ADAU1777BCBZRL [ADI]

Four-ADC, Two-DAC, Low Power Codec with Audio Processor;
ADAU1777BCBZRL
型号: ADAU1777BCBZRL
厂家: ADI    ADI
描述:

Four-ADC, Two-DAC, Low Power Codec with Audio Processor

商用集成电路
文件: 总109页 (文件大小:1834K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Four-ADC, Two-DAC, Low Power Codec  
with Audio Processor  
Data Sheet  
ADAU1777  
FEATURES  
APPLICATIONS  
Programmable audio processing engine  
Fast (up to 768 kHz) and slow processing paths  
Biquad filters, limiters, volume controls, and mixing  
Low latency, 24-bit ADCs and DACs  
Noise canceling handsets, headsets, and headphones  
Bluetooth® active noise canceling (ANC) handsets, headsets,  
and headphones  
Personal navigation devices  
102 dB SNR (through PGA and ADC with A weighted filter)  
108 dB combined SNR (through DAC and headphone with  
A weighted filter)  
Serial port sampling rate from 8 kHz to 192 kHz  
5 μs analog-to-analog latency  
4 single-ended analog inputs, configurable as microphone  
or line inputs  
Dual stereo digital microphone inputs  
Digital still and video cameras  
GENERAL DESCRIPTION  
The ADAU1777 is a codec with four inputs and two outputs that  
incorporates a digital processing engine to perform filtering,  
level control, signal level monitoring, and mixing. The path  
from the analog input to the DSP core to the analog output is  
optimized for low latency and is ideal for noise canceling headsets.  
With the addition of just a few passive components, a crystal,  
and an EEPROM for booting, the ADAU1777 provides a complete  
headset solution.  
Stereo analog audio output, single-ended or differential,  
configurable as either line output or headphone driver  
PLL supporting any input clock rate from 8 MHz to 27 MHz  
Full duplex, asynchronous sample rate converters (ASRCs)  
Power supplies  
Analog and digital input/output of 1.8 V to 3.3 V  
Digital signal processing (DSP) core of 1.1 V to 1.8 V  
Low power  
Note that throughout this data sheet, multifunction pins, such as  
SCL/SCLK, are referred to either by the entire pin name or by a  
single function of the pin, for example, SCLK, when only that  
function is relevant.  
I2C and SPI control interfaces, self boot from I2C EEPROM  
7 multipurpose (MPx) pins for digital controls and outputs  
FUNCTIONAL BLOCK DIAGRAM  
MICBIAS0  
MICBIAS1  
MICROPHONE  
BIAS GENERATORS  
POWER  
MANAGEMENT  
LDO  
REGULATOR  
ADAU1777  
ADC_SDATA1/CLKOUT/MP6  
XTALI/MCLKIN  
PGA  
AIN0  
CLOCK  
OSCILLATOR  
PLL  
ADC  
XTALO  
HPOUTLP/LOUTLP  
HPOUTLN/LOUTLN  
PGA  
AIN1  
DAC  
DAC  
ADC  
INPUT/OUTPUT  
SIGNAL  
STEREO PDM  
MODULATOR  
ROUTING  
DMIC0_1/MP4  
DMIC2_3/MP5  
DIGITAL  
MICROPHONE  
INPUTS  
HPOUTRP/LOUTRP  
HPOUTRN/LOUTRN  
PGA  
AIN2  
DAC_SDATA/MP0  
ADC_SDATA0/PDMOUT/MP1  
BCLK/MP2  
SERIAL  
INPUT/  
OUTPUT  
PORT  
ADC  
BIDIRECTIONAL  
ASRCS  
LRCLK/MP3  
DSP CORE:  
BIQUAD FILTERS,  
LIMITERS,  
VOLUME CONTROLS,  
MIXING  
PGA  
AIN3  
CM  
2
I C/SPI CONTROL  
INTERFACE AND SELF BOOT  
ADC  
Figure 1.  
Rev. 0  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2016 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
 
ADAU1777* PRODUCT PAGE QUICK LINKS  
Last Content Update: 02/23/2017  
COMPARABLE PARTS  
View a parametric search of comparable parts.  
DESIGN RESOURCES  
ADAU1777 Material Declaration  
PCN-PDN Information  
EVALUATION KITS  
Quality And Reliability  
ADAU1777 Evaluation Board  
Symbols and Footprints  
DOCUMENTATION  
Data Sheet  
DISCUSSIONS  
View all ADAU1777 EngineerZone Discussions.  
ADAU1777: Four-ADC, Two-DAC, Low Power Codec with  
Audio Processor Data Sheet  
SAMPLE AND BUY  
Visit the product page to see pricing options.  
User Guides  
UG-1055: Evaluating the ADAU1777 Four ADC, Two DAC,  
Low Power Codec with Audio Processor  
TECHNICAL SUPPORT  
Submit a technical question or find your regional support  
number.  
DOCUMENT FEEDBACK  
Submit feedback for this data sheet.  
This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not  
trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.  
ADAU1777  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Burst Mode Communication.................................................... 35  
I2C Port ........................................................................................ 35  
SPI Port ........................................................................................ 38  
Self Boot....................................................................................... 39  
Multipurpose Pins.......................................................................... 40  
Push-Button Volume Controls ................................................. 40  
Limiter Compression Enable .................................................... 40  
Parameter Bank Switching ........................................................ 40  
Mute ............................................................................................. 40  
DSP Bypass Mode ...................................................................... 41  
Serial Data Input/Output Ports .................................................... 42  
Tristating Unused Channels ..................................................... 42  
Applications Information .............................................................. 45  
Power Supply Bypass Capacitors.............................................. 45  
Layout .......................................................................................... 45  
Grounding ................................................................................... 45  
PCB Stackup................................................................................ 45  
Low Latency Register Settings ...................................................... 46  
Register Summary .......................................................................... 49  
Register Details ............................................................................... 52  
Clock Control Register.............................................................. 52  
PLL Denominator MSB Register.............................................. 53  
PLL Denominator LSB Register ............................................... 53  
PLL Numerator MSB Register.................................................. 53  
PLL Numerator LSB Register.................................................... 54  
PLL Integer Setting Register ..................................................... 54  
PLL Lock Flag Register.............................................................. 55  
CLKOUT Setting Selection Register........................................ 55  
Regulator Control Register ....................................................... 56  
Core Control Register................................................................ 56  
Sleep on Program Address Count Register............................. 57  
Filter Engine and Limiter Control Register............................ 59  
DB Value Register 0 Read.......................................................... 59  
DB Value Register 1 Read.......................................................... 60  
DB Value Register 2 Read.......................................................... 60  
Core Channel 0/Core Channel 1 Input Select Register......... 61  
Core Channel 2/Core Channel 3 Input Select Register......... 62  
DAC Input Select Register ........................................................ 63  
PDM Modulator Input Select Register.................................... 64  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 3  
Specifications..................................................................................... 4  
Analog Performance Specifications ........................................... 4  
Crystal Amplifier Specifications................................................. 8  
Digital Input/Output Specifications........................................... 8  
Power Supply Specifications........................................................ 8  
Typical Power Management Settings ......................................... 9  
Digital Filters Specifications ....................................................... 9  
Digital Timing Specifications ................................................... 10  
Absolute Maximum Ratings.......................................................... 14  
Thermal Resistance .................................................................... 14  
ESD Caution................................................................................ 14  
Pin Configuration and Function Descriptions........................... 15  
Typical Performance Characteristics ........................................... 17  
Theory of Operation ...................................................................... 24  
System Clocking and Power-Up ................................................... 25  
Clock Initialization..................................................................... 25  
PLL................................................................................................ 25  
Clock Output............................................................................... 26  
Power Sequencing ...................................................................... 26  
Signal Routing................................................................................. 27  
Input Signal Paths........................................................................... 28  
Analog Inputs.............................................................................. 28  
Digital Microphone Input ......................................................... 29  
Analog-to-Digital Converters (ADCs).................................... 29  
Output Signal Paths........................................................................ 30  
Analog Outputs........................................................................... 30  
Digital-to-Analog Converters (DACs) .................................... 30  
PDM Output ............................................................................... 30  
Asynchronous Sample Rate Converters.................................. 31  
Signal Levels................................................................................ 31  
Signal Processing ............................................................................ 32  
Instructions ................................................................................. 32  
Data Memory .............................................................................. 32  
Parameters................................................................................... 32  
Control Port..................................................................................... 35  
Rev. 0 | Page 2 of 108  
Data Sheet  
ADAU1777  
Serial Data Output 0/Serial Data Output 1 Input Select  
Register.........................................................................................65  
Serial Port Control 0 Register....................................................85  
Serial Port Control 1 Register....................................................86  
TDM Output Channel Disable Register ..................................87  
PDM Enable Register .................................................................88  
PDM Pattern Setting Register ...................................................89  
MP0 Function Setting Register .................................................89  
MP1 Function Setting Register .................................................90  
MP2 Function Setting Register .................................................91  
MP3 Function Setting Register .................................................91  
MP4 Function Setting Register .................................................92  
MP5 Function Setting Register .................................................93  
MP6 Function Setting Register .................................................94  
Push-Button Volume Settings Register....................................94  
Push-Button Volume Control Assignment Register ..............95  
Debounce Modes Register.........................................................96  
Headphone Line Output Select Register..................................97  
Decimator Power Control Register ..........................................97  
Serial Data Output 2/Serial Data Output 3 Input Select  
Register.........................................................................................66  
Serial Data Output 4/Serial Data Output 5 Input Select  
Register.........................................................................................67  
Serial Data Output 6/Serial Data Output 7 Input Select  
Register.........................................................................................68  
ADC_SDATA0/ADC_SDATA1 Channel Select Register......69  
Output ASRC0/Output ASRC1 Source Register.....................69  
Output ASRC2/Output ASRC3 Source Register.....................70  
Input ASRC Channel Select Register........................................71  
ADC0/ADC1 Control 0 Register..............................................72  
ADC2/ADC3 Control 0 Register..............................................73  
ADC0/ADC1 Control 1 Register..............................................74  
ADC2/ADC3 Control 1 Register..............................................75  
ADC0 Volume Control Register ...............................................75  
ADC1 Volume Control Register ...............................................76  
ADC2 Volume Control Register ...............................................76  
ADC3 Volume Control Register ...............................................77  
PGA Control 0 Register..............................................................77  
PGA Control 1 Register..............................................................78  
PGA Control 2 Register..............................................................78  
PGA Control 3 Register..............................................................79  
PGA Slew Control Register........................................................80  
PGA 10 dB Gain Boost Register................................................80  
Input and Output Capacitor Charging Register .....................81  
DSP Bypass Path Register ..........................................................82  
DSP Bypass Gain for PGA0 Register........................................82  
DSP Bypass Gain for PGA1 Register........................................82  
MICBIAS0_1 Control Register..................................................83  
DAC Control Register ................................................................83  
DAC0 Volume Control Register................................................84  
DAC1 Volume Control Register................................................84  
Headphone Output Mutes Register..........................................85  
ASRC Interpolator and DAC Modulator Power Control  
Register.........................................................................................99  
Analog Bias Control 0 Register.................................................99  
Analog Bias Control 1 Register...............................................100  
Digital Pin Pull-Up Control 0 Register..................................101  
Digital Pin Pull-Up Control 1 Register..................................102  
Digital Pin Pull-Down Control 0 Register ............................103  
Digital Pin Pull-Down Control 1 Register ............................103  
Digital Pin Drive Strength Control 0 Register ......................104  
Digital Pin Drive Strength Control 1 Register ......................105  
Fast Rate Control Register .......................................................105  
DAC Interpolation Control Register......................................106  
Volume Control Bypass Register ............................................107  
Outline Dimensions......................................................................108  
Ordering Guide .........................................................................108  
REVISION HISTORY  
12/2016—Revision 0: Initial Version  
Rev. 0 | Page 3 of 108  
 
