume Controls................................................. 45  
Limiter Compression Enable .................................................... 45  
Parameter Bank Switching........................................................ 45  
Mute ............................................................................................. 45  
DSP Bypass Mode ...................................................................... 46  
Serial Data Input/Output Ports .................................................... 47  
Tristating Unused Channels...................................................... 47  
Applications Information.............................................................. 50  
Power Supply Bypass Capacitors.............................................. 50  
Layout .......................................................................................... 50  
Grounding................................................................................... 50  
Exposed Pad PCB Design ......................................................... 50  
Register Summary .......................................................................... 51  
Register Details ............................................................................... 53  
Clock Control Register .............................................................. 53  
PLL Denominator MSB Register.............................................. 54  
PLL Denominator LSB Register ............................................... 54  
PLL Numerator MSB Register.................................................. 54  
PLL Numerator LSB Register.................................................... 55  
PLL Integer Setting Register ..................................................... 55  
PLL Lock Flag Register.............................................................. 56  
CLKOUT Setting Selection Register........................................ 56  
Regulator Control Register ....................................................... 57  
Core Control Register................................................................ 58  
Filter Engine and Limiter Control Register............................ 59  
DB Value Register 0 Read.......................................................... 60  
DB Value Register 1 Read.......................................................... 60  
DB Value Register 2 Read.......................................................... 61  
Core Channel 0/Core Channel 1 Input Select Register......... 62  
Core Channel 2/Core Channel 3 Input Select Register......... 63  
DAC Input Select Register ........................................................ 64  
PDM Modulator Input Select Register.................................... 65  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 3  
Specifications..................................................................................... 4  
Analog Performance Specifications........................................... 4  
Crystal Amplifier Specifications................................................. 7  
Digital Input/Output Specifications........................................... 8  
Power Supply Specifications........................................................ 8  
Typical Power Consumption....................................................... 9  
Digital Filters................................................................................. 9  
Digital Timing Specifications ................................................... 10  
Absolute Maximum Ratings.......................................................... 14  
Thermal Resistance .................................................................... 14  
ESD Caution................................................................................ 14  
Pin Configuration and Function Descriptions........................... 15  
Typical Performance Characteristics ........................................... 17  
System Block Diagrams ................................................................. 28  
Theory of Operation ...................................................................... 29  
System Clocking and Power-Up................................................... 30  
Clock Initialization..................................................................... 30  
PLL ............................................................................................... 30  
Clock Output............................................................................... 31  
Power Sequencing ...................................................................... 31  
Signal Routing................................................................................. 32  
Input Signal Paths........................................................................... 33  
Analog Inputs.............................................................................. 33  
Digital Microphone Input ......................................................... 34  
Analog-to-Digital Converters................................................... 34  
Output Signal Paths........................................................................ 35  
Analog Outputs........................................................................... 35  
Digital-to-Analog Converters................................................... 35  
PDM Output ............................................................................... 35  
Asynchronous Sample Rate Converters .................................. 36  
Signal Levels................................................................................ 36  
Signal Processing ............................................................................ 37  
Instructions ................................................................................. 37  
Data Memory.............................................................................. 37  
Parameters................................................................................... 37  
Serial Data Output 0/Serial Data Output 1 Input Select  
Register ........................................................................................ 66  
Rev. C | Page 2 of 116  
Data Sheet  
ADAU1772  
Serial Data Output 2/Serial Data Output 3 Input Select  
Register .........................................................................................67  
Headphone Output Mutes Register..........................................89  
Serial Port Control 0 Register....................................................90  
Serial Port Control 1 Register....................................................91  
TDM Output Channel Disable Register ..................................92  
PDM Enable Register .................................................................93  
PDM Pattern Setting Register ...................................................94  
MP0 Function Setting Register .................................................94  
MP1 Function Setting Register .................................................95  
MP2 Function Setting Register .................................................96  
MP3 Function Setting Register .................................................97  
MP4 Function Setting Register .................................................98  
MP5 Function Setting Register .................................................99  
MP6 Function Setting Register ...............................................100  
Push-Button Volume Settings Register..................................101  
Push-Button Volume Control Assignment Register ............102  
Debounce Modes Register.......................................................103  
Headphone Line Output Select Register................................103  
Decimator Power Control Register ........................................105  
Serial Data Output 4/Serial Data Output 5 Input Select  
Register .........................................................................................68  
Serial Data Output 6/Serial Data Output 7 Input Select  
Register .........................................................................................69  
ADC_SDATA0/ADC_SDATA1 Channel Select Register......70  
Output ASRC0/Output ASRC1 Source Register.....................71  
Output ASRC2/Output ASRC3 Source Register.....................72  
Input ASRC Channel Select Register........................................73  
ADC0/ADC1 Control 0 Register..............................................74  
ADC2/ADC3 Control 0 Register..............................................75  
ADC0/ADC1 Control 1 Register..............................................76  
ADC2/ADC3 Control 1 Register..............................................77  
ADC0 Volume Control Register ...............................................78  
ADC1 Volume Control Register ...............................................78  
ADC2 Volume Control Register ...............................................79  
ADC3 Volume Control Register ...............................................79  
PGA Control 0 Register..............................................................80  
PGA Control 1 Register..............................................................80  
PGA Control 2 Register..............................................................81  
PGA Control 3 Register..............................................................82  
PGA Slew Control Register........................................................83  
PGA 10 dB Gain Boost Register................................................84  
Input and Output Capacitor Charging Register .....................85  
DSP Bypass Path Register ..........................................................86  
DSP Bypass Gain for PGA0 Register........................................86  
DSP Bypass Gain for PGA1 Register........................................86  
MIC_BIAS0_1 Control Register ...............................................87  
DAC Control Register ................................................................87  
DAC0 Volume Control Register................................................88  
DAC1 Volume Control Register................................................88  
ASRC Interpolator and DAC Modulator Power Control  
Register.......................................................................................106  
Analog Bias Control 0 Register...............................................106  
Analog Bias Control 1 Register...............................................107  
Digital Pin Pull-Up Control 0 Register..................................108  
Digital Pin Pull-Up Control 1 Register..................................109  
Digital Pin Pull-Down Control 0 Register ............................110  
Digital Pin Pull-Down Control 1 Register ............................111  
Digital Pin Drive Strength Control 0 Register ......................112  
Digital Pin Drive Strength Control 1 Register ......................113  
Outline Dimensions......................................................................114  
Ordering Guide .........................................................................114  
REVISION HISTORY  
3/14—Rev. B to Rev. C  
8/12—Rev. 0 to Rev. A  
Changes to Figure 60 and Figure 62 Captions ............................25  
Added Figure 64, Figure 65, Figure 66, Figure 67, Figure 68,  
and Figure 69, Renumbered Sequentially ....................................26  
Added Figure 70, and Figure 71....................................................27  
Changes to Figure 69 ......................................................................31  
7/12—Revision 0: Initial Version  
12/12—Rev. A to Rev. B  
Changes to Figure 90 ......................................................................47  
Rev. C | Page 3 of 116  
 
ADAU1772  
Data Sheet  
SPECIFICATIONS  
Master clock = core clock = 12.288 MHz, serial input sample rate = 48 kHz, measurement bandwidth = 20 Hz to 20 kHz, word width =  
24 bits, ambient temperature = 25°C, outputs line loaded with 10 kΩ.  
ANALOG PERFORMANCE SPECIFICATIONS  
Supply voltages AVDD = IOVDD = 1.8 V, DVDD = 1.1 V, unless otherwise noted. PLL disabled, direct master clock.  
Table 1.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
ANALOG-TO-DIGITAL CONVERTERS  
ADC Resolution  
Digital Attenuation Step  
Digital Attenuation Range  
INPUT RESISTANCE  
All ADCs  
24  
0.375  
95  
Bits  
dB  
dB  
Gain settings do not include 10 dB gain from  
PGA_x_BOOST settings; this additional gain does  
not affect input impedance; PGA_POP_DISx = 1  
Single-Ended Line Input  
PGA Inputs  
0 dB gain  
−12 dB gain  
0 dB gain  
+35.25 dB gain  
14.3  
32.0  
20  
kΩ  
kΩ  
kΩ  
kΩ  
0.68  
SINGLE-ENDED LINE INPUT  
Full-Scale Input Voltage  
PGA_ENx = 0, PGA_x_BOOST = 0, PGA_POP_DISx = 1  
Scales linearly with AVDD  
AVDD = 1.8 V  
AVDD = 1.8 V, 0 dBFS  
AVDD = 3.3 V  
AVDD = 3.3 V, 0 dBFS  
20 Hz to 20 kHz, −60 dB input  
AVDD = 1.8 V  
AVDD/3.63  
0.49  
1.38  
0.90  
2.54  
V rms  
V rms  
V p-p  
V rms  
V p-p  
Dynamic Range1  
With A-Weighted Filter (RMS)  
97  
102  
94  
dB  
dB  
dB  
dB  
AVDD = 3.3 V  
AVDD = 1.8 V  
AVDD = 3.3 V  
With Flat 20 Hz to 20 kHz Filter  
99  
Signal-to-Noise Ratio (SNR)2  
With A-Weighted Filter (RMS)  
AVDD = 1.8 V  
AVDD = 3.3 V  
AVDD = 1.8 V  
AVDD = 3.3 V  
98  
103  
96  
100  
40  
dB  
dB  
dB  
dB  
With Flat 20 Hz to 20 kHz Filter  
Interchannel Gain Mismatch  
mdB  
Total Harmonic Distortion + Noise (THD + N)  
20 Hz to 20 kHz, −1 dBFS  
AVDD = 1.8 V  
−90  
−94  
0.1  
0.2  
100  
dB  
dB  
mV  
dB  
dB  
AVDD = 3.3 V  
Offset Error  
Gain Error  
Interchannel Isolation  
Power Supply Rejection Ratio  
CM capacitor = 22 μF  
CM capacitor = 22 μF  
100 mV p-p at 1 kHz  
PGA_ENx = 1, PGA_x_BOOST = 0  
Scales linearly with AVDD  
AVDD = 1.8 V  
AVDD = 1.8 V, 0 dBFS  
AVDD = 3.3 V  
AVDD = 3.3 V, 0 dBFS  
20 Hz to 20 kHz, −60 dB input  
AVDD = 1.8 V  
55  
dB  
SINGLE-ENDED PGA INPUT  
Full-Scale Input Voltage  
AVDD/3.63  
0.49  
1.38  
0.90  
2.54  
V rms  
V rms  
V p-p  
V rms  
V p-p  
Dynamic Range1  
With A-Weighted Filter (RMS)  
96  
102  
94  
dB  
dB  
dB  
dB  
AVDD = 3.3 V  
AVDD = 1.8 V  
AVDD = 3.3 V  
With Flat 20 Hz to 20 kHz Filter  
99  
Rev. C | Page 4 of 116  
 
 
Data Sheet  
ADAU1772  
Parameter  
Test Conditions/Comments  
20 Hz to 20 kHz, −1 dBFS  
AVDD = 1.8 V  
Min  
Typ  
Max  
Unit  
Total Harmonic Distortion + Noise  
−88  
−90  
dB  
dB  
AVDD = 3.3 V  
Signal-to-Noise Ratio2  
With A-Weighted Filter (RMS)  
AVDD = 1.8 V  
AVDD = 3.3 V  
AVDD = 1.8 V  
AVDD = 3.3 V  
96  
102  
94  
dB  
dB  
dB  
dB  
With Flat 20 Hz to 20 kHz Filter  
99  
PGA Gain Variation  
With −12 dB Setting  
With +35.25 dB Setting  
PGA Boost  
PGA Mute Attenuation  
Interchannel Gain Mismatch  
Offset Error  
Standard deviation  
Standard deviation  
PGA_x_BOOST  
0.05  
0.15  
10  
−65  
0.005  
0
0.2  
83  
63  
dB  
dB  
dB  
dB  
dB  
mV  
dB  
dB  
dB  
PGA_MUTEx  
Gain Error  
Interchannel Isolation  
Power Supply Rejection Ratio  
MICROPHONE BIAS  
Bias Voltage  
CM capacitor = 22 μF, 100 mV p-p at 1 kHz  
MIC_ENx = 1  
0.65 × AVDD  
AVDD = 1.8 V, MIC_GAINx = 1  
AVDD = 3.3 V, MIC_GAINx = 1  
AVDD = 1.8 V, MIC_GAINx = 0  
AVDD = 3.3 V, MIC_GAINx = 0  
1.16  
2.12  
1.63  
2.97  
V
V
V
V
0.90 × AVDD  
Bias Current Source  
Output Impedance  
MICBIASx Isolation  
3
mA  
dB  
dB  
1
95  
99  
MIC_GAINx = 0  
MIC_GAINx = 1  
AVDD = 1.8 V, 20 Hz to 20 kHz  
MIC_GAINx = 0  
MIC_GAINx = 1  
Noise in the Signal Bandwidth3  
27  
16  
nV/√Hz  
nV/√Hz  
AVDD = 3.3 V, 20 Hz to 20 kHz  
MIC_GAINx = 0  
MIC_GAINx = 1  
35  
19  
nV/√Hz  
nV/√Hz  
DIGITAL-TO-ANALOG CONVERTERS  
DAC Resolution  
Digital Attenuation Step  
Digital Attenuation Range  
DAC SINGLE-ENDED OUTPUT  
All DACs  
24  
0.375  
95  
Bits  
dB  
dB  
Single-ended operation, HPOUTLP and  
HPOUTRP pins  
Full-Scale Output Voltage  
Scales linearly with AVDD  
AVDD = 1.8 V  
AVDD = 1.8 V, 0 dBFS  
AVDD = 3.3 V  
AVDD/3.4  
0.53  
1.5  
0.97  
2.74  
V rms  
V rms  
V p-p  
V rms  
V p-p  
dB  
AVDD = 3.3 V, 0 dBFS  
Mute Attenuation  
Dynamic Range1  
With A-Weighted Filter (RMS)  
−72  
Line output mode, 20 Hz to 20 kHz, −60 dB input  
AVDD = 1.8 V  
AVDD = 3.3 V  
AVDD = 1.8 V  
AVDD = 3.3 V  
Line output mode, 20 Hz to 20 kHz  
AVDD = 1.8 V  
AVDD = 3.3 V  
AVDD = 1.8 V  
AVDD = 3.3 V  
100  
104  
97  
dB  
dB  
dB  
dB  
With Flat 20 Hz to 20 kHz Filter  
101  
Signal-to-Noise Ratio2  
With A-Weighted Filter (RMS)  
100  
104  
98  
dB  
dB  
dB  
dB  
With Flat 20 Hz to 20 kHz Filter  
102  
Rev. C | Page 5 of 116  
ADAU1772  
Data Sheet  
Parameter  
Test Conditions/Comments  
Line output mode  
Line output mode, 20 Hz to 20 kHz, −1 dBFS  
AVDD = 1.8 V  
AVDD = 3.3 V  
Line output mode  
Headphone mode, 20 Hz to 20 kHz, −60 dB input  
AVDD = 1.8 V  
AVDD = 3.3 V  
AVDD = 1.8 V  
AVDD = 3.3 V  
Min  
Typ  
Max  
Unit  
mdB  
dB  
dB  
dB  
Interchannel Gain Mismatch  
Total Harmonic Distortion + Noise  
20  
−93  
−94  
0.1  
Gain Error  
Dynamic Range1  
With A-Weighted Filter (RMS)  
dB  
100  
104  
97  
dB  
dB  
dB  
dB  
With Flat 20 Hz to 20 kHz Filter  
101  
Signal-to-Noise Ratio2  
With A-Weighted Filter (RMS)  
Headphone mode, 20 Hz to 20 kHz  
AVDD = 1.8 V  
AVDD = 3.3 V  
100  
104  
98  
dB  
dB  
dB  
With Flat 20 Hz to 20 kHz Filter  
AVDD = 1.8 V  
AVDD = 3.3 V  
Headphone mode  
102  
50  
dB  
mdB  
Interchannel Gain Mismatch  
Total Harmonic Distortion + Noise  
32 Ω load  
Headphone mode, 20 Hz to 20 kHz, −1 dBFS  
AVDD = 1.8 V, PO = 6.7 mW  
AVDD = 3.3 V, PO = 22.4 mW  
AVDD = 1.8 V, PO = 8.9 mW  
AVDD = 3.3 V, PO = 30 mW  
AVDD = 1.8 V, PO = 13 mW  
AVDD = 3.3 V, PO = 44 mW  
−77  
−80  
−76  
−79  
−74  
−77  
dB  
dB  
dB  
dB  
dB  
dB  
24 Ω load  
16 Ω load  
Headphone Output Power  
32 Ω Load  
AVDD = 1.8 V, <0.1% THD + N  
AVDD = 3.3 V, <0.1% THD + N  
AVDD = 1.8 V, <0.1% THD + N  
AVDD = 3.3 V, <0.1% THD + N  
AVDD = 1.8 V, <0.1% THD + N  
AVDD = 3.3 V, <0.1% THD + N  
Headphone mode  
8.4  
mW  
mW  
mW  
mW  
mW  
mW  
dB  
28.1  
11.2  
37.4  
16.25  
55.8  
0.1  
24 Ω Load  
16 Ω Load  
Gain Error  
Offset Error  
0.1  
100  
70  
mV  
dB  
dB  
Interchannel Isolation  
Power Supply Rejection Ratio  
DAC DIFFERENTIAL OUTPUT  
Full-Scale Output Voltage  
1 kHz, 0 dBFS input signal  
CM capacitor = 22 μF, 100 mV p-p at 1 kHz  
Differential operation  
Scales linearly with AVDD  
AVDD = 1.8 V  
AVDD = 1.8 V, 0 dBFS  
AVDD = 3.3 V  
AVDD = 3.3 V, 0 dBFS  
AVDD/1.8  
1.0  
2.58  
1.83  
5.49  
V rms  
V rms  
V p-p  
V rms  
V p-p  
dB  
Mute Attenuation  
Dynamic Range1  
With A-Weighted Filter (RMS)  
−72  
Line output mode, 20 Hz to 20 kHz, −60 dB input  
AVDD = 1.8 V  
AVDD = 3.3 V  
AVDD = 1.8 V  
AVDD = 3.3 V  
Line output mode, 20 Hz to 20 kHz  
AVDD = 1.8 V  
AVDD = 3.3 V  
AVDD = 1.8 V  
AVDD = 3.3 V  
Line output mode  
Line output mode, 20 Hz to 20 kHz, −1 dBFS  
AVDD = 1.8 V  
AVDD = 3.3 V  
Line output mode  
104  
107  
101  
105  
dB  
dB  
dB  
dB  
With Flat 20 Hz to 20 kHz Filter  
Signal-to-Noise Ratio2  
With A-Weighted Filter (RMS)  
105  
108  
102  
105  
20  
dB  
dB  
dB  
dB  
mdB  
dB  
dB  
dB  
%
With Flat 20 Hz to 20 kHz Filter  
Interchannel Gain Mismatch  
Total Harmonic Distortion + Noise  
−96  
−96  
Gain Error  
Rev. C | Page 6 of 116  
Data Sheet  
ADAU1772  
Parameter  
Test Conditions/Comments  
Headphone mode, 20 Hz to 20 kHz, −60 dB input  
AVDD = 1.8 V  
AVDD = 3.3 V  
AVDD = 1.8 V  
AVDD = 3.3 V  
Headphone mode, 20 Hz to 20 kHz  
AVDD = 1.8 V  
AVDD = 3.3 V  
AVDD = 1.8 V  
AVDD = 3.3 V  
Headphone mode  
Headphone mode  
−1 dBFS, AVDD = 1.8 V, PO = 27 mW  
−1 dBFS, AVDD = 3.3 V, PO = 90 mW  
−2 dBFS, AVDD = 1.8 V, PO = 28 mW  
−1 dBFS, AVDD = 3.3 V, PO = 118 mW  
−3 dBFS, AVDD = 1.8 V, PO = 33 mW  
−1 dBFS, AVDD = 3.3 V, PO = 175 mW  
Min  
Typ  
Max  
Unit  
Dynamic Range1  
With A-Weighted Filter (RMS)  
104  
107  
102  
104  
dB  
dB  
dB  
dB  
With Flat 20 Hz to 20 kHz Filter  
Signal-to-Noise Ratio2  
With A-Weighted Filter (RMS)  
105  
108  
103  
106  
75  
dB  
dB  
dB  
dB  
With Flat 20 Hz to 20 kHz Filter  
Interchannel Gain Mismatch  
Total Harmonic Distortion + Noise  
32 Ω Load  
mdB  
−75  
−83  
−75  
−77  
−75  
−83  
dB  
dB  
dB  
dB  
dB  
dB  
24 Ω Load  
16 Ω Load  
Headphone Output Power  
32 Ω Load  
AVDD = 1.8 V, <0.1% THD + N  
AVDD = 3.3 V, <0.1% THD + N  
AVDD = 1.8 V, <0.1% THD + N  
AVDD = 3.3 V, <0.1% THD + N  
AVDD = 1.8 V, <0.1% THD + N  
AVDD = 3.3 V, <0.1% THD + N  
Headphone mode  
32.5  
111.8  
37.6  
148.3  
41.5  
189.2  
0.25  
0.1  
mW  
mW  
mW  
mW  
mW  
mW  
%
24 Ω Load  
16 Ω Load  
Gain Error  
Offset Error  
Interchannel Isolation  
Power Supply Rejection Ratio  
mV  
dB  
1 kHz, 0 dBFS input signal  
CM capacitor = 22 μF  
100 mV p-p at 1 kHz  
CM pin  
100  
73  
dB  
CM REFERENCE  
Common-Mode Reference Output  
Common-Mode Source Impedance  
REGULATOR  
AVDD/2  
5
V
kΩ  
Line Regulation  
Load Regulation  
1
6
mV/V  
mV/mA  
1 Dynamic range is the ratio of the sum of noise and harmonic power in the band of interest with a −60 dBFS signal present to the full-scale power level in decibels.  
2 SNR is the ratio of the sum of all noise power in the band of interest with no signal present to the full-scale power level in decibels.  
3 These specifications are with 4.7 µF decoupling and 5.0 kΩ load on pin.  
CRYSTAL AMPLIFIER SPECIFICATIONS  
Supply voltages AVDD = IOVDD = 1.8 V, DVDD = 1.1 V, unless otherwise noted.  
Table 2.  
Test Conditions/Comments  
Min  
Typ  
Max  
500  
27  
Unit  
ps  
MHz  
pF  
Parameter  
Jitter  
Frequency Range  
Load Capacitance  
270  
8
20  
Rev. C | Page 7 of 116  
 
 
ADAU1772  
Data Sheet  
DIGITAL INPUT/OUTPUT SPECIFICATIONS  
−40°C < TA < +85°C, IOVDD = 3.3 V 10% and 1.8 V − 5%/+10%.  
Table 3.  
Parameter  
Test Conditions/Comments  
Min  
2.0  
Typ  
Max  
Unit  
V
Input Voltage High (VIH)  
IOVDD = 3.3 V  
IOVDD = 1.8 V  
1.1  
V
Input Voltage Low (VIL)  
Input Leakage  
IOVDD = 3.3 V  
IOVDD = 1.8 V  
0.8  
0.45  
10  
10  
10  
V
V
IOVDD = 3.3 V, IIH at VIH = 2.0 V  
IIL at VIL = 0.8 V  
IOVDD = 1.8 V, IIH at VIH = 1.1 V  
IIL at VIL = 0.45 V  
IOH = 1 mA  
IOH = 3 mA  
IOL = 1 mA  
IOL = 3 mA  
µA  
µA  
µA  
µA  
V
V
V
V
pF  
10  
Output Voltage High (VOH) with Low Drive Strength  
Output Voltage High (VOH) with High Drive Strength  
Output Voltage Low (VOL) with Low Drive Strength  
Output Voltage Low (VOL) with High Drive Strength  
Input Capacitance  
IOVDD − 0.6  
IOVDD − 0.6  
0.4  
0.4  
5
POWER SUPPLY SPECIFICATIONS  
Supply voltages AVDD = IOVDD = 1.8 V, DVDD = 1.1 V, unless otherwise noted. PLL disabled, direct master clock.  
Table 4.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
SUPPLIES  
AVDD Voltage  
DVDD Voltage  
IOVDD Voltage  
Digital I/O Current with IOVDD = 1.8 V  
Slave Mode  
1.71  
1.045  
1.71  
1.8  
1.1  
1.8  
3.63  
1.98  
3.63  
V
V
V
Crystal oscillator enabled  
fS = 48 kHz  
fS = 192 kHz  
fS = 8 kHz  
fS = 48 kHz  
fS = 192 kHz  
fS = 8 kHz  
0.35  
0.49  
0.32  
0.53  
1.18  
0.35  
0
mA  
mA  
mA  
mA  
mA  
mA  
µA  
Master Mode  
Power-Down  
Digital I/O Current with IOVDD = 3.3 V  
Slave Mode  
Crystal oscillator enabled  
fS = 48 kHz  
fS = 192 kHz  
fS = 8 kHz  
fS = 48 kHz  
fS = 192 kHz  
fS = 8 kHz  
2.05  
2.28  
1.99  
2.4  
3.62  
2.05  
7
mA  
mA  
mA  
mA  
mA  
mA  
µA  
Master Mode  
Power-Down  
Analog Current (AVDD)  
Power-Down  
See Table 5  
AVDD = 1.8 V  
AVDD = 3.3 V  
0.6  
13.6  
µA  
µA  
DISSIPATION  
Operation  
fS = 192 kHz (see conditions in Table 5)  
All Supplies  
15.5  
0.7  
14.8  
1
mW  
mW  
mW  
µW  
Digital I/O Supply  
Analog Supply  
Power-Down, All Supplies  
Includes regulated DVDD current  
Rev. C | Page 8 of 116  
 
 
 
Data Sheet  
ADAU1772  
TYPICAL POWER CONSUMPTION  
Typical active noise cancelling (ANC) settings. Master clock = 12.288 MHz, fS = 192 kHz. On-board regulator enabled. Two analog-to-  
digital converters (ADCs) with PGA enabled and two ADCs configured for line input; no input signal. Two digital-to-analog converters  
(DACs) configured for differential headphone operation; DAC outputs unloaded. Both MICBIAS0 and MICBIAS1 enabled. ASRCs and  
pulse density modulated (PDM) modulator disabled. Core running 26 out of 32 possible instructions. For total power consumption, add  
IOVDD at 8 kHz slave current listed in Table 4.  
Table 5.  
Typical AVDD Power Consumption Typical ADC THD + N Typical HP Output  
Operating Voltage  
AVDD = IOVDD = 3.3 V Normal (default)  
Extreme power saving  
Power Management Setting (mA)  
(dB)  
THD + N (dB)  
−87.5  
−86.5  
−86.5  
−90.5  
−91  
11.5  
9.4  
9.8  
12.65  
9.37  
7.40  
7.78  
10.4  
−93  
−93  
−93  
−93  
Power saving  
Enhanced performance  
AVDD = IOVDD = 1.8 V Normal (default)  
−86  
Extreme power saving  
Power saving  
Enhanced performance  
−84.5  
−84.5  
−86  
−87  
−87.5  
−94.5  
DIGITAL FILTERS  
Table 6.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
ADC INPUT TO DAC OUTPUT PATH  
Pass-Band Ripple  
Group Delay  
DC to 20 kHz, fS = 192 kHz  
fS = 192 kHz  
0.02  
dB  
µs  
38  
SAMPLE RATE CONVERTER  
Pass Band  
LRCLK < 63 kHz  
63 kHz < LRCLK <130 kHz  
LRCLK > 130 kHz  
Upsampling, 96 kHz  
Upsampling, 192 kHz  
Downsampling, 96 kHz  
Downsampling, 192 kHz  
0
0
0
0.475 × fS  
0.4286 × fS  
0.4286 × fS  
0.05  
0.05  
0.07  
kHz  
Pass-Band Ripple  
−0.27  
−0.06  
0
0
8
dB  
dB  
dB  
dB  
kHz  
dB  
dB  
ms  
0.07  
192  
Input/Output Frequency Range  
Dynamic Range  
Total Harmonic Distortion + Noise  
Startup Time  
100  
−90  
15  
PDM MODULATOR  
Dynamic Range (A-Weighted)  
Total Harmonic Distortion + Noise  
112  
−92  
dB  
dB  
Rev. C | Page 9 of 116  
 
 
 