ADAU1777  
Data Sheet  
SPECIFICATIONS  
Master clock = 12.288 MHz, serial input sample rate = 48 kHz, measurement bandwidth = 20 Hz to 20 kHz, word width = 24 bits,  
TA = 25°C, outputs line loaded with 10 kΩ.  
ANALOG PERFORMANCE SPECIFICATIONS  
AVDD = IOVDD = 1.8 V, DVDD = 1.1 V, unless otherwise noted. Phase-locked loop (PLL) disabled, direct master clock.  
Table 1.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
ANALOG-TO-DIGITAL CONVERTERS (ADCs)  
ADC Resolution  
Digital Attenuation Step  
Digital Attenuation Range  
INPUT RESISTANCE  
All ADCs  
24  
0.375  
95  
Bits  
dB  
dB  
Gain settings do not include 10 dB gain from  
PGA_x_BOOST settings; this additional gain does  
not affect input impedance; PGA_POP_DISx = 1  
Single-Ended Line Input  
Programmable Gain Amplifier (PGA) Inputs −12 dB gain  
0 dB gain  
14.3  
32.0  
20  
kΩ  
kΩ  
kΩ  
kΩ  
0 dB gain  
+35.25 dB gain  
0.68  
LINE INPUT  
PGA_ENx = 0, PGA_x_BOOST = 0, PGA_POP_DISx = 1  
Full-Scale Input Voltage  
Scales linearly with AVDD  
AVDD = 1.8 V  
AVDD = 1.8 V  
AVDD = 3.3 V  
AVDD = 3.3 V  
20 Hz to 20 kHz, −60 dB input  
AVDD = 1.8 V  
AVDD = 3.3 V  
AVDD = 1.8 V  
AVDD = 3.3 V  
AVDD/3.3  
0.55  
1.54  
1.00  
2.83  
V rms  
V rms  
V p-p  
V rms  
V p-p  
Dynamic Range1  
With A-Weighted Filter (RMS)  
95  
99  
92  
96  
97  
102  
94  
dB  
dB  
dB  
dB  
With Flat 20 Hz to 20 kHz Filter  
99  
Signal-to-Noise Ratio (SNR)2  
With A-Weighted Filter (RMS)  
AVDD = 1.8 V  
AVDD = 3.3 V  
AVDD = 1.8 V  
AVDD = 3.3 V  
96  
100  
92  
96  
0
98  
103  
96  
100  
40  
dB  
dB  
dB  
dB  
With Flat 20 Hz to 20 kHz Filter  
Interchannel Gain Mismatch  
200  
mdB  
Total Harmonic Distortion + Noise (THD + N)  
20 Hz to 20 kHz, −1 dB from full-scale input  
AVDD = 1.8 V  
−90  
−94  
−83  
−87  
+0.12  
+0.2  
dB  
dB  
mV  
dB  
dB  
dB  
AVDD = 3.3 V  
Offset Error  
Gain Error  
Interchannel Isolation  
Power Supply Rejection Ratio (PSRR)  
PGA INPUT  
−0.11  
−0.4  
CM capacitor = 22 μF  
CM capacitor = 22 μF, 100 mV p-p at 1 kHz  
PGA_ENx = 1, PGA_x_BOOST = 0  
Scales linearly with AVDD  
AVDD = 1.8 V  
AVDD = 1.8 V  
AVDD = 3.3 V  
AVDD = 3.3 V  
95  
55  
Full-Scale Input Voltage  
AVDD/3.3  
0.55  
1.54  
1.00  
2.83  
V rms  
V rms  
V p-p  
V rms  
V p-p  
Dynamic Range1  
With A-Weighted Filter (RMS)  
20 Hz to 20 kHz, −60 dB input  
AVDD = 1.8 V  
94  
102  
92  
dB  
dB  
dB  
dB  
AVDD = 3.3 V  
With Flat 20 Hz to 20 kHz Filter  
AVDD = 1.8 V  
AVDD = 3.3 V  
98  
Rev. 0 | Page 4 of 108  
 
 
Data Sheet  
ADAU1777  
Parameter  
Test Conditions/Comments  
20 Hz to 20 kHz, −1 dB from full-scale input  
AVDD = 1.8 V  
Min  
Typ  
Max  
Unit  
THD + N  
−88  
−90  
dB  
dB  
AVDD = 3.3 V  
SNR2  
With A-Weighted Filter (RMS)  
AVDD = 1.8 V  
AVDD = 3.3 V  
AVDD = 1.8 V  
AVDD = 3.3 V  
Standard deviation  
94  
102  
93  
dB  
dB  
dB  
dB  
With Flat 20 Hz to 20 kHz Filter  
98  
PGA Gain Variation  
With −12 dB Setting  
With +35.25 dB Setting  
PGA Boost  
PGA Mute Attenuation  
Interchannel Gain Mismatch  
Offset Error  
Gain Error  
Interchannel Isolation  
PSRR  
0.05  
0.15  
10  
−63  
0.04  
dB  
dB  
dB  
dB  
dB  
mV  
dB  
dB  
dB  
PGA_x_BOOST  
PGA_MUTEx  
−0.12  
+0.12  
−0.05  
100  
63  
CM capacitor = 20 μF, 100 mV p-p at 1 kHz  
MIC_ENx = 1  
MICROPHONE BIAS  
Bias Voltage  
0.65 × AVDD  
AVDD = 1.8 V, MIC_GAINx = 1  
AVDD = 3.3 V, MIC_GAINx = 1  
AVDD = 1.8 V, MIC_GAINx = 0  
AVDD = 3.3 V, MIC_GAINx = 0  
1.14  
2.10  
1.61  
2.95  
1.16  
2.12  
1.63  
2.97  
1.17  
2.14  
1.65  
2.99  
3
V
V
V
V
mA  
dB  
dB  
0.90 × AVDD  
Bias Current Source  
Output Impedance  
MICBIASx Isolation  
1
95  
99  
MIC_GAINx = 0  
MIC_GAINx = 1  
Noise in the Signal Bandwidth  
AVDD = 1.8 V  
20 Hz to 20 kHz, 4.7 µF decoupling capacitor,  
5.0 kΩ load on the MICBIASx pins  
MIC_GAINx = 0  
MIC_GAINx = 1  
MIC_GAINx = 0  
MIC_GAINx = 1  
27  
16  
35  
19  
nV/√Hz  
nV/√Hz  
nV/√Hz  
nV/√Hz  
AVDD = 3.3 V  
DIGITAL-TO-ANALOG CONVERTERS (DACs)  
Resolution  
Digital Attenuation Step  
Digital Attenuation Range  
DAC SINGLE-ENDED OUTPUT  
All DACs  
24  
0.375  
95  
Bits  
dB  
dB  
Single-ended operation, HPOUTLP/LOUTLP and  
HPOUTRP/LOUTRP pins  
Full-Scale Output Voltage  
Scales linearly with AVDD  
AVDD = 1.8 V  
AVDD = 1.8 V  
AVDD = 3.3 V  
AVDD = 3.3 V  
AVDD/3.4  
0.53  
1.5  
0.97  
2.74  
V rms  
V rms  
V p-p  
V rms  
V p-p  
dB  
Mute Attenuation  
−72  
Line Output Mode  
Dynamic Range1  
With A-Weighted Filter (RMS)  
20 Hz to 20 kHz, −60 dB input  
AVDD = 1.8 V  
97  
102  
95  
100  
104  
97  
dB  
dB  
dB  
dB  
AVDD = 3.3 V  
With Flat 20 Hz to 20 kHz Filter  
AVDD = 1.8 V  
AVDD = 3.3 V  
99  
101  
Rev. 0 | Page 5 of 108  
ADAU1777  
Data Sheet  
Parameter  
Test Conditions/Comments  
20 Hz to 20 kHz  
AVDD = 1.8 V  
AVDD = 3.3 V  
AVDD = 1.8 V  
Min  
Typ  
Max  
Unit  
SNR2  
With A-Weighted Filter (RMS)  
98  
102  
96  
99  
0
100  
104  
98  
102  
50  
dB  
dB  
dB  
dB  
mdB  
dB  
dB  
dB  
dB  
With Flat 20 Hz to 20 kHz Filter  
AVDD = 3.3 V  
Interchannel Gain Mismatch  
THD + N  
200  
20 Hz to 20 kHz, −1 dBFS input  
AVDD = 1.8 V  
AVDD = 3.3 V  
−93  
−94  
−89  
−90  
+0.13  
Gain Error  
−0.13  
Headphone Mode  
Dynamic Range1  
20 Hz to 20 kHz, −60 dB input  
AVDD = 1.8 V  
With A-Weighted Filter (RMS)  
97  
102  
95  
100  
104  
97  
dB  
dB  
dB  
dB  
AVDD = 3.3 V  
With Flat 20 Hz to 20 kHz Filter  
AVDD = 1.8 V  
AVDD = 3.3 V  
20 Hz to 20 kHz  
AVDD = 1.8 V  
99  
101  
SNR2  
With A-Weighted Filter (RMS)  
98  
102  
96  
100  
0
100  
104  
98  
102  
50  
dB  
dB  
dB  
dB  
AVDD = 3.3 V  
AVDD = 1.8 V  
AVDD = 3.3 V  
With Flat 20 Hz to 20 kHz Filter  
Interchannel Gain Mismatch  
THD + N  
230  
mdB  
20 Hz to 20 kHz, −1 dBFS input  
32 Ω Load  
AVDD = 1.8 V, output power = 6.3 mW  
AVDD = 3.3 V, output power = 20.5 mW  
AVDD = 1.8 V, output power = 8.4 mW  
AVDD = 3.3 V, output power = 27 mW  
AVDD = 1.8 V, output power = 13 mW  
AVDD = 3.3 V, output power = 30 mW  
−79  
−84  
−79  
−80  
−74  
−77  
−67  
−67  
−65  
−64  
−61  
−67  
+0.13  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
24 Ω Load  
16 Ω Load  
Gain Error  
−0.13  
Headphone Output Power  
32 Ω Load  
AVDD = 1.8 V, <0.1% THD + N  
AVDD = 3.3 V, <0.1% THD + N  
AVDD = 1.8 V, <0.1% THD + N  
AVDD = 3.3 V, <0.1% THD + N  
AVDD = 1.8 V, <0.1% THD + N  
AVDD = 3.3 V, <0.1% THD + N  
8.0  
mW  
mW  
mW  
mW  
mW  
mW  
mV  
dB  
28.1  
11.1  
30.5  
16.5  
32.7  
24 Ω Load  
16 Ω Load  
Offset Error  
Interchannel Isolation  
PSRR  
−0.11  
+0.09  
1 kHz, 0 dBFS input signal  
CM capacitor = 22 µF, 100 mV p-p at 1 kHz  
Differential operation  
Scales linearly with AVDD  
AVDD = 1.8 V  
AVDD = 1.8 V  
AVDD = 3.3 V  
AVDD = 3.3 V  
100  
70  
dB  
DAC DIFFERENTIAL OUTPUT  
Full-Scale Output Voltage  
AVDD/1.7  
1.06  
3.00  
1.94  
5.49  
V rms  
V rms  
V p-p  
V rms  
V p-p  
dB  
Mute Attenuation  
−72  
Line Output Mode  
Dynamic Range1  
With A-Weighted Filter (RMS)  
20 Hz to 20 kHz, −60 dB input  
AVDD = 1.8 V  
102  
105  
100  
102  
105  
107  
102  
105  
dB  
dB  
dB  
dB  
AVDD = 3.3 V  
AVDD = 1.8 V  
AVDD = 3.3 V  
With Flat 20 Hz to 20 kHz Filter  
Rev. 0 | Page 6 of 108  
Data Sheet  
ADAU1777  
Parameter  
Test Conditions/Comments  
20 Hz to 20 kHz  
AVDD = 1.8 V  
AVDD = 3.3 V  
AVDD = 1.8 V  
Min  
Typ  
Max  
Unit  
SNR2  
With A-Weighted Filter (RMS)  
103  
106  
100  
103  
0
105  
108  
102  
105  
50  
dB  
dB  
dB  
dB  
mdB  
dB  
dB  
dB  
dB  
With Flat 20 Hz to 20 kHz Filter  
AVDD = 3.3 V  
Interchannel Gain Mismatch  
THD + N  
200  
20 Hz to 20 kHz, −1 dBFS input  
AVDD = 1.8 V  
AVDD = 3.3 V  
−96  
−96  
−90  
−90  
+0.16  
Gain Error  
−0.1  
Headphone Mode  
Dynamic Range1  
20 Hz to 20 kHz, −60 dB input  
AVDD = 1.8 V  
With A-Weighted Filter (RMS)  
102  
105  
100  
102  
105  
107  
102  
104  
dB  
dB  
dB  
dB  
AVDD = 3.3 V  
AVDD = 1.8 V  
AVDD = 3.3 V  
20 Hz to 20 kHz  
AVDD = 1.8 V  
AVDD = 3.3 V  
AVDD = 1.8 V  
AVDD = 3.3 V  
With Flat 20 Hz to 20 kHz Filter  
SNR2  
With A-Weighted Filter (RMS)  
103  
106  
101  
104  
0
106  
108  
103  
106  
75  
dB  
dB  
dB  
dB  
With Flat 20 Hz to 20 kHz Filter  
Interchannel Gain Mismatch  
THD + N  
370  
mdB  
32 Ω Load  
−1 dBFS, AVDD = 1.8 V, output power = 26 mW  
−1 dBFS, AVDD = 3.3 V, output power = 87 mW  
−2 dBFS, AVDD = 1.8 V, output power = 27 mW  
−1 dBFS, AVDD = 3.3 V, output power = 115 mW  
−3 dBFS, AVDD = 1.8 V, output power = 32 mW  
−1 dBFS, AVDD = 3.3 V, output power = 168 mW  
Headphone mode  
−75  
−83  
−75  
−82  
−75  
−77  
−64  
−75  
−64  
−75  
−65  
−68  
+0.25  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
24 Ω Load  
16 Ω Load  
Gain Error  
−0.25  
Headphone Output Power  
32 Ω Load  
AVDD = 1.8 V, <0.1% THD + N  
AVDD = 3.3 V, <0.1% THD + N  
AVDD = 1.8 V, <0.1% THD + N  
AVDD = 3.3 V, <0.1% THD + N  
AVDD = 1.8 V, <0.1% THD + N  
AVDD = 3.3 V, <0.1% THD + N  
29.1  
111.8  
31.8  
148.3  
32.3  
193.0  
0
mW  
mW  
mW  
mW  
mW  
mW  
mV  
dB  
24 Ω Load  
16 Ω Load  
Offset Error  
Interchannel Isolation  
PSRR  
−0.12  
+0.08  
1 kHz, 0 dBFS input signal  
CM capacitor = 22 μF, 100 mV p-p at 1 kHz  
100  
73  
dB  
ANALOG-TO-ANALOG LATENCY  
fS = 768 kHz  
fS = 192 kHz  
CM pin  
5
38  
µs  
µs  
CM REFERENCE  
Common-Mode Reference Output  
Common-Mode Source Impedance  
REGULATOR  
AVDD/2  
5
V
kΩ  
Line Regulation  
Load Regulation  
1
6
mV/V  
mV/mA  
1 Dynamic range is the ratio of the sum of the noise and harmonic power in the band of interest with a −60 dBFS signal present vs. the full-scale power level in decibels.  
2 SNR is the ratio of the sum of all noise power in the band of interest with no signal present vs. the full-scale power level in decibels.  
Rev. 0 | Page 7 of 108  
ADAU1777  
Data Sheet  
CRYSTAL AMPLIFIER SPECIFICATIONS  
AVDD = IOVDD = 1.8 V, DVDD = 1.1 V, unless otherwise noted.  
Table 2.  
Parameter  
Min  
Typ  
Max  
Unit  
CRYSTAL AMPLIFIER  
Jitter  
Frequency Range  
Load Capacitance  
270  
500  
27  
20  
ps rms  
MHz  
pF  
8
DIGITAL INPUT/OUTPUT SPECIFICATIONS  
−40°C < TA < +85°C, IOVDD = 3.3 V 10% and 1.8 V − 5% to 1.8 V + 10%, unless otherwise noted.  
Table 3.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
INPUT/OUTPUT  
Input Voltage  
High (VIH)  
IOVDD = 3.3 V  
IOVDD = 1.8 V  
2.0  
1.1  
V
V
Low (VIL)  
IOVDD = 3.3 V  
IOVDD = 1.8 V  
IOVDD = 3.3 V, IIH1 at VIH = 2.0 V  
IIL1 at VIL = 0.8 V  
IOVDD = 1.8 V, IIH1 at VIH = 1.1 V  
IIL1 at VIL = 0.45 V  
0.8  
0.45  
10  
10  
10  
V
V
µA  
µA  
µA  
µA  
Input Leakage  
10  
Output Voltage High (VOH)  
Low Drive Strength  
High Drive Strength  
Output Voltage Low (VOL)  
Low Drive Strength  
High Drive Strength  
Input Capacitance  
IOH1 = 1 mA  
IOH1 = 3 mA  
IOVDD − 0.6  
IOVDD − 0.6  
V
V
IOL1 = 1 mA  
IOL1 = 3 mA  
0.4  
0.4  
5
V
V
pF  
1 IIH is the current when the input is high; IIL is the current when the input is low; IOH is the current when the output is high; and IOL is the current when the output is low.  
POWER SUPPLY SPECIFICATIONS  
AVDD = IOVDD = 1.8 V, DVDD = 1.1 V, unless otherwise noted.  
Table 4.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
SUPPLIES  
AVDD Voltage  
DVDD Voltage  
IOVDD Voltage  
Analog Current (IAVDD  
Normal Operation  
Power-Down  
Digital Input/Output Current (IIOVDD  
Normal Operation  
Power-Down  
1.71  
1.045 1.1  
1.71  
1.8  
3.63  
1.98  
3.63  
V
V
V
1.8  
1.6  
1.3  
1
)
See Table 5  
See Table 5  
See Table 5  
µA  
µA  
µW  
)
POWER CONSUMPTION  
All Supplies  
Power-Down, All Supplies  
Rev. 0 | Page 8 of 108  
 
 
 
Data Sheet  
ADAU1777  
TYPICAL POWER MANAGEMENT SETTINGS  
Typical ANC settings, master clock = 12.288 MHz, PLL disabled, crystal oscillator enabled, core fS = DAC = ADC = 768 kHz. On-board  
regulator enabled. Two ADCs with PGA enabled and two ADCs configured for line input, no input signal. Two DACs are configured for  
differential headphone (HP) operation; DAC outputs are unloaded. Both MICBIAS0 and MICBIAS1 enabled at 0.9 × AVDD. ASRCs and  
pulse density modulation (PDM) modulator disabled. Core running 26 out of 32 possible instructions. Serial port set to slave. See  
Register 0x46 and Register 0x47 for settings.  
Table 5.  
Typical AVDD  
Current  
Consumption (mA)  
Typical IOVDD  
Current  
Consumption (mA)  
Typical HP  
Output  
THD + N (dB)  
Total Power  
Consumption  
(mW)  
Power Management  
Setting  
Typical ADC  
THD + N (dB)  
Operating Voltage  
AVDD = IOVDD = 3.3 V Normal  
Extreme power saving  
Power saving  
9.71  
7.55  
7.99  
2.58  
2.57  
2.57  
2.58  
0.37  
0.37  
0.37  
0.37  
−91  
−86  
−87  
−91  
−87  
−81  
−81  
−87  
−97  
−96  
−96  
−98  
−95  
−89  
−90  
−95  
40.56  
33.40  
34.85  
44.72  
13.79  
10.35  
10.98  
16.18  
Enhanced performance 10.97  
AVDD = IOVDD = 1.8 V Normal  
7.29  
5.38  
5.73  
Extreme power saving  
Power saving  
Enhanced Performance 8.62  
DIGITAL FILTERS SPECIFICATIONS  
Table 6.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
ADC INPUT TO DAC OUTPUT PATH  
Pass-Band Ripple  
DC to 20 kHz, fS = 768 kHz  
DC to 20 kHz, fS = 192 kHz  
−0.03  
+0.01  
0.02  
dB  
dB  
SAMPLE RATE CONVERTER  
Pass Band  
LRCLK < 63 kHz  
63 kHz < LRCLK <130 kHz  
LRCLK > 130 kHz  
Upsampling, 96 kHz  
Upsampling, 192 kHz  
Downsampling, 96 kHz  
Downsampling, 192 kHz  
0
0
0
0.475 × fS  
0.4286 × fS  
0.4286 × fS  
+0.05  
+0.05  
0.07  
kHz  
kHz  
kHz  
dB  
dB  
dB  
dB  
kHz  
dB  
Pass-Band Ripple  
−0.27  
−0.06  
0
0
8
0.07  
192  
Input/Output Frequency Range  
Dynamic Range  
THD + N  
100  
−90  
dB  
Start-Up Time  
15  
ms  
PDM MODULATOR  
Dynamic Range (A-Weighted)  
THD + N  
112  
−92  
dB  
dB  
Rev. 0 | Page 9 of 108  
 
 
 