ADAU1772  
Data Sheet  
DIGITAL TIMING SPECIFICATIONS  
−40°C < TA < +85°C, IOVDD = 1.71 V to 3.63 V, DVDD = 1.045 V to 1.98 V.  
Table 7. Digital Timing  
Limit  
Parameter  
TMIN  
TMAX  
Unit  
Description  
MASTER CLOCK  
tMP  
tMCLK  
SERIAL PORT  
tBL  
tBH  
tLS  
tLH  
tSS  
tSH  
tTS  
37  
77  
125  
82  
ns  
ns  
MCLKIN period; 8 MHz to 27 MHz input clock using PLL  
Internal MCLK period; direct MCLK and PLL output divided by 2  
40  
40  
10  
10  
5
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
BCLK low pulse width (master and slave modes)  
BCLK high pulse width (master and slave modes)  
LRCLK setup; time to BCLK rising (slave mode)  
LRCLK hold; time from BCLK rising (slave mode)  
DAC_SDATA setup; time to BCLK rising (master and slave modes)  
DAC_SDATA hold; time from BCLK rising (master and slave modes)  
BCLK falling to LRCLK timing skew (master mode)  
ADC_SDATAx delay; time from BCLK falling (master and slave modes)  
BCLK falling to ADC_SDATAx driven in TDM tristate mode  
BCLK falling to ADC_SDATAx tristated in TDM tristate mode  
5
10  
34  
30  
30  
tSOD  
0
tSOTD  
tSOTX  
SPI PORT  
fSCLK  
tCCPL  
tCCPH  
tCLS  
tCLH  
tCLPH  
tCDS  
tCDH  
tCOD  
I2C PORT  
fSCL  
tSCLH  
tSCLL  
tSCS  
6.25  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCLK frequency  
SCLK pulse width low  
SCLK pulse width high  
SS setup; time to SCLK rising  
SS hold; time from SCLK rising  
SS pulse width high  
MOSI setup; time to SCLK rising  
MOSI hold; time from SCLK rising  
MISO delay; time from SCLK falling  
80  
80  
5
100  
80  
10  
10  
101  
400  
kHz  
µs  
µs  
SCL frequency  
SCL high  
SCL low  
0.6  
1.3  
0.6  
µs  
SCL rise setup time (to SDA falling), relevant for repeated start  
condition  
tSCR  
tSCH  
tDS  
tSCF  
tSDF  
tBFT  
250  
ns  
µs  
ns  
ns  
ns  
µs  
SCL and SDA rise time, CLOAD = 400 pF  
SCL fall hold time (from SDA falling), relevant for start condition  
SDA setup time (to SCL rising)  
SCL fall time; CLOAD = 400 pF  
SDA fall time; CLOAD = 400 pF  
0.6  
100  
250  
250  
0.6  
SCL rise setup time (to SDA rising), relevant for stop condition  
I2C EEPROM SELF-BOOT  
tSCHE  
26 × tMP – 70  
38 × tMP – 70  
ns  
ns  
SCL fall hold time (from SDA falling), relevant for start condition; tMP  
is the input clock on the MCLKIN pin  
SCL rise setup time (to SDA falling), relevant for repeated start  
condition  
tSCSE  
tBFTE  
tDSE  
tBHTE  
70 × tMP – 70  
6 × tMP – 70  
32 × tMP  
ns  
ns  
ns  
SCL rise setup time (to SDA rising), relevant for stop condition  
Delay from SCL falling to SDA changing  
SDA rising in self-boot stop condition to SDA falling edge for  
external master start condition  
MULTIPURPOSE AND POWER-  
DOWN PINS  
tGIL  
1.5 × 1/fS  
µs  
ns  
MPx input latency; time until high or low value is read by core  
PD low pulse width  
tRLPW  
20  
Rev. C | Page 10 of 116  
 
Data Sheet  
ADAU1772  
Limit  
TMAX  
Parameter  
TMIN  
Unit  
Description  
DIGITAL MICROPHONE  
tCF  
tCR  
tDS  
tDE  
20  
20  
ns  
ns  
Digital microphone clock fall time  
Digital microphone clock rise time  
Digital microphone valid data start time  
Digital microphone valid data end time  
40  
0
ns  
PDM OUTPUT  
tDCF  
tDCR  
tDDV  
20  
20  
30  
ns  
ns  
ns  
PDM clock fall time  
PDM clock rise time  
PDM delay time for valid data  
0
Digital Timing Diagrams  
tBH  
BCLK  
tBL  
tLS  
tLH  
LRCLK  
tSS  
DAC_SDATA  
LEFT-JUSTIFIED  
MODE  
MSB  
MSB – 1  
tSH  
tSS  
DAC_SDATA  
I S MODE  
2
MSB  
tSH  
tSS  
tSS  
DAC_SDATA  
RIGHT-JUSTIFIED  
MODE  
LSB  
MSB  
tSH  
tSH  
8-BIT CLOCKS  
(24-BIT DATA)  
12-BIT CLOCKS  
(20-BIT DATA)  
14-BIT CLOCKS  
(18-BIT DATA)  
16-BIT CLOCKS  
(16-BIT DATA)  
Figure 2. Serial Input Port Timing  
Rev. C | Page 11 of 116  
ADAU1772  
Data Sheet  
tLH  
tBH  
tTS  
BCLK  
tBL  
tLS  
LRCLK  
tSOD  
ADC_SDATAx  
LEFT-JUSTIFIED  
MODE  
MSB  
MSB – 1  
tSOD  
ADC_SDATAx  
2
I S MODE  
MSB  
tSOTX  
tSOTD  
ADC_SDATAx  
W/TRISTATE  
HIGH-Z  
HIGH-Z  
MSB  
LSB  
tSOD  
ADC_SDATAx  
RIGHT-JUSTIFIED  
MODE  
LSB  
MSB  
8-BIT CLOCKS  
(24-BIT DATA)  
12-BIT CLOCKS  
(20-BIT DATA)  
14-BIT CLOCKS  
(18-BIT DATA)  
16-BIT CLOCKS  
(16-BIT DATA)  
Figure 3. Serial Output Port Timing  
tCLS  
tCLH  
tCLPH  
tCCPL  
tCCPH  
SS  
SCLK  
MOSI  
tCDH  
tCDS  
MISO  
tCOD  
Figure 4. SPI Port Timing  
tDS  
tSCH  
tSCH  
SDA  
SCL  
tSCR  
tSCLH  
tSCS  
tBFT  
tSCLL tSCF  
Figure 5. I2C Port Timing  
Rev. C | Page 12 of 116  
Data Sheet  
ADAU1772  
tSCHE  
tDSE  
SDA  
SCL  
tBHTE  
tSCSE  
tBFTE  
Figure 6. I2C Self-Boot Timing  
CLKOUT  
tCF  
tCR  
tDS  
tDS  
tDE  
tDE  
DMIC0_1/DMIC2_3  
VALID LEFT SAMPLE  
VALID RIGHT SAMPLE  
VALID LEFT SAMPLE  
Figure 7. Digital Microphone Timing  
tDCF  
tDCR  
CLKOUT  
tDDV  
tDDV  
PDMOUT  
RIGHT  
LEFT  
RIGHT  
LEFT  
Figure 8. PDM Output Timing  
Rev. C | Page 13 of 116  
ADAU1772  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Table 8.  
θJA represents the junction-to-ambient thermal resistance; θJC  
represents the junction-to-case thermal resistance. Thermal  
numbers are simulated on a 4-layer JEDEC PCB with the  
exposed pad soldered to the PCB. θJC was simulated at the  
exposed pad on the bottom of the package.  
Parameter  
Rating  
Power Supply (AVDD, IOVDD)  
Digital Supply (DVDD)  
−0.3 V to +3.63 V  
−0.3 V to +1.98 V  
20 mA  
–0.3 V to AVDD + 0.3 V  
−0.3 to IOVDD + 0.3 V  
−40°C to +85°C  
−65°C to +150°C  
Input Current (Except Supply Pins)  
Analog Input Voltage (Signal Pins)  
Digital Input Voltage (Signal Pins)  
Operating Temperature Range (Case)  
Storage Temperature Range  
Table 9. Thermal Resistance  
Package Type  
θJA  
θJC  
Unit  
40-Lead LFCSP  
29  
1.8  
°C/W  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
ESD CAUTION  
Rev. C | Page 14 of 116  
 
 
 
Data Sheet  
ADAU1772  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
SDA/MISO  
SCL/SCLK  
ADDR1/MOSI  
ADDR0/SS  
SELFBOOT  
MICBIAS0  
MICBIAS1  
AIN0REF  
1
2
3
4
5
6
7
8
9
30 DGND  
29 DVDD  
28 REG_OUT  
27 PD  
26 HPOUTRP/LOUTRP  
25 HPOUTRN/LOUTRN  
24 AVDD  
23 AGND  
22 HPOUTLP/LOUTLP  
21 HPOUTLN/LOUTLN  
ADAU1772  
TOP VIEW  
(Not to Scale)  
AIN0  
AVDD 10  
NOTES  
1. THE EXPOSED PAD IS CONNECTED INTERNALLY TO THE ADAU1772  
GROUNDS. FOR INCREASED RELIABILITY OF THE SOLDER JOINTS AND  
MAXIMUM THERMAL CAPABILITY, IT IS RECOMMENDED THAT THE PAD  
BE SOLDERED TO THE GROUND PLANE. SEE THE EXPOSED PAD PCB  
DESIGN SECTION FOR MORE INFORMATION.  
Figure 9. Pin Configuration  
Table 10. Pin Function Descriptions  
Pin No.  
Mnemonic  
Type1  
Description  
1
SDA/MISO  
D_IO  
I2C Data (SDA). This pin is a bidirectional open-collector. The line connected to this pin should have  
a 2.0 kΩ pull-up resistor.  
SPI Data Output (MISO). This SPI data output is used for reading back registers and memory locations.  
It is tristated when an SPI read is not active.  
2
SCL/SCLK  
D_IN  
I2C Clock (SCL). This pin is always an open-collector input when the device is in I2C control mode.  
When the device is in self-boot mode, this pin is an open-collector output (I2C master). The line  
connected to this pin should have a 2.0 kΩ pull-up resistor.  
SPI Clock (SCLK). This pin can either run continuously or be gated off between SPI transactions.  
3
4
ADDR1/MOSI  
D_IN  
D_IN  
I2C Address 1 (ADDR1).  
SPI Data Input (MOSI).  
I2C Address 0 (ADDR0).  
SS  
ADDR0/  
SS  
SPI Latch Signal ( ). This pin must go low at the beginning of an SPI transaction and high at the  
end of a transaction. Each SPI transaction can take a different number of SCLK cycles to complete,  
depending on the address and read/write bit that are sent at the beginning of the SPI transaction.  
5
SELFBOOT  
MICBIAS0  
MICBIAS1  
AIN0REF  
AIN0  
D_IN  
A_OUT  
A_OUT  
A_IN  
Self-Boot. Pull this pin up to IOVDD at power-up to enable the self-boot mode.  
Bias Voltage for Electret Microphone. Decouple with a 1 µF capacitor.  
Bias Voltage for Electret Microphone. Decouple with a 1 µF capacitor.  
ADC0 Input Reference. This reference pin should be ac-coupled to ground with a 10 µF capacitor.  
ADC0 Input.  
6
7
8
9
A_IN  
10  
11  
AVDD  
PWR  
1.8 V to 3.3 V Analog Supply. This pin should be decoupled to AGND with a 0.1 μF capacitor.  
AGND  
PWR  
Analog Ground. The AGND and DGND pins can be tied directly together in a common ground plane.  
AGND should be decoupled to AVDD with a 0.1 μF capacitor.  
12  
CM  
A_OUT  
AVDD/2 V Common-Mode Reference. A 10 μF to 47 μF decoupling capacitor should be connected  
between this pin and ground to reduce crosstalk between the ADCs and DACs. The material of the  
capacitors is not critical. This pin can be used to bias external analog circuits, as long as they are  
not drawing current from CM (for example, the noninverting input of an op amp).  
Rev. C | Page 15 of 116  
 
ADAU1772  
Data Sheet  
Pin No.  
13  
Mnemonic  
Type1  
A_IN  
A_IN  
A_IN  
A_IN  
A_IN  
A_IN  
PWR  
Description  
AIN1REF  
AIN1  
ADC1 Input Reference. This reference pin should be ac-coupled to ground with a 10 µF capacitor.  
14  
ADC1 Input.  
15  
AIN2REF  
AIN2  
ADC2 Input Reference. This reference pin should be ac-coupled to ground with a 10 µF capacitor.  
16  
ADC2 Input.  
17  
AIN3REF  
AIN3  
ADC3 Input Reference. This reference pin should be ac-coupled to ground with a 10 µF capacitor.  
ADC3 Input.  
18  
19  
AVDD  
1.8 V to 3.3 V Analog Supply. This pin should be decoupled to AGND with a 0.1 μF capacitor.  
Analog Ground.  
20  
AGND  
PWR  
21  
HPOUTLN/LOUTLN  
A_OUT  
Left Headphone Inverted (HPOUTLN).  
Line Output Inverted (LOUTLN).  
22  
HPOUTLP/LOUTLP  
A_OUT  
Left Headphone Noninverted (HPOUTLP).  
Line Output Noninverted, Single-Ended Line Output (LOUTLP).  
Headphone Amplifier Ground.  
23  
24  
AGND  
AVDD  
PWR  
PWR  
Headphone Amplifier Power, 1.8 V to 3.3 V Analog Supply. This pin should be decoupled to AGND  
with a 0.1 μF capacitor. The PCB trace to this pin should be wider to supply the higher current necessary  
for driving the headphone outputs.  
25  
26  
27  
HPOUTRN/LOUTRN  
HPOUTRP/LOUTRP  
PD  
A_OUT  
A_OUT  
D_IN  
Right Headphone Inverted (HPOUTRN).  
Line Output Inverted (LOUTRN).  
Right Headphone Noninverted (HPOUTRP).  
Line Output Noninverted, Single-Ended Line Output (LOUTRP).  
Active Low Power-Down. All digital and analog circuits are powered down. There is an internal  
pull-down resistor on this pin; therefore, the ADAU1772 is held in power-down mode if its input  
signal is floating while power is applied to the supply pins.  
28  
29  
REG_OUT  
DVDD  
A_OUT  
PWR  
Regulator Output Voltage. This pin should be connected to DVDD if the internal voltage regulator  
is being used to generate DVDD voltage.  
Digital Core Supply. The digital supply can be generated from an on-board regulator or supplied  
directly from an external supply. In each case, DVDD should be decoupled to DGND with a 0.1 μF  
capacitor.  
30  
31  
DGND  
PWR  
D_IO  
Digital Ground. The AGND and DGND pins can be tied directly together in a common ground plane.  
Serial Data Port Frame Clock (LRCLK).  
LRCLK/MP3  
General-Purpose Input (MP3).  
32  
33  
34  
BCLK/MP2  
D_IO  
D_IO  
D_IO  
Serial Data Port Bit Clock (BCLK).  
General-Purpose Input (MP2).  
DAC_SDATA/MP0  
ADC_SDATA0/PDMOUT/MP1  
DAC Serial Input Data (DAC_SDATA).  
General-Purpose Input (MP0).  
ADC Serial Data Output 0 (ADC_SDATA0).  
Stereo PDM Output to Drive a High Efficiency Class-D Amplifier (PDMOUT).  
General-Purpose Input (MP1).  
35  
ADC_SDATA1/CLKOUT/MP6  
D_IO  
Serial Data Output 1 (ADC_SDATA1).  
Master Clock Output/Clock for the Digital Microphone Input and PDM Output (CLKOUT).  
General-Purpose Input (MP6).  
36  
37  
DMIC2_3/MP5  
DMIC0_1/MP4  
D_IN  
D_IN  
Digital Microphone Stereo Input 2 and Digital Microphone Stereo Input 3 (DMIC2_3).  
General-Purpose Input (MP5).  
Digital Microphone Stereo Input 0 and Digital Microphone Stereo Input 1 (DMIC0_1).  
General-Purpose Input (MP4).  
38  
39  
XTALO  
A_OUT  
D_IN  
Crystal Clock Output. This pin is the output of the crystal amplifier and should not be used to  
provide a clock to other ICs in the system. If a master clock output is needed, use CLKOUT (Pin 35).  
XTALI/MCLKIN  
Crystal Clock Input (XTALI).  
Master Clock Input (MCLKIN)  
40  
IOVDD  
PWR  
Supply for Digital Input and Output Pins. The digital output pins are supplied from IOVDD, and this  
sets the highest input voltage that should be seen on the digital input pins. The current draw of  
this pin is variable because it is dependent on the loads of the digital outputs. IOVDD should be  
decoupled to DGND with a 0.1 μF capacitor.  
EP  
Exposed Pad. The exposed pad is connected internally to the ADAU1772 grounds. For increased  
reliability of the solder joints and maximum thermal capability, it is recommended that the pad be  
soldered to the ground plane. See the Exposed Pad PCB Design section for more information.  
1 D_IO = digital input/output, D_IN = digital input, A_OUT = analog output, A_IN = analog input, PWR = power, A_IN = analog input.  
Rev. C | Page 16 of 116  
Data Sheet  
ADAU1772  
TYPICAL PERFORMANCE CHARACTERISTICS  
0.04  
0.02  
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0
–0.02  
–0.04  
–0.06  
–0.08  
–0.10  
–0.12  
–0.14  
–0.16  
–0.18  
–0.20  
–0.22  
–0.24  
100  
1k  
10k  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
FREQUENCY (Hz)  
FREQUENCY (kHz)  
Figure 10. Relative Level vs. Frequency,  
Figure 13. Group Delay vs. Frequency,  
fS = 48 kHz, Signal Path = AIN0 to DSP (Without Processing) to LOUTLx  
fS = 48 kHz, Signal Path = AIN0 to DSP (Without Processing) to LOUTLx  
40  
20  
6
4
2
0
–2  
–4  
–6  
–8  
0
–20  
–40  
–60  
–80  
–100  
–120  
–140  
–160  
–180  
–200  
–220  
–240  
–260  
–280  
–10  
–12  
–14  
–16  
–18  
–20  
–22  
–24  
–26  
–28  
–30  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
Figure 14. Phase vs. Frequency, 2 kHz Bandwidth,  
Figure 11. Phase vs. Frequency, 20 kHz Bandwidth,  
fS = 48 kHz, Signal Path = AIN0 to DSP (Without Processing) to LOUTLx  
fS = 48 kHz, Signal Path = AIN0 to DSP (Without Processing) to LOUTLx  
0.2  
0.1  
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.6  
–0.7  
–0.8  
–0.9  
–1.0  
–1.1  
–1.2  
–1.3  
100  
1k  
10k  
0
4
8
12  
16  
20  
24  
28  
32  
36  
40  
FREQUENCY (Hz)  
FREQUENCY (kHz)  
Figure 12. Relative Level vs. Frequency,  
fS = 96 kHz, Signal Path = AIN0 to DSP (Without Processing) to LOUTLx  
Figure 15. Group Delay vs. Frequency,  
fS = 96 kHz, Signal Path = AIN0 to DSP (Without Processing) to LOUTLx  
Rev. C | Page 17 of 116  
 
ADAU1772  
Data Sheet  
50  
0
6
4
2
–50  
0
–2  
–4  
–6  
–8  
–100  
–150  
–200  
–250  
–300  
–350  
–400  
–450  
–500  
–550  
–600  
–10  
–12  
–14  
–16  
–18  
–20  
–22  
–24  
–26  
–28  
–30  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
0
4
8
12  
16  
20  
24  
28  
32  
36  
40  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
Figure 19. Phase vs. Frequency, 2 kHz Bandwidth,  
Figure 16. Phase vs. Frequency, 40 kHz Bandwidth,  
fS = 96 kHz, Signal Path = AIN0 to DSP (Without Processing) to LOUTLx  
fS = 96 kHz, Signal Path = AIN0 to DSP (Without Processing) to LOUTLx  
1
0
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
–9  
100  
1k  
10k  
0
10  
20  
30  
40  
50  
60  
70  
80  
FREQUENCY (Hz)  
FREQUENCY (kHz)  
Figure 17. Relative Level vs. Frequency,  
Figure 20. Group Delay vs. Frequency,  
fS = 192 kHz, Signal Path = AIN0 to DSP (Without Processing) to LOUTLx  
fS = 192 kHz, Signal Path = AIN0 to DSP (Without Processing) to LOUTLx  
200  
100  
6
4
2
0
0
–100  
–200  
–300  
–400  
–500  
–600  
–700  
–800  
–900  
–1000  
–1100  
–1200  
–1300  
–2  
–4  
–6  
–8  
–10  
–12  
–14  
–16  
–18  
–20  
–22  
–24  
–26  
–28  
–30  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
0
10  
20  
30  
40  
50  
60  
70  
80  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
Figure 21. Phase vs. Frequency, 2 kHz Bandwidth,  
fS = 192 kHz, Signal Path = AIN0 to DSP (Without Processing) to LOUTLx  
Figure 18. Phase vs. Frequency, 80 kHz Bandwidth,  
fS = 192 kHz, Signal Path = AIN0 to DSP (Without Processing) to LOUTLx  
Rev. C | Page 18 of 116  
Data Sheet  
ADAU1772  
0.04  
0.02  
300  
280  
260  
240  
220  
200  
180  
160  
140  
120  
100  
80  
0
–0.02  
–0.04  
–0.06  
–0.08  
–0.10  
–0.12  
–0.14  
–0.16  
–0.18  
–0.20  
60  
40  
20  
0
100  
1k  
10k  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
FREQUENCY (Hz)  
FREQUENCY (kHz)  
Figure 22. Relative Level vs. Frequency,  
fS = 48 kHz, Signal Path = AIN0 to ASRC to ADC_SDATA0  
Figure 25. Group Delay vs. Frequency,  
fS = 48 kHz, Signal Path = AIN0 to ASRC to ADC_SDATA0  
10  
0
200  
100  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–100  
–200  
–300  
–400  
–500  
–600  
–700  
–800  
–900  
–1000  
–1100  
–1200  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
Figure 23. Phase vs. Frequency, 20 kHz Bandwidth,  
fS = 48 kHz, Signal Path = AIN0 to ASRC to ADC_SDATA0  
Figure 26. Phase vs. Frequency, 2 kHz Bandwidth,  
fS = 48 kHz, Signal Path = AIN0 to ASRC to ADC_SDATA0  
0.4  
0.2  
300  
280  
260  
240  
220  
200  
180  
160  
140  
120  
100  
80  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–1.2  
–1.4  
–1.6  
–1.8  
–2.0  
–2.2  
60  
40  
20  
0
100  
1k  
10k  
0
4
8
12  
16  
20  
24  
28  
32  
36  
40  
FREQUENCY (Hz)  
FREQUENCY (kHz)  
Figure 24. Relative Level vs. Frequency,  
fS = 96 kHz, Signal Path = AIN0 to ASRC to ADC_SDATA0  
Figure 27. Group Delay vs. Frequency,  
fS = 96 kHz, Signal Path = AIN0 to ASRC to ADC_SDATA0  
Rev. C | Page 19 of 116  
ADAU1772  
Data Sheet  
200  
100  
10  
5
0
0
–100  
–200  
–300  
–400  
–500  
–600  
–700  
–800  
–900  
–1000  
–1100  
–1200  
–1300  
–1400  
–1500  
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
0
4
8
12  
16  
20  
24  
28  
32  
36  
40  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
Figure 31. Phase vs. Frequency, 2 kHz Bandwidth,  
fS = 96 kHz, Signal Path = AIN0 to ASRC to ADC_SDATA0  
Figure 28. Phase vs. Frequency, 40 kHz Bandwidth,  
fS = 96 kHz, Signal Path = AIN0 to ASRC to ADC_SDATA0  
2
0
300  
280  
260  
240  
220  
200  
180  
160  
140  
120  
100  
80  
–2  
–4  
–6  
–8  
–10  
–12  
–14  
–16  
–18  
–20  
–22  
60  
40  
20  
0
100  
1k  
10k  
0
10  
20  
30  
40  
50  
60  
70  
80  
FREQUENCY (Hz)  
FREQUENCY (kHz)  
Figure 29. Relative Level vs. Frequency,  
fS = 192 kHz, Signal Path = AIN0 to ASRC to ADC_SDATA0  
Figure 32. Group Delay vs. Frequency,  
fS = 192 kHz, Signal Path = AIN0 to ASRC to ADC_SDATA0  
200  
10  
0
–200  
5
0
–5  
–400  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–600  
–800  
–1000  
–1200  
–1400  
–1600  
–1800  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
0
10  
20  
30  
40  
50  
60  
70  
80  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
Figure 30. Phase vs. Frequency, 80 kHz Bandwidth,  
fS = 192 kHz, Signal Path = AIN0 to ASRC to ADC_SDATA0  
Figure 33. Phase vs. Frequency, 2 kHz Bandwidth,  
fS = 192 kHz, Signal Path = AIN0 to ASRC to ADC_SDATA0  
Rev. C | Page 20 of 116  
Data Sheet  
ADAU1772  
0.02  
0.01  
300  
280  
260  
240  
220  
200  
180  
160  
140  
120  
100  
80  
0
–0.01  
–0.02  
–0.03  
–0.04  
–0.05  
–0.06  
–0.07  
–0.08  
–0.09  
–0.10  
60  
40  
20  
0
100  
1k  
10k  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
FREQUENCY (Hz)  
FREQUENCY (kHz)  
Figure 34. Relative Level vs. Frequency,  
fS = 48 kHz, Signal Path = DAC_SDATA to ASRC to LOUTLx  
Figure 37. Group Delay vs. Frequency,  
fS = 48 kHz, Signal Path = DAC_SDATA to ASRC to LOUTLx  
200  
10  
100  
0
0
–10  
–100  
–200  
–300  
–400  
–500  
–600  
–700  
–800  
–900  
–1000  
–1100  
–1200  
–1300  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
Figure 38. Phase vs. Frequency, 2 kHz Bandwidth,  
fS = 48 kHz, Signal Path = DAC_SDATA to ASRC to LOUTLx  
Figure 35. Phase vs. Frequency, 20 kHz Bandwidth,  
fS = 48 kHz, Signal Path = DAC_SDATA to ASRC to LOUTLx  
0.2  
300  
280  
260  
240  
220  
200  
180  
160  
140  
120  
100  
80  
0.1  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.6  
–0.7  
–0.8  
–0.9  
60  
40  
20  
0
100  
1k  
10k  
0
4
8
12  
16  
20  
24  
28  
32  
36  
40  
FREQUENCY (Hz)  
FREQUENCY (kHz)  
Figure 36. Relative Level vs. Frequency,  
fS = 96 kHz, Signal Path = DAC_SDATA to ASRC to LOUTLx  
Figure 39. Group Delay vs. Frequency,  
fS = 96 kHz, Signal Path = DAC_SDATA to ASRC to LOUTLx  
Rev. C | Page 21 of 116  
ADAU1772  
Data Sheet  
200  
100  
10  
5
0
0
–100  
–200  
–300  
–400  
–500  
–600  
–700  
–800  
–900  
–1000  
–1100  
–1200  
–1300  
–1400  
–1500  
–1600  
–1700  
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
0
4
8
12  
16  
20  
24  
28  
32  
36  
40  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
Figure 43. Phase vs. Frequency, 2 kHz Bandwidth,  
fS = 96 kHz, Signal Path = DAC_SDATA to ASRC to LOUTLx  
Figure 40. Phase vs. Frequency, 40 kHz Bandwidth,  
fS = 96 kHz, Signal Path = DAC_SDATA to ASRC to LOUTLx  
1.0  
300  
0.5  
0
280  
260  
240  
220  
200  
180  
160  
140  
120  
100  
80  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
–3.5  
–4.0  
–4.5  
–5.0  
–5.5  
–6.0  
–6.5  
–7.0  
–7.5  
–8.0  
60  
40  
20  
0
100  
1k  
10k  
0
10  
20  
30  
40  
50  
60  
70  
80  
FREQUENCY (Hz)  
FREQUENCY (kHz)  
Figure 41. Relative Level vs. Frequency,  
fS = 192 kHz, Signal Path = DAC_SDATA to ASRC to LOUTLx  
Figure 44. Group Delay vs. Frequency,  
fS = 192 kHz, Signal Path = DAC_SDATA to ASRC to LOUTLx  
200  
10  
0
–200  
5
0
–400  
–5  
–600  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
–800  
–1000  
–1200  
–1400  
–1600  
–1800  
–2000  
–2200  
–2400  
–2600  
–2800  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
0
10  
20  
30  
40  
50  
60  
70  
80  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
Figure 45. Phase vs. Frequency, 2 kHz Bandwidth,  
fS = 192 kHz, Signal Path = DAC_SDATA to ASRC to LOUTLx  
Figure 42. Phase vs. Frequency, 80 kHz Bandwidth,  
fS = 192 kHz, Signal Path = DAC_SDATA to ASRC to LOUTLx  
Rev. C | Page 22 of 116  
Data Sheet  
ADAU1772  
0.020  
0.015  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
0.010  
0.005  
0
–0.005  
–0.010  
–0.015  
–0.020  
–0.025  
–0.030  
–0.035  
–0.040  
–0.045  
–0.050  
0
100  
1k  
10k  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
FREQUENCY (Hz)  
FREQUENCY (kHz)  
Figure 46. Relative Level vs. Frequency,  
Figure 49. Group Delay vs. Frequency,  
fS = 48 kHz, Signal Path = DAC_SDATA to ASRC to DSP (Without Processing)  
to ASRC to ADC_SDATA0  
fS = 48 kHz, Signal Path = DAC_SDATA to ASRC to DSP (Without Processing)  
to ASRC to ADC_SDATA0  
200  
100  
0
10  
0
–10  
–100  
–200  
–300  
–400  
–500  
–600  
–700  
–800  
–900  
–1000  
–1100  
–1200  
–1300  
–1400  
–1500  
–1600  
–1700  
–1800  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
Figure 50. Phase vs. Frequency, 2 kHz Bandwidth,  
Figure 47. Phase vs. Frequency, 20 kHz Bandwidth,  
fS = 48 kHz, Signal Path = DAC_SDATA to ASRC to DSP (Without Processing)  
to ASRC to ADC_SDATA0  
fS = 48 kHz, Signal Path = DAC_SDATA to ASRC to DSP (Without Processing)  
to ASRC to ADC_SDATA0  
0.4  
0.2  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–1.2  
–1.4  
–1.6  
–1.8  
0
100  
1k  
10k  
0
4
8
12  
16  
20  
24  
28  
32  
36  
40  
FREQUENCY (Hz)  
FREQUENCY (kHz)  
Figure 48. Relative Level vs. Frequency,  
fS = 96 kHz, Signal Path = DAC_SDATA to ASRC to DSP (Without Processing)  
to ASRC to ADC_SDATA0  
Figure 51. Group Delay vs. Frequency,  
fS = 96 kHz, Signal Path = DAC_SDATA to ASRC to DSP (Without Processing)  
to ASRC to ADC_SDATA0  
Rev. C | Page 23 of 116  
ADAU1772  
Data Sheet  
10  
5
0
200  
0
–5  
–200  
–400  
–600  
–800  
–1000  
–1200  
–1400  
–1600  
–1800  
–2000  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
0
4
8
12  
16  
20  
24  
28  
32  
36  
40  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
Figure 52. Phase vs. Frequency, 40 kHz Bandwidth,  
Figure 55. Phase vs. Frequency, 2 kHz Bandwidth,  
fS = 96 kHz, Signal Path = DAC_SDATA to ASRC to DSP (Without Processing)  
to ASRC to ADC_SDATA0  
fS = 96 kHz, Signal Path = DAC_SDATA to ASRC to DSP (Without Processing)  
to ASRC to ADC_SDATA0  
2
0
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
–2  
–4  
–6  
–8  
–10  
–12  
–14  
–16  
–18  
–20  
–22  
0
100  
1k  
10k  
0
10  
20  
30  
40  
50  
60  
70  
80  
FREQUENCY (Hz)  
FREQUENCY (kHz)  
Figure 53. Relative Level vs. Frequency,  
fS = 192 kHz, Signal Path = DAC_SDATA to ASRC to DSP (Without Processing)  
to ASRC to ADC_SDATA0  
Figure 56. Group Delay vs. Frequency,  
fS = 192 kHz, Signal Path = DAC_SDATA to ASRC to DSP (Without Processing)  
to ASRC to ADC_SDATA0  
10  
5
200  
0
0
–200  
–400  
–600  
–800  
–1000  
–1200  
–1400  
–1600  
–1800  
–2000  
–2200  
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
0
10  
20  
30  
40  
50  
60  
70  
80  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
Figure 57. Phase vs. Frequency, 2 kHz Bandwidth,  
fS = 192 kHz, Signal Path = DAC_SDATA to ASRC to DSP (Without Processing)  
to ASRC to ADC_SDATA0  
Figure 54. Phase vs. Frequency, 80 kHz Bandwidth,  
fS = 192 kHz, Signal Path = DAC_SDATA to ASRC to DSP (Without Processing)  
to ASRC to ADC_SDATA0  
Rev. C | Page 24 of 116  
Data Sheet  
ADAU1772  
35  
30  
25  
20  
15  
10  
5
2
0
–2  
–4  
–6  
–8  
–10  
0
–12  
–6  
0
6
12  
18  
24  
30  
36  
0
5
10  
15  
20  
FREQUENCY (kHz)  
PGA GAIN SETTING (dB)  
Figure 58. Input Impedance vs. PGA Gain  
(see the Input Impedance section)  
Figure 61. Decimation Pass-Band Response, fS = 192 kHz  
2
0
0
–20  
–2  
–40  
–60  
–4  
–6  
–80  
–100  
–120  
–8  
–10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
0
5
10  
15  
20  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
Figure 59. Decimation Pass-Band Response, fS = 96 kHz  
Figure 62. Total Decimation Response, Core fs = 192 kHz,  
Serial Port fS = 48 kHz  
2
1
0
0
–20  
–40  
–1  
–60  
–2  
–3  
–4  
–80  
–100  
–120  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
0
5
10  
15  
20  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
Figure 60. Total Decimation Response, Core fS = 96 kHz,  
Serial Port fS = 48 kHz  
Figure 63. Interpolation Pass-Band Response,  
fS = 96 kHz  
Rev. C | Page 25 of 116  
ADAU1772  
Data Sheet  
3
0
–20  
2
1
–40  
0
–60  
–1  
–2  
–3  
–80  
–100  
–120  
0
20  
40  
60  
80  
100  
120  
140  
0
5
10  
15  
25  
30  
35  
40  
45  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
Figure 64. Decimation Pass-Band Response, Core fS = 96 kHz,  
Serial Port fS = 96 kHz  
Figure 67. Total Decimation Response, Core fS = 96 kHz,  
Serial Port fS = 192 kHz  
3
0
2
1
–20  
–40  
–60  
0
–80  
–1  
–2  
–3  
–100  
–120  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
Figure 65. Total Decimation Response, Core fS = 96 kHz,  
Serial Port fS = 96 kHz  
Figure 68. Decimation Pass-Band Response, Core fS = 192 kHz,  
Serial Port fS = 96 kHz  
10  
0
8
6
–20  
4
–40  
–60  
2
0
–2  
–4  
–6  
–8  
–10  
–80  
–100  
–120  
0
10  
20  
30  
40  
50  
60  
80  
90  
100  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
Figure 66. Decimation Pass-Band Response, Core fS = 96 kHz,  
Serial Port fS = 192 kHz  
Figure 69. Total Decimation Response, Core fS = 192 kHz,  
Serial Port fS = 96 kHz  
Rev. C | Page 26 of 116  
Data Sheet  
ADAU1772  
2
1
10  
8
6
4
0
2
0
–1  
–2  
–3  
–4  
–2  
–4  
–6  
–8  
–10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
0
5
10  
15  
20  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
Figure 70. Decimation Pass-Band Response, Core fS = 192 kHz,  
Serial Port fS = 192 kHz  
Figure 73. Interpolation Pass-Band Response, fS = 192 kHz  
0
0
–20  
–20  
–40  
–60  
–40  
–60  
–80  
–80  
–100  
–120  
–100  
–120  
0
20  
40  
60  
80  
100  
120  
140  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
Figure 71. Total Decimation Response, Core fS = 192 kHz,  
Serial Port fS = 192 kHz  
Figure 74. Total Interpolation Response, fS = 192 kHz  
0
–20  
–40  
–60  
–80  
–100  
–120  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
FREQUENCY (kHz)  
Figure 72. Total Interpolation Response, fS = 96 kHz  
Rev. C | Page 27 of 116  
ADAU1772  
Data Sheet  
SYSTEM BLOCK DIAGRAMS  
DC VOLTAGE SOURCE:  
1.8 V TO 3.3 V  
+
10µF  
0.10µF  
0.10µF  
0.10µF  
0.10µF  
+
10µF  
0.10µF  
22  
21  
37  
36  
1.0µF  
DMIC0_1/MP4  
DMIC2_3/MP5  
HPOUTLP/LOUTLP  
LEFT HEADPHONE  
2k2kΩ  
LEFT  
MICROPHONE  
HPOUTLN/LOUTLN  
HPOUTRP/LOUTRP  
HPOUTRN/LOUTRN  
6
7
MICBIAS0  
MICBIAS1  
26  
25  
RIGHT HEADPHONE  
EEPROM  
9
8
AIN0  
47µF  
AIN0REF  
ADAU1772  
1
2
3
SDA/MISO  
SCL/SCLK  
ADDR1/MOSI  
14  
13  
AIN1  
47µF  
4
5
AIN1REF  
ADDR0/SS  
SELFBOOT  
LEFT_AUDIO  
16  
15  
AIN2  
10µF  
RIGHT  
31  
32  
33  
34  
35  
AIN2REF  
LRCLK/MP3  
BCLK/MP2  
DAC_SDATA/MP0  
MICROPHONE  
RIGHT_AUDIO  
CONTROL INTERFACE:  
SWITCHES AND  
POTENTIOMETERS  
18  
17  
AIN3  
ADC_SDATA0/PDMOUT/MP1  
ADC_SDATA1/CLKOUT/MP6  
10µF  
AIN3REF  
38  
39  
XTALO  
27  
12  
PD  
100Ω  
22pF  
XTALI/MCLKIN  
CM  
+
10µF  
0.10µF  
22pF  
Figure 75. ADAU1772 System Block Diagram with Analog Microphones, Self-Boot Mode  
Rev. C | Page 28 of 116  
 
Data Sheet  
ADAU1772  
THEORY OF OPERATION  
The ADAU1772 is a low power audio codec with an optimized  
audio processing core, making it ideal for noise cancelling  
applications that require high quality audio, low power, small  
size, and low latency. The four ADC and two DAC channels  
each have an SNR of at least +96 dB and a THD + N of at least  
−88 dB. The serial data port is compatible with I2S, left justified,  
right justified, and TDM modes, with tristating for interfacing  
to digital audio data. The operating voltage range is 1.8 V to  
3.63 V, w it h a n on -board regulator generating the internal  
digital supply voltage. If desired, the regulator can be powered  
down and the voltage can be supplied externally.  
control individual signal processing blocks. The ADAU1772 also  
has a self-boot function that can be used to load the program  
and parameter RAM along with the register settings on power-  
up using an external EEPROM.  
The SigmaStudio software is used to program and control the core  
through the control port. Along with designing and tuning a signal  
flow, the tools can be used to configure all of the ADAU1772  
registers. The SigmaStudio graphical interface allows anyone with  
digital or analog audio processing knowledge to easily design the  
DSP signal flow and port it to a target application. The interface  
also provides enough flexibility and programmability for an  
experienced DSP programmer to have in-depth control of the  
design. In SigmaStudio, the user can connect graphical blocks  
(such as biquad filters, volume controls, and arithmetic operations),  
compile the design, and load the program and parameter files into  
the ADAU1772 memory through the control port. SigmaStudio  
also allows the user to download the design to an external EEPROM  
for self-boot operation. Signal processing blocks available in the  
provided libraries include the following:  
The input signal path includes flexible configurations that can  
accept single-ended analog microphone inputs as well as up to  
four digital microphone inputs. Two microphone bias pins provide  
seamless interfacing to electret microphones. Each input signal  
has its own programmable gain amplifier (PGA) for volume  
adjustment.  
The ADCs and DACs are high quality, 24-bit Σ-Δ converters  
that operate at a selectable 192 kHz or 96 kHz sampling rate.  
The ADCs have an optional high-pass filter with a cutoff  
frequency of 1 Hz, 4 Hz, or 8 Hz. The ADCs and DACs also  
include very fine-step digital volume controls.  
Single-precision biquad filters  
Second order filters  
Absolute value and two-input adder  
Volume controls  
The stereo DAC output is capable of differentially driving a  
headphone earpiece speaker with 16 Ω impedance or higher.  
One side of the differential output can be powered down if  
single-ended operation is required. There is also the option to  
change to line output mode when the output is lightly loaded.  
Limiter  
The ADAU1772 can generate its internal clocks from a wide range  
of input clocks by using the on-board fractional PLL. The PLL  
accepts inputs from 8 MHz to 27 MHz. For standalone operation,  
the clock can be generated using the on-board crystal oscillator.  
The core has a reduced instruction set that optimizes this codec  
for noise cancellation. The program and parameter RAMs can  
be loaded with custom audio processing signal flow built using  
the SigmaStudio™ graphical programming software from  
Analog Devices, Inc. The values stored in the parameter RAM  
The ADAU1772 is provided in a small, 40-lead, 6 mm × 6 mm  
LFCSP with an exposed bottom pad.  
Rev. C | Page 29 of 116  
 
ADAU1772  
Data Sheet  
SYSTEM CLOCKING AND POWER-UP  
CLOCK INITIALIZATION  
Control Port Access During Initialization  
During the lock acquisition period, only Register 0x0000 to  
Register 0x0006 are accessible through the control port. A read  
or write to any other register is prohibited until the core clock  
enable bit and the lock bit are both asserted.  
The ADAU1772 can generate its clocks either from an externally  
provided clock or from a crystal oscillator. In both cases, the on-  
board PLL can be used or the clock can be fed directly to the  
core. When a crystal oscillator is used, it is desirable to use a  
12.288 MHz crystal, and the crystal oscillator function must be  
enabled in the COREN bit (Address 0x0000). If the PLL is used,  
it should always be set to output 24.576 MHz. The PLL can be  
bypassed if a clock of 12.288 MHz or 24.576 MHz is available in  
the system. Bypassing the PLL saves system power.  
After the CORE_RUN bit (Address 0x0009) is set high, the  
DAC_SOURCE0 and DAC_SOURCE1 register bits should not  
be changed. If these bits must be changed after the ADAU1772  
is running, the CORE_RUN bit first must be disabled.  
PLL  
The CC_MDIV and CC_CDIV bits should not be changed after  
setup, but the CLKSRC bit can be switched while the core is  
running.  
The PLL uses the MCLKIN signal as a reference to generate  
the core clock. The PLL settings are set in Register 0x0000 to  
Register 0x0005. Depending on the MCLK frequency, the PLL  
must be set for either integer or fractional mode. The PLL can  
accept input frequencies in the range of 8 MHz to 27 MHz.  
The CC_MDIV and CC_CDIV bits should be set so that the core  
and internal master clock are always 12.288 MHz; for example,  
when using a 24.576 MHz external source clock or if using the  
PLL, it is necessary to use the internal divide by 2 (see Table 11).  
TO PLL  
CLOCK DIVIDER  
MCLK  
÷X  
× (R + N/M)  
Figure 76. PLL Block Diagram  
Table 11. Clock Configuration Settings  
CC_MDIV  
CC_CDIV  
Description  
Input Clock Divider  
1
1
Divide PLL/external clock by 1. Use these  
settings for a 12.288 MHz direct input clock  
source.  
Before reaching the PLL, the input clock signal goes through an  
integer clock divider to ensure that the clock frequency is within  
a suitable range for the PLL. The X bits in the PLL_CTRL4 register  
(Bits[2:1], Address 0x0005) sets the PLL input clock divide ratio.  
0
0
Divide PLL/external clock by 2. Use these  
settings for a 24.576 MHz direct input clock  
source or if using the PLL.  
Integer Mode  
PLL Bypass Setup  
Integer mode is used when the clock input is an integer multiple  
of the PLL output.  
On power up, the ADAU1772 comes out of an internal reset  
after 12 ms. The rate of the internal master clock must be set  
properly using the CC_MDIV bit in the clock control register  
(Address 0x0000). When bypassing the PLL, the clock associated  
with MCLKIN must be either 12.288 MHz or 24.576 MHz. The  
internal master clock of the ADAU1772 is disabled until the  
COREN bit is asserted.  
For example, if MCLKIN = 12.288 MHz and (X + 1) = 1, and  
fS = 48 kHz, then  
PLL Required Output = 24.576 MHz  
R/2 = 24.576 MHz/12.288 MHz = 2  
where R/2 = 2 or R = 4.  
PLL Enabled Setup  
In integer mode, the values set for N and M are ignored.  
Table 12 lists common integer PLL parameter settings for  
48 kHz sampling rates.  
The core clock of the ADAU1772 is disabled by the default  
setting of Bit COREN and should remain disabled during the  
PLL lock acquisition period. The user can poll the LOCK bit to  
determine when the PLL has locked. After lock is acquired, the  
ADAU1772 can be started by asserting the COREN bit. This bit  
enables the core clock for all the internal blocks of the ADAU1772.  
Fractional Mode  
Fractional mode is used when the clock input is a fractional  
multiple of the PLL output.  
For example, if MCLKIN = 13 MHz, (X + 1) = 1, and  
fS = 48 kHz, then  
To program the PLL during initialization or reconfiguration of  
the codec, the following procedure must be followed:  
PLL Required Output = 24.576 MHz  
1. Ensure that PLL_EN (Bit 7, Address 0x0000) is set low.  
2. Set/reset the PLL control registers (Address 0x0001 to  
Address 0x0005).  
(1/2) × (R + (N/M)) = 24.576 MHz/13 MHz = (1/2) × (3 +  
(1269/1625))  
3. Enable the PLL using the PLL_EN bit.  
4. Poll the PLL lock bit in Register 0x0006.  
5. Set the COREN bit in Register 0x0000 after PLL lock is  
acquired.  
where:  
R = 3.  
N = 1269.  
M = 1625.  
Rev. C | Page 30 of 116  
 
 
 
 
Data Sheet  
ADAU1772  
Table 13 lists common fractional PLL parameter settings for  
48 kHz sampling rates. When the PLL is used in fractional  
mode, it is very important that the N/M fraction be kept in  
the range of 0.1 to 0.9 to ensure correct operation of the PLL.  
On power-up, AVDD must be powered up before or at the same  
time as IOVDD. IOVDD should not be powered up when power is  
not applied to AVDD.  
Enabling the  
pin powers down all analog and digital circuits.  
PD  
The PLL can output a clock in the range of 20.5 MHz to 27 MHz,  
which should be taken into account when calculating PLL values  
and MCLK frequencies.  
Before enabling  
(that is, setting it low), be sure to mute the  
PD  
outputs to avoid any pops when the IC is powered down.  
can be tied directly to IOVDD for normal operation.  
PD  
CLOCK OUTPUT  
Power-Down Considerations  
The CLKOUT pin can be used as a master clock output to clock  
other ICs in the system or as the clock for the digital microphone  
inputs and PDM output. This clock can be generated from the  
12.288 MHz master clock of the ADAU1772 by factors of 2, 1,  
½, ¼, and ⅛. If PDM mode is enabled, only ½, ¼, and ⅛ settings  
produce a clock signal on CLKOUT. The factor of 2 multiplier  
works properly only if the input clock was previously divided by  
2 using the CC_MDIV bit.  
When powering down the ADAU1772, be sure to mute the outputs  
before AVDD power is removed; otherwise, pops or clicks may  
be heard. The easiest way to achieve this is to use a regulator that  
has a power good (PGOOD) signal to power the ADAU1772 or  
generate a power good signal using additional circuitry external  
to the regulator itself. Typically, on such regulators the power good  
signal changes state when the regulated voltage drops below ~90%  
of its target value. This power good signal can be connected to one  
of the ADAU1772 multipurpose pins and used to mute the DAC  
outputs by setting the multipurpose pin functionality to mute  
both DACs in Register 0x0038 to Register 0x003E. This ensures  
that the outputs are muted before power is completely removed.  
POWER SEQUENCING  
AVDD and IOVDD can each be set to any voltage between 1.8 V  
and 3.3 V, and DVDD can be set between 1.1 V and 1.8 V or  
between 1.1 V and 1.2 V if using the on-board regulator.  
Table 12. Integer PLL Parameter Settings for PLL Output = 24.576 MHz  
Input Divider  
(X + 1)  
PLL_CTRL4 Settings  
(Address 0x0005)  
MCLK Input (MHz)  
12.288  
24.576  
Integer (R)  
Denominator (M)  
Don’t care  
Don’t care  
Numerator (N)  
Don’t care  
Don’t care  
1
1
4
2
0x20  
0x10  
Table 13. Fractional PLL Parameter Settings for PLL Output = 24.576 MHz  
PLL_CTRL[4:0] Settings  
(Address 0x0005 to Address 0x0001)  
MCLK  
Input  
(MHz)  
Input  
Divider  
(X + 1)  
Integer  
(R)  
Denominator  
(M)  
Numerator  
(N)  
PLL_CTRL4 PLL_CTRL3 PLL_CTRL2 PLL_CTRL1 PLL_CTRL0  
(0x0005)  
(0x0004)  
(0x0003)  
(0x0002)  
0x7D  
0x59  
(0x0001)  
8
13  
14.4  
19.2  
26  
1
1
2
2
2
2
6
3
6
5
3
3
125  
1625  
75  
25  
1625  
1125  
18  
1269  
62  
0x31  
0x19  
0x33  
0x2B  
0x1B  
0x1B  
0x12  
0xF5  
0x00  
0x04  
0x00  
0x06  
0x00  
0x00  
0x06  
0x04  
0x3E  
0x00  
0x4B  
3
0x03  
0x00  
0x19  
1269  
721  
0xF5  
0x04  
0x59  
27  
0xD1  
0x02  
0x65  
Rev. C | Page 31 of 116  
 
 
 
 
ADAU1772  
Data Sheet  
SIGNAL ROUTING  
AIN0REF  
PGA  
ADC  
MODULATOR  
AIN0  
ADC  
DECIMATOR  
AIN1REF  
AIN1  
PGA  
HPOUTLP/LOUTLP  
HPOUTLN/LOUTLN  
ADC  
MODULATOR  
DAC  
DAC  
ADC  
DECIMATOR  
DAC  
AND  
HPOUTRP/LOUTRP  
HPOUTRN/LOUTRN  
CORE  
INPUT  
SELECTION  
AUDIO  
PROCESSING  
CORE  
DMIC0_1/MP4  
DMIC2_3/MP5  
DIGITAL  
PDM  
MICROPHONE  
INPUTS  
OUTPUT  
SELECTION  
AIN2REF  
AIN2  
ADC  
DECIMATOR  
STEREO PDM  
MODULATOR  
1
PDMOUT  
PGA  
ADC  
MODULATOR  
AIN3REF  
AIN3  
ADC  
DECIMATOR  
PGA  
ADC  
MODULATOR  
STEREO INPUT  
ASRC  
SERIAL  
INPUT PORT  
DUAL STEREO  
OUTPUT ASRCs  
DAC_SDATA  
1
ADC_SDATA0  
SERIAL  
OUTPUT PORT  
ADC_SDATA1  
1
THE ADC_SDATA0 AND PDMOUT FUNCTIONS SHARE A PHYSICAL PIN, SO ONLY ONE OF THESE FUNCTIONS CAN BE USED AT A TIME.  
Figure 77. Input and Output Signal Routing  
Rev. C | Page 32 of 116  
 
Data Sheet  
ADAU1772  
INPUT SIGNAL PATHS  
There are four input paths, from either an ADC or a digital  
microphone, that can be routed to the core. The input sources  
(ADC or digital microphone) must be configured in pairs (for  
example, 0 and 1, 2 and 3), but each channel can be routed  
individually. The core inputs can also be sourced from a stereo  
input ASRC.  
Analog Line Inputs  
Line level signals can be input on the AINx pins of the analog  
inputs. Figure 79 shows a single-ended line input using the  
AINx pins. The AINxREF pins should be tied to CM. When using  
single-ended line input, the PGA should be disabled using the  
PGA_ENx bits, and the corresponding PGA pop suppression  
bit should be disabled using the POP_SUPPRESS register  
(Address 0x0029).  
ANALOG INPUTS  
The ADAU1772 can accept both line level and microphone inputs.  
Each of the four analog input channels can be configured in a  
single-ended mode or a single-ended with PGA mode. There  
are also inputs for up to four digital microphones. The analog  
inputs are biased at AVDD/2. Unused input pins should be  
connected to the CM pin or ac-coupled to ground.  
ADAU1772  
LINE INPUT 0  
LINE INPUT 1  
LINE INPUT 2  
LINE INPUT 3  
AIN0  
AIN1  
AIN2  
AIN3  
Signal Polarity  
Figure 79. Single-Ended Line Inputs  
Signals routed through the PGAs are inverted. As a result, signals  
input through the PGA are output from the ADCs with a polarity  
that is opposite that of the input. Single-ended inputs are not  
inverted. The ADCs are noninverting.  
Precharging Input Capacitors  
Precharge amplifiers are enabled by default to quickly charge  
large series capacitors on the inputs and outputs. Precharging  
these capacitors helps to prevent pops in the audio signal. The  
precharge circuits are powered up by default on startup and can be  
disabled in the POP_SUPPRESS register. The precharge amplifiers  
are automatically disabled when the PGA or headphone amplifiers  
are enabled. For unused PGAs and headphone outputs, these  
precharge amplifiers should be disabled using the POP_SUPPRESS  
register. The precharging time is dependent on the input/output  
series capacitors. The impedance looking into the pin is 500 ꢀ  
in this mode. However, at startup, the impedance looking into  
the pin is dominated by the time constant of the CM pin because  
the precharge amplifiers reference the CM voltage.  
Input Impedance  
The input impedance of the analog inputs varies with the gain of  
the PGA. This impedance ranges from 0.68 kΩ at the 35.25 dB  
gain setting to 32.0 kΩ at the −12 dB setting. The input impedance  
on each pin can be calculated as follows:  
40  
RIN  
kΩ  
10(Gain/20) 1  
where Gain is set by PGA_GAINx.  
The optional 10 dB PGA boost set in PGA_x_BOOST does not  
affect the input impedance. This is an alternative way of increasing  
gain without decreasing input impedance; however, it causes some  
degradation in performance.  
Microphone Bias  
The ADAU1772 includes two microphone bias outputs: MICBIAS0  
and MICBIAS1. These pins provide a voltage reference for electret  
analog microphones. The MICBIASx pins can also be used to  
cleanly supply voltage to digital or analog MEMS microphones  
with separate power supply pins. The MICBIASx voltage is set  
in the microphone bias control register (Address 0x002D). Using  
this register, either the MICBIAS0 or MICBIAS1 output can be  
enabled and disabled. The gain options provide two possible  
voltages: 0.65 × AVDD or 0.90 × AVDD.  
Analog Microphone Inputs  
For microphone signals, the ADAU1772 analog inputs can be  
configured in single-ended with PGA mode.  
The PGA settings are controlled in Register 0x0023 to Register  
0x0026. The PGA is enabled by setting the PGA_ENx bits.  
Connect the AINxREF pins to the CM pin and connect the  
microphone signal to the inverting input of the PGAs (AINx),  
as shown in Figure 78.  
Many applications require enabling only one of the two bias  
outputs. The two bias outputs should both be enabled when many  
microphones are used in the system or when the positioning of  
the microphones on the PCB does not allow one pin to bias all  
microphones.  
ADAU1772  
PGA  
AINx  
MICROPHONE  
AINxREF  
–12dB TO  
+35.25dB  
CM  
2k  
MICBIASx  
Figure 78. Single-Ended Microphone Configuration  
Rev. C | Page 33 of 116  
 
 
 
 
 