ADAU1777  
Data Sheet  
DIGITAL TIMING SPECIFICATIONS  
−40°C < TA < +85°C, IOVDD = 1.71 V to 3.63 V, DVDD = 1.045 V to 1.98 V.  
Table 7. Digital Timing  
Limit  
Parameter  
tMIN  
tMAX  
Unit  
Description  
MASTER CLOCK (MCLK)  
tMP  
tMCLK  
37  
77  
125  
82  
ns  
ns  
MCLKIN period; 8 MHz to 27 MHz input clock using PLL  
Internal MCLK period; direct MCLK and PLL output divided by 2  
SERIAL PORT  
tBL  
tBH  
tLS  
tLH  
tSS  
tSH  
tTS  
40  
40  
10  
10  
5
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
BCLK low pulse width (master and slave modes)  
BCLK high pulse width (master and slave modes)  
LRCLK setup; time to BCLK rising (slave mode)  
LRCLK hold; time from BCLK rising (slave mode)  
DAC_SDATA setup; time to BCLK rising (master and slave modes)  
DAC_SDATA hold; time from BCLK rising (master and slave modes)  
BCLK falling to LRCLK timing skew (master mode)  
ADC_SDATAx delay; time from BCLK falling (master and slave modes)  
BCLK falling to ADC_SDATAx driven in time-division multiplexing  
(TDM) tristate mode  
5
10  
34  
30  
tSOD  
tSOTD  
0
tSOTX  
30  
ns  
BCLK falling to ADC_SDATAx tristate in TDM tristate mode  
SERIRAL PERIPHERAL INTERFACE  
(SPI) PORT  
fSCLK  
tCCPL  
tCCPH  
tCLS  
6.25  
MHz  
ns  
ns  
SCLK frequency  
SCLK pulse width low  
SCLK pulse width high  
SS setup; time to SCLK rising  
SS hold; time from SCLK rising  
SS pulse width high  
80  
80  
5
ns  
tCLH  
100  
80  
10  
10  
ns  
tCLPH  
tCDS  
tCDH  
tCOD  
I2C PORT  
fSCL  
tSCLH  
tSCLL  
ns  
ns  
ns  
ns  
MOSI setup; time to SCLK rising  
MOSI hold; time from SCLK rising  
MISO delay; time from SCLK falling  
101  
400  
kHz  
µs  
µs  
SCL frequency  
SCL high  
SCL low  
0.6  
1.3  
0.6  
tSCS  
µs  
SCL rise setup time (to SDA falling), relevant for repeated start  
condition  
tSCR  
tSCH  
tDS  
tSCF  
250  
250  
ns  
µs  
ns  
ns  
µs  
SCL and SDA rise time, CLOAD = 400 pF  
SCL fall hold time (from SDA falling), relevant for start condition  
SDA setup time (to SCL rising)  
SCL and SDA fall time; CLOAD = 400 pF  
SCL rise setup time (to SDA rising), relevant for stop condition  
0.6  
100  
tBFT  
0.6  
I2C EEPROM SELF BOOT  
tSCHE  
26 × tMP − 70  
38 × tMP − 70  
ns  
ns  
SCL fall hold time (from SDA falling), relevant for start condition; tMP  
is the input clock on the MCLKIN pin  
SCL rise setup time (to SDA falling), relevant for repeated start  
condition  
tSCSE  
tBFTE  
tDSE  
tBHTE  
70 × tMP − 70  
6 × tMP − 70  
32 × tMP  
ns  
ns  
ns  
SCL rise setup time (to SDA rising), relevant for stop condition  
Delay from SCL falling to SDA changing  
SDA rising in self boot stop condition to SDA falling edge for  
external master start condition  
Rev. 0 | Page 10 of 108  
 
Data Sheet  
ADAU1777  
Limit  
Parameter  
tMIN  
tMAX  
Unit  
Description  
MULTIPURPOSE AND POWER-  
DOWN PINS  
tGIL  
1.5 × 1/fS μs  
ns  
MPx input latency; time until high or low value is read by core  
PD low pulse width  
tRLPW  
20  
DIGITAL MICROPHONE  
tCF  
tCR  
tDS  
tDE  
20  
20  
ns  
ns  
Digital microphone clock fall time  
Digital microphone clock rise time  
Digital microphone valid data start time  
Digital microphone valid data end time  
40  
0
0
ns  
PDM OUTPUT  
tDCF  
tDCR  
tDDV  
20  
20  
30  
ns  
ns  
ns  
PDM clock fall time  
PDM clock rise time  
PDM delay time for valid data  
Digital Timing Diagrams  
tBH  
BCLK  
tBL  
tLS  
tLH  
LRCLK  
tSS  
DAC_SDATA  
LEFT JUSTIFIED  
MODE  
MSB  
MSB – 1  
tSH  
tSS  
DAC_SDATA  
I S MODE  
2
MSB  
tSH  
tSS  
tSS  
DAC_SDATA  
RIGHT JUSTIFIED  
MODE  
LSB  
MSB  
tSH  
tSH  
8-BIT CLOCKS  
(24-BIT DATA)  
12-BIT CLOCKS  
(20-BIT DATA)  
14-BIT CLOCKS  
(18-BIT DATA)  
16-BIT CLOCKS  
(16-BIT DATA)  
Figure 2. Serial Input Port Timing  
Rev. 0 | Page 11 of 108  
ADAU1777  
Data Sheet  
tLH  
tBH  
tTS  
BCLK  
tBL  
tLS  
LRCLK  
tSOD  
ADC_SDATAx  
LEFT JUSTIFIED  
MODE  
MSB  
MSB – 1  
MSB  
tSOD  
ADC_SDATAx  
2
I S MODE  
tSOTX  
tSOTD  
ADC_SDATAx  
WITH TRISTATE  
HIGH-Z  
HIGH-Z  
MSB  
LSB  
tSOD  
ADC_SDATAx  
RIGHT JUSTIFIED  
MODE  
LSB  
MSB  
8-BIT CLOCKS  
(24-BIT DATA)  
12-BIT CLOCKS  
(20-BIT DATA)  
14-BIT CLOCKS  
(18-BIT DATA)  
16-BIT CLOCKS  
(16-BIT DATA)  
Figure 3. Serial Output Port Timing  
tCLS  
tCLH  
tCLPH  
tCCPL  
tCCPH  
SS  
SCLK  
MOSI  
tCDH  
tCDS  
MISO  
tCOD  
Figure 4. SPI Port Timing  
tDS  
tSCH  
tSCH  
SDA  
SCL  
tSCR  
tSCLH  
tSCS  
tBFT  
tSCLL tSCF  
Figure 5. I2C Port Timing  
Rev. 0 | Page 12 of 108  
Data Sheet  
ADAU1777  
tSCHE  
tDSE  
SDA  
SCL  
tBHTE  
tSCSE  
tBFTE  
Figure 6. I2C EEPROM Self Boot Timing  
CLKOUT  
tCF  
tCR  
tDS  
tDS  
tDE  
tDE  
DMIC0_1/DMIC2_3  
VALID LEFT SAMPLE  
VALID RIGHT SAMPLE  
VALID LEFT SAMPLE  
Figure 7. Digital Microphone Timing  
tDCF  
tDCR  
CLKOUT  
tDDV  
tDDV  
PDMOUT  
RIGHT  
LEFT  
RIGHT  
LEFT  
Figure 8. PDM Output Timing  
Rev. 0 | Page 13 of 108  
ADAU1777  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
Table 8.  
THERMAL RESISTANCE  
Thermal performance is directly linked to printed circuit board  
(PCB) design and operating environment. Careful attention to  
PCB thermal design is required. θJA is the natural convection  
junction-to-ambient thermal resistance measured in a one cubic  
foot sealed enclosure  
Parameter  
Rating  
Power Supplies (AVDD, IOVDD)  
Digital Supply (DVDD)  
Input Current (Except Supply Pins)  
Analog Input Voltage (Signal Pins)  
Digital Input Voltage (Signal Pins)  
−0.3 V to +3.63 V  
−0.3 V to +1.98 V  
20 mA  
−0.3 V to AVDD + 0.3 V  
−0.3 to IOVDD + 0.3 V  
For more information, see the AN-617 Application Note, Wafer  
Level Chip Scale Package.  
Operating Temperature Range (Case) −40°C to +85°C  
Storage Temperature Range −65°C to +150°C  
Table 9. Thermal Resistance  
Package Type  
θJA  
Unit  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
CB-36-41  
36  
°C/W  
1 Thermal impedance simulated values are based on a 4-layer PCB with two  
signal layers and two power planes using natural convection cooling. See  
JEDEC JESD51-9.  
ESD CAUTION  
Rev. 0 | Page 14 of 108  
 
 
 
Data Sheet  
ADAU1777  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
ADAU1777  
BALL A1  
INDICATOR  
TOP VIEW  
(BALL SIDE DOWN)  
1
2
3
4
5
6
7
ADC_SDATA0/ ADC_SDATA1/  
PDMOUT/MP1 CLKOUT/MP6  
XTALO  
XTALI/MCLKIN  
IOVDD  
A
B
DGND  
BCLK/MP2  
DAC_SDATA/  
DVDD  
LRCLK/MP3  
REG_OUT  
DMIC2_3/MP5 DMIC0_1/MP4  
SDA/MISO  
ADDR0/SS  
SCL/SCLK  
MICBIAS0  
MP0  
HPOUTRP/  
LOUTRP  
C
D
HPOUTRN/  
LOUTRN  
AVDD  
AGND  
ADDR1/MOSI  
MICBIAS1  
HPOUTLP/  
LOUTLP  
E
F
PD  
AIN3  
AIN2  
AIN0  
AIN1  
SELFBOOT  
AVDD  
AGND  
HPOUTLN/  
LOUTLN  
AVDD  
AGND  
CM  
Figure 9. Pin Configuration  
Table 10. Pin Function Descriptions  
Pin No. Mnemonic  
Type1  
Description  
A1  
DGND  
PWR  
Digital Ground. Tie the AGND and DGND pins directly together in a common ground  
plane.  
A2  
BCLK/MP2  
D_IO  
Serial Data Port Bit Clock (BCLK).  
Multipurpose Pin (MP2).  
A3  
A4  
A5  
ADC_SDATA0/PDMOUT/MP1 D_IO  
ADC Serial Data Output 0 (ADC_SDATA0).  
Stereo PDM Output to Drive a High Efficiency Class-D Amplifier (PDMOUT).  
Multipurpose Pin (MP1).  
Serial Data Output 1 (ADC_SDATA1).  
Master Clock Output/Clock for the Digital Microphone Input and PDM Output (CLKOUT).  
Multipurpose Pin (MP6).  
ADC_SDATA1/CLKOUT/MP6  
XTALO  
D_IO  
A_OUT Crystal Clock Output. This pin is the output of the crystal amplifier; do not use this pin to  
provide a clock to other ICs in the system. If a master clock output is needed, use CLKOUT  
(Pin A4).  
A6  
A7  
XTALI/MCLKIN  
IOVDD  
D_IN  
Crystal Clock Input (XTALI).  
Master Clock Input (MCLKIN).  
Supply for Digital Input and Output Pins. The digital output pins are supplied from IOVDD;  
thus, the IOVDD voltage level is the highest input voltage that can be present on the  
digital input pins. The current draw of this pin is variable because it is dependent on the  
loads of the digital outputs. Decouple IOVDD to DGND with a 0.1 μF capacitor.  
PWR  
B1  
DVDD  
PWR  
Digital Core Supply. The digital supply can be generated from an on-board regulator or  
supplied directly from an external supply. In each case, decouple DVDD to DGND with a  
0.1 μF capacitor.  
B2  
B3  
B4  
LRCLK/MP3  
D_IO  
D_IO  
D_IN  
Serial Data Port Frame Clock (LRCLK).  
Multipurpose Pin (MP3).  
DAC Serial Input Data (DAC_SDATA).  
Multipurpose Pin (MP0).  
Digital Microphone Stereo Input 2 and Digital Microphone Stereo Input 3 (DMIC2_3).  
DAC_SDATA/MP0  
DMIC2_3/MP5  
Multipurpose Pin (MP5).  
Rev. 0 | Page 15 of 108  
 