ADAU1772  
Data Sheet  
Figure 80 shows two ADMP421 digital microphones connected  
to Pin DMIC0_1 of the ADAU1772. These microphones could  
also be connected to DMIC2_3 if that signal path is to be used for  
digital microphones. If more than two digital microphones are to  
be used in a system, then up to two microphones would be con-  
nected to both DMIC0_ 1 and DMIC2_3 and the CLKOUT signal  
would be fanned out to the clock input of all of the microphones.  
DIGITAL MICROPHONE INPUT  
When using a digital microphone connected to the DMIC0_1/MP4  
and DMIC2_3/MP5 pins, the DCM_0_1 and DCM_2_3 bits in  
Register 0x001D and Register 0x001E must be set to enable the  
digital microphone signal paths. The pin functions should also  
be set to digital microphone input in the corresponding pin  
mode registers (Address 0x003C and Address 0x003D). The  
DMIC0/DMIC2 and DMIC1/DMIC3 channels can be swapped  
(left/right swap) by writing to the DMIC_SW0 and DMIC_SW1  
bits in the ADC_CONTROL2 and ADC_CONTROL3 registers  
(Address 0x001D and Address 0x001E). In addition, the micro-  
phone polarity can be reversed by setting the DMIC_POLx bit,  
which reverses the phase of the incoming audio by 180°.  
ANALOG-TO-DIGITAL CONVERTERS  
The ADAU1772 includes four 24-bit Σ-Δ analog-to-digital con-  
verters (ADCs) with a selectable sample rate of 192 kHz or 96 kHz.  
ADC Full-Scale Level  
The full-scale input to the ADCs (0 dBFS) scales linearly with  
AVDD. At AVDD = 3.3 V, t h e f u ll-scale input level is 1 V rms.  
Signal levels above the full-scale value cause the ADCs to clip.  
The digital microphone inputs are clocked from the CLKOUT pin.  
The digital microphone data stream must be clocked by this pin  
and not by a clock from another source, such as another audio  
IC, even if the other clock is of the same frequency as CLKOUT.  
Digital ADC Volume Control  
The volume setting of each ADC can be digitally attenuated in the  
ADCx_VOLUME registers (Address 0x001F to Address 0x0022).  
The volume can be set between 0 dB and −95.625 dB in 0.375 dB  
steps. The ADC volume can also be digitally muted in the  
ADC_CONTROLx registers (Address 0x001B to Address 0x001E).  
The digital microphone signal bypasses the analog input path  
and the ADCs and is routed directly into the decimation filters.  
The digital microphone and the ADCs share digital filters and,  
therefore, both cannot be used simultaneously. The digital micro-  
phone inputs are enabled in pairs. The ADAU1772 inputs can be  
set for either four analog inputs, four digital microphone inputs, or  
two analog inputs and two digital microphone inputs. Figure 80  
depicts the digital microphone interface and signal routing.  
1.8V TO 3.3V  
High-Pass Filter  
A high-pass filter is available on the ADC path to remove dc offsets;  
this filter can be enabled or disabled using the HP_x_x_EN bits.  
At fS = 192 kHz, the corner frequency of this high-pass filter can  
be set to 1 Hz, 4 Hz, or 8 Hz.  
CLK  
ADAU1772  
V
DATA  
DD  
0.1µF  
ADMP421  
L/R SELECT GND  
CLKOUT  
DMIC0_1  
CLK  
V
DATA  
DD  
0.1µF  
ADMP421  
L/R SELECT GND  
Figure 80. Digital Microphone Interface Block Diagram  
Rev. C | Page 34 of 116  
 
 
 
Data Sheet  
ADAU1772  
OUTPUT SIGNAL PATHS  
Data from the serial input port can be routed to the core either  
directly or through a sample rate converter. Data can be routed  
to the serial output port, the stereo DAC, and the stereo PDM  
modulator.  
Pop-and-Click Suppression  
On power-up, the precharge circuitry is enabled on all four  
analog output pins to suppress pops and clicks. After power-  
up, the precharge circuitry can be put into a low power mode  
using the HP_POP_DISx bits in the POP_SUPRRESS register  
(Address 0x0029).  
The analog outputs of the ADAU1772 can be configured as  
differential or single-ended outputs. The analog output pins are  
capable of driving headphone or earpiece speakers. The line  
outputs can drive a load of at least 10 kΩ or can be put into  
headphone mode to drive headphones or earpiece speakers. The  
analog output pins are biased at AVDD/2.  
The precharge time depends on the value of the capacitor  
connected to the CM pin and the RC time constant of the load  
on the output pin. For a typical line output load, the precharge  
time is between 2 ms and 3 ms. After this precharge time, the  
HP_POP_DISx bit can be set to low power mode.  
ANALOG OUTPUTS  
To avoid clicks and pops, all analog outputs that are in use should  
be muted while changing any register settings that may affect the  
signal path. These outputs can then be unmuted after the changes  
have been made.  
Headphone Output  
The output pins can be driven by either a line output driver or a  
headphone driver by setting the HP_EN_L and HP_EN_R bits  
in the headphone line output select register (Address 0x0043).  
The headphone outputs can drive a load of at least 16 Ω.  
Line Outputs  
The analog output pins (HPOUTLP/LOUTLP, HPOUTLN/  
LOUTLN, HPOUTRP/LOUTRP, and HPOUTRN/LOUTRN)  
can be used to drive both differential and single-ended loads. In  
their default settings, these pins can drive typical line loads of  
10 kΩ or greater.  
Headphone Output Power-Up Sequencing  
To prevent pops when turning on the headphone outputs, the  
user must wait at least 6 ms to unmute these outputs after enabling  
the headphone output using the HP_EN_x bits. Waiting 6 ms  
allows an internal capacitor to charge before these outputs are  
used. Figure 81 illustrates the headphone output power-up  
sequencing.  
When the line output pins are used in single-ended mode, the  
HPOUTLP/LOUTLP and HPOUTRP/LOUTRP pins should be  
used to output the signals, and the HPOUTLN/LOUTLN and  
HPOUTRN/LOUTRN pins should be powered down.  
USER  
DEFINED  
6ms  
HP_EN_X  
1 = HEADPHONE  
DIGITAL-TO-ANALOG CONVERTERS  
The ADAU1772 includes two 24-bit Σ-Δ digital-to-analog  
converters (DACs).  
HP_MUTE_R AND HP_MUTE_L  
00 = UNMUTE  
DAC Full-Scale Level  
The full-scale output from the DACs (0 dBFS) scales linearly with  
AVDD. At AVDD = 3.3 V, the full-scale output level is 1.94 V rms  
for a differential output or 0.97 V rms for a single-ended output.  
INTERNAL  
PRECHARGE  
Figure 81. Headphone Output Power-Up Timing  
Ground-Centered Headphone Configuration  
Digital DAC Volume Control  
The headphone outputs can also be configured as ground-  
centered outputs by connecting coupling capacitors in series  
with the output pins. Ground-centered headphones should use  
the AGND pin as the ground reference.  
The volume of each DAC can be digitally attenuated using the  
DACx_VOLUME registers (Address 0x002F and Address 0x0030).  
The volume can be set to be between 0 dB and −95.625 dB in  
0.375 dB steps.  
When the headphone outputs are configured in this manner,  
the capacitors create a high-pass filter on the outputs. The  
corner frequency of this filter, which has an attenuation of 3 dB  
at this point, is calculated by the following formula:  
PDM OUTPUT  
The ADAU1772 includes a 2-channel pulse density modulated  
(PDM) modulator. The PDMOUT pin can be used to drive a PDM  
input amplifier, such as the SSM2517 mono 2.4 W amplifier. Two  
SSM2517 devices can be connected to the PDMOUT data stream  
to enable a stereo output. The PDM output signal is clocked by the  
CLKOUT pin output. The PDM output stream must be clocked  
by this pin and not by a clock from another source, such as another  
audio IC, even if the other clock is of the same frequency as  
f
3dB = 1/(2π × R × C)  
where :  
R is the impedance of the headphones.  
C is the capacitor value.  
For a typical headphone impedance of 32 Ω and a 220 μF  
capacitor, the corner frequency is 23 Hz.  
CLKOUT. The PDM output data is clipped at the −6 dB level to  
prevent overdriving a connected amplifier like the SSM2517.  
Rev. C | Page 35 of 116  
 
 
 
 
 
ADAU1772  
Data Sheet  
The ADAU1772 has the ability to output PDM control patterns to  
configure devices such as the SSM2517. Each pattern is a byte long  
and is written with a user defined pattern in the PDM_PATTERN  
register (Address 0x0037). The control pattern is enabled and  
the output channel selection is configured in the PDM_OUT  
register (Address 0x0036). The PDM pattern should not be  
changed while the ADAU1772 is outputting the control pattern  
to the external device. After the external device is configured,  
the control pattern can be disabled. For the SSM2517, the  
control pattern must be repeated a minimum of 128 times to  
configure the part. Table 14 describes typical control patterns  
for the SSM2517.  
The ASRCs can convert serial output data from the core rate of  
up to 192 kHz back down to less than 8 kHz. All intermediate  
frequencies and ratios are also supported.  
SIGNAL LEVELS  
The ADCs, DACs, and ASRCs have fixed gain settings that should  
be considered when configuring the system. These settings were  
chosen to maximize performance of the converters and to ensure  
that there is 0 dB gain for any signal path from the input of the  
ADAU1772 to its output. Therefore, the full-scale level of a signal  
in the processing core will be slightly different from a full-scale  
level external to the IC.  
Input paths, such as through the ADCs and input ASRCs, are  
scaled by 0.75, or about −2.5 dB. Output paths, such as through  
the DACs or output ASRCs, are scaled by 1.33, or about 2.5 dB.  
This is shown in Figure 82.  
Table 14. SSM2517 PDM Control Pattern Descriptions  
Pattern Control Description  
0xAC  
0xD8  
0xD4  
0xD2  
Power-down. All blocks off except for the PDM  
interface. Normal start-up time.  
Gain optimized for PVDD = 5 V operation. Overrides  
GAIN_FS pin setting.  
Gain optimized for PVDD = 3.6 V operation. Overrides  
GAIN_FS pin setting.  
Gain optimized for PVDD = 2.5 V operation. Overrides  
GAIN_FS pin setting.  
ADC  
CORE  
DAC  
–2.5dB  
+2.5dB  
0xD1  
0xE1  
0xE2  
0xE4  
fS set to opposite value determined by GAIN_FS pin.  
Ultralow EMI mode.  
Half clock cycle pulse mode for power savings.  
Special 32 kHz/128 × fS operation mode.  
INPUT  
ASRCS  
OUTPUT  
ASRCS  
–2.5dB  
+2.5dB  
Figure 82. Signal Level Diagram  
Because of this input and output scaling, output signals from  
the core should be limited to −2.5 dB full scale to prevent the  
DACs and ASRCs from clipping.  
ASYNCHRONOUS SAMPLE RATE CONVERTERS  
The ADAU1772 includes asynchronous sample rate converters  
(ASRCs) to enable synchronous full-duplex operation of the  
serial ports. Two stereo ASRCs are available for the digital outputs,  
and one stereo ASRC is available for the digital input signals.  
Rev. C | Page 36 of 116  
 
 
 
 
Data Sheet  
ADAU1772  
SIGNAL PROCESSING  
The ADAU1772 processing core is optimized for active noise  
cancelling (ANC) processing. The processing capabilities of the  
core include biquad filters, limiters, volume controls, and mixing.  
The core has four inputs and four outputs. The core is controlled  
with a 10-bit program word, with a maximum of 32 instructions  
per frame.  
while the codec is running. Bank switching can be achieved by  
writing to the CORE_CONTROL register (Address 0x0009) or  
by using the multipurpose push-button switches, but not using  
a combination of the two. Parameters in the active bank should  
not be updated while the core is running; this will likely result  
in noises on the outputs.  
Parameters are assigned to instructions in the order in which  
the instructions are instantiated in the code. The instruction  
types that use parameters are the biquad filters and limiters.  
INSTRUCTIONS  
A complete list of instructions/processing blocks along with  
documentation can be found in the SigmaStudio software for  
the ADAU1772. The processing blocks available are  
Table 17 shows the addresses of each parameter in Bank A that  
are associated with each of the 32 instructions, and Table 18 shows  
the addresses of each parameter in Bank B. Table 16 shows the  
addresses of the LSB aligned, 10-bit program words.  
Single-precision biquad/second order filters  
Absolute value  
Two-input addition  
T connection in SigmaStudio  
Limiter with/without external detector loop  
Linear gain  
Volume slider  
Mute  
DBREG level detection  
Table 16. Program Addresses  
Instruction  
Instruction Address  
0x0080  
0x0081  
0x0082  
0x0083  
0x0084  
0x0085  
0x0086  
0x0087  
0x0088  
0x0089  
0x008A  
0x008B  
0x008C  
0x008D  
0x008E  
0x008F  
0x0090  
0x0091  
0x0092  
0x0093  
0x0094  
0x0095  
0x0096  
0x0097  
0x0098  
0x0099  
0x009A  
0x009B  
0x009C  
0x009D  
0x009E  
0x009F  
0
1
2
3
4
5
6
7
DATA MEMORY  
The ADAU1772 data path is 26 bits (5.21 format). The data  
memory is 32 words of 2 × 26 bits. The double length memory  
enables the core to double precision arithmetic with double  
length data and single length coefficients.  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
PARAMETERS  
Parameters, such as filter coefficients, limiter settings, and volume  
control settings, are saved in parameter registers. Each parameter is  
a 32-bit number. The format of this number depends on whether it  
is controlling a filter or a limiter. The number formats of different  
parameters are shown in Table 15. When the parameter formats  
use less than the full 32-bit memory space, as with the limiter  
parameters, the data is LSB-aligned.  
Table 15. Parameter Number Formats  
Parameter Type  
Filter Coefficient (B0, B1, B2)  
Filter Coefficient (A1)  
Filter Coefficient (A2)  
Maximum Gain  
Minimum Gain  
Attack Time  
Decay Time  
Threshold  
Format  
5.27  
2.27 (sign extended)  
1.27 (sign extended)  
2.23  
2.23  
24.0  
24.0  
2.23  
There are two parameter banks available. Each bank can hold a  
full set of 160 parameters (32 filters × 5 coefficients). Users can  
switch between Bank A and Bank B, allowing for two sets of  
parameters to be saved in memory and switched on the fly  
Rev. C | Page 37 of 116  
 
 
 
 
 
 
ADAU1772  
Data Sheet  
Table 17. Parameter Addresses, Bank A  
Assignment Order  
B0/Max Gain  
B1/Min Gain  
0x0100  
0x0101  
0x0102  
0x0103  
0x0104  
0x0105  
0x0106  
0x0107  
0x0108  
0x0109  
0x010A  
0x010B  
0x010C  
0x010D  
0x010E  
0x010F  
0x0110  
0x0111  
0x0112  
0x0113  
0x0114  
0x0115  
0x0116  
0x0117  
0x0118  
0x0119  
0x011A  
0x011B  
0x011C  
0x011D  
0x011E  
0x011F  
B2/Attack  
0x0120  
0x0121  
0x0122  
0x0123  
0x0124  
0x0125  
0x0126  
0x0127  
0x0128  
0x0129  
0x012A  
0x012B  
0x012C  
0x012D  
0x012E  
0x012F  
0x0130  
0x0131  
0x0132  
0x0133  
0x0134  
0x0135  
0x0136  
0x0137  
0x0138  
0x0139  
0x013A  
0x013B  
0x013C  
0x013D  
0x013E  
0x013F  
A1/Decay  
0x0140  
0x0141  
0x0142  
0x0143  
0x0144  
0x0145  
0x0146  
0x0147  
0x0148  
0x0149  
0x014A  
0x014B  
0x014C  
0x014D  
0x014E  
0x014F  
0x0150  
0x0151  
0x0152  
0x0153  
0x0154  
0x0155  
0x0156  
0x0157  
0x0158  
0x0159  
0x015A  
0x015B  
0x015C  
0x015D  
0x015E  
0x015F  
A2/Threshold  
0
1
2
3
4
5
6
7
0x00E0  
0x00E1  
0x00E2  
0x00E3  
0x00E4  
0x00E5  
0x00E6  
0x00E7  
0x00E8  
0x00E9  
0x00EA  
0x00EB  
0x00EC  
0x00ED  
0x00EE  
0x00EF  
0x00F0  
0x00F1  
0x00F2  
0x00F3  
0x00F4  
0x00F5  
0x00F6  
0x00F7  
0x00F8  
0x00F9  
0x00FA  
0x00FB  
0x00FC  
0x00FD  
0x00FE  
0x00FF  
0x0160  
0x0161  
0x0162  
0x0163  
0x0164  
0x0165  
0x0166  
0x0167  
0x0168  
0x0169  
0x016A  
0x016B  
0x016C  
0x016D  
0x016E  
0x016F  
0x0170  
0x0171  
0x0172  
0x0173  
0x0174  
0x0175  
0x0176  
0x0177  
0x0178  
0x0179  
0x017A  
0x017B  
0x017C  
0x017D  
0x017E  
0x017F  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
Table 18. Parameter Addresses, Bank B  
Assignment Order  
B0/Max Gain  
B1/Min Gain  
0x01A0  
0x01A1  
0x01A2  
0x01A3  
0x01A4  
0x01A5  
0x01A6  
0x01A7  
0x01A8  
0x01A9  
0x01AA  
0x01AB  
0x01AC  
0x01AD  
0x01AE  
0x01AF  
B2/Attack  
0x01C0  
0x01C1  
0x01C2  
0x01C3  
0x01C4  
0x01C5  
0x01C6  
0x01C7  
0x01C8  
0x01C9  
0x01CA  
0x01CB  
0x01CC  
0x01CD  
0x01CE  
0x01CF  
A1/Decay  
0x01E0  
0x01E1  
0x01E2  
0x01E3  
0x01E4  
0x01E5  
0x01E6  
0x01E7  
0x01E8  
0x01E9  
0x01EA  
0x01EB  
0x01EC  
0x01ED  
0x01EE  
0x01EF  
A2/Threshold  
0x0200  
0x0201  
0x0202  
0x0203  
0x0204  
0x0205  
0x0206  
0x0207  
0x0208  
0x0209  
0x020A  
0x020B  
0x020C  
0x020D  
0x020E  
0x020F  
0
1
2
3
4
5
6
7
0x0180  
0x0181  
0x0182  
0x0183  
0x0184  
0x0185  
0x0186  
0x0187  
0x0188  
0x0189  
0x018A  
0x018B  
0x018C  
0x018D  
0x018E  
0x018F  
8
9
10  
11  
12  
13  
14  
15  
Rev. C | Page 38 of 116  
 
 
Data Sheet  
ADAU1772  
Assignment Order  
B0/Max Gain  
0x0190  
0x0191  
0x0192  
0x0193  
0x0194  
0x0195  
0x0196  
0x0197  
0x0198  
0x0199  
0x019A  
0x019B  
0x019C  
0x019D  
0x019E  
0x019F  
B1/Min Gain  
0x01B0  
0x01B1  
0x01B2  
0x01B3  
0x01B4  
0x01B5  
0x01B6  
0x01B7  
0x01B8  
0x01B9  
0x01BA  
0x01BB  
0x01BC  
0x01BD  
0x01BE  
0x01BF  
B2/Attack  
0x01D0  
0x01D1  
0x01D2  
0x01D3  
0x01D4  
0x01D5  
0x01D6  
0x01D7  
0x01D8  
0x01D9  
0x01DA  
0x01DB  
0x01DC  
0x01DD  
0x01DE  
0x01DF  
A1/Decay  
0x01F0  
0x01F1  
0x01F2  
0x01F3  
0x01F4  
0x01F5  
0x01F6  
0x01F7  
0x01F8  
0x01F9  
0x01FA  
0x01FB  
0x01FC  
0x01FD  
0x01FE  
0x01FF  
A2/Threshold  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
0x0210  
0x0211  
0x0212  
0x0213  
0x0214  
0x0215  
0x0216  
0x0217  
0x0218  
0x0219  
0x021A  
0x021B  
0x021C  
0x021D  
0x021E  
0x021F  
Rev. C | Page 39 of 116  
ADAU1772  
Data Sheet  
CONTROL PORT  
large amounts of data to contiguous memory locations. This  
increment happens automatically after a single-word write unless  
The ADAU1772 has both a 4-wire SPI control port and a 2-wire  
I2C bus control port. Each can be used to set the memories and  
registers. The IC defaults to I2C mode but can be put into SPI  
the control port communication is stopped (that is, a stop  
2
SS  
condition is issued for I C, or is brought high for SPI). The  
SS  
control mode by pulling the pin low three times.  
registers and RAMs in the ADAU1772 range in width from one  
to four bytes, so the auto-increment feature knows the mapping  
between subaddresses and the word length of the destination  
register (or memory location).  
The control port is capable of full read/write operation for all  
addressable memories and registers. Most signal processing  
parameters are controlled by writing new values to the param-  
eter memories using the control port. Other functions, such as  
mute and input/output mode control, are programmed through  
the registers.  
I2C PORT  
The ADAU1772 supports a 2-wire serial (I2C-compatible)  
microprocessor bus driving multiple peripherals. I2C uses two  
pins—serial data (SDA) and serial clock (SCL)—to carry data  
between the ADAU1772 and the system I2C master controller.  
In I2C mode, the ADAU1772 is always a slave on the bus, except  
when the IC is self-booting. See the Self-Boot section for details  
about using the ADAU1772 in self-boot mode.  
All addresses can be accessed in either single-address mode or  
burst mode. The first byte (Byte 0) of a control port write contains  
the 7-bit IC address plus the R/ bit. The next two bytes (Byte 1  
and Byte 2) are the 16-bit subaddress of the memory or register  
location within the ADAU1772. All subsequent bytes (starting  
with Byte 3) contain the data, such as register data, program  
data, or parameter data. The number of bytes per word depends  
on the type of data that is being written. Table 19 shows the word  
length of the ADAU1772s different data types. The exact formats  
for specific types of writes are shown in Figure 85 and Figure 86.  
W
Each slave device is recognized by a unique 7-bit address. The  
ADAU1772 I2C address format is shown in Table 21. The LSB of  
this first byte sent from the I2C master sets either a read or write  
operation. Logic Level 1 corresponds to a read operation, and  
Logic Level 0 corresponds to a write operation.  
Pin ADDR0 and Pin ADDR1 set the LSBs of the I2C address  
(Table 22); therefore, each ADAU1772 can be set to one of four  
unique addresses. This allows multiple ICs to exist on the same  
I2C bus without address contention. The 7-bit I2C addresses are  
shown in Table 22.  
Table 19. Data Word Sizes  
Data Type  
Registers  
Program  
Word Size (bytes)  
1
2
4
Parameters  
An I2C data transfer is always terminated by a stop condition.  
If large blocks of data need to be downloaded to the ADAU1772,  
the output of the core can be halted (using the CORE_RUN bit  
in the core control register (Address 0x0009)), new data can be  
loaded, and then the core can be restarted. This is typically done  
during the booting sequence at start-up or when loading a new  
program into memory.  
Both SDA and SCL should have 2.0 kΩ pull-up resistors on the  
lines connected to them. The voltage on these signal lines should  
not be higher than IOVDD.  
Table 21. I2C Address Format  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Registers and bits shown as reserved in the register map read back  
0s. When writing to these registers and bits, such as during a burst  
write across a reserved register, or when writing to reserved bits  
in a register with other used bits, write 0s.  
0
1
1
1
1
ADDR1  
ADDR0  
Table 22. I2C Addresses  
ADDR1  
ADDR0  
Slave Address  
0x3C  
The control port pins are multifunctional, depending on the  
mode in which the part is operating. Table 20 details these  
multiple functions.  
0
0
1
1
0
1
0
1
0x3D  
0x3E  
0x3F  
Table 20. Control Port Pin Functions  
Pin  
I2C Mode  
SPI Mode  
SCL/SCLK  
SDA/MISO  
ADDR1/MOSI  
ADDR0/SS  
SCL—input  
SDA—open-collector output MISO—output  
I2C Address Bit 1—input  
I2C Address Bit 0—input  
SCLK—input  
Addressing  
Initially, each device on the I2C bus is in an idle state and  
monitoring the SDA and SCL lines for a start condition and  
the proper address. The I2C master initiates a data transfer by  
establishing a start condition, defined by a high-to-low transition  
on SDA while SCL remains high. This indicates that an address/  
data stream follows. All devices on the bus respond to the start  
condition and shift the next eight bits (the 7-bit address plus the  
MOSI—input  
SS—input  
BURST MODE COMMUNICATION  
Burst mode addressing, in which the subaddresses are automati-  
cally incremented at word boundaries, can be used for writing  
Rev. C | Page 40 of 116  
 
 
 
 
 
 
Data Sheet  
ADAU1772  
R/ bit) MSB first. The device that recognizes the transmitted  
W
jumps to the idle condition. During a given SCL high period,  
the user should only issue one start condition, one stop condition,  
or a single stop condition followed by a single start condition. If  
an invalid subaddress is issued by the user, the ADAU1772 does  
not issue an acknowledge and returns to the idle condition. If  
the user exceeds the highest subaddress while in auto-increment  
mode, one of two actions is taken. In read mode, the ADAU1772  
outputs the highest subaddress register contents until the master  
device issues a no acknowledge, indicating the end of a read. A  
no-acknowledge condition is where the SDA line is not pulled  
low on the ninth clock pulse on SCL. If the highest subaddress  
location is reached while in write mode, the data for the invalid  
byte is not loaded into any subaddress register, a no acknowledge  
is issued by the ADAU1772, and the part returns to the idle  
condition.  
address responds by pulling the data line low during the ninth  
clock pulse. This ninth bit is known as an acknowledge bit. All  
other devices withdraw from the bus at this point and return to  
the idle condition. The R/ bit determines the direction of the  
W
data. A Logic 0 on the LSB of the first byte indicates that the master  
will write information to the peripheral, whereas a Logic 1 indicates  
that the master will read information from the peripheral after  
writing the subaddress and repeating the start address. A data  
transfer takes place until a stop condition is encountered. A stop  
condition occurs when SDA transitions from low to high while  
SCL is held high. Figure 83 shows the timing of an I2C write,  
and Figure 84 shows an I2C read.  
Stop and start conditions can be detected at any stage during the  
data transfer. If these conditions are asserted out of sequence with  
normal read and write operations, the ADAU1772 immediately  
SCL  
ADDR1 ADDR0  
0
1
1
1
SDA  
R/W  
1
ACKNOWLEDGE  
BY ADAU1772  
ACKNOWLEDGE  
BY ADAU1772  
START BY  
MASTER  
FRAME 2  
SUBADDRESS BYTE 1  
FRAME 1  
CHIP ADDRESS BYTE  
SCL  
(CONTINUED)  
SDA  
(CONTINUED)  
STOP BY  
MASTER  
ACKNOWLEDGE  
BY ADAU1772  
ACKNOWLEDGE  
BY ADAU1772  
FRAME 4  
DATA BYTE 1  
FRAME 3  
SUBADDRESS BYTE 2  
Figure 83. I2C Write to ADAU1772 Clocking  
SCL  
SDA  
0
1
1
1
ADDR1 ADDR0  
1
R/W  
ACKNOWLEDGE  
BY ADAU1772  
ACKNOWLEDGE  
BY ADAU1772  
START BY  
MASTER  
FRAME 1  
CHIP ADDRESS BYTE  
FRAME 2  
SUBADDRESS BYTE 1  
SCL  
(CONTINUED)  
SDA  
(CONTINUED)  
0
1
1
1
1
ADDR1 ADDR0  
R/W  
ACKNOWLEDGE  
BY ADAU1772  
ACKNOWLEDGE  
BY ADAU1772  
REPEATED  
START BY MASTER  
FRAME 3  
SUBADDRESS BYTE 2  
FRAME 4  
CHIP ADDRESS BYTE  
SCL  
(CONTINUED)  
SDA  
(CONTINUED)  
ACKNOWLEDGE  
BY ADAU1772  
ACKNOWLEDGE STOP BY  
BY ADAU1772 MASTER  
FRAME 5  
READ DATA BYTE 1  
FRAME 6  
READ DATA BYTE 2  
Figure 84. I2C Read from ADAU1772 Clocking  
Rev. C | Page 41 of 116  
 