ADAU1777  
Data Sheet  
Pin No. Mnemonic  
Type1  
Description  
B5  
DMIC0_1/MP4  
D_IN  
Digital Microphone Stereo Input 0 and Digital Microphone Stereo Input 1 (DMIC0_1).  
Multipurpose Pin (MP4).  
B6  
SDA/MISO  
D_IO  
D_IN  
I2C Data (SDA). This pin is a bidirectional open-collector. The line connected to this pin  
must have a 2.0 kΩ pull-up resistor.  
SPI Data Output (MISO). This SPI data output reads back registers and memory locations.  
It is tristated when an SPI read is not active.  
I2C Clock (SCL). This pin is always an open-collector input when the device is in I2C  
control mode. When the device is in self boot mode, this pin is an open-collector output (I2C  
master). The line connected to this pin must have a 2.0 kΩ pull-up resistor.  
B7  
C1  
SCL/SCLK  
SPI Clock (SCLK). This pin either can run continuously or be gated off between SPI transactions.  
HPOUTRP/LOUTRP  
A_OUT Right Headphone Output Noninverted (HPOUTRP).  
Line Output Noninverted, Single-Ended Line Output (LOUTRP).  
C2  
C6  
REG_OUT  
ADDR0/SS  
A_OUT Regulator Output Voltage. Connect this pin to DVDD if the internal voltage regulator is  
being used to generate the DVDD voltage.  
D_IN  
I2C Address 0 (ADDR0).  
SPI Latch Signal (SS). This pin must go low at the beginning of an SPI transaction and  
high at the end of a transaction. Each SPI transaction can take a different number of  
SCLK cycles to complete, depending on the address and read/write bit that are sent at  
the beginning of the SPI transaction.  
C7  
D1  
MICBIAS0  
AVDD  
A_OUT Bias Voltage for Electret Microphone. Decouple this pin with a 1 µF capacitor.  
PWR  
Headphone Amplifier Power, 1.8 V to 3.3 V Analog Supply. Decouple this pin to AGND  
with a 0.1 μF capacitor. The PCB trace to this pin must have the capacity to supply the  
higher current necessary for driving the headphone outputs.  
D2  
D6  
HPOUTRN/LOUTRN  
ADDR1/MOSI  
A_OUT Right Headphone Output Inverted (HPOUTRN).  
Line Output Inverted (LOUTRN).  
D_IN  
I2C Address 1 (ADDR1).  
SPI Data Input (MOSI).  
D7  
E1  
E2  
MICBIAS1  
AGND  
HPOUTLP/LOUTLP  
A_OUT Bias Voltage for Electret Microphone. Decouple this pin with a 1 µF capacitor.  
PWR Headphone Amplifier Ground.  
A_OUT Left Headphone Output Noninverted (HPOUTLP).  
Line Output Noninverted, Single-Ended Line Output (LOUTLP).  
E3  
PD  
D_IN  
Active Low Power-Down. All digital and analog circuits are powered down. An internal  
pull-down resistor is on this pin; therefore, the ADAU1777 is held in power-down mode if  
its input signal is floating while power is applied to the supply pins.  
E4  
E5  
E6  
E7  
F1  
AIN3  
AIN0  
SELFBOOT  
AVDD  
HPOUTLN/LOUTLN  
A_IN  
A_IN  
D_IN  
PWR  
ADC3 Input.  
ADC0 Input.  
Self Boot Enable. Pull this pin up to IOVDD at power-up to enable the self boot mode.  
1.8 V to 3.3 V Analog Supply. Decouple this pin to AGND with a 0.1 μF capacitor.  
A_OUT Left Headphone Output Inverted (HPOUTLN).  
Line Output Inverted (LOUTLN).  
F2  
F3  
F4  
F5  
F6  
AVDD  
AGND  
AIN2  
AIN1  
CM  
PWR  
PWR  
A_IN  
A_IN  
1.8 V to 3.3 V Analog Supply. Decouple this pin to AGND with a 0.1 μF capacitor.  
Analog Ground.  
ADC2 Input.  
ADC1 Input.  
A_OUT AVDD/2 V Common-Mode Reference. Connect a 10 μF to 47 μF decoupling capacitor  
between this pin and ground to reduce crosstalk between the ADCs and DACs. The  
material of the capacitors is not critical. This pin can bias external analog circuits, as long  
as they are not drawing current from CM (for example, the noninverting input of an op amp).  
F7  
AGND  
PWR  
Analog Ground. The AGND and DGND pins can be tied directly together in a common  
ground plane. Decouple AGND to AVDD with a 0.1 μF capacitor.  
1 PWR is power; D_IO is digital input/output; A_OUT is analog output; D_IN is digital input; and A_IN is analog input.  
Rev. 0 | Page 16 of 108  
Data Sheet  
ADAU1777  
TYPICAL PERFORMANCE CHARACTERISTICS  
0.4  
0.2  
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–1.2  
–1.4  
–1.6  
–1.8  
–2.0  
–2.2  
–2.4  
–2.6  
–2.8  
–3.0  
100  
1k  
10k  
0
4
8
12  
16  
20  
24  
28  
32  
36  
40  
FREQUENCY (Hz)  
FREQUENCY (kHz)  
Figure 10. Relative Level vs. Frequency, fS = 96 kHz, Signal Path = AIN0 to  
DSP (Without Processing) to LOUTLx  
Figure 13. Group Delay vs. Frequency, fS = 96 kHz, Signal Path = AIN0 to  
DSP (Without Processing) to LOUTLx  
–100  
–150  
–200  
–250  
–300  
–350  
–400  
–450  
–500  
–550  
–600  
–650  
–700  
–750  
–800  
–850  
–900  
–950  
–1000  
–1050  
–1100  
–155  
–160  
–165  
–170  
–175  
–180  
–185  
–190  
–195  
–200  
–205  
–210  
–215  
–220  
–225  
0
4
8
12  
16  
20  
24  
28  
32  
36  
40  
0.1  
0.3  
0.5  
0.9  
0.9  
1.1  
1.3  
1.5  
1.7  
1.9  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
Figure 11. Phase vs. Frequency, 40 kHz Bandwidth, fS = 96 kHz,  
Signal Path = AIN0 to DSP (Without Processing) to LOUTLx  
Figure 14. Phase vs. Frequency, 2 kHz Bandwidth, fS = 96 kHz,  
Signal Path = AIN0 to DSP (Without Processing) to LOUTLx  
1
0
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
–9  
100  
1k  
10k  
0
10  
20  
30  
40  
50  
60  
70  
80  
FREQUENCY (Hz)  
FREQUENCY (kHz)  
Figure 12. Relative Level vs. Frequency, fS = 192 kHz, Signal Path = AIN0 to  
DSP (Without Processing) to LOUTLx  
Figure 15. Group Delay vs. Frequency, fS = 192 kHz, Signal Path = AIN0 to  
DSP (Without Processing) to LOUTLx  
Rev. 0 | Page 17 of 108  
 
ADAU1777  
Data Sheet  
0
–100  
–155  
–160  
–165  
–170  
–175  
–180  
–185  
–190  
–195  
–200  
–205  
–210  
–215  
–220  
–225  
–200  
–300  
–400  
–500  
–600  
–700  
–800  
–900  
–1000  
–1100  
–1200  
–1300  
–1400  
0
10  
20  
30  
40  
50  
60  
70  
80  
0.1  
0.3  
0.5  
0.9  
0.9  
1.1  
1.3  
1.5  
1.7  
1.9  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
Figure 16. Phase vs. Frequency, 80 kHz Bandwidth, fS = 192 kHz,  
Signal Path = AIN0 to DSP (Without Processing) to LOUTLx  
Figure 19. Phase vs. Frequency, 2 kHz Bandwidth, fS = 192 kHz,  
Signal Path = AIN0 to DSP (Without Processing) to LOUTLx  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.05  
0
–0.05  
–0.10  
–0.15  
–0.20  
–0.25  
–0.30  
–0.35  
–0.40  
–0.45  
–0.50  
100  
1k  
10k  
0
10  
20  
30  
40  
50  
60  
70  
80  
FREQUENCY (Hz)  
FREQUENCY (kHz)  
Figure 17. Relative Level vs. Frequency, fS =768 kHz, Signal Path = AIN0 to  
DSP (Without Processing) to LOUTLx  
Figure 20. Group Delay vs. Frequency, fS =768 kHz, Signal Path = AIN0 to  
DSP (Without Processing) to LOUTLx  
–140  
–160  
–180  
–200  
–220  
–240  
–260  
–280  
–300  
–320  
–340  
–360  
–380  
–400  
–420  
–160  
–162  
–164  
–166  
–168  
–170  
–172  
–174  
–176  
–178  
–180  
–182  
–184  
–186  
0
10  
20  
30  
40  
50  
60  
70  
80  
0.1  
0.3  
0.5  
0.9  
0.9  
1.1  
1.3  
1.5  
1.7  
1.9  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
Figure 18. Phase vs. Frequency, 80 kHz Bandwidth, fS =768 kHz,  
Signal Path = AIN0 to DSP (Without Processing) to LOUTLx  
Figure 21. Phase vs. Frequency, 2 kHz Bandwidth, fS =768 kHz,  
Signal Path = AIN0 to DSP (Without Processing) to LOUTLx  
Rev. 0 | Page 18 of 108  
Data Sheet  
ADAU1777  
1.0  
0.5  
0
300  
280  
260  
240  
220  
200  
180  
160  
140  
120  
100  
80  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
–3.5  
–4.0  
–4.5  
–5.0  
–5.5  
–6.0  
–6.5  
–7.0  
–7.5  
–8.0  
60  
40  
20  
0
100  
1k  
10k  
0
4
8
12  
16  
20  
24  
28  
32  
36  
40  
FREQUENCY (Hz)  
FREQUENCY (kHz)  
Figure 22. Relative Level vs. Frequency, fS = 96 kHz,  
Signal Path = AIN0 to ASRC to ADC_SDATA0  
Figure 25. Group Delay vs. Frequency, fS = 96 kHz, Signal Path =  
AIN0 to ASRC to ADC_SDATA0  
200  
100  
10  
5
0
0
–100  
–200  
–300  
–400  
–500  
–600  
–700  
–800  
–900  
–1000  
–1100  
–1200  
–1300  
–1400  
–1500  
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
0
4
8
12  
16  
20  
24  
28  
32  
36  
40  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
Figure 23. Phase vs. Frequency, 40 kHz Bandwidth, fS = 96 kHz,  
Signal Path = AIN0 to ASRC to ADC_SDATA0  
Figure 26. Phase vs. Frequency, 2 kHz Bandwidth, fS = 96 kHz,  
Signal Path = AIN0 to ASRC to ADC_SDATA0  
2
0
300  
280  
260  
240  
220  
200  
180  
160  
140  
120  
100  
80  
–2  
–4  
–6  
–8  
–10  
–12  
–14  
–16  
–18  
–20  
–22  
60  
40  
20  
0
100  
1k  
10k  
0
10  
20  
30  
40  
50  
60  
70  
80  
FREQUENCY (Hz)  
FREQUENCY (kHz)  
Figure 24. Relative Level vs. Frequency, fS = 192 kHz,  
Signal Path = AIN0 to ASRC to ADC_SDATA0  
Figure 27. Group Delay vs. Frequency, fS = 192 kHz,  
Signal Path = AIN0 to ASRC to ADC_SDATA0  
Rev. 0 | Page 19 of 108  
ADAU1777  
Data Sheet  
200  
10  
5
0
–200  
–400  
–600  
–800  
–1000  
–1200  
–1400  
–1600  
–1800  
0
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
0
10  
20  
30  
40  
50  
60  
70  
80  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
Figure 28. Phase vs. Frequency, 80 kHz Bandwidth,  
fS = 192 kHz, Signal Path = AIN0 to ASRC to ADC_SDATA0  
Figure 31. Phase vs. Frequency, 2 kHz Bandwidth,  
fS = 192 kHz, Signal Path = AIN0 to ASRC to ADC_SDATA0  
2
1
0
–1  
–2  
–3  
–4  
–5  
–6  
–7  
300  
280  
260  
240  
220  
200  
180  
160  
140  
120  
100  
80  
–8  
–9  
–10  
–11  
–12  
–13  
–14  
–15  
–16  
60  
40  
20  
0
100  
1k  
10k  
0
10  
20  
30  
40  
50  
60  
70  
80  
FREQUENCY (Hz)  
FREQUENCY (kHz)  
Figure 29. Relative Level vs. Frequency, fS = 786 kHz, Signal Path = AIN0 to  
ASRC to ADC_SDATA0  
Figure 32. Group Delay vs. Frequency, fS = 786 kHz, Signal Path = AIN0 to  
ASRC to ADC_SDATA0  
100  
0
25  
20  
–100  
–200  
–300  
–400  
–500  
–600  
–700  
–800  
–900  
–1000  
–1100  
–1200  
–1300  
15  
10  
5
0
–5  
–10  
–15  
–20  
–25  
–30  
0
10  
20  
30  
40  
50  
60  
70  
80  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
Figure 30. Phase vs. Frequency, 80 kHz Bandwidth, fS = 786 kHz,  
Signal Path = AIN0 to ASRC to ADC_SDATA0  
Figure 33. Phase vs. Frequency, 2 kHz Bandwidth, fS = 786 kHz,  
Signal Path = AIN0 to ASRC to ADC_SDATA0  
Rev. 0 | Page 20 of 108  
Data Sheet  
ADAU1777  
0.5  
0
300  
280  
260  
240  
220  
200  
180  
160  
140  
120  
100  
80  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
–3.5  
–4.0  
–4.5  
–5.0  
–5.5  
–6.0  
60  
40  
20  
0
100  
1k  
10k  
0
4
8
12  
16  
20  
24  
28  
32  
36  
40  
FREQUENCY (Hz)  
FREQUENCY (kHz)  
Figure 34. Relative Level vs. Frequency, fS = 96 kHz,  
Signal Path = DAC_SDATA to ASRC to LOUTLx  
Figure 37. Group Delay vs. Frequency, fS = 96 kHz,  
Signal Path = DAC_SDATA to ASRC to LOUTLx  
200  
100  
0
–150  
–155  
–160  
–165  
–170  
–175  
–180  
–185  
–190  
–195  
–200  
–205  
–210  
–215  
–220  
–225  
–230  
–235  
–240  
–245  
–250  
–100  
–200  
–300  
–400  
–500  
–600  
–700  
–800  
–900  
–1000  
–1100  
–1200  
–1300  
–1400  
–1500  
–1600  
–1700  
0
4
8
12  
16  
20  
24  
28  
32  
36  
40  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
Figure 35. Phase vs. Frequency, 40 kHz Bandwidth,  
fS = 96 kHz, Signal Path = DAC_SDATA to ASRC to LOUTLx  
Figure 38. Phase vs. Frequency, 2 kHz Bandwidth,  
fS = 96 kHz, Signal Path = DAC_SDATA to ASRC to LOUTLx  
1.0  
0.5  
0
300  
280  
260  
240  
220  
200  
180  
160  
140  
120  
100  
80  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
–3.5  
–4.0  
–4.5  
–5.0  
–5.5  
–6.0  
–6.5  
–7.0  
–7.5  
–8.0  
60  
40  
20  
0
100  
1k  
10k  
0
10  
20  
30  
40  
50  
60  
70  
80  
FREQUENCY (Hz)  
FREQUENCY (kHz)  
Figure 36. Relative Level vs. Frequency,  
fS = 192 kHz, Signal Path = DAC_SDATA to ASRC to LOUTLx  
Figure 39. Group Delay vs. Frequency,  
fS = 192 kHz, Signal Path = DAC_SDATA to ASRC to LOUTLx  
Rev. 0 | Page 21 of 108  
ADAU1777  
Data Sheet  
0
–100  
–200  
–300  
–400  
–500  
–600  
–700  
–800  
–160  
–165  
–170  
–175  
–180  
–185  
–190  
–195  
–200  
–205  
–210  
–215  
–900  
–1000  
–1100  
–1200  
–1300  
–1400  
–1500  
–1600  
–1700  
–1800  
0
10  
20  
30  
40  
50  
60  
70  
80  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
Figure 40. Phase vs. Frequency, 80 kHz Bandwidth,  
fS = 192 kHz, Signal Path = DAC_SDATA to ASRC to LOUTLx  
Figure 43. Phase vs. Frequency, 2 kHz Bandwidth,  
fS = 192 kHz, Signal Path = DAC_SDATA to ASRC to LOUTLx  
300  
0.4  
0.2  
0
280  
260  
240  
220  
200  
180  
160  
140  
120  
100  
80  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–1.2  
–1.4  
–1.6  
–1.8  
–2.0  
–2.2  
–2.4  
–2.6  
–2.8  
–3.0  
–3.2  
–3.4  
60  
40  
20  
0
100  
1k  
10k  
0
10  
20  
30  
40  
50  
60  
70  
80  
FREQUENCY (Hz)  
FREQUENCY (kHz)  
Figure 41. Relative Level vs. Frequency, fS = 786 kHz, Signal Path =  
DAC_SDATA to ASRC to LOUTLx  
Figure 44. Group Delay vs. Frequency, fS = 786 kHz, Signal Path =  
DAC_SDATA to ASRC to LOUTLx  
–100  
–150  
–200  
–250  
–300  
–350  
–400  
–450  
–500  
–550  
–600  
–650  
–700  
–750  
–800  
–850  
–900  
–950  
–1000  
–1050  
–1100  
–160  
–165  
–164  
–166  
–168  
–170  
–172  
–174  
–176  
–178  
–180  
–182  
–184  
–186  
–188  
–190  
–192  
–194  
–196  
–198  
–200  
0
4
8
12  
16  
20  
24  
28  
32  
36  
40  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
Figure 42. Phase vs. Frequency, 20 kHz Bandwidth, fS = 786 kHz,  
Signal Path = DAC_SDATA to ASRC to LOUTLx  
Figure 45. Phase vs. Frequency, 2 kHz Bandwidth fS = 786 kHz,  
Signal Path = DAC_SDATA to ASRC to LOUTLx  
Rev. 0 | Page 22 of 108  
Data Sheet  
ADAU1777  
35  
30  
25  
20  
15  
10  
5
2
0
–2  
–4  
–6  
–8  
–10  
0
0
5
10  
15  
20  
–12  
–6  
0
6
12  
18  
24  
30  
36  
FREQUENCY (kHz)  
PGA GAIN SETTING (dB)  
Figure 49. Interpolation Pass Band Response, fS = 768 kHz  
Figure 46. Input Impedance vs. PGA Gain Setting  
(See the Input Impedance Section)  
2
0
0
–20  
–2  
–40  
–60  
–4  
–6  
–80  
–100  
–120  
–8  
–10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
0
5
10  
15  
20  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
Figure 50. Total Interpolation Response, fS = 768 kHz  
Figure 47. Decimation Pass Band Response, fS = 768 kHz  
0
–20  
–40  
–60  
–80  
–100  
–120  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
FREQUENCY (kHz)  
Figure 48. Total Decimation Response, fS = 768 kHz  
Rev. 0 | Page 23 of 108  
ADAU1777  
Data Sheet  
THEORY OF OPERATION  
The ADAU1777 is a low power audio codec with a streamlined  
audio processing core, making it ideal for noise canceling  
applications that require high quality audio, low power, small  
size, and low latency. The operating voltage range is 1.71 V to  
3.63 V, with an on-board regulator optionally generating the  
internal digital supply voltage. By enabling low latency settings,  
the ADAU1777 can reach latencies as low as 5 μs.  
control individual signal processing blocks. The ADAU1777  
also has a self boot function that can load the program RAM,  
parameter RAM, and register settings on power-up using an  
external EEPROM.  
The SigmaStudio software programs and controls the core through  
the I2C or SPI control port. Along with aiding in the design and  
tuning of a signal flow, SigmaStudio can configure all of the  
ADAU1777 registers. The SigmaStudio graphical interface allows  
anyone with digital or analog audio processing knowledge to  
easily design the DSP signal flow and port it to a target  
application. The interface also provides enough flexibility and  
programmability for an experienced DSP programmer to have  
in-depth control of the design. In SigmaStudio, the user can  
connect graphical blocks (such as biquad filters, volume controls,  
and arithmetic operations), compile the design, and load the  
program and parameter files into the ADAU1777 memory  
through the control port. SigmaStudio also allows the user to  
download the design to an external EEPROM for self boot  
operation. Signal processing blocks available in the provided  
libraries include the following:  
The ADCs and DACs are high quality, 24-bit, Σ-Δ converters  
that operate at a selectable 768 kHz, 192 kHz, or 96 kHz  
sampling rate. The ADCs have an optional high-pass filter with  
a cutoff frequency of 1 Hz, 4 Hz, or 8 Hz. The ADCs and DACs  
also include fine step digital volume controls.  
The stereo DAC output can differentially drive a headphone  
earpiece speaker with 16 Ω or higher impedance. One side of  
the differential output can be powered down if single-ended  
operation is required. There is also the option to change to line  
output mode when the output has a low load.  
The input signal path is flexible and can accept single-ended  
analog microphone inputs, serial audio inputs, and digital  
microphone inputs. Two microphone bias pins provide seamless  
interfacing to electret microphones. Each analog input has an  
independent PGA that can be used for volume adjustment. The  
serial data port is compatible with I2S, left justified, right  
justified, and TDM modes, with tristating for interfacing to  
digital audio data streams.  
Single-precision biquad filters  
Second-order filters  
Absolute value and two-input adder  
Volume controls  
Limiter  
The core has a reduced instruction set that is optimized for  
active noise cancellation. The program and parameter RAMs  
can be loaded with custom audio processing signal flows built  
using the SigmaStudio™ graphical programming software from  
Analog Devices, Inc. The values stored in the parameter RAM  
The ADAU1777 can generate its internal clocks from a wide range  
of input clocks by using the on-board fractional PLL. The PLL  
accepts inputs from 8 MHz to 27 MHz. For standalone operation,  
the clock can be generated using the on-board crystal oscillator.  
Rev. 0 | Page 24 of 108  
 