 
ADAU1772  
Data Sheet  
I2C Read and Write Operations  
back to the master. The master then responds every ninth pulse  
with an acknowledge pulse to the ADAU1772.  
Figure 85 shows the timing of a single-word write operation.  
Every ninth clock pulse, the ADAU1772 issues an acknowledge  
by pulling SDA low.  
Figure 88 shows the timing of a burst mode read sequence. This  
figure shows an example where the target read words are two  
bytes. The ADAU1772 increments its subaddress every two bytes  
because the requested subaddress corresponds to a register or  
memory area with word lengths of two bytes. Other address  
ranges may have a variety of word lengths, ranging from one to  
four bytes. The ADAU1772 always decodes the subaddress and  
sets the auto-increment circuit so that the address increments  
after the appropriate number of bytes.  
Figure 86 shows the timing of a burst mode write sequence. This  
figure shows an example where the target destination words are  
two bytes, such as the program memory. The ADAU1772 knows  
to increment its subaddress register every two bytes because the  
requested subaddress corresponds to a register or memory area  
with a 2-byte word length.  
The timing of a single-word read operation is shown in Figure 87.  
Figure 85 to Figure 88 use the following abbreviations:  
S = start bit  
P = stop bit  
AM = acknowledge by master  
AS = acknowledge by slave  
Note that the first R/ bit is 0, indicating a write operation. This  
W
is because the subaddress still needs to be written to set up the  
internal address. After the ADAU1772 acknowledges the receipt  
of the subaddress, the master must issue a repeated start command  
followed by the chip address byte with the R/ set to 1 (read).  
W
This causes the ADAU1772 SDA to reverse and begin driving data  
2
I C ADDRESS,  
S
S
S
S
AS  
SUBADDRESS HIGH  
AS  
SUBADDRESS LOW  
AS  
DATA BYTE 1  
AS  
DATA BYTE 2  
...  
AS  
DATA BYTE N  
P
R/W = 0  
Figure 85. Single-Word I2C Write Format  
2
I C ADDRESS,  
R/W = 0  
SUBADDRESS  
SUBADDRESS  
LOW  
DATAWORD 1,  
BYTE 1  
DATAWORD 1,  
BYTE 2  
DATAWORD 2,  
BYTE 1  
DATAWORD 2,  
BYTE 2  
AS  
AS  
AS  
AS  
AS  
AS  
AS ...  
P
HIGH  
Figure 86. Burst Mode I2C Write Format  
2
2
I C ADDRESS,  
SUBADDRESS  
SUBADDRESS  
LOW  
I C ADDRESS,  
R/W = 1  
AS  
AS  
AS  
AS  
S
AS  
DATA BYTE 1 AM DATA BYTE 2  
...  
AM DATA BYTE N  
P
R/W = 0  
HIGH  
Figure 87. Single-Word I2C Read Format  
2
2
I C ADDRESS,  
SUBADDRESS  
SUBADDRESS  
LOW  
I C ADDRESS,  
R/W = 1  
DATAWORD 1,  
BYTE 1  
DATAWORD 1,  
BYTE 2  
AS  
AS  
S
AS  
AM  
AM  
...  
P
R/W = 0  
HIGH  
Figure 88. Burst Mode I2C Read Format  
Rev. C | Page 42 of 116  
 
 
 
 
Data Sheet  
ADAU1772  
Read/  
Write  
SPI PORT  
By default, the ADAU1772 is in I2C mode, but it can be put into  
The first byte of an SPI transaction indicates whether the com-  
SS  
munication is a read or a write with the R/ bit. The LSB of this  
SPI control mode by pulling low three times. This can be easily  
W
accomplished by issuing three SPI writes, which are in turn ignored  
by the ADAU1772. The next (fourth) SPI write is then latched  
into the SPI port.  
first byte determines whether the SPI transaction is a read (Logic  
Level 1) or a write (Logic Level 0).  
Subaddress  
SS  
The SPI port uses a 4-wire interface—consisting of , SCLK,  
The 16-bit subaddress word is decoded into a location in one of  
the memories or registers. This subaddress is the location of the  
appropriate memory location or register.  
SS  
MOSI, and MISO signals—and is always a slave port. The  
signal should go low at the beginning of a transaction and high  
at the end of a transaction. The SCLK signal latches MOSI on a  
low-to-high transition. MISO data is shifted out of the ADAU1772  
on the falling edge of SCLK and should be clocked into a receiving  
device, such as a microcontroller, on the SCLK rising edge. The  
MOSI signal carries the serial input data, and the MISO signal  
is the serial output data. The MISO signal remains tristated until a  
read operation is requested. This allows other SPI-compatible  
peripherals to share the same readback line.  
Data Bytes  
The number of data bytes varies according to the register or  
memory being accessed. During a burst mode write, an initial  
subaddress is written followed by a continuous sequence of data  
for consecutive memory/register locations.  
A sample timing diagram for a single-write SPI operation to the  
parameter RAM is shown in Figure 89. A sample timing diagram  
of a single-read SPI operation is shown in Figure 90. The MISO  
pin goes from tristate to being driven at the beginning of Byte 3.  
In this example, Byte 0 to Byte 2 contain the addresses and the  
All SPI transactions have the same basic format shown in Table 23.  
A timing diagram is shown in Figure 89 and Figure 90. All data  
should be written MSB first. The ADAU1772 can only be taken  
W
R/ bit and subsequent bytes carry the data.  
out of SPI mode by pulling the  
pin low or by powering  
PD  
down the IC.  
Table 23. Generic SPI Word Format  
Byte 0  
Byte 1  
Byte 2  
Byte 3  
Byte 41  
data  
0000000, R/W  
Register/memory address [15:8]  
Register/memory address [7:0]  
data  
1 Continues to end of data.  
SS  
SCLK  
MOSI  
BYTE 0  
BYTE 1  
BYTE 2  
BYTE 3  
Figure 89. SPI Write to ADAU1772 Clocking (Single-Write Mode)  
SS  
SCLK  
MOSI  
BYTE 0  
BYTE 1  
HIGH-Z  
HIGH-Z  
MISO  
DATA  
DATA  
DATA  
Figure 90. SPI Read from ADAU1772 Clocking (Single-Read Mode)  
Rev. C | Page 43 of 116  
 
 
 
 
 
ADAU1772  
Data Sheet  
SELF-BOOT  
CRC  
The ADAU1772 boots up from an EEPROM over the I2C bus  
An 8-bit CRC validates the content of the EEPROM. This CRC is  
strong enough to detect single error bursts of up to eight bits in size.  
when the SELFBOOT pin is set high at power-up and the  
PD  
pin is set high. The state of the SELFBOOT pin is checked only  
when the ADAU1772 comes out of a reset via the pin, and  
The terminate self-boot instruction (0x00 instruction byte) must  
be followed by a CRC byte. The CRC is generated using all of the  
EEPROM bytes from Address 0x0000 to the last 0x00 instruction  
byte. The polynomial for the CRC is  
PD  
the EEPROM is not used after a self-boot is complete. During  
booting, ensure that there is a stable DVDD in the system. The  
pin should remain high during the self-boot operation. The  
PD  
x8 x2 x 1  
master SCL clock output from the ADAU1772 is derived from  
the input clock on XTALI/MCLKIN. A divide-by-64 circuit  
ensures that the SCL output frequency during the self-boot  
operation is never greater than 400 kHz for most input clock  
frequencies. With the external master clock to the ADAU1772  
being between 12 MHz and 27 MHz, the SCL frequency ranges  
from 176 kHz to 422 kHz. If the self-boot EEPROM is not rated  
for operation above 400 kHz, be sure to use a master clock that  
is no faster than 25.6 MHz.  
If the CRC is incorrect or if an unrecognized instruction byte is  
read during self-boot, the boot process is immediately stopped  
and restarted after a 250 ms delay (for a 12.288 MHz input clock).  
When SigmaStudio is used, the CRC byte is generated auto-  
matically when a configuration is downloaded to the EEPROM.  
Delay  
The delay instruction (0x02 instruction byte) delays by the  
16-bit setting × 2048 clock cycles.  
Table 25 shows the list of instructions that are possible during  
an ADAU1772 self-boot. The 0x01 and 0x05 instruction bytes  
are used to load the register, program, and parameter settings.  
Boot Time  
The time to self-boot the ADAU1772 from an EEPROM can be  
calculated using the following equation:  
EEPROM Size  
Boot Time = 64/MCLK Frequency × Total Bytes + Wait Time  
The self-boot circuit is compatible with an EEPROM that has a  
2-byte address. For most EEPROM families, a 2-byte address is  
used on devices that are 32 kB or larger. The EEPROM must be  
set to Address 0x50. Examples of two compatible EEPROMs  
include Atmel AT24C32D and STMicroelectronics M24C32-F.  
The self-boot operation starts after 16,568 clock cycles are seen on  
the XTALI/MCLKIN pin after  
clock, this corresponds to approximately a 1.35 ms wait time  
from power-up. This delay ensures that the crystal used for  
generating the master clock has ramped up to a stable oscillation.  
is set high. With a 12.288 MHz  
PD  
Table 24 lists the maximum necessary EEPROM size, assuming  
that there is 100% utilization of the program and parameters  
(both banks). There is inherently some overhead for instructions  
to control the self-boot procedure.  
Table 25. EEPROM Self-Boot Instructions  
Instruction  
Byte ID  
Instruction Byte  
Description  
Following Bytes  
0x00  
0x01  
End self-boot  
CRC  
Table 24. Maximum EEPROM Size  
Write multibyte length  
minus two bytes, starting  
at target address  
Length (high byte),  
length (low byte),  
address (high byte),  
address (low byte),  
data (0), data (1), ...  
data (length – 3)  
Word Size  
(Bytes per  
Word)  
Total EEPROM  
Space Requirement  
(Bytes)  
ADAU1772  
Memory Blocks  
Words  
32  
Program  
2
4
4
1
64  
Bank 0 Parameters  
Bank 1 Parameters  
Registers  
160 (32 × 5)  
160  
640  
640  
65  
0x02  
Delays by the 16-bit setting  
× 2048 clock cycles  
Delay (high byte),  
delay (low byte)  
65  
0x03  
0x04  
0x05  
No operation  
None  
None  
Total Bytes  
1409  
Wait for PLL lock  
Write single byte to target  
address  
Address (high byte),  
address (low byte), data  
0x02  
0x00  
0x04  
0x01  
0x00  
0x05  
0x00  
0x80  
DELAY  
DELAY  
(HIGH BYTE)  
DELAY  
(LOW BYTE)  
WRITE  
LENGTH  
(HIGH BYTE)  
LENGTH  
(LOW BYTE)  
ADDRESS  
(HIGH BYTE)  
ADDRESS  
(LOW BYTE)  
DELAY LENGTH  
LENGTH  
PROGRAM RAM ADDRESS  
0x1A  
0x2B  
0x3C  
0x04  
0x03  
0x00  
END  
DATA  
(0)  
DATA  
(1)  
DATA  
(LENGTH – 3)  
PLL LOCK  
NO OP  
PROGRAM RAM DATA  
Figure 91. A List of Example Self-Boot EEPROM Instructions  
Rev. C | Page 44 of 116  
 
 
 
Data Sheet  
ADAU1772  
MULTIPURPOSE PINS  
The ADAU1772 has seven multipurpose (MP) pins that can be  
used for serial data I/O, clock outputs, and control in a system  
without a microcontroller. Each pin can be individually set to  
either its default or MP setting. The functions include push-  
button volume controls, enabling the compressors, parameter  
bank switching, DSP bypass mode, and muting the outputs.  
When the ADC and/or DAC volumes are controlled with the  
push-buttons, the corresponding volume control registers no  
longer allow control of the volume from the control port.  
Therefore, writing to these volume control registers has no  
effect on the codec volume level.  
LIMITER COMPRESSION ENABLE  
The function of each of these pins is set in Register 0x0038 to  
Register 0x003E. By default, each pin is configured as an input.  
This function allows a user to enable limiter compression  
regardless of the signal level. Setting an MPx pin low when this  
function is enabled causes the limiter to compress the incoming  
signal by the minimum gain setting. When the MPx pin is released,  
the limiter resumes normal behavior.  
Table 26. Multipurpose Pin Functions  
Pin No. Default Pin Function  
Secondary Pin Functions  
Multipurpose control inputs  
Multipurpose control inputs  
Multipurpose control inputs  
ADC_SDATA0, PDM output,  
multipurpose control inputs  
ADC_SDATA1, CLKOUT,  
multipurpose control inputs  
Multipurpose control inputs  
Multipurpose control inputs  
31  
32  
33  
34  
LRCLK  
BCLK  
DAC_SDATA  
MP1 acting as push-  
button volume up  
PARAMETER BANK SWITCHING  
An MPx pin can be used to switch the active parameter bank  
between Bank A and Bank B. When this setting is selected,  
Bank A is active when the pin is high and Bank B is active when  
the pin is low. Care should be taken to set the BANK_SL bits in  
the CORE_CONTROL register (Address 0x0009) to the default  
value of 0x00 before enabling MPx pin control over bank  
switching. Simultaneous control of bank switching by both  
register setting and MPx pin selection is not possible.  
35  
MP6 acting as push-  
button volume down  
36  
37  
DMIC2_3  
DMIC0_1  
Bit ZERO_STATE selects whether the data memory of the  
codec is set to 0 during a bank switch. If the data is not set to 0  
when a new set of filter coefficients is enabled via a bank switch,  
there may be a pop in the audio as the old data is circulated in  
the new filters.  
PUSH-BUTTON VOLUME CONTROLS  
The ADC and DAC volume controls can be set up to be controlled  
with two push-buttons—one for volume up and one for volume  
down. The volume setting can either be changed with a click of the  
button or be ramped by holding the button. The volume settings  
change when the signal on the pin from the button goes from  
low to high.  
MUTE  
The MPx pins can be put into a mode to mute the ADCs or DACs.  
When in this mode, mute is enabled when an MPx pin is set low.  
The full combination of possible mutes for ADCs and DACs  
using MPx pins are set in Register 0x0038 to Register 0x003E.  
When in push-button mode, the initial volume level is set with  
Bits PB_VOL_INIT_VAL. By default, MP1 acts as the push-  
button volume up and MP6 acts as the push-button volume  
down; however, any of the MPx pins can be set to act as the  
push-button up and push-button down volume controls.  
Rev. C | Page 45 of 116  
 
 
 
 
 
ADAU1772  
Data Sheet  
is pulled low. Pressing and holding the switch closed enables the  
DSP bypass signal path as defined in the TALKTHRU register  
(Address 0x002A). The DAC volume control setting is switched  
from the default gain setting to the new TALKTHRU_GAINx  
register setting (Address 0x002B and Address 0x002C). DSP bypass  
is enabled only on ADC0 and ADC1. The DSP bypass signal path  
is from the output of ADCx to the input of the DAC(s).  
DSP BYPASS MODE  
When DSP bypass mode is enabled, a direct path from the ADC  
outputs to the DACs is set up to enable bypassing the core pro-  
cessing to listen to environmental sounds. This is useful for  
listening to someone speaking without having to remove the  
noise cancelling headphones. The DSP bypass path is enabled  
by setting an MPx pin low. Figure 92 shows the DSP bypass path  
disabled, and Figure 93 shows the DSP bypass path enabled by  
pressing the push-button switch. The DSP bypass feature works  
for both analog and digital microphone inputs.  
When DSP bypass is enabled, the current DAC volume setting  
is ramped down to −95.625 dB and the DSP bypass volume  
setting is ramped up to avoid pops when switching paths.  
DSP bypass is enabled when a switch connected to an MPx pin  
that is set to DSP bypass mode is closed and the MPx pin signal  
MPx  
ADAU1772  
10k  
DAC AND HP  
AMPLIFIER  
PGA AND ADC  
AINxREF  
HPOUTxP  
HPOUTxN  
AINx  
CORE  
PROCESSING  
NORMAL  
SETTING  
Figure 92. DSP Bypass Path Disabled  
MPx  
10kΩ  
ADAU1772  
DAC AND HP  
AMPLIFIER  
PGA AND ADC  
HPOUTxP  
HPOUTxN  
AINxREF  
AINx  
CORE  
PROCESSING  
TALK-THRU  
SETTING  
Figure 93. DSP Bypass Path Enabled  
Rev. C | Page 46 of 116  
 
 
 
Data Sheet  
ADAU1772  
SERIAL DATA INPUT/OUTPUT PORTS  
BCLK rate (12.288 MHz), a sample rate of 192 kHz, or a TDM8  
mode operating at a sample rate of 48 kHz, it is recommended  
to use the high drive settings on the serial port pins. The high  
drive strength effectively speeds up the transition times of the  
waveforms, thereby improving the signal integrity of the clock  
and data lines. These can be set in the PAD_CONTROL4 register  
(Address 0x004C).  
The serial data input and output ports of the ADAU1772 can be set  
to accept or transmit data in a 2-channel format or in a 4-channel  
or 8-channel TDM stream to interface to external ADCs, DACs,  
DSPs, and SOCs. Data is processed in twos complement, MSB  
first format. The left-channel data field always precedes the  
right-channel data field in the 2-channel streams. In 8-channel  
TDM mode, the data channels are output sequentially, starting  
with the channel set by the ADC_SDATA0_ST and  
Table 27. Serial In/Out Port Master/Slave Mode Capabilities  
ADC_SDATA1_ST bits. The serial modes and the position of  
the data in the frame are set in the serial data port (SAI_0,  
SAI_1) and serial output control registers  
2-Channel Modes  
(I2S, Left Justified,  
Right Justified)  
4-Channel  
TDM  
8-Channel  
TDM  
fSSD  
(SOUT_SOURCE_x_x, Address 0x0013 to Address 0x0016).  
48 kHz  
Yes  
Yes  
Yes  
No  
Yes  
No  
No  
96 kHz  
Yes  
The serial data clocks do not need to be synchronous with the  
ADAU1772 master clock input, but the LRCLK and BCLK must  
be synchronous to each other. The LRCLK and BCLK pins are  
used to clock both the serial input and output ports. The  
ADAU1772 can be set to be either the master or the slave in a  
system. Because there is only one set of serial data clocks, the  
input and output ports must always both be either master or  
slave.  
192 kHz Yes  
Table 28 describes the proper serial port settings for standard  
audio data formats. More information about the settings in this  
table can be found in the Serial Port Control 0 and Serial Port  
Control 1 registers (Address 0x0032 and Address 0x0033)  
descriptions.  
The serial data control registers allow control of the clock polarity  
and the data input modes. The valid data formats are I2S, left  
justified, right justified (24- or 16-bit), PCM, and TDM. In all  
modes except for the right justified modes, the serial port inputs  
an arbitrary number of bits up to a limit of 24. Extra bits do not  
cause an error, but they are truncated internally. The serial port  
can operate with an arbitrary number of BCLK transitions in  
each LRCLK frame. The LRCLK in TDM mode can be input to  
the ADAU1772 either as a 50% duty cycle clock or as a bit-wide  
pulse. Table 27 lists the modes in which the serial input/output  
port can function. When using low IOVDD (1.8 V) with a high  
TRISTATING UNUSED CHANNELS  
Unused outputs can be tristated so that multiple ICs can drive a  
single TDM line. This function is available only when the serial  
ports of the ADAU1772 are operating in TDM mode. Channels  
that are inactive can be set in the SOUT_CONTROL0 register  
(Address 0x0034). The tristating of inactive channels is set in  
the SAI_1 register (Address 0x0033), which offers the option of  
tristating or driving the inactive channel.  
In a 32-bit TDM frame with 24-bit data, the eight unused bits  
are tristated. Inactive channels are also tristated for the full frame.  
Table 28. Serial Port Data Format Settings  
LRCLK Polarity  
(LR_POL)  
LRCLK Type  
(LR_MODE)  
BCLK Polarity  
(BCLKEDGE)1  
MSB Position  
(SDATA_FMT)  
Format  
I2S (Figure 94)  
0
1
1
1
1
1
0
0
0
0
0
0
0
X
X
00  
01  
10 or 11  
00  
00  
Left Justified (Figure 95)  
Right Justified (Figure 96 and Figure 97)  
TDM (Figure 98 and Figure 99)  
PCM/DSP Short Frame Sync (Figure 100)  
PCM/DSP Long Frame Sync (Figure 101)  
0 or 1  
1
0
01  
1 X = don’t care.  
1
2
3
4
24  
25  
26  
32  
33  
34  
35  
36  
56  
57  
58  
64  
LRCLK  
BCLK (64 × f  
2
)
S
MSB  
LSB  
MSB  
LSB  
I S (24-BIT)  
LEFT CHANNEL  
RIGHT CHANNEL  
Figure 94. I2S Mode—16 Bits to 24 Bits per Channel  
Rev. C | Page 47 of 116  
 
 
 
 
 
ADAU1772  
Data Sheet  
LRCLK  
1
2
3
23  
24  
25  
32  
33  
34  
35  
55  
56  
57  
64  
BCLK (64 × f  
)
S
LJ (24-BIT)  
MSB  
LSB  
MSB  
LSB  
LEFT CHANNEL  
RIGHT CHANNEL  
Figure 95. Left Justified Mode—16 Bits to 24 Bits per Channel  
LRCLK  
BCLK (64 × f  
1
2
9
10  
11  
12  
31  
32  
33  
34  
41  
42  
43  
44  
63  
64  
)
S
RJ (24-BIT)  
MSB  
LSB  
MSB  
LSB  
LEFT CHANNEL  
RIGHT CHANNEL  
Figure 96. Right Justified Mode—24 Bits per Channel  
LRCLK  
BCLK (64 × f  
1
2
17  
18  
19  
20  
31  
32  
33  
34  
49  
50  
51  
52  
63  
64  
)
S
RJ (24-BIT)  
MSB  
LSB  
MSB  
LSB  
LEFT CHANNEL  
RIGHT CHANNEL  
Figure 97. Right Justified Mode—16 Bits per Channel  
LRCLK  
BCLK  
256 BCLKs  
32 BCLKs  
DATA  
SLOT 1  
SLOT 2  
SLOT 3  
SLOT 4  
SLOT 5  
SLOT 6  
SLOT 7  
SLOT 8  
LRCLK  
BCLK  
MSB  
MSB – 1  
MSB – 2  
DATA  
Figure 98. 8-Channel TDM Mode  
LRCLK  
BCLK  
DATA  
MSB TDM  
MSB TDM  
CH  
0
8TH  
CH  
SLOT 0  
SLOT 1  
SLOT 2  
SLOT 3  
SLOT 4  
SLOT 5  
SLOT 6  
SLOT 7  
32  
BCLKs  
Figure 99. 8-Channel TDM Mode, Pulse LRCLK  
Rev. C | Page 48 of 116  
 
 
 
 
 
Data Sheet  
ADAU1772  
LRCLK  
1
2
3
4
16  
17  
18  
19  
20  
32  
33  
34  
BCLK (64 × f  
)
S
PCM (24-BIT)  
MSB  
LSB  
MSB  
LSB  
LEFT CHANNEL  
RIGHT CHANNEL  
Figure 100. PCM/DSP Mode, 16 Bits per Channel, Short Frame Sync  
LRCLK  
1
2
3
4
16  
17  
18  
19  
20  
32  
33  
34  
BCLK (64 × f  
)
S
PCM (24-BIT)  
MSB  
LSB  
MSB  
LSB  
LEFT CHANNEL  
RIGHT CHANNEL  
Figure 101. PCM/DSP Mode, 16 Bits per Channel, Long Frame Sync  
Rev. C | Page 49 of 116  
 
 
ADAU1772  
Data Sheet  
APPLICATIONS INFORMATION  
POWER SUPPLY BYPASS CAPACITORS  
EXPOSED PAD PCB DESIGN  
Each analog and digital power supply pin should be bypassed to  
its nearest appropriate ground pin with a single 0.1 μF capacitor.  
The connections to each side of the capacitor should be as short  
as possible, and the trace should be routed on a single layer with no  
vias. For maximum effectiveness, locate the capacitor equidistant  
from the power and ground pins or slightly closer to the power pin  
if equidistant placement is not possible. Thermal connections to  
the ground planes should be made on the far side of the capacitor.  
The ADAU1772 has an exposed pad on the underside of the  
LFCSP. This pad is used to couple the package to the PCB for  
heat dissipation. When designing a board for the ADAU1772,  
special consideration should be given to the following:  
A copper layer equal in size to the exposed pad should be  
on all layers of the board, from top to bottom, and should  
connect somewhere to a dedicated copper board layer (see  
Figure 103).  
Each supply signal on the board should also be bypassed with a  
single bulk capacitor (10 μF to 47 μF).  
VDD GND  
Vias should be placed to connect all layers of copper,  
allowing for efficient heat and energy conductivity. For an  
example, see Figure 104, which has nine vias arranged in a  
3 × 3 grid in the pad area.  
TOP  
GROUND  
POWER  
BOTTOM  
CAPACITOR  
TO VDD  
VIAS  
COPPER SQUARES  
Figure 103. Exposed Pad Layout Example, Side View (Not to Scale)  
TO GND  
Figure 102. Recommended Power Supply Bypass Capacitor Layout  
LAYOUT  
Pin 24 is the AVDD supply for the headphone amplifiers. If the  
headphone amplifiers are enabled, the PCB trace to this pin should  
be wider than traces to other pins to increase the current carrying  
capacity. A wider trace should also be used for the headphone  
output lines.  
GROUNDING  
A single ground plane should be used in the application layout.  
Components in an analog signal path should be placed away  
from digital signals.  
Figure 104. Exposed Pad Layout Example, Top View (Not to Scale)  
Rev. C | Page 50 of 116  
 
 
 
 
 
 
 
Data Sheet  
ADAU1772  
REGISTER SUMMARY  
Table 29. Low Latency Codec Register Summary  
Reg  
Name  
Bits Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset RW  
0x00 RW  
0x00 RW  
0x00 RW  
0x00 RW  
0x00 RW  
0x0000 CLK_CONTROL  
0x0001 PLL_CTRL0  
0x0002 PLL_CTRL1  
0x0003 PLL_CTRL2  
0x0004 PLL_CTRL3  
0x0005 PLL_CTRL4  
0x0006 PLL_CTRL5  
0x0007 CLKOUT_SEL  
0x0008 REGULATOR  
0x0009 CORE_CONTROL  
0x000B CORE_ENABLE  
0x000C DBREG0  
[7:0] PLL_EN  
RESERVED  
SPK_FLT_DIS XTAL_DIS  
CLKSRC  
CC_CDIV  
CC_MDIV  
COREN  
[7:0]  
M_MSB  
[7:0]  
M_LSB  
N_MSB  
N_LSB  
[7:0]  
[7:0]  
[7:0] RESERVED  
R
X
PLL_TYPE  
LOCK  
0x00 RW  
0x00  
[7:0]  
RESERVED  
R
[7:0]  
RESERVED  
RESERVED  
CLKOUT_FREQ  
0x00 RW  
0x00 RW  
0x04 RW  
[7:0]  
REG_PD  
REGV  
CORE_RUN  
[7:0] ZERO_STATE  
BANK_SL  
RESERVED  
CORE_FS  
LIM_EN  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
RESERVED  
DSP_CLK_EN 0x03 RW  
DBVAL0  
DBVAL1  
DBVAL2  
0x00  
0x00  
0x00  
R
R
R
0x000D DBREG1  
0x000E DBREG2  
0x000F CORE_IN_MUX_0_1 [7:0]  
0x0010 CORE_IN_MUX_2_3 [7:0]  
0x0011 DAC_SOURCE_0_1 [7:0]  
0x0012 PDM_SOURCE_0_1 [7:0]  
0x0013 SOUT_SOURCE_0_1 [7:0]  
0x0014 SOUT_SOURCE_2_3 [7:0]  
0x0015 SOUT_SOURCE_4_5 [7:0]  
0x0016 SOUT_SOURCE_6_7 [7:0]  
CORE_IN_MUX_SEL_1  
CORE_IN_MUX_SEL_3  
DAC_SOURCE1  
PDM_SOURCE1  
SOUT_SOURCE1  
SOUT_SOURCE3  
SOUT_SOURCE5  
SOUT_SOURCE7  
RESERVED  
CORE_IN_MUX_SEL_0  
CORE_IN_MUX_SEL_2  
DAC_SOURCE0  
0x10 RW  
0x32 RW  
0x10 RW  
0x32 RW  
0x54 RW  
0x76 RW  
0x54 RW  
0x76 RW  
0x04 RW  
0x10 RW  
0x32 RW  
0x00 RW  
0x19 RW  
0x19 RW  
0x00 RW  
0x00 RW  
0x00 RW  
0x00 RW  
0x00 RW  
0x00 RW  
0x40 RW  
0x40 RW  
0x40 RW  
0x40 RW  
0x00 RW  
PDM_SOURCE0  
SOUT_SOURCE0  
SOUT_SOURCE2  
SOUT_SOURCE4  
SOUT_SOURCE6  
0x0017 ADC_SDATA_CH  
[7:0]  
ADC_SDATA1_ST  
ADC_SDATA0_ST  
0x0018 ASRCO_SOURCE_0_1 [7:0]  
0x0019 ASRCO_SOURCE_2_3 [7:0]  
ASRC_OUT_SOURCE1  
ASRC_OUT_SOURCE3  
RESERVED  
ASRC_OUT_SOURCE0  
ASRC_OUT_SOURCE2  
0x001A ASRC_MODE  
[7:0]  
ASRC_IN_CH  
ASRC_OUT_EN ASRC_IN_EN  
0x001B ADC_CONTROL0  
0x001C ADC_CONTROL1  
0x001D ADC_CONTROL2  
0x001E ADC_CONTROL3  
0x001F ADC0_VOLUME  
0x0020 ADC1_VOLUME  
0x0021 ADC2_VOLUME  
0x0022 ADC3_VOLUME  
[7:0]  
RESERVED  
RESERVED  
RESERVED  
ADC1_MUTE ADC0_MUTE  
ADC3_MUTE ADC2_MUTE  
RESERVED  
RESERVED  
DCM_0_1  
DCM_2_3  
ADC_0_1_FS  
ADC_2_3_FS  
[7:0]  
RESERVED  
[7:0] RESERVED  
HP_0_1_EN  
DMIC_POL0  
DMIC_POL1  
DMIC_SW0  
DMIC_SW1  
ADC_1_EN  
ADC_3_EN  
ADC_0_EN  
ADC_2_EN  
[7:0] RESERVED  
HP_2_3_EN  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
ADC_0_VOL  
ADC_1_VOL  
ADC_2_VOL  
ADC_3_VOL  
0x0023 PGA_CONTROL_0 [7:0] PGA_EN0  
0x0024 PGA_CONTROL_1 [7:0] PGA_EN1  
0x0025 PGA_CONTROL_2 [7:0] PGA_EN2  
0x0026 PGA_CONTROL_3 [7:0] PGA_EN3  
0x0027 PGA_STEP_CONTROL [7:0]  
PGA_MUTE0  
PGA_GAIN0  
PGA_MUTE1  
PGA_MUTE2  
PGA_MUTE3  
PGA_GAIN1  
PGA_GAIN2  
PGA_GAIN3  
RESERVED  
SLEW_RATE  
SLEW_PD3  
SLEW_PD2  
SLEW_PD1  
SLEW_PD0  
0x0028 PGA_10DB_BOOST [7:0]  
RESERVED  
HP_POP_DIS1 HP_POP_DIS0 PGA_POP_DIS3 PGA_POP_DIS2 PGA_POP_DIS1 PGA_POP_DIS0 0x3F RW  
RESERVED TALKTHRU_PATH  
TALKTHRU_GAIN0_VAL  
TALKTHRU_GAIN1_VAL  
PGA_3_BOOST PGA_2_BOOST PGA_1_BOOST PGA_0_BOOST 0x00 RW  
0x0029 POP_SUPPRESS  
0x002A TALKTHRU  
[7:0]  
[7:0]  
RESERVED  
0x00 RW  
0x00 RW  
0x00 RW  
0x00 RW  
0x18 RW  
0x00 RW  
0x00 RW  
0x0F RW  
0x00 RW  
0x00 RW  
0x00 RW  
0x00 RW  
0x00 RW  
0x00 RW  
0x10 RW  
0x00 RW  
0x00 RW  
0x00 RW  
0x002B TALKTHRU_GAIN0 [7:0]  
0x002C TALKTHRU_GAIN1 [7:0]  
0x002D MIC_BIAS  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
RESERVED  
RESERVED  
MIC_EN1  
DAC_POL  
MIC_EN0  
RESERVED  
DAC1_MUTE DAC0_MUTE  
DAC_0_VOL  
RESERVED  
RESERVED  
MIC_GAIN1  
DAC1_EN  
MIC_GAIN0  
0x002E DAC_CONTROL1  
0x002F DAC0_VOLUME  
0x0030 DAC1_VOLUME  
DAC0_EN  
DAC_1_VOL  
0x0031 OP_STAGE_MUTES [7:0]  
RESERVED  
HP_MUTE_R  
HP_MUTE_L  
0x0032 SAI_0  
0x0033 SAI_1  
[7:0]  
SDATA_FMT  
SAI  
LR_POL  
SER_PORT_FS  
[7:0] TDM_TS  
BCLK_TDMC  
TDM6_DIS  
RESERVED  
LR_MODE  
TDM5_DIS  
SAI_MSB  
BCLKRATE  
TDM2_DIS  
BCLKEDGE  
TDM1_DIS  
SAI_MS  
0x0034 SOUT_CONTROL0 [7:0] TDM7_DIS  
TDM4_DIS  
PDM_CTRL  
TDM3_DIS  
TDM0_DIS  
0x0036 PDM_OUT  
0x0037 PDM_PATTERN  
0x0038 MODE_MP0  
0x0039 MODE_MP1  
0x003A MODE_MP2  
0x003B MODE_MP3  
0x003C MODE_MP4  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
PDM_CH  
PDM_EN  
PATTERN  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
MODE_MP0_VAL  
MODE_MP1_VAL  
MODE_MP2_VAL  
MODE_MP3_VAL  
MODE_MP4_VAL  
Rev. C | Page 51 of 116  
 
ADAU1772  
Data Sheet  
Reg  
Name  
Bits Bit 7  
[7:0]  
Bit 6  
RESERVED  
RESERVED  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset RW  
0x00 RW  
0x11 RW  
0x00 RW  
0x87 RW  
0x05 RW  
0x0F RW  
0x003D MODE_MP5  
0x003E MODE_MP6  
0x003F PB_VOL_SET  
0x0040 PB_VOL_CONV  
MODE_MP5_VAL  
MODE_MP6_VAL  
[7:0]  
[7:0]  
PB_VOL_INIT_VAL  
HOLD  
[7:0]  
GAINSTEP  
RAMPSPEED  
PB_VOL_CONV_VAL  
DEBOUNCE  
0x0041 DEBOUNCE_MODE [7:0]  
0x0043 OP_STAGE_CTRL [7:0]  
RESERVED  
HP_EN_R  
RESERVED  
HP_EN_L  
HP_PDN_R  
HP_PDN_L  
SINC_0_EN  
INT_0_EN  
0x0044 DECIM_PWR_MODES [7:0] DEC_3_EN  
0x0045 INTERP_PWR_MODES [7:0]  
MOD_1_EN  
MOD_0_EN  
INT_1_EN  
0x00 RW  
0x00 RW  
0x00 RW  
0x00 RW  
RESERVED  
0x0046 BIAS_CONTROL0  
0x0047 BIAS_CONTROL1  
0x0048 PAD_CONTROL0  
[7:0]  
HP_IBIAS  
CBIAS_DIS  
AFE_IBIAS01  
ADC_IBIAS23  
MIC_IBIAS  
ADC_IBIAS01  
DAC_IBIAS  
[7:0] RESERVED  
[7:0] RESERVED  
AFE_IBIAS23  
DAC_SDATA_ 0x7F RW  
PU  
0x0049 PAD_CONTROL1  
0x004A PAD_CONTROL2  
[7:0]  
RESERVED  
ADDR0_PU  
0x1F RW  
[7:0] RESERVED  
DAC_SDATA_ 0x00 RW  
PD  
0x004B PAD_CONTROL3  
0x004C PAD_CONTROL4  
[7:0]  
RESERVED  
ADDR0_PD  
0x00 RW  
0x00 RW  
[7:0] RESERVED  
RESERVED  
0x004D PAD_CONTROL5  
[7:0]  
RESERVED  
RESERVED  
SCL_DRV  
SDA_DRV  
RESERVED  
RESERVED  
0x00 RW  
Rev. C | Page 52 of 116  
Data Sheet  
ADAU1772  
REGISTER DETAILS  
CLOCK CONTROL REGISTER  
Address: 0x0000, Reset: 0x00, Name: CLK_CONTROL  
This register is used to enable the internal clocks.  
Table 30. Bit Descriptions for CLK_CONTROL  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
7
PLL_EN  
Enable PLL. When this bit is set to 0, the PLL is powered down and the PLL  
output clock is disabled. The PLL should not be enabled until after all the  
PLL control settings (Register PLL_CTRL0 to Register PLL_CTRL5) have been  
set. The PLL clock output is active when both PLL_EN = 1 and COREN = 1.  
0x0  
RW  
0
1
PLL disabled  
PLL enabled  
5
SPK_FLT_DIS  
Disable I2C spike filter. By default, the SDA and SCL inputs have a 50 ns  
spike suppression filter. When the control interface is in SPI mode, this  
filter is disabled regardless of this setting.  
0x0  
RW  
0
1
I2C spike filter enabled  
I2C spike filter disabled  
Disable crystal oscillator.  
Crystal oscillator enabled  
Crystal oscillator disabled  
Main clock source.  
4
3
XTAL_DIS  
CLKSRC  
0x0  
0x0  
RW  
RW  
0
1
0
1
External pin drives main clock.  
PLL drives main clock. This bit should only be set after LOCK in  
Register PLL_CTRL5 has gone high.  
2
1
CC_CDIV  
CC_MDIV  
SCLK divider control. The core clock (SCLK) is used only by the core. It  
must run at 12.288 MHz.  
Div 2: divide PLL/external clock by 2  
Div 1: divide PLL/external clock by 1  
0x0  
RW  
RW  
0
1
MCLK divider control. The internal master clock (MCLK) of the IC is used by 0x0  
all digital logic except the core. It must run at 12.288 MHz.  
0
1
Div 2: divide PLL/external clock by 2  
Div 1: divide PLL/external clock by 1  
Rev. C | Page 53 of 116  
 
 
ADAU1772  
Data Sheet  
Bits  
Bit Name  
COREN  
Settings  
Description  
Reset  
Access  
0
Main clock enable. When COREN = 0, it is only possible to write to this  
register and the PLL control registers (PLL_CTRL0 to PLL_CTRL5). This  
control also enables the PLL clock. If using the PLL, do not set COREN = 1  
until LOCK in Register PLL_CTRL5 is 1. Note that after COREN is enabled,  
writing to the parameters is disabled until setting DSP_CLK_EN in the  
CORE_ENABLE register.  
0x0  
RW  
0
1
Main clock disabled  
Main clock enabled  
PLL DENOMINATOR MSB REGISTER  
Address: 0x0001, Reset: 0x00, Name: PLL_CTRL0  
This register should only be written when PLL_EN = 0 in Register CLK_CONTROL.  
Table 31. Bit Descriptions for PLL_CTRL0  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0]  
M_MSB  
PLL denominator MSB.  
0x00  
RW  
PLL DENOMINATOR LSB REGISTER  
Address: 0x0002, Reset: 0x00, Name: PLL_CTRL1  
This register should only be written when PLL_EN = 0 in Register CLK_CONTROL.  
Table 32. Bit Descriptions for PLL_CTRL1  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0]  
M_LSB  
PLL denominator LSB.  
0x00  
RW  
PLL NUMERATOR MSB REGISTER  
Address: 0x0003, Reset: 0x00, Name: PLL_CTRL2  
This register should only be written when PLL_EN = 0 in Register CLK_CONTROL.  
Rev. C | Page 54 of 116  
 
 
 
Data Sheet  
ADAU1772  
Table 33. Bit Descriptions for PLL_CTRL2  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0]  
N_MSB  
PLL numerator MSB.  
0x00  
RW  
PLL NUMERATOR LSB REGISTER  
Address: 0x0004, Reset: 0x00, Name: PLL_CTRL3  
This register should only be written when PLL_EN = 0 in Register CLK_CONTROL.  
Table 34. Bit Descriptions for PLL_CTRL3  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0]  
N_LSB  
PLL numerator LSB.  
0x00  
RW  
PLL INTEGER SETTING REGISTER  
Address: 0x0005, Reset: 0x00, Name: PLL_CTRL4  
This register should only be written when PLL_EN = 0 in Register CLK_CONTROL.  
Table 35. Bit Descriptions for PLL_CTRL4  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[6:3]  
R
PLL integer setting.  
0x0  
RW  
0000 Reserved  
0001 Reserved  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
2
3
4
5
6
7
8
Rev. C | Page 55 of 116  
 
 
ADAU1772  
Data Sheet  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[2:1]  
X
PLL input clock divide ratio.  
00 Pin clock input/1  
01 Pin clock input/2  
10 Pin clock input/3  
11 Pin clock input/4  
PLL type.  
0x0  
RW  
0
PLL_TYPE  
0x0  
RW  
0
1
Integer  
Fractional  
PLL LOCK FLAG REGISTER  
Address: 0x0006, Reset: 0x00, Name: PLL_CTRL5  
Table 36. Bit Descriptions for PLL_CTRL5  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
0
LOCK  
Flag to indicate if the PLL is locked. This bit is read only.  
0x0  
R
0
1
PLL unlocked  
PLL locked  
CLKOUT SETTING SELECTION REGISTER  
Address: 0x0007, Reset: 0x00, Name: CLKOUT_SEL  
When Pin ADC_SDATA1/CLKOUT/MP6 is set to clock output mode, the frequency of the output clock is set here. CLKOUT can be used  
to provide a master clock to another IC, the clock for digital microphones, or as the clock for the PDM output stream. The 12 MHz/24  
MHz setting is used when clocking another IC, 3 MHz/6 MHz for PDMOUT, and 1.5 MHz/3 MHz when clocking digital microphones.  
The CLKOUT frequency is derived from the master clock frequency, which is assumed to (and always should) be 12.288 MHz. The  
12.288 MHz and 24.576 MHz output modes are not functional if PDM is enabled (Register PDM_OUT, Bits[1:0]).  
Rev. C | Page 56 of 116  
 
 
Data Sheet  
ADAU1772  
Table 37. Bit Descriptions for CLKOUT_SEL  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[2:0]  
CLKOUT_FREQ  
CLKOUT pin frequency.  
0x0  
RW  
000 Master clock × 2 (24.576 MHz)  
001 Master clock (12.288 MHz)  
010 Master clock/2 (6.144 MHz)  
011 Master clock/4 (3.072 MHz)  
100 Master clock/8 (1.536 MHz)  
111 Clock output off = 0  
REGULATOR CONTROL REGISTER  
Address: 0x0008, Reset: 0x00, Name: REGULATOR  
Table 38. Bit Descriptions for REGULATOR  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
2
REG_PD  
Powers down LDO regulator.  
Regulator active  
Regulator powered down  
Set regulator output voltage.  
0x0  
RW  
0
1
[1:0]  
REGV  
0x0  
RW  
00 1.2 V  
01 1.1 V  
10 Reserved  
11 Reserved  
Rev. C | Page 57 of 116  
 
ADAU1772  
Data Sheet  
CORE CONTROL REGISTER  
Address: 0x0009, Reset: 0x04, Name: CORE_CONTROL  
Table 39. Bit Descriptions for CORE_CONTROL  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
7
ZERO_STATE  
Zeroes the state of the data memory during bank switching. When  
switching active parameter banks between two settings, zeroing the state  
of the bank prevents the new filter settings from being active on old data  
that is recirculating in filters. Zeroing the state may prevent filter  
instability or unwanted noises upon bank switching.  
0x0  
RW  
0
1
Do not zero state during bank switch  
Zero state during back switch  
Selects active filter bank.  
[6:5]  
[2:1]  
BANK_SL  
CORE_FS  
0x0  
RW  
00 Bank A active  
01 Bank B active  
10 Reserved  
11 Reserved  
This bit sets the core sample rate. This setting should not be changed  
while the core is running. CORE_RUN must be set to 0 for this setting to be  
updated.  
00 Reserved  
01 96 kHz  
10 192 kHz  
11 Reserved  
0
CORE_RUN  
Run bit for the core. This bit should only be enabled when the program  
0x0  
RW  
and parameters are loaded and the sample rate settings have been set.  
CORE_RUN starts and stops the core at the beginning of the program.  
0
1
Core off  
Core on  
Rev. C | Page 58 of 116  
 
Data Sheet  
ADAU1772  
FILTER ENGINE AND LIMITER CONTROL REGISTER  
Address: 0x000B, Reset: 0x03, Name: CORE_ENABLE  
Disabling the limiter only disables the attack operation. The decay operation is always active, so a limiter can be safely disabled while it  
performs gain adjustments.  
Table 40. Bit Descriptions for CORE_ENABLE  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
1
LIM_EN  
Limiter enable. When the limiter function is disabled, a fixed max gain  
setting is applied to instructions using the limiters.  
0x1  
RW  
0
1
Disabled  
Enabled  
0
DSP_CLK_EN  
Enable the clock to the core. Directly controls the clock to the core. It should  
be set to 0 when the chip is used in a codec-only configuration, in which the  
core is not used. Writing to any of the biquad coefficient registers (Parameter  
Memory Address 0x0E0 to Address 0x2BF) is blocked until this bit is 1. This  
bit should not be used to start or stop the core while it is running, because  
it would immediately start or stop the core clock and not allow the program  
to finish. Instead, use CORE_RUN in Register CORE_CONTROL to start or  
stop the core.  
0x1  
RW  
0
1
Core clock disabled  
Core clock enabled  
Rev. C | Page 59 of 116  
 
ADAU1772  
Data Sheet  
DB VALUE REGISTER 0 READ  
Address: 0x000C, Reset: 0x00, Name: DBREG0  
The core can write data to this register, and the data is automatically converted to a level in dB. The most common usage is to determine  
the rms value of a signal by taking the absolute value, and then performing low-pass filtering and moving the result to the DBREG0  
register.  
Table 41. Bit Descriptions for DBREG0  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0]  
DBVAL0  
DB Value Register 0 read.  
0x00  
R
00000000 −96 dB  
00010000 −90 dB  
00100000 −84 dB  
00110000 −78 dB  
11100000 −12 dB  
11110000 −6 dB  
11111111 −0.375 dB  
DB VALUE REGISTER 1 READ  
Address: 0x000D, Reset: 0x00, Name: DBREG1  
The core can write data to this register, and the data is automatically converted to a level in dB. The most common usage is to determine  
the rms value of a signal by taking the absolute value, and then performing low-pass filtering and moving the result to the DBREG1  
register.  
Rev. C | Page 60 of 116  
 
 
Data Sheet  
ADAU1772  
Table 42. Bit Descriptions for DBREG1  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0]  
DBVAL1  
DB Value Register 1 read.  
0x00  
R
00000000 −96 dB  
00010000 −90 dB  
00100000 −84 dB  
00110000 −78 dB  
11100000 −12 dB  
11110000 −6 dB  
11111111 −0.375 dB  
DB VALUE REGISTER 2 READ  
Address: 0x000E, Reset: 0x00, Name: DBREG2  
The core can write data to this register, and the data is automatically converted to a level in dB. The most common usage is to determine  
the rms value of a signal by taking the absolute value, and then performing low-pass filtering and moving the result to the DBREG2  
register.  
Table 43. Bit Descriptions for DBREG2  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0]  
DBVAL2  
DB Value Register 2 read.  
0x00  
R
00000000 −96 dB  
00010000 −90 dB  
00100000 −84 dB  
00110000 −78 dB  
11100000 −12 dB  
11110000 −6 dB  
11111111 −0.375 dB  
Rev. C | Page 61 of 116  
 
ADAU1772  
Data Sheet  
CORE CHANNEL 0/CORE CHANNEL 1 INPUT SELECT REGISTER  
Address: 0x000F, Reset: 0x10, Name: CORE_IN_MUX_0_1  
Table 44. Bit Descriptions for CORE_IN_MUX_0_1  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:4]  
CORE_IN_MUX_SEL_1  
Core Input Channel 1 source.  
0x1  
RW  
0000 AIN0/DMIC0  
0001 AIN1/DMIC1  
0010 AIN2/DMIC2  
0011 AIN3/DMIC3  
0100 Reserved  
0101 Reserved  
0110 Reserved  
0111 Reserved  
1000 Reserved  
1001 Reserved  
1010 Reserved  
1011 Reserved  
1100 Input ASRC Channel 0  
1101 Input ASRC Channel 1  
Core Input Channel 0 source.  
0000 AIN0/DMIC0  
0001 AIN1/DMIC1  
0010 AIN2/DMIC2  
0011 AIN3/DMIC3  
0100 Reserved  
[3:0]  
CORE_IN_MUX_SEL_0  
0x0  
RW  
0101 Reserved  
0110 Reserved  
0111 Reserved  
1000 Reserved  
1001 Reserved  
1010 Reserved  
1011 Reserved  
1100 Input ASRC Channel 0  
1101 Input ASRC Channel 1  
Rev. C | Page 62 of 116  
 
Data Sheet  
ADAU1772  
CORE CHANNEL 2/CORE CHANNEL 3 INPUT SELECT REGISTER  
Address: 0x0010, Reset: 0x32, Name: CORE_IN_MUX_2_3  
Table 45. Bit Descriptions for CORE_IN_MUX_2_3  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:4]  
CORE_IN_MUX_SEL_3  
Core Input Channel 3 source.  
0x3  
RW  
0000 AIN0/DMIC0  
0001 AIN1/DMIC1  
0010 AIN2/DMIC2  
0011 AIN3/DMIC3  
0100 Reserved  
0101 Reserved  
0110 Reserved  
0111 Reserved  
1000 Reserved  
1001 Reserved  
1010 Reserved  
1011 Reserved  
1100 Input ASRC Channel 0  
1101 Input ASRC Channel 1  
Core Input Channel 2 source.  
0000 AIN0/DMIC0  
0001 AIN1/DMIC1  
0010 AIN2/DMIC2  
0011 AIN3/DMIC3  
0100 Reserved  
[3:0]  
CORE_IN_MUX_SEL_2  
0x2  
RW  
0101 Reserved  
0110 Reserved  
0111 Reserved  
1000 Reserved  
1001 Reserved  
1010 Reserved  
1011 Reserved  
1100 Input ASRC Channel 0  
1101 Input ASRC Channel 1  
Rev. C | Page 63 of 116  
 
ADAU1772  
Data Sheet  
DAC INPUT SELECT REGISTER  
Address: 0x0011, Reset: 0x10, Name: DAC_SOURCE_0_1  
Table 46. Bit Descriptions for DAC_SOURCE_0_1  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:4]  
DAC_SOURCE1  
DAC1 input source. This setting should not be changed while the core is  
running. CORE_RUN must be set to 0 for this setting to be updated.  
0x1  
RW  
0000 Core Output 0  
0001 Core Output 1  
0010 Core Output 2  
0011 Core Output 3  
0100 Reserved  
0101 Reserved  
0110 Reserved  
0111 Reserved  
1000 Reserved  
1001 Reserved  
1010 Reserved  
1011 Reserved  
1100 Input ASRC Channel 0  
1101 Input ASRC Channel 1  
[3:0]  
DAC_SOURCE0  
DAC0 input source. This setting should not be changed while the core is  
running. CORE_RUN must be set to 0 for this setting to be updated.  
0000 Core Output 0  
0x0  
RW  
0001 Core Output 1  
0010 Core Output 2  
0011 Core Output 3  
0100 Reserved  
0101 Reserved  
0110 Reserved  
0111 Reserved  
1000 Reserved  
1001 Reserved  
1010 Reserved  
1011 Reserved  
1100 Input ASRC Channel 0  
1101 Input ASRC Channel 1  
Rev. C | Page 64 of 116  
 
Data Sheet  
ADAU1772  
PDM MODULATOR INPUT SELECT REGISTER  
Address: 0x0012, Reset: 0x32, Name: PDM_SOURCE_0_1  
Table 47. Bit Descriptions for PDM_SOURCE_0_1  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:4]  
PDM_SOURCE1  
PDM Modulator Channel 1 input source.  
0x3  
RW  
0000 Core Output 0  
0001 Core Output 1  
0010 Core Output 2  
0011 Core Output 3  
0100 Reserved  
0101 Reserved  
0110 Reserved  
0111 Reserved  
1000 Reserved  
1001 Reserved  
1010 Reserved  
1011 Reserved  
1100 Input ASRC Channel 0  
1101 Input ASRC Channel 1  
[3:0]  
PDM_SOURCE0  
PDM Modulator Channel 0 input source.  
0x2  
RW  
0000 Core Output 0  
0001 Core Output 1  
0010 Core Output 2  
0011 Core Output 3  
0100 Reserved  
0101 Reserved  
0110 Reserved  
0111 Reserved  
1000 Reserved  
1001 Reserved  
1010 Reserved  
1011 Reserved  
1100 Input ASRC Channel 0  
1101 Input ASRC Channel 1  
Rev. C | Page 65 of 116  
 
ADAU1772  
Data Sheet  
SERIAL DATA OUTPUT 0/SERIAL DATA OUTPUT 1 INPUT SELECT REGISTER  
Address: 0x0013, Reset: 0x54, Name: SOUT_SOURCE_0_1  
Table 48. Bit Descriptions for SOUT_SOURCE_0_1  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:4]  
SOUT_SOURCE1  
Serial Data Output Channel 1 source select.  
0x5  
RW  
0000 Reserved  
0001 Reserved  
0010 Reserved  
0011 Reserved  
0100 Output ASRC Channel 0  
0101 Output ASRC Channel 1  
0110 Output ASRC Channel 2  
0111 Output ASRC Channel 3  
1000 Serial Input 0  
1001 Serial Input 1  
1010 Serial Input 2  
1011 Serial Input 3  
1100 Serial Input 4  
1101 Serial Input 5  
1110 Serial Input 6  
1111 Serial Input 7  
[3:0]  
SOUT_SOURCE0  
Serial Data Output Channel 0 source select.  
0000 Reserved  
0x4  
RW  
0001 Reserved  
0010 Reserved  
0011 Reserved  
0100 Output ASRC Channel 0  
0101 Output ASRC Channel 1  
0110 Output ASRC Channel 2  
0111 Output ASRC Channel 3  
1000 Serial Input 0  
1001 Serial Input 1  
1010 Serial Input 2  
Rev. C | Page 66 of 116  
 
Data Sheet  
ADAU1772  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
1011 Serial Input 3  
1100 Serial Input 4  
1101 Serial Input 5  
1110 Serial Input 6  
1111 Serial Input 7  
SERIAL DATA OUTPUT 2/SERIAL DATA OUTPUT 3 INPUT SELECT REGISTER  
Address: 0x0014, Reset: 0x76, Name: SOUT_SOURCE_2_3  
Table 49. Bit Descriptions for SOUT_SOURCE_2_3  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:4]  
SOUT_SOURCE3  
Serial Data Output Channel 3 source select.  
0x7  
RW  
0000 Reserved  
0001 Reserved  
0010 Reserved  
0011 Reserved  
0100 Output ASRC Channel 0  
0101 Output ASRC Channel 1  
0110 Output ASRC Channel 2  
0111 Output ASRC Channel 3  
1000 Serial Input 0  
1001 Serial Input 1  
1010 Serial Input 2  
1011 Serial Input 3  
1100 Serial Input 4  
1101 Serial Input 5  
1110 Serial Input 6  
1111 Serial Input 7  
[3:0]  
SOUT_SOURCE2  
Serial Data Output Channel 2 source select.  
0000 Reserved  
0x6  
RW  
0001 Reserved  
0010 Reserved  
Rev. C | Page 67 of 116  
 
ADAU1772  
Data Sheet  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
0011 Reserved  
0100 Output ASRC Channel 0  
0101 Output ASRC Channel 1  
0110 Output ASRC Channel 2  
0111 Output ASRC Channel 3  
1000 Serial Input 0  
1001 Serial Input 1  
1010 Serial Input 2  
1011 Serial Input 3  
1100 Serial Input 4  
1101 Serial Input 5  
1110 Serial Input 6  
1111 Serial Input 7  
SERIAL DATA OUTPUT 4/SERIAL DATA OUTPUT 5 INPUT SELECT REGISTER  
Address: 0x0015, Reset: 0x54, Name: SOUT_SOURCE_4_5  
Table 50. Bit Descriptions for SOUT_SOURCE_4_5  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:4]  
SOUT_SOURCE5  
Serial Data Output Channel 5 source select.  
0x5  
RW  
0000 Reserved  
0001 Reserved  
0010 Reserved  
0011 Reserved  
0100 Output ASRC Channel 0  
0101 Output ASRC Channel 1  
0110 Output ASRC Channel 2  
0111 Output ASRC Channel 3  
1000 Serial Input 0  
1001 Serial Input 1  
1010 Serial Input 2  
1011 Serial Input 3  
Rev. C | Page 68 of 116  
 