Data Sheet  
ADAU1777  
SYSTEM CLOCKING AND POWER-UP  
Control Port Access During Initialization  
CLOCK INITIALIZATION  
During the lock acquisition period, only Register 0x00 to Register  
0x06 are accessible through the control port. A read or write to any  
other register is prohibited until the core clock enable bit and the  
lock bit are both asserted. After the CORE_RUN bit (Address 0x09)  
is set high, the following register bits must not be changed:  
The ADAU1777 can generate its clocks either from an externally  
provided clock or from a crystal oscillator. In both cases, the  
on-board PLL can be used or the clock can be fed directly to  
the core. When a crystal oscillator is used, it is desirable to use a  
12.288 MHz crystal, and the crystal oscillator function must be  
enabled in the COREN bit (Address 0x00, Bit 0). If the PLL is  
used, it must always be set to output 24.576 MHz. The PLL can  
be bypassed if a clock of 12.288 MHz or 24.576 MHz is available  
in the system. Bypassing the PLL saves system power.  
ADC_0_1_SINC and ADC_2_3_SINC  
DAC_SOURCE0 and DAC_SOURCE1  
If these bits must be changed after the ADAU1777 is running,  
the CORE_RUN bit first must be disabled.  
The CC_MDIV and CC_CDIV bits must not be changed after  
setup, but the CLKSRC bit can be switched while the core is  
running.  
PLL  
The PLL uses the MCLKIN signal as a reference to generate  
the core clock. The PLL settings are set in Register 0x00 to  
Register 0x05. Depending on the MCLK frequency, the PLL  
must be set for either integer or fractional mode. The PLL can  
accept input frequencies in the range of 8 MHz to 27 MHz.  
Set the CC_MDIV and CC_CDIV bits so that the core and  
internal master clock are always 12.288 MHz; for example,  
when using a 24.576 MHz external source clock or if using the  
PLL, it is necessary to use the internal divide by 2 (see Table 11).  
TO PLL  
CLOCK DIVIDER  
Table 11. Clock Configuration Settings  
MCLK  
÷X  
× (R + N/M)  
CC_MDIV  
CC_CDIV  
Description  
Figure 51. PLL Block Diagram  
1
1
Divide the PLL/external clock by 1.  
Use these settings for a 12.288 MHz  
direct input clock source.  
Divide the PLL/external clock by 2. Use  
these settings for a 24.576 MHz direct  
input clock source or if using the PLL.  
Input Clock Divider  
Before reaching the PLL, the input clock signal goes through an  
integer clock divider to ensure that the clock frequency is within  
a suitable range for the PLL. The X bits in the PLL_CTRL4 register  
(Address 0x05, Bits[2:1]) set the PLL input clock divide ratio.  
0
0
Integer Mode  
PLL Bypass Setup  
Use integer mode when the clock input is an integer multiple of  
the PLL output.  
On power-up, the ADAU1777 exits an internal reset after 15 ms.  
The rate of the internal master clock must be set properly using  
the CC_MDIV bit in the clock control register (Address 0x00).  
When bypassing the PLL, the clock associated with MCLKIN must  
be either 12.288 MHz or 24.576 MHz. The internal master clock  
of the ADAU1777 is disabled until the COREN bit is asserted.  
For example, if MCLKIN = 12.288 MHz, (X + 1) = 1, and fS =  
48 kHz,  
PLL Required Output = 24.576 MHz  
R/2 = 24.576 MHz/12.288 MHz = 2  
where R/2 = 2 or R = 4.  
PLL Enabled Setup  
The core clock of the ADAU1777 is disabled by the default  
setting of the COREN bit and must remain disabled during the  
PLL lock acquisition period. The user can poll the lock bit to  
determine when the PLL has locked. After lock is acquired, the  
ADAU1777 can be started by asserting the COREN bit. This bit  
enables the core clock for all the internal blocks of the ADAU1777.  
In integer mode, the values set for N and M are ignored. Table 12  
lists common integer PLL parameter settings for 48 kHz  
sampling rates.  
Fractional Mode  
Use fractional mode when the clock input is a fractional  
multiple of the PLL output.  
To program the PLL during initialization or reconfiguration of  
the codec, use the following procedure:  
For example, if MCLKIN = 13 MHz, (X + 1) = 1, and fS = 48 kHz,  
1. Ensure that PLL_EN (Bit 7, Address 0x00) is set low.  
2. Set or reset the PLL control registers (Address 0x01 to  
Address 0x05).  
3. Enable the PLL using the PLL_EN bit.  
4. Poll the PLL lock bit in Register 0x06.  
5. Set the COREN bit in Register 0x00 after the PLL lock is  
acquired.  
PLL Required Output = 24.576 MHz  
(1/2) × (R + (N/M)) = 24.576 MHz/13 MHz = (1/2) × (3 +  
(1269/1625))  
where:  
R = 3.  
N = 1269.  
M = 1625.  
Rev. 0 | Page 25 of 108  
 
 
 
 
ADAU1777  
Data Sheet  
Table 13 lists common fractional PLL parameter settings for  
48 kHz sampling rates. When the PLL is used in fractional  
mode, the N/M fraction must be kept in the range of 0.1 to 0.9  
to ensure correct operation of the PLL.  
PD  
pin powers down all analog and digital circuits.  
Enabling the  
Before enabling  
(that is, setting it low), be sure to mute the  
PD  
outputs to avoid any pops when the IC is powered down. Tie  
PD  
directly to IOVDD for normal operation.  
The PLL output clock must be kept in the range of 20.5 MHz to  
27 MHz, which must be taken into account when calculating PLL  
values and MCLK frequencies.  
Power-Down Considerations  
When powering down the ADAU1777, mute the outputs before  
AVDD power is removed; otherwise, pops or clicks may be  
heard. The easiest way to achieve this is to use a regulator that has  
a power-good (PGOOD) signal to power the ADAU1777 or to  
generate a power-good signal using additional circuitry external  
to the regulator itself. Typically, on such regulators, the power-good  
signal changes state when the regulated voltage drops below ~90%  
of its target value. Connect this power-good signal to one of the  
ADAU1777 multipurpose pins and mute the DAC outputs by  
setting the multipurpose pin functionality to mute both DACs  
in Register 0x38 to Register 0x3E. Taking these precautions  
ensures that the outputs are muted before power is completely  
removed.  
CLOCK OUTPUT  
Use the CLKOUT pin as a master clock output to clock other  
ICs in the system or as the clock for the digital microphone inputs  
and PDM output. This clock can be generated from the 12.288  
MHz master clock of the ADAU1777 by factors of 2, 1, ½, ¼,  
and ⅛. If PDM mode is enabled, only the ½, ¼, and ⅛ settings  
produce a clock signal on CLKOUT. The factor of 2 multiplier  
works properly only if the input clock was previously divided by  
2 using the CC_MDIV bit.  
POWER SEQUENCING  
AVDD and IOVDD can each be set to any voltage between 1.8 V  
and 3.3 V, and DVDD can be set between 1.1 V and 1.8 V or  
between 1.1 V and 1.2 V if using the on-board regulator.  
On power-up, AVDD must be powered up before or at the same  
time as IOVDD. Do not power up IOVDD when power is not  
applied to AVDD.  
Table 12. Integer PLL Parameter Settings for PLL Output = 24.576 MHz  
MCLK Input (MHz) Input Divider (X + 1) Integer (R) Denominator (M) Numerator (N) PLL_CTRL4 Settings (Address 0x05)  
12.288  
24.576  
1
1
4
2
Don’t care  
Don’t care  
Don’t care  
Don’t care  
0x20  
0x10  
Table 13. Fractional PLL Parameter Settings for PLL Output = 24.576 MHz  
PLL Parameter Register Settings (Address 0x05 to Address 0x01)  
Divider Integer Denominator Numerator PLL_CTRL4  
PLL_CTRL3 PLL_CTRL2 PLL_CTRL1 PLL_CTRL0  
(Addr. 0x05) (Addr. 0x04) (Addr. 0x03) (Addr. 0x02) (Addr. 0x01)  
MCLK Input  
Input  
(MHz) (X + 1)  
(R)  
6
3
6
5
(M)  
125  
1625  
75  
25  
1625  
1125  
(N)  
18  
1269  
62  
3
1269  
721  
8
13  
14.4  
19.2  
26  
1
1
2
2
2
2
0x31  
0x19  
0x33  
0x2B  
0x1B  
0x1B  
0x12  
0xF5  
0x3E  
0x03  
0xF5  
0xD1  
0x00  
0x04  
0x00  
0x00  
0x04  
0x02  
0x7D  
0x59  
0x4B  
0x19  
0x59  
0x65  
0x00  
0x06  
0x00  
0x00  
0x06  
0x04  
3
3
27  
Rev. 0 | Page 26 of 108  
 
 
 
 
Data Sheet  
ADAU1777  
SIGNAL ROUTING  
The ADAU1777 features flexible signal routing. The signal  
routing is specified by Register 0x0F through Register 0x1A.  
PGA  
AIN0  
ADC  
MODULATOR  
ADC  
DECIMATOR  
AIN1  
PGA  
HPOUTLP/LOUTLP  
HPOUTLN/LOUTLN  
ADC  
MODULATOR  
DAC  
DAC  
ADC  
DECIMATOR  
DAC  
AND  
HPOUTRP/LOUTRP  
HPOUTRN/LOUTRN  
CORE  
INPUT  
SELECTION  
AUDIO  
PROCESSING  
CORE  
DMIC0_1/MP4  
DMIC2_3/MP5  
DIGITAL  
PDM  
MICROPHONE  
INPUTS  
OUTPUT  
SELECTION  
ADC  
STEREO PDM  
MODULATOR  
1
PDMOUT  
PGA  
AIN2  
AIN3  
DECIMATOR  
ADC  
MODULATOR  
ADC  
DECIMATOR  
PGA  
ADC  
MODULATOR  
STEREO INPUT  
ASRC  
SERIAL  
INPUT PORT  
DUAL STEREO  
OUTPUT ASRCs  
DAC_SDATA  
1
ADC_SDATA0  
SERIAL  
OUTPUT PORT  
ADC_SDATA1  
1
THE ADC_SDATA0 AND PDMOUT FUNCTIONS SHARE A PHYSICAL PIN; THEREFORE ONLY ONE OF THESE FUNCTIONS CAN BE USED AT A TIME.  
Figure 52. Input and Output Signal Routing  
Rev. 0 | Page 27 of 108  
 
 
ADAU1777  
Data Sheet  
INPUT SIGNAL PATHS  
Four input paths, from either an ADC or a digital microphone,  
can be routed to the core. The input sources (ADC or digital  
microphone) must be configured in pairs (for example, 0 and 1,  
or 2 and 3), but each channel can be routed individually. The  
core inputs can also be sourced from a stereo input ASRC.  
Analog Line Inputs  
Line level signals can be input on the AINx pins of the analog  
inputs. Figure 54 shows a single-ended line input using the  
AINx pins.  
ADAU1777  
ANALOG INPUTS  
LINE INPUT 0  
LINE INPUT 1  
LINE INPUT 2  
LINE INPUT 3  
AIN0  
AIN1  
AIN2  
AIN3  
The ADAU1777 can accept both line level and microphone inputs.  
Each of the four analog input channels can be configured in  
single-ended mode or a single-ended with PGA mode. There  
are also inputs for up to four digital microphones. The analog  
inputs are biased at AVDD/2 V. Connect unused input pins to  
the CM pin or ac-couple them to ground.  
Figure 54. Single-Ended Line Inputs  
Precharging Input Capacitors  
Signal Polarity  
Precharge amplifiers are enabled by default to charge large series  
capacitors quickly on the inputs and outputs. Precharging these  
capacitors prevents pops in the audio signal. The precharge circuits  
are powered up by default on startup and can be disabled in the  
POP_SUPPRESS register. The precharge amplifiers are automati-  
cally disabled when the PGA or headphone amplifiers are enabled.  
For unused PGAs and headphone outputs, disable these precharge  
amplifiers using the POP_SUPPRESS register. The precharging  
time is dependent on the input/output series capacitors. The  
impedance looking into the AINx pin is 500 ꢁ in this mode.  
However, at startup, the impedance looking into the pin is  
dominated by the time constant of the CM pin because the  
precharge amplifiers reference the CM voltage.  
Signals routed through the PGAs are inverted. As a result, signals  
input through the PGA are output from the ADCs with a polarity  
that is opposite that of the input. Single-ended inputs are not  
inverted. The ADCs are noninverting.  
Input Impedance  
The input impedance of the analog inputs varies with the gain of  
the PGA. This impedance ranges from 0.68 kΩ at the +35.25 dB  
gain setting to 32.0 kΩ at the −12 dB setting. The resistors inside  
the ADAU1777 are precisely matched to each other, resulting in  
very little gain error. However, the exact value of the resistors  
depends on various conditions in the silicon manufacturing  
process and can vary by as much as 20ꢀ. The input impedance  
(RIN) on each pin can be calculated as follows:  
Microphone Bias  
40  
The ADAU1777 includes two microphone bias outputs: MICBIAS0  
and MICBIAS1. These pins provide a voltage reference for electret  
analog microphones. The MICBIASx pins also cleanly supply  
voltage to digital or analog microelectromechanical systems  
(MEMS) microphones with separate power supply pins. The  
MICBIASx voltage is set in the microphone bias control register  
(Address 0x2D). Using this register, the MICBIAS0 or MICBIAS1  
output can be enabled or disabled. The gain options provide  
two possible voltages: 0.65 × AVDD or 0.90 × AVDD.  
RIN  
kΩ  
10 (Gain / 20 ) 1  
where Gain is set by PGA_GAINx.  
The optional 10 dB PGA boost, set in the PGA_x_BOOST bits,  
does not affect the input impedance. This setting is an alternative  
way of increasing gain without decreasing input impedance;  
however, it causes some degradation in performance.  
Analog Microphone Inputs  
For microphone signals, the ADAU1777 analog inputs can be  
configured as single-ended with PGA mode.  
Many applications require enabling only one of the two bias  
outputs. The two bias outputs must both be enabled when many  
microphones are used in the system or when the positioning of  
the microphones on the PCB does not allow one pin to bias all  
microphones.  
The PGA settings are controlled in Register 0x23 to Register 0x26.  
The PGA is enabled by setting the PGA_ENx bits.  
Connect the microphone signal to the inverting inputs of the  
PGAs (AINx), as shown in Figure 53.  
ADAU1777  
PGA  
AINx  
MICROPHONE  
–12dB TO  
+35.25dB  
2k  
MICBIASx  
Figure 53. Single-Ended Microphone Configuration  
Rev. 0 | Page 28 of 108  
 