Data Sheet  
ADAU1772  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
1100 Serial Input 4  
1101 Serial Input 5  
1110 Serial Input 6  
1111 Serial Input 7  
[3:0]  
SOUT_SOURCE4  
Serial Data Output Channel 4 source select.  
0x4  
RW  
0000 Reserved  
0001 Reserved  
0010 Reserved  
0011 Reserved  
0100 Output ASRC Channel 0  
0101 Output ASRC Channel 1  
0110 Output ASRC Channel 2  
0111 Output ASRC Channel 3  
1000 Serial Input 0  
1001 Serial Input 1  
1010 Serial Input 2  
1011 Serial Input 3  
1100 Serial Input 4  
1101 Serial Input 5  
1110 Serial Input 6  
1111 Serial Input 7  
SERIAL DATA OUTPUT 6/SERIAL DATA OUTPUT 7 INPUT SELECT REGISTER  
Address: 0x0016, Reset: 0x76, Name: SOUT_SOURCE_6_7  
Table 51. Bit Descriptions for SOUT_SOURCE_6_7  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:4]  
SOUT_SOURCE7  
Serial Data Output Channel 7 source select.  
0x7  
RW  
0000 Reserved  
0001 Reserved  
0010 Reserved  
0011 Reserved  
Rev. C | Page 69 of 116  
 
ADAU1772  
Data Sheet  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
0100 Output ASRC Channel 0  
0101 Output ASRC Channel 1  
0110 Output ASRC Channel 2  
0111 Output ASRC Channel 3  
1000 Serial Input 0  
1001 Serial Input 1  
1010 Serial Input 2  
1011 Serial Input 3  
1100 Serial Input 4  
1101 Serial Input 5  
1110 Serial Input 6  
1111 Serial Input 7  
[3:0]  
SOUT_SOURCE6  
Serial Data Output Channel 6 source select.  
0000 Reserved  
0x6  
RW  
0001 Reserved  
0010 Reserved  
0011 Reserved  
0100 Output ASRC Channel 0  
0101 Output ASRC Channel 1  
0110 Output ASRC Channel 2  
0111 Output ASRC Channel 3  
1000 Serial Input 0  
1001 Serial Input 1  
1010 Serial Input 2  
1011 Serial Input 3  
1100 Serial Input 4  
1101 Serial Input 5  
1110 Serial Input 6  
1111 Serial Input 7  
ADC_SDATA0/ADC_SDATA1 CHANNEL SELECT REGISTER  
Address: 0x0017, Reset: 0x04, Name: ADC_SDATA_CH  
Rev. C | Page 70 of 116  
 
Data Sheet  
ADAU1772  
Table 52. Bit Descriptions for ADC_SDATA_CH  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[3:2]  
ADC_SDATA1_ST  
SDATA1 output channel output select. Selects the output channel at which  
ADC_SDATA1 starts to output data. The output port sequentially outputs  
data following this start channel according to the setting of Bit SAI.  
0x1  
RW  
00 Channel 0  
01 Channel 2  
10 Channel 4  
11 Channel 6  
[1:0]  
ADC_SDATA0_ST  
SDATA0 output channel output select. Selects the output channel at which  
0x0  
RW  
ADC_SDATA0 starts to output data. The output port sequentially outputs  
data following this start channel according to the setting of Bit SAI.  
00 Channel 0  
01 Channel 2  
10 Channel 4  
11 Channel 6  
OUTPUT ASRC0/OUTPUT ASRC1 SOURCE REGISTER  
Address: 0x0018, Reset: 0x10, Name: ASRCO_SOURCE_0_1  
Table 53. Bit Descriptions for ASRCO_SOURCE_0_1  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:4]  
ASRC_OUT_SOURCE1  
Output ASRC Channel 1 source select.  
0x1  
RW  
0000 Core Output 0  
0001 Core Output 1  
0010 Core Output 2  
0011 Core Output 3  
0100 ADC0  
0101 ADC1  
0110 ADC2  
0111 ADC3  
1000 Serial Input 0  
1001 Serial Input 1  
1010 Serial Input 2  
Rev. C | Page 71 of 116  
 
ADAU1772  
Data Sheet  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
1011 Serial Input 3  
1100 Serial Input 4  
1101 Serial Input 5  
1110 Serial Input 6  
1111 Serial Input 7  
[3:0]  
ASRC_OUT_SOURCE0  
Output ASRC Channel 0 source select.  
0x0  
RW  
0000 Core Output 0  
0001 Core Output 1  
0010 Core Output 2  
0011 Core Output 3  
0100 ADC0  
0101 ADC1  
0110 ADC2  
0111 ADC3  
1000 Serial Input 0  
1001 Serial Input 1  
1010 Serial Input 2  
1011 Serial Input 3  
1100 Serial Input 4  
1101 Serial Input 5  
1110 Serial Input 6  
1111 Serial Input 7  
OUTPUT ASRC2/OUTPUT ASRC3 SOURCE REGISTER  
Address: 0x0019, Reset: 0x32, Name: ASRCO_SOURCE_2_3  
Table 54. Bit Descriptions for ASRCO_SOURCE_2_3  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:4]  
ASRC_OUT_SOURCE3  
Output ASRC Channel 3 source select.  
0x3  
RW  
0000 Core Output 0  
0001 Core Output 1  
0010 Core Output 2  
0011 Core Output 3  
Rev. C | Page 72 of 116  
 
Data Sheet  
ADAU1772  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
0100 ADC0  
0101 ADC1  
0110 ADC2  
0111 ADC3  
1000 Serial Input 0  
1001 Serial Input 1  
1010 Serial Input 2  
1011 Serial Input 3  
1100 Serial Input 4  
1101 Serial Input 5  
1110 Serial Input 6  
1111 Serial Input 7  
[3:0]  
ASRC_OUT_SOURCE2  
Output ASRC Channel 2 source select.  
0x2  
RW  
0000 Core Output 0  
0001 Core Output 1  
0010 Core Output 2  
0011 Core Output 3  
0100 ADC0  
0101 ADC1  
0110 ADC2  
0111 ADC3  
1000 Serial Input 0  
1001 Serial Input 1  
1010 Serial Input 2  
1011 Serial Input 3  
1100 Serial Input 4  
1101 Serial Input 5  
1110 Serial Input 6  
1111 Serial Input 7  
INPUT ASRC CHANNEL SELECT REGISTER  
Address: 0x001A, Reset: 0x00, Name: ASRC_MODE  
Table 55. Bit Descriptions for ASRC_MODE  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[3:2]  
ASRC_IN_CH  
Input ASRC channel select.  
0x0  
RW  
00 Serial Input Port Channel 0/Serial Input Port Channel 1  
01 Serial Input Port Channel 2/Serial Input Port Channel 3  
Rev. C | Page 73 of 116  
 
ADAU1772  
Data Sheet  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
10 Serial Input Port Channel 4/Serial Input Port Channel 5  
11 Serial Input Port Channel 6/Serial Input Port Channel 7  
Output ASRC enable.  
1
ASRC_OUT_EN  
ASRC_IN_EN  
0x0  
RW  
0
1
Disabled  
Enabled  
0
Input ASRC enable.  
Disabled  
Enabled  
0x0  
RW  
0
1
ADC0/ADC1 CONTROL 0 REGISTER  
Address: 0x001B, Reset: 0x19, Name: ADC_CONTROL0  
Table 56. Bit Descriptions for ADC_CONTROL0  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
4
ADC1_MUTE  
Mute ADC1. Muting is accomplished by setting the volume control to  
maximum attenuation. This bit has no effect if volume control is bypassed.  
0x1  
RW  
0
1
Unmuted  
Muted  
3
ADC0_MUTE  
ADC_0_1_FS  
Mute ADC0. Muting is accomplished by setting the volume control to  
maximum attenuation. This bit has no effect if volume control is bypassed.  
Unmuted  
0x1  
0x1  
RW  
RW  
0
1
Muted  
[1:0]  
Sets ADC sample rate.  
00 96 kHz  
01 192 kHz  
10 Reserved  
11 Reserved  
Rev. C | Page 74 of 116  
 
Data Sheet  
ADAU1772  
ADC2/ADC3 CONTROL 0 REGISTER  
Address: 0x001C, Reset: 0x19, Name: ADC_CONTROL1  
Table 57. Bit Descriptions for ADC_CONTROL1  
Bits  
Bit Name  
Settings  
Description  
Mute ADC3.  
Unmuted  
Muted  
Reset  
Access  
4
ADC3_MUTE  
0x1  
RW  
0
1
3
ADC2_MUTE  
ADC_2_3_FS  
Mute ADC2. Muting is accomplished by setting the volume control to  
maximum attenuation. This bit has no effect if volume control is bypassed.  
Unmuted  
0x1  
0x1  
RW  
RW  
0
1
Muted  
[1:0]  
Sets ADC sample rate.  
00 96 kHz  
01 192 kHz  
10 Reserved  
11 Reserved  
Rev. C | Page 75 of 116  
 
ADAU1772  
Data Sheet  
ADC0/ADC1 CONTROL 1 REGISTER  
Address: 0x001D, Reset: 0x00, Name: ADC_CONTROL2  
Table 58. Bit Descriptions for ADC_CONTROL2  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[6:5]  
HP_0_1_EN  
High-pass filter settings.  
0x0  
RW  
00 Off  
01 1 Hz  
10 4 Hz  
11 8 Hz  
4
3
2
1
DMIC_POL0  
DMIC_SW0  
DCM_0_1  
Selects microphone polarity.  
0 positive, 1 negative  
1 positive, 0 negative  
0x0  
0x0  
0x0  
0x0  
RW  
RW  
RW  
RW  
0
1
Digital microphone swap.  
Channel swap off (left channel on rising edge, right channel on falling edge)  
Swap left and right  
0
1
Sets the input source to ADCs or digital microphones.  
Decimator source set to ADC  
Decimator source set to digital microphones  
0
1
ADC_1_EN  
Enable ADC1. This bit must be set in conjunction with the SINC_1_EN bit  
in the DECIM_PWR_MODES register to fully enable or disable the ADC.  
0
1
Disable  
Enable  
0
ADC_0_EN  
Enable ADC0. This bit must be set in conjunction with the SINC_0_EN bit  
in the DECIM_PWR_MODES register to fully enable or disable the ADC.  
0x0  
RW  
0
1
Disable  
Enable  
Rev. C | Page 76 of 116  
 
Data Sheet  
ADAU1772  
ADC2/ADC3 CONTROL 1 REGISTER  
Address: 0x001E, Reset: 0x00, Name: ADC_CONTROL3  
Table 59. Bit Descriptions for ADC_CONTROL3  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[6:5]  
HP_2_3_EN  
High-pass filter settings.  
0x0  
RW  
00 Off  
01 1 Hz  
10 4 Hz  
11 8 Hz  
4
3
2
1
DMIC_POL1  
DMIC_SW1  
DCM_2_3  
Microphone polarity.  
0 positive, 1 negative  
1 positive, 0 negative  
0x0  
0x0  
0x0  
0x0  
RW  
RW  
RW  
RW  
0
1
Digital microphone swap.  
Channel swap off (left channel on rising edge, right channel on falling edge)  
Swap left and right  
0
1
Sets the input source to ADCs or digital microphones.  
Decimator source set to ADC  
Decimator source set to digital microphone  
0
1
ADC_3_EN  
Enable ADC3. This bit must be set in conjunction with the SINC_3_EN bit  
in the DECIM_PWR_MODES register to fully enable or disable the ADC.  
0
1
Disable  
Enable  
0
ADC_2_EN  
Enable ADC2. This bit must be set in conjunction with the SINC_2_EN bit  
in the DECIM_PWR_MODES register to fully enable or disable the ADC.  
0x0  
RW  
0
1
Disable  
Enable  
Rev. C | Page 77 of 116  
 
ADAU1772  
Data Sheet  
ADC0 VOLUME CONTROL REGISTER  
Address: 0x001F, Reset: 0x00, Name: ADC0_VOLUME  
When SINC_0_EN is set, the volume starts to ramp from −95.625 dB to the value in this register. The volume ramp time is (number of  
steps) × 16/fS, where there are 256 steps between 0 dB and −95.625 dB. For example, with fS = 192 kHz, the volume ramps from −95.625 dB  
to 0 dB in 21 ms.  
Table 60. Bit Descriptions for ADC0_VOLUME  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0]  
ADC_0_VOL  
ADC0 volume setting.  
0x00  
RW  
00000000 0 dB  
00000001 −0.375 dB  
11111111 −95.625 dB  
ADC1 VOLUME CONTROL REGISTER  
Address: 0x0020, Reset: 0x00, Name: ADC1_VOLUME  
When SINC_1_EN is set, the volume starts to ramp from −95.625 dB to the value in this register. The volume ramp time is (number of  
steps) × 16/fS, where there are 256 steps between 0 dB and −95.625 dB. For example, with fS = 192 kHz, the volume ramps from −95.625 dB  
to 0 dB in 21 ms.  
Table 61. Bit Descriptions for ADC1_VOLUME  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0]  
ADC_1_VOL  
ADC1 volume setting.  
0x00  
RW  
00000000 0 dB  
00000001 −0.375 dB  
11111111 −95.625 dB  
Rev. C | Page 78 of 116  
 
 
Data Sheet  
ADAU1772  
ADC2 VOLUME CONTROL REGISTER  
Address: 0x0021, Reset: 0x00, Name: ADC2_VOLUME  
When SINC_2_EN is set, the volume starts to ramp from −95.625 dB to the value in this register. The volume ramp time is (number of  
steps) × 16/fS, where there are 256 steps between 0 dB and −95.625 dB. For example, with fS = 192 kHz, the volume ramps from −95.625 dB  
to 0 dB in 21 ms.  
Table 62. Bit Descriptions for ADC2_VOLUME  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0]  
ADC_2_VOL  
ADC2 volume setting.  
0x00  
RW  
00000000 0 dB  
00000001 −0.375 dB  
11111111 −95.625 dB  
ADC3 VOLUME CONTROL REGISTER  
Address: 0x0022, Reset: 0x00, Name: ADC3_VOLUME  
When SINC_3_EN is set, the volume starts to ramp from −95.625 dB to the value in this register. The volume ramp time is (number of  
steps) × 16/fS, where there are 256 steps between 0 dB and −95.625 dB. For example, with fS = 192 kHz, the volume ramps from −95.625 dB  
to 0 dB in 21 ms.  
Table 63. Bit Descriptions for ADC3_VOLUME  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0]  
ADC_3_VOL  
ADC3 volume setting.  
0x00  
RW  
00000000 0 dB  
00000001 −0.375 dB  
11111111 −95.625 dB  
Rev. C | Page 79 of 116  
 
 
ADAU1772  
Data Sheet  
PGA CONTROL 0 REGISTER  
Address: 0x0023, Reset: 0x40, Name: PGA_CONTROL_0  
This register controls the PGA connected to AIN0.  
Table 64. Bit Descriptions for PGA_CONTROL_0  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
7
PGA_EN0  
Select line or microphone input. Note that the PGA inverts the signal  
going through it.  
0x0  
RW  
0
1
AIN0 used as a single-ended line input. PGA powered down.  
AIN0 used as a single-ended microphone input. PGA powered up with  
slewing.  
6
PGA_MUTE0  
PGA_GAIN0  
Enable PGA mute. When PGA is muted, PGA_GAIN0 is ignored.  
Unmuted  
Muted  
0x1  
0x0  
RW  
RW  
0
1
[5:0]  
Set the gain of PGA0.  
000000 −12 dB  
000001 −11.25 dB  
010000 0 dB  
111110 +34.5 dB  
111111 +35.25 dB  
PGA CONTROL 1 REGISTER  
Address: 0x0024, Reset: 0x40, Name: PGA_CONTROL_1  
This register controls the PGA connected to AIN1.  
Rev. C | Page 80 of 116  
 
 
Data Sheet  
ADAU1772  
Table 65. Bit Descriptions for PGA_CONTROL_1  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
7
PGA_EN1  
Select line or microphone input. Note that the PGA inverts the signal  
going through it.  
0x0  
RW  
0
1
AIN1 used as a single-ended line input. PGA powered down.  
AIN1 used as a single-ended microphone input. PGA powered up with  
slewing.  
6
PGA_MUTE1  
PGA_GAIN1  
Enable PGA1 mute. When PGA is muted, PGA_GAIN1 is ignored.  
Unmuted  
Muted  
0x1  
0x0  
RW  
RW  
0
1
[5:0]  
Set the gain of PGA1.  
000000 −12 dB  
000001 −11.25 dB  
010000 0 dB  
111110 +34.5 dB  
111111 +35.25 dB  
PGA CONTROL 2 REGISTER  
Address: 0x0025, Reset: 0x40, Name: PGA_CONTROL_2  
This register controls the PGA connected to AIN2.  
Table 66. Bit Descriptions for PGA_CONTROL_2  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
7
PGA_EN2  
Select line or microphone input. Note that the PGA inverts the signal  
going through it.  
0x0  
RW  
0
1
AIN2 used as a single-ended line input. PGA powered down.  
AIN2 used as a single-ended microphone input. PGA powered up with  
slewing.  
6
PGA_MUTE2  
PGA_GAIN2  
Enable PGA2 mute. When PGA is muted, PGA_GAIN2 is ignored.  
Unmuted  
Muted  
0x1  
0x0  
RW  
RW  
0
1
[5:0]  
Set the gain of PGA2.  
000000 −12 dB  
000001 −11.25 dB  
010000 0 dB  
111110 +34.5 dB  
111111 +35.25 dB  
Rev. C | Page 81 of 116  
 
ADAU1772  
Data Sheet  
PGA CONTROL 3 REGISTER  
Address: 0x0026, Reset: 0x40, Name: PGA_CONTROL_3  
This register controls the PGA connected to AIN3.  
Table 67. Bit Descriptions for PGA_CONTROL_3  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
7
PGA_EN3  
Select line or microphone input. Note that the PGA inverts the signal  
going through it.  
0x0  
RW  
0
1
AIN3 used as a single-ended line input. PGA powered down.  
AIN3 used as a single-ended microphone input. PGA powered up with  
slewing.  
6
PGA_MUTE3  
PGA_GAIN3  
Enable PGA3 mute. When PGA is muted, PGA_GAIN3 is ignored.  
Unmuted  
Muted  
0x1  
0x0  
RW  
RW  
0
1
[5:0]  
Set the gain of PGA3.  
000000 −12 dB  
000001 −11.25 dB  
010000 0 dB  
111110 +34.5 dB  
111111 +35.25 dB  
Rev. C | Page 82 of 116  
 
Data Sheet  
ADAU1772  
PGA SLEW CONTROL REGISTER  
Address: 0x0027, Reset: 0x00, Name: PGA_STEP_CONTROL  
If PGA slew is disabled with the SLEW_PDx controls, the SLEW_RATE parameter is ignored for that PGA block.  
Table 68. Bit Descriptions for PGA_STEP_CONTROL  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[5:4]  
SLEW_RATE  
Controls how fast the PGA is slewed when changing gain.  
0x0  
RW  
00 21.5 ms  
01 42.5 ms  
10 85 ms  
3
2
1
0
SLEW_PD3  
SLEW_PD2  
SLEW_PD1  
SLEW_PD0  
PGA3 slew disable.  
0x0  
0x0  
0x0  
0x0  
RW  
RW  
RW  
RW  
0
1
PGA slew enabled  
PGA slew disabled  
PGA2 slew disable.  
PGA slew enabled  
PGA slew disabled  
PGA1 slew disable.  
PGA slew enabled  
PGA slew disabled  
PGA0 slew disable.  
PGA slew enabled  
PGA slew disabled  
0
1
0
1
0
1
Rev. C | Page 83 of 116  
 
ADAU1772  
Data Sheet  
PGA 10 dB GAIN BOOST REGISTER  
Address: 0x0028, Reset: 0x00, Name: PGA_10DB_BOOST  
Each PGA can have an additional +10 dB gain added, making the PGA gain range −2 dB to +46 dB.  
Table 69. Bit Descriptions for PGA_10DB_BOOST  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
3
PGA_3_BOOST  
Boost control for PGA3.  
0x0  
RW  
0
1
Default PGA gain set in Register PGA_CONTROL_3  
Additional 10 dB gain above setting in Register PGA_CONTROL_3  
Boost control for PGA2.  
2
1
0
PGA_2_BOOST  
PGA_1_BOOST  
PGA_0_BOOST  
0x0  
0x0  
0x0  
RW  
RW  
RW  
0
1
Default PGA gain set in Register PGA_CONTROL_2  
Additional 10 dB gain above setting in Register PGA_CONTROL_2  
Boost control for PGA1.  
Default PGA gain set in Register PGA_CONTROL_1  
Additional 10 dB gain above setting in Register PGA_CONTROL_1  
Boost control for PGA0.  
0
1
0
1
Default PGA gain set in Register PGA_CONTROL_0  
Additional 10 dB gain above setting in Register PGA_CONTROL_0  
Rev. C | Page 84 of 116  
 
Data Sheet  
ADAU1772  
INPUT AND OUTPUT CAPACITOR CHARGING REGISTER  
Address: 0x0029, Reset: 0x3F, Name: POP_SUPPRESS  
Table 70. Bit Descriptions for POP_SUPPRESS  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
5
HP_POP_DIS1  
Disable pop suppression on Headphone Output 1.  
0x1  
RW  
0
1
Enabled  
Disabled  
4
3
2
1
0
HP_POP_DIS0  
PGA_POP_DIS3  
PGA_POP_DIS2  
PGA_POP_DIS1  
PGA_POP_DIS0  
Disable pop suppression on Headphone Output 0.  
Enabled  
Disabled  
0x1  
0x1  
0x1  
0x1  
0x1  
RW  
RW  
RW  
RW  
RW  
0
1
Disable pop suppression on PGA3 input.  
Enabled  
Disabled  
0
1
Disable pop suppression on PGA2 input.  
Enabled  
Disabled  
0
1
Disable pop suppression on PGA1 input.  
Enabled  
Disabled  
0
1
Disable pop suppression on PGA0 input.  
0
1
Enabled  
Disabled  
Rev. C | Page 85 of 116  
 
ADAU1772  
Data Sheet  
DSP BYPASS PATH REGISTER  
Address: 0x002A, Reset: 0x00, Name: TALKTHRU  
Table 71. Bit Descriptions for TALKTHRU  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[1:0]  
TALKTHRU_PATH  
Signal path when DSP bypass is enabled.  
0x0  
RW  
00 No DSP bypass  
01 ADC0 to DAC0  
10 ADC1 to DAC1  
11 ADC0 and ADC1 to DAC0 and DAC1  
DSP BYPASS GAIN FOR PGA0 REGISTER  
Address: 0x002B, Reset: 0x00, Name: TALKTHRU_GAIN0  
Table 72. Bit Descriptions for TALKTHRU_GAIN0  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0]  
TALKTHRU_GAIN0_VAL  
Sets the DAC0 volume when DSP bypass mode is enabled.  
0x00  
RW  
DSP BYPASS GAIN FOR PGA1 REGISTER  
Address: 0x002C, Reset: 0x00, Name: TALKTHRU_GAIN1  
Table 73. Bit Descriptions for TALKTHRU_GAIN1  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0]  
TALKTHRU_GAIN1_VAL  
Sets the DAC1 volume when DSP bypass mode is enabled.  
0x00  
RW  
Rev. C | Page 86 of 116  
 
 
 
Data Sheet  
ADAU1772  
MIC_BIAS0_1 CONTROL REGISTER  
Address: 0x002D, Reset: 0x00, Name: MIC_BIAS  
Table 74. Bit Descriptions for MIC_BIAS  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
5
MIC_EN1  
MICBIAS1 output enable.  
Disabled  
Enabled  
0x0  
RW  
0
1
4
1
0
MIC_EN0  
MICBIAS0 output enable.  
Disabled  
Enabled  
0x0  
0x0  
0x0  
RW  
RW  
RW  
0
1
MIC_GAIN1  
MIC_GAIN0  
Level of the MICBIAS1 output.  
0.9 × AVDD  
0.65 × AVDD  
0
1
Level of the MICBIAS0 output.  
0.9 × AVDD  
0.65 × AVDD  
0
1
DAC CONTROL REGISTER  
Address: 0x002E, Reset: 0x18, Name: DAC_CONTROL1  
Rev. C | Page 87 of 116  
 
 
ADAU1772  
Data Sheet  
Table 75. Bit Descriptions for DAC_CONTROL1  
Bits  
Bit Name  
Settings  
Description  
Invert input polarity.  
Normal  
Reset  
Access  
5
DAC_POL  
0x0  
RW  
0
1
Inverted  
4
3
1
0
DAC1_MUTE  
DAC0_MUTE  
DAC1_EN  
Mute DAC1.  
Unmuted  
Muted  
0x1  
0x1  
0x0  
0x0  
RW  
RW  
RW  
RW  
0
1
Mute DAC0.  
Unmuted  
Muted  
0
1
Enable DAC1.  
Disable DAC1  
Enable DAC1  
Enable DAC0.  
Disable DAC0  
Enable DAC0  
0
1
DAC0_EN  
0
1
DAC0 VOLUME CONTROL REGISTER  
Address: 0x002F, Reset: 0x00, Name: DAC0_VOLUME  
Table 76. Bit Descriptions for DAC0_VOLUME  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0]  
DAC_0_VOL  
DAC0 volume setting.  
0x00  
RW  
00000000 0 dB  
00000001 −0.375 dB  
11111111 −95.625 dB  
DAC1 VOLUME CONTROL REGISTER  
Address: 0x0030, Reset: 0x00, Name: DAC1_VOLUME  
Rev. C | Page 88 of 116  
 
 
Data Sheet  
ADAU1772  
Table 77. Bit Descriptions for DAC1_VOLUME  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0]  
DAC_1_VOL  
DAC1 volume setting.  
0x00  
RW  
00000000 0 dB  
00000001 −0.375 dB  
11111111 −95.625 dB  
HEADPHONE OUTPUT MUTES REGISTER  
Address: 0x0031, Reset: 0x0F, Name: OP_STAGE_MUTES  
Table 78. Bit Descriptions for OP_STAGE_MUTES  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[3:2]  
HP_MUTE_R  
Mute the right output pins. When a pin is muted, it can be used as a  
common-mode output.  
0x3  
RW  
00 Outputs unmuted  
01 HPOUTRP/LOUTRP muted, HPOUTRN/LOUTRN unmuted  
10 HPOUTRP/LOUTRP unmuted, HPOUTRN/LOUTRN muted  
11 Both output pins muted  
[1:0]  
HP_MUTE_L  
Mute the left output pins. When a pin is muted, it can be used as a  
common-mode output.  
0x3  
RW  
00 Outputs unmuted  
01 HPOUTLP/LOUTLP muted, HPOUTLN/LOUTLN unmuted  
10 HPOUTLP/LOUTLP unmuted, HPOUTLN/LOUTLN muted  
11 Both output pins muted  
Rev. C | Page 89 of 116  
 
ADAU1772  
Data Sheet  
SERIAL PORT CONTROL 0 REGISTER  
Address: 0x0032, Reset: 0x00, Name: SAI_0  
Using 16-bit serial I/O limits device performance.  
Table 79. Bit Descriptions for SAI_0  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:6]  
SDATA_FMT  
Serial data format.  
0x0  
RW  
00 TDM, I2S—data delayed from edge of LRCLK by 1 BCLK cycle  
01 TDM, left justified—data synchronized to edge of LRCLK  
10 Right justified, 24-bit data  
11 Right justified, 16-bit data  
Serial port mode.  
[5:4]  
[3:0]  
SAI  
0x0  
0x0  
RW  
RW  
00 Stereo (I2S, left justified, right justified)  
01 TDM2  
10 TDM4  
11 TDM8  
SER_PORT_FS  
Sampling rate on the serial ports.  
0000 48 kHz  
0001 8 kHz  
0010 12 kHz  
0011 16 kHz  
0100 24 kHz  
0101 32 kHz  
0110 96 kHz  
0111 192 kHz  
Rev. C | Page 90 of 116  
 
Data Sheet  
ADAU1772  
SERIAL PORT CONTROL 1 REGISTER  
Address: 0x0033, Reset: 0x00, Name: SAI_1  
Using 16-bit serial I/O limits device performance.  
Table 80. Bit Descriptions for SAI_1  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
7
TDM_TS  
Select whether to tristate unused TDM channels or to actively drive these  
data slots.  
0x0  
RW  
0
1
Unused outputs driven  
Unused outputs tristated  
6
5
4
3
2
1
0
BCLK_TDMC  
LR_MODE  
LR_POL  
Bit width in TDM mode.  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
0
1
24-bit data in each TDM channel  
16-bit data in each TDM channel  
Sets LRCLK mode.  
50% duty cycle clock  
Pulse—LRCLK is a single BCLK cycle wide pulse  
Sets LRCLK polarity.  
50%: when LRCLK goes low and then high, pulse mode is short positive pulse  
50%: when LRCLK goes high and then low, pulse mode is short negative pulse  
Sets data to be input/output either MSB or LSB first.  
MSB first data  
0
1
0
1
SAI_MSB  
BCLKRATE  
BCLKEDGE  
SAI_MS  
0
1
LSB first data  
Sets the number of bit clock cycles per data channel.  
32 BCLK cycles/channel  
16 BCLK cycles/channel  
0
1
Sets the bit clock edge on which data changes.  
Data changes on falling edge  
Data changes on rising edge  
0
1
Sets the serial port into master or slave mode.  
LRCLK/BCLK slave  
LRCLK/BCLK master  
0
1
Rev. C | Page 91 of 116  
 
ADAU1772  
Data Sheet  
TDM OUTPUT CHANNEL DISABLE REGISTER  
Address: 0x0034, Reset: 0x00, Name: SOUT_CONTROL0  
This register is for use only in TDM mode.  
Table 81. Bit Descriptions for SOUT_CONTROL0  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
7
TDM7_DIS  
Disable data in TDM Output Slot 7.  
Output channel enabled  
Output channel disabled  
Disable data in TDM Output Slot 6.  
Output channel enabled  
Output channel disabled  
Disable data in TDM Output Slot 5.  
Output channel enabled  
Output channel disabled  
Disable data in TDM Output Slot 4.  
Output channel enabled  
Output channel disabled  
Disable data in TDM Output Slot 3.  
Output channel enabled  
Output channel disabled  
Disable data in TDM Output Slot 2.  
Output channel enabled  
Output channel disabled  
Disable data in TDM Output Slot 1.  
Output channel enabled  
Output channel disabled  
Disable data in TDM Output Slot 0.  
Output channel enabled  
0x0  
RW  
0
1
6
5
4
3
2
1
0
TDM6_DIS  
TDM5_DIS  
TDM4_DIS  
TDM3_DIS  
TDM2_DIS  
TDM1_DIS  
TDM0_DIS  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
Output channel disabled  
Rev. C | Page 92 of 116  
 
Data Sheet  
ADAU1772  
PDM ENABLE REGISTER  
Address: 0x0036, Reset: 0x00, Name: PDM_OUT  
Table 82. Bit Descriptions for PDM_OUT  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
4
PDM_CTRL  
Enable the control pattern in the PDM data stream.  
0x0  
RW  
0
1
Disabled  
Enabled  
[3:2]  
[1:0]  
PDM_CH  
PDM_EN  
Selects the channel on which the control patterns are written. These  
control bits should not be changed while the PDM channel is operating  
and transmitting audio.  
0x0  
RW  
00 Both channels  
01 Left channel  
10 Right channel  
11 Reserved  
Enable PDM output on Pin PDMOUT.  
0x0  
RW  
00 PDM disabled  
01 PDM left signal in both PDM channels  
10 PDM right signal in both PDM channels  
11 PDM stereo  
Rev. C | Page 93 of 116  
 
ADAU1772  
Data Sheet  
PDM PATTERN SETTING REGISTER  
Address: 0x0037, Reset: 0x00, Name: PDM_PATTERN  
Table 83. Bit Descriptions for PDM_PATTERN  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0]  
PAT TERN  
PDM pattern byte. The PDM pattern byte should not be changed while  
the PDM channel is operating and transmitting the pattern.  
0x00  
RW  
MP0 FUNCTION SETTING REGISTER  
Address: 0x0038, Reset: 0x00, Name: MODE_MP0  
Table 84. Bit Descriptions for MODE_MP0  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[4:0]  
MODE_MP0_VAL  
Sets the function of Pin DAC_SDATA/MP0.  
0x00  
RW  
00000 Serial Input 0  
00001 Mute ADC0  
00010 Mute ADC1  
00011 Mute ADC2  
00100 Mute ADC3  
00101 Mute ADC0 and ADC1  
00110 Mute ADC2 and ADC3  
00111 Mute all ADCs  
01000 Mute DAC0  
01001 Mute DAC1  
01010 Mute both DACs  
Rev. C | Page 94 of 116  
 
 
Data Sheet  
ADAU1772  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
01011 A/B bank switch  
01100 Reserved  
01101 Reserved  
01110 Enable compression  
01111 DSP bypass enable  
10000 Push-button volume up  
10001 Push-button volume down  
MP1 FUNCTION SETTING REGISTER  
Address: 0x0039, Reset: 0x10, Name: MODE_MP1  
Table 85. Bit Descriptions for MODE_MP1  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[4:0]  
MODE_MP1_VAL  
Sets the function of Pin ADC_SDATA0/PDMOUT/MP1.  
0x10  
RW  
00000 Serial Output 0  
00001 Mute ADC0  
00010 Mute ADC1  
00011 Mute ADC2  
00100 Mute ADC3  
00101 Mute ADC0 and ADC1  
00110 Mute ADC2 and ADC3  
00111 Mute all ADCs  
01000 Mute DAC0  
01001 Mute DAC1  
01010 Mute both DACs  
01011 A/B bank switch  
01100 Reserved  
01101 Reserved  
01110 Enable compression  
01111 DSP bypass enable  
Rev. C | Page 95 of 116  
 
ADAU1772  
Data Sheet  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
10000 Push-button volume up  
10001 Push-button volume down  
10010 PDM modulator output  
MP2 FUNCTION SETTING REGISTER  
Address: 0x003A, Reset: 0x00, Name: MODE_MP2  
Table 86. Bit Descriptions for MODE_MP2  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[4:0]  
MODE_MP2_VAL  
Sets the function of Pin BCLK/MP2.  
0x00  
RW  
00000 Bit clock  
00001 Mute ADC0  
00010 Mute ADC1  
00011 Mute ADC2  
00100 Mute ADC3  
00101 Mute ADC0 and ADC1  
00110 Mute ADC2 and ADC3  
00111 Mute all ADCs  
01000 Mute DAC0  
01001 Mute DAC1  
01010 Mute both DACs  
01011 A/B bank switch  
01100 Reserved  
01101 Reserved  
01110 Enable compression  
01111 DSP bypass enable  
10000 Push-button volume up  
10001 Push-button volume down  
Rev. C | Page 96 of 116  
 
Data Sheet  
ADAU1772  
MP3 FUNCTION SETTING REGISTER  
Address: 0x003B, Reset: 0x00, Name: MODE_MP3  
Table 87. Bit Descriptions for MODE_MP3  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[4:0]  
MODE_MP3_VAL  
Sets the function of Pin LRCLK/MP3.  
0x00  
RW  
00000 Left/right clock  
00001 Mute ADC0  
00010 Mute ADC1  
00011 Mute ADC2  
00100 Mute ADC3  
00101 Mute ADC0 and ADC1  
00110 Mute ADC2 and ADC3  
00111 Mute all ADCs  
01000 Mute DAC0  
01001 Mute DAC1  
01010 Mute both DACs  
01011 A/B bank switch  
01100 Reserved  
01101 Reserved  
01110 Enable compression  
01111 DSP bypass enable  
10000 Push-button volume up  
10001 Push-button volume down  
Rev. C | Page 97 of 116  
 
ADAU1772  
Data Sheet  
MP4 FUNCTION SETTING REGISTER  
Address: 0x003C, Reset: 0x00, Name: MODE_MP4  
Table 88. Bit Descriptions for MODE_MP4  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[4:0]  
MODE_MP4_VAL  
Sets the function of Pin DMIC0_1/MP4.  
0x00  
RW  
00000 Digital Microphone Input Channel 0/Digital Microphone Input Channel 1  
00001 Mute ADC0  
00010 Mute ADC1  
00011 Mute ADC2  
00100 Mute ADC3  
00101 Mute ADC0 and ADC1  
00110 Mute ADC2 and ADC3  
00111 Mute all ADCs  
01000 Mute DAC0  
01001 Mute DAC1  
01010 Mute both DACs  
01011 A/B bank switch  
01100 Reserved  
01101 Reserved  
01110 Enable compression  
01111 DSP bypass enable  
10000 Push-button volume up  
10001 Push-button volume down  
Rev. C | Page 98 of 116  
 
Data Sheet  
ADAU1772  
MP5 FUNCTION SETTING REGISTER  
Address: 0x003D, Reset: 0x00, Name: MODE_MP5  
Table 89. Bit Descriptions for MODE_MP5  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[4:0]  
MODE_MP5_VAL  
Sets the function of Pin DMIC2_3/MP5.  
0x00  
RW  
00000 Digital Microphone Input Channel 2/Digital Microphone Input Channel 3  
00001 Mute ADC0  
00010 Mute ADC1  
00011 Mute ADC2  
00100 Mute ADC3  
00101 Mute ADC0 and ADC1  
00110 Mute ADC2 and ADC3  
00111 Mute all ADCs  
01000 Mute DAC0  
01001 Mute DAC1  
01010 Mute both DACs  
01011 A/B bank switch  
01100 Reserved  
01101 Reserved  
01110 Enable compression  
01111 DSP bypass enable  
10000 Push-button volume up  
10001 Push-button volume down  
Rev. C | Page 99 of 116  
 
ADAU1772  
Data Sheet  
MP6 FUNCTION SETTING REGISTER  
Address: 0x003E, Reset: 0x11, Name: MODE_MP6  
Table 90. Bit Descriptions for MODE_MP6  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[4:0]  
MODE_MP6_VAL  
Sets the function of Pin ADC_SDATA1/CLKOUT/MP6.  
0x11  
RW  
00000 Serial Output 1  
00001 Mute ADC0  
00010 Mute ADC1  
00011 Mute ADC2  
00100 Mute ADC3  
00101 Mute ADC0 and ADC1  
00110 Mute ADC2 and ADC3  
00111 Mute all ADCs  
01000 Mute DAC0  
01001 Mute DAC1  
01010 Mute both DACs  
01011 A/B bank switch  
01100 Reserved  
01101 Reserved  
01110 Enable compression  
01111 DSP bypass enable  
10000 Push-button volume up  
10001 Push-button volume down  
10010 Clock output  
Rev. C | Page 100 of 116  
 
Data Sheet  
ADAU1772  
PUSH-BUTTON VOLUME SETTINGS REGISTER  
Address: 0x003F, Reset: 0x00, Name: PB_VOL_SET  
This register must be written before Bits PB_VOL_CONV_VAL are set to something other than the default value. Otherwise, the push-  
button volume control is initialized to −96 dB.  
Table 91. Bit Descriptions for PB_VOL_SET  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:3]  
PB_VOL_INIT_VAL  
Sets the initial volume of the push-button volume control. Each increment of  
this register attenuates the level by 1.5 dB, from 0 dB to −46.5 dB.  
0x00  
RW  
00000 0.0 dB  
00001 −1.5 dB  
11111 −46.5 dB  
[2:0]  
HOLD  
Sets the length of time that the button is held before the volume ramp  
0x0  
RW  
begins.  
000 150 ms  
001 300 ms  
010 450 ms  
011 600 ms  
100 900 ms  
101 1200 ms  
Rev. C | Page 101 of 116  
 
ADAU1772  
Data Sheet  
PUSH-BUTTON VOLUME CONTROL ASSIGNMENT REGISTER  
Address: 0x0040, Reset: 0x87, Name: PB_VOL_CONV  
Table 92. Bit Descriptions for PB_VOL_CONV  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:6]  
GAINSTEP  
Sets the gain step for each press of the volume control button.  
0x2  
RW  
00 0.375 dB/press  
01 1.5 dB/press  
10 3.0 dB/press  
11 4.5 dB/press  
[5:3]  
RAMPSPEED  
Sets the speed in dB/sec at which the volume control ramps when a  
button is pressed.  
000 60 dB/sec  
0x0  
RW  
001 48 dB/sec  
010 36 dB/sec  
011 30 dB/sec  
100 24 dB/sec  
101 18 dB/sec  
110 12 dB/sec  
111 6 dB/sec  
[2:0]  
PB_VOL_CONV_VAL  
Converters controlled by push-button volume. The push-button volume 0x7  
RW  
control is enabled when these bits are set to something other than the  
default setting (111). When set to 111, the push-button volume is  
disabled and the converter volumes are set by the ADCx_VOLUME and  
DACx_VOLUME registers.  
000 ADC0 and ADC1  
001 ADC2 and ADC3  
010 All ADCs  
011 DAC0 and DAC1  
100 DAC0  
101 DAC1  
110 Reserved  
111 None (default)  
Rev. C | Page 102 of 116  
 
Data Sheet  
ADAU1772  
DEBOUNCE MODES REGISTER  
Address: 0x0041, Reset: 0x05, Name: DEBOUNCE_MODE  
Table 93. Bit Descriptions for DEBOUNCE_MODE  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[2:0]  
DEBOUNCE  
The debounce time setting for the MPx inputs.  
0x5  
RW  
000 Debounce 300 µs  
001 Debounce 600 µs  
010 Debounce 900 µs  
011 Debounce 5 ms  
100 Debounce 10 ms  
101 Debounce 20 ms  
110 Debounce 40 ms  
111 No debounce  
HEADPHONE LINE OUTPUT SELECT REGISTER  
Address: 0x0043, Reset: 0x0F, Name: OP_STAGE_CTRL  
Rev. C | Page 103 of 116  
 
 
ADAU1772  
Data Sheet  
Table 94. Bit Descriptions for OP_STAGE_CTRL  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
5
HP_EN_R  
Sets the right channel in line output or headphone mode.  
Right output in line output mode  
Right output in headphone mode  
0x0  
RW  
0
1
4
HP_EN_L  
Sets the left channel in line output or headphone mode.  
Left output in line output mode  
Left output in headphone output mode  
0x0  
0x3  
RW  
RW  
0
1
[3:2]  
HP_PDN_R  
Output stage power control. Powers down the right output stage, regardless  
of whether the device is in line output or headphone mode. After enabling  
the headphone output, wait at least 6 ms before unmuting the headphone  
output by setting HP_MUTE_R in the OP_STAGE_MUTES register to 00.  
00 HPOUTRN/LOUTRN and HPOUTRP/LOUTRP outputs enabled  
01 HPOUTRN/LOUTRN enabled, HPOUTRP/LOUTRP disabled  
10 HPOUTRN/LOUTRN disabled, HPOUTRP/LOUTRP enabled  
11 Right output stages powered down  
[1:0]  
HP_PDN_L  
Output stage power control. Powers down the left output stage, regardless  
of whether the device is in line output or headphone mode. After enabling  
the headphone output, wait at least 6 ms before unmuting the headphone  
output by setting HP_MUTE_L in the OP_STAGE_MUTES register to 00.  
0x3  
RW  
00 HPOUTLN/LOUTLN and HPOUTLP/LOUTLP outputs enabled  
01 HPOUTLN/LOUTLN enabled, HPOUTLP/LOUTLP disabled  
10 HPOUTLN/LOUTLN disabled, HPOUTLP/LOUTLP enabled  
11 Left output stages powered down  
Rev. C | Page 104 of 116  
Data Sheet  
ADAU1772  
DECIMATOR POWER CONTROL REGISTER  
Address: 0x0044, Reset: 0x00, Name: DECIM_PWR_MODES  
These bits enable clocks to the digital filters and ASRC decimator filters of the ADCs. These bits must be enabled for all channels that will be used  
in the design. To use the ADCs, these SINC_x_EN bits must be enabled along with the appropriate ADC_x_EN bits in the ADC_CONTROL2  
and ADC_CONTROL3 registers. If the digital microphone inputs are used, the SINC_x_EN bits can be set without setting ADC_x_EN.  
Table 95. Bit Descriptions for DECIM_PWR_MODES  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
7
DEC_3_EN  
Control power to the ASRC3 decimator.  
Powered down  
Powered up  
0x0  
RW  
0
1
6
5
4
3
2
1
0
DEC_2_EN  
DEC_1_EN  
DEC_0_EN  
SINC_3_EN  
SINC_2_EN  
SINC_1_EN  
SINC_0_EN  
Control power to the ASRC2 decimator.  
Powered down  
Powered up  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
0
1
Control power to the ASRC1 decimator.  
Powered down  
Powered up  
0
1
Control power to the ASRC0 decimator.  
Powered down  
Powered up  
0
1
ADC3 filter power control.  
Powered down  
Powered up  
0
1
ADC2 filter power control.  
Powered down  
Powered up  
0
1
ADC1 filter power control.  
Powered down  
Powered up  
0
1
ADC0 filter power control.  
Powered down  
Powered up  
0
1
Rev. C | Page 105 of 116  
 
ADAU1772  
Data Sheet  
ASRC INTERPOLATOR AND DAC MODULATOR POWER CONTROL REGISTER  
Address: 0x0045, Reset: 0x00, Name: INTERP_PWR_MODES  
Table 96. Bit Descriptions for INTERP_PWR_MODES  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
3
MOD_1_EN  
DAC Modulator 1 enable.  
Powered down  
Powered up  
0x0  
RW  
0
1
2
1
0
MOD_0_EN  
INT_1_EN  
INT_0_EN  
DAC Modulator 0 enable.  
Powered down  
Powered up  
0x0  
0x0  
0x0  
RW  
RW  
RW  
0
1
ASRC Interpolator 1 enable.  
Powered down  
Powered up  
0
1
ASRC Interpolator 0 enable.  
Powered down  
Powered up  
0
1
ANALOG BIAS CONTROL 0 REGISTER  
Address: 0x0046, Reset: 0x00, Name: BIAS_CONTROL0  
Rev. C | Page 106 of 116  
 
 
Data Sheet  
ADAU1772  
Table 97. Bit Descriptions for BIAS_CONTROL0  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:6]  
HP_IBIAS  
Headphone output bias current setting. Higher bias currents result in  
higher performance.  
0x0  
RW  
00 Normal operation (default)  
01 Extreme power saving  
10 Enhanced performance  
11 Power saving  
[5:4]  
[3:2]  
[1:0]  
AFE_IBIAS01  
ADC_IBIAS23  
ADC_IBIAS01  
Analog Front-End 0 and Analog Front-End 1 bias current setting. Higher  
bias currents result in higher performance.  
00 Normal operation (default)  
01 Extreme power saving  
10 Enhanced performance  
11 Power saving  
0x0  
0x0  
0x0  
RW  
RW  
RW  
ADC2 and ADC3 bias current setting. Higher bias currents result in higher  
performance.  
00 Normal operation (default)  
01 Reserved  
10 Enhanced performance  
11 Power saving  
ADC0 and ADC1 bias current setting. Higher bias currents result in higher  
performance.  
00 Normal operation (default)  
01 Reserved  
10 Enhanced performance  
11 Power saving  
ANALOG BIAS CONTROL 1 REGISTER  
Address: 0x0047, Reset: 0x00, Name: BIAS_CONTROL1  
Table 98. Bit Descriptions for BIAS_CONTROL1  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
6
CBIAS_DIS  
Central analog bias circuitry. Higher bias currents result in higher  
performance.  
0x0  
RW  
0
1
Powered up  
Powered down  
Rev. C | Page 107 of 116  
 
ADAU1772  
Data Sheet  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[5:4]  
AFE_IBIAS23  
MIC_IBIAS  
DAC_IBIAS  
Analog Front-End 2 and Analog Front-End 3 bias current setting. Higher  
bias currents result in higher performance.  
00 Normal operation (default)  
01 Extreme power saving  
10 Enhanced performance  
11 Power saving  
0x0  
RW  
[3:2]  
[1:0]  
Microphone input bias current setting. Higher bias currents result in  
higher performance.  
00 Normal operation (default)  
01 Extreme power saving  
10 Enhanced performance  
11 Power saving  
0x0  
0x0  
RW  
RW  
DAC bias current setting. Higher bias currents result in higher performance.  
00 Normal operation (default)  
01 Power saving  
10 Superior performance  
11 Enhanced performance  
DIGITAL PIN PULL-UP CONTROL 0 REGISTER  
Address: 0x0048, Reset: 0x7F, Name: PAD_CONTROL0  
Controls the behavior of the pad. Possible to enable pull-up.  
Table 99. Bit Descriptions for PAD_CONTROL0  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
6
DMIC2_3_PU  
Pull-up disable.  
Pull-up enabled  
Pull-up disabled  
Pull-up disable.  
Pull-up enabled  
Pull-up disabled  
Pull-up disable.  
Pull-up enabled  
Pull-up disabled  
0x1  
RW  
0
1
5
4
DMIC0_1_PU  
LRCLK_PU  
0x1  
0x1  
RW  
RW  
0
1
0
1
Rev. C | Page 108 of 116  
 
Data Sheet  
ADAU1772  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
3
BCLK_PU  
Pull-up disable.  
Pull-up enabled  
Pull-up disabled  
Pull-up disable.  
Pull-up enabled  
Pull-up disabled  
Pull-up disable.  
Pull-up enabled  
Pull-up disabled  
Pull-up disable.  
Pull-up enabled  
Pull-up disabled  
0x1  
RW  
0
1
2
1
0
ADC_SDATA1_PU  
ADC_SDATA0_PU  
DAC_SDATA_PU  
0x1  
0x1  
0x1  
RW  
RW  
RW  
0
1
0
1
0
1
DIGITAL PIN PULL-UP CONTROL 1 REGISTER  
Address: 0x0049, Reset: 0x1F, Name: PAD_CONTROL1  
Controls the behavior of the pad. Possible to enable pull-up.  
Table 100. Bit Descriptions for PAD_CONTROL1  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
4
SELFBOOT_PU  
Pull-up disable.  
Pull-up enabled  
Pull-up disabled  
Pull-up disable.  
Pull-up enabled  
Pull-up disabled  
Pull-up disable.  
Pull-up enabled  
Pull-up disabled  
Pull-up disable.  
Pull-up enabled  
Pull-up disabled  
Pull-up disable.  
Pull-up enabled  
Pull-up disabled  
0x1  
RW  
0
1
3
2
1
0
SCL_PU  
0x1  
0x1  
0x1  
0x1  
RW  
RW  
RW  
RW  
0
1
SDA_PU  
0
1
ADDR1_PU  
ADDR0_PU  
0
1
0
1
Rev. C | Page 109 of 116  
 
ADAU1772  
Data Sheet  
DIGITAL PIN PULL-DOWN CONTROL 0 REGISTER  
Address: 0x004A, Reset: 0x00, Name: PAD_CONTROL2  
Controls the behavior of the pad. Possible to enable pull-down.  
Table 101. Bit Descriptions for PAD_CONTROL2  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
6
DMIC2_3_PD  
Pull-down enable.  
Pull-down disabled  
Pull-down enabled  
Pull-down enable.  
Pull-down disabled  
Pull-down enabled  
Pull-down enable.  
Pull-down disabled  
Pull-down enabled  
Pull-down enable.  
Pull-down disabled  
Pull-down enabled  
Pull-down enable.  
Pull-down disabled  
Pull-down enabled  
Pull-down enable.  
Pull-down disabled  
Pull-down enabled  
Pull-down enable.  
Pull-down disabled  
Pull-down enabled  
0x0  
RW  
0
1
5
4
3
2
1
0
DMIC0_1_PD  
LRCLK_PD  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
RW  
RW  
RW  
RW  
RW  
RW  
0
1
0
1
BCLK_PD  
0
1
ADC_SDATA1_PD  
ADC_SDATA0_PD  
DAC_SDATA_PD  
0
1
0
1
0
1
Rev. C | Page 110 of 116  
 
Data Sheet  
ADAU1772  
DIGITAL PIN PULL-DOWN CONTROL 1 REGISTER  
Address: 0x004B, Reset: 0x00, Name: PAD_CONTROL3  
Controls the behavior of the pad. Possible to enable pull-down.  
Table 102. Bit Descriptions for PAD_CONTROL3  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
4
SELFBOOT_PD  
Pull-down enable.  
Pull-down disabled  
Pull-down enabled  
Pull-down enable.  
Pull-down disabled  
Pull-down enabled  
Pull-down enable.  
Pull-down disabled  
Pull-down enabled  
Pull-down enable.  
Pull-down disabled  
Pull-down enabled  
Pull-down enable.  
Pull-down disabled  
Pull-down enabled  
0x0  
RW  
0
1
3
2
1
0
SCL_PD  
0x0  
0x0  
0x0  
0x0  
RW  
RW  
RW  
RW  
0
1
SDA_PD  
0
1
ADDR1_PD  
ADDR0_PD  
0
1
0
1
Rev. C | Page 111 of 116  
 
ADAU1772  
Data Sheet  
DIGITAL PIN DRIVE STRENGTH CONTROL 0 REGISTER  
Address: 0x004C, Reset: 0x00, Name: PAD_CONTROL4  
Table 103. Bit Descriptions for PAD_CONTROL4  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
4
LRCLK_DRV  
Drive strength control.  
Low drive strength  
High drive strength  
Drive strength control.  
Low drive strength  
High drive strength  
Drive strength control.  
Low drive strength  
High drive strength  
Drive strength control.  
Low drive strength  
High drive strength  
0x0  
RW  
0
1
3
2
1
BCLK_DRV  
0x0  
0x0  
0x0  
RW  
RW  
RW  
0
1
ADC_SDATA1_DRV  
ADC_SDATA0_DRV  
0
1
0
1
Rev. C | Page 112 of 116  
 
Data Sheet  
ADAU1772  
DIGITAL PIN DRIVE STRENGTH CONTROL 1 REGISTER  
Address: 0x004D, Reset: 0x00, Name: PAD_CONTROL5  
Table 104. Bit Descriptions for PAD_CONTROL5  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
3
SCL_DRV  
Drive strength control.  
Low drive strength  
High drive strength  
Drive strength control.  
Low drive strength  
High drive strength  
0x0  
RW  
0
1
2
SDA_DRV  
0x0  
RW  
0
1
Rev. C | Page 113 of 116  
 
ADAU1772  
Data Sheet  
OUTLINE DIMENSIONS  
6.10  
6.00 SQ  
5.90  
0.30  
0.23  
0.18  
PIN 1  
INDICATOR  
PIN 1  
INDICATOR  
31  
30  
40  
1
0.50  
BSC  
4.45  
4.30 SQ  
4.25  
EXPOSED  
PAD  
21  
20  
10  
11  
0.45  
0.40  
0.35  
0.25 MIN  
TOP VIEW  
BOTTOM VIEW  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
SECTION OF THIS DATA SHEET.  
COPLANARITY  
0.08  
0.20 REF  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-220-WJJD.  
Figure 105. 40-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
6 mm × 6 mm Body, Very Very Thin Quad  
(CP-40-10)  
Dimension shown in millimeters  
ORDERING GUIDE  
Model1  
ADAU1772BCPZ  
ADAU1772BCPZ-R7  
ADAU1772BCPZ-RL  
EVAL-ADAU1772Z  
Temperature Range Package Description  
Package Option  
CP-40-10  
CP-40-10  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
40-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
40-Lead Lead Frame Chip Scale Package [LFCSP_WQ], 7”Tape and Reel  
40-Lead Lead Frame Chip Scale Package [LFCSP_WQ], 13”Tape and Reel CP-40-10  
Evaluation Board  
1 Z = RoHS Compliant Part.  
Rev. C | Page 114 of 116  
 
 
 
Data Sheet  
NOTES  
ADAU1772  
Rev. C | Page 115 of 116  
ADAU1772  
NOTES  
Data Sheet  
©2012–2014 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D10804-0-3/14(C)  
Rev. C | Page 116 of 116  

相关型号:

ADAU1772BCPZ-R7

Four ADC, Two DAC Low Power Codec
ADI

ADAU1772BCPZ-RL

Four ADC, Two DAC Low Power Codec
ADI

ADAU1777

Four-ADC, Two-DAC, Low Power Codec
ADI

ADAU1777BCBZRL

Four-ADC, Two-DAC, Low Power Codec with Audio Processor
ADI

ADAU1777_17

Four-ADC, Two-DAC, Low Power Codec
ADI

ADAU1781

Low Noise Stereo Codec with SigmaDSP Processing Core
ADI

ADAU1781BCPZ

Low Noise Stereo Codec with SigmaDSP Processing Core
ADI

ADAU1781BCPZ-RL

Low Noise Stereo Codec with SigmaDSP Processing Core
ADI

ADAU1781BCPZ-RL7

Low Noise Stereo Codec with SigmaDSP Processing Core
ADI

ADAU1787

Four ADC, Two DAC, Low Power Codec with Audio DSPs
ADI

ADAU1787BCBZRL

Four ADC, Two DAC, Low Power Codec with Audio DSPs
ADI

ADAU1961

Stereo, Low Power, 96 kHz, 24-Bit Audio Codec with Integrated PLL
ADI