 
 
 
 
Data Sheet  
ADAU1777  
Figure 55 shows two digital microphones connected to the  
DIGITAL MICROPHONE INPUT  
DMIC0_1/MP4 pin. These microphones can also be connected  
to DMIC2_3/MP5 if that signal path is to be used for digital  
microphones. If more than two digital microphones are to be  
used in a system, then up to two microphones are connected to  
both DMIC0_1/MP4 and DMIC2_3/MP5 and the CLKOUT  
signal is fanned out to the clock input of all of the microphones.  
When using a digital microphone connected to the DMIC0_1/MP4  
and DMIC2_3/MP5 pins, the DCM_0_1 and DCM_2_3 bits in  
Register 0x1D and Register 0x1E must be set to enable the  
digital microphone signal paths. Set the pin functions to digital  
microphone input in the corresponding pin mode registers  
(Address 0x3C and Address 0x3D). The DMIC0/DMIC2 and  
DMIC1/DMIC3 channels can be swapped (left/right swap) by  
writing to the DMIC_SW0 and DMIC_SW1 bits in the ADC_  
CONTROL2 and ADC_CONTROL3 registers (Address 0x1D  
and Address 0x1E, respectively). In addition, the microphone  
polarity can be reversed by setting the DMIC_POLx bits, which  
reverses the phase of the incoming audio by 180°.  
ANALOG-TO-DIGITAL CONVERTERS (ADCs)  
The ADAU1777 includes four 24-bit, Σ-Δ ADCs, each with a  
selectable sample rate of 768 kHz, 192 kHz, or 96 kHz.  
ADC Full-Scale Level  
The full-scale input to the ADCs (0 dBFS) scales linearly with  
AVDD. At AVDD = 3.3 V, the full-scale input level is 1 V rms.  
Signal levels greater than the full-scale value cause the ADCs to  
clip.  
The digital microphone inputs are clocked from the CLKOUT pin.  
The digital microphone data stream must be clocked by this pin  
and not by a clock from another source, such as another audio  
IC, even if the other clock is of the same frequency as CLKOUT.  
Digital ADC Volume Control  
The volume setting of each ADC can be digitally attenuated in the  
ADCx_VOLUME registers (Address 0x1F to Address 0x22). The  
volume can be set between 0 dB and −95.625 dB in 0.375 dB steps.  
The ADC volume can also be digitally muted in the ADC_  
CONTROLx registers (Address 0x1B to Address 0x1E).  
The digital microphone signal bypasses the analog input path  
and the ADCs and is routed directly into the decimation filters.  
The digital microphone and the ADCs share digital filters and,  
therefore, both cannot be used simultaneously. The digital micro-  
phone inputs are enabled in pairs. The ADAU1777 inputs can  
be set for either four analog inputs, four digital microphone inputs,  
or two analog inputs and two digital microphone inputs. Figure 55  
shows the digital microphone interface and signal routing.  
1.8V TO 3.3V  
High-Pass Filter  
A high-pass filter is available on the ADC path to remove dc offsets;  
this filter can be enabled or disabled using the HP_x_y_EN bits.  
At fS = 192 kHz, the corner frequency of this high-pass filter can  
be set to 1 Hz, 4 Hz, or 8 Hz.  
CLK  
ADAU1777  
V
DATA  
DIGITAL  
MICROPHONE  
L/R SELECT GND  
DD  
0.1µF  
CLKOUT  
DMIC0_1  
CLK  
V
DATA  
DIGITAL  
MICROPHONE  
L/R SELECT GND  
DD  
0.1µF  
Figure 55. Digital Microphone Interface Block Diagram  
Rev. 0 | Page 29 of 108  
 
 
 
ADAU1777  
Data Sheet  
OUTPUT SIGNAL PATHS  
Data from the serial input port can be routed to the core, to the  
output selection multiplexer, or directly to the serial output  
ports. Data from the core can be routed to the serial output  
port, the stereo DAC, and the stereo PDM modulator (see  
Figure 52).  
Pop and Click Suppression  
On power-up, the precharge circuitry is enabled on all four  
analog output pins to suppress pops and clicks. After power-  
up, the precharge circuitry can be set to a low power mode  
using the HP_POP_DISx bits in the POP_SUPRRESS register  
(Address 0x29).  
The analog outputs of the ADAU1777 can be configured as  
differential or single-ended outputs. The analog output pins can  
drive headphone or earpiece speakers. The line outputs can  
drive a load of at least 10 kΩ or can be set into headphone mode  
to drive headphones or earpiece speakers. The analog output  
pins are biased at AVDD/2.  
The precharge time depends on the value of the capacitor  
connected to the CM pin and the RC time constant of the load  
on the output pin. For a typical line output load, the precharge  
time is between 2 ms and 3 ms. After this precharge time, the  
HP_POP_DISx bits can be set to low power mode.  
ANALOG OUTPUTS  
Headphone Output  
To avoid clicks and pops, mute all analog outputs that are in use  
while changing any register settings that may affect the signal path.  
These outputs can then be unmuted after the changes are made.  
The output pins can be driven by either a line output driver or a  
headphone driver by setting the HP_EN_L and HP_EN_R bits  
in the headphone line output select register (Address 0x43). The  
headphone outputs can drive a load of at least 16 Ω.  
Line Outputs  
The analog output pins (HPOUTLP/LOUTLP, HPOUTLN/  
LOUTLN, HPOUTRP/LOUTRP, and HPOUTRN/LOUTRN)  
can be used to drive both differential and single-ended loads. In  
their default settings, these pins can drive typical line loads of  
10 kΩ or greater.  
Headphone Output Power-Up Sequencing  
To prevent pops when turning on the headphone outputs, wait  
at least 6 ms to unmute these outputs after enabling the headphone  
output using the HP_EN_x bits. Waiting 6 ms allows an internal  
capacitor to charge before these outputs are used. Figure 56  
illustrates the headphone output power-up sequencing.  
When the line output pins are used in single-ended mode, use  
the HPOUTLP/LOUTLP and HPOUTRP/LOUTRP pins to  
output the signals, and power down the HPOUTLN/LOUTLN  
and HPOUTRN/LOUTRN pins.  
USER  
DEFINED  
6ms  
DIGITAL-TO-ANALOG CONVERTERS (DACs)  
The ADAU1777 includes two 24-bit, Σ-Δ DACs.  
DAC Full-Scale Level  
HP_EN_R AND HP_EN_L  
1 = HEADPHONE  
HP_MUTE_R AND HP_MUTE_L  
00 = UNMUTE  
The full-scale output from the DACs (0 dBFS) scales linearly with  
AVDD. At AVDD = 3.3 V, the full-scale output level is 1.94 V rms  
for a differential output or 0.97 V rms for a single-ended output.  
INTERNAL  
PRECHARGE  
Digital DAC Volume Control  
Figure 56. Headphone Output Power-Up Sequencing  
The volume of each DAC can be digitally attenuated using the  
DACx_VOLUME registers (Address 0x2F and Address 0x30). The  
volume can be set to be between 0 dB and −95.625 dB in  
0.375 dB steps.  
Ground Centered Headphone Configuration  
The headphone outputs can also be configured as ground  
centered outputs by connecting coupling capacitors in series  
with the output pins. Ground centered headphones must use  
the AGND pin as the ground reference.  
PDM OUTPUT  
The ADAU1777 includes a 2-channel PDM modulator. The  
PDMOUT pin can be used to drive a PDM input amplifier, such as  
the SSM2517 mono 2.4 W amplifier. Two SSM2517 devices can be  
connected to the PDMOUT data stream to enable a stereo output.  
The PDM output signal is clocked by the CLKOUT pin output. The  
PDM output stream must be clocked by this pin and not by a clock  
from another source, such as another audio IC, even if the other  
clock is of the same frequency as CLKOUT. The PDM output data  
is clipped at the −6 dB level to prevent overdriving a connected  
amplifier like the SSM2517.  
When the headphone outputs are configured as ground  
centered, the capacitors create a high-pass filter on the outputs.  
The corner frequency of this filter (f3 dB), which has an  
attenuation of 3 dB, is calculated by the following formula:  
f3 dB = 1/(2π × R × C)  
where :  
R is the impedance of the headphones.  
C is the capacitor value.  
For a typical headphone impedance of 32 Ω with a 220 μF  
capacitor, the corner frequency is 23 Hz.  
Rev. 0 | Page 30 of 108  
 
 
 
 
 
Data Sheet  
ADAU1777  
The ADAU1777 has the ability to output PDM control patterns to  
configure devices such as the SSM2517. Each pattern is a byte long  
and is written with a user defined pattern in the PDM_PATTERN  
register (Address 0x37). The control pattern is enabled and the  
output channel selection is configured in the PDM_OUT  
register (Address 0x36). The PDM pattern must not be changed  
while the ADAU1777 is outputting the control pattern to the  
external device. After the external device is configured, the  
control pattern can be disabled. For the SSM2517, the control  
pattern must be repeated a minimum of 128 times to configure  
the device. Table 14 describes typical control patterns for the  
SSM2517.  
SIGNAL LEVELS  
The ADCs, DACs, and ASRCs have fixed gain settings that must be  
considered when configuring the system. These settings are  
chosen to maximize performance of the converters and to ensure  
that there is 0 dB gain for any signal path from the input of the  
ADAU1777 to its output. Therefore, the full-scale level of a signal  
in the processing core is slightly different from a full-scale level  
external to the IC.  
Input paths, such as through the ADCs and input ASRCs, are  
scaled by 0.75, or about −2.5 dB. Output paths, such as through  
the DACs or output ASRCs, are scaled by 1.33, or about 2.5 dB.  
This scaling is shown in Figure 57.  
Table 14. SSM2517 PDM Control Pattern Descriptions  
ADC  
CORE  
DAC  
Pattern Control Description  
–2.5dB  
+2.5dB  
0xAC  
0xD8  
0xD4  
0xD2  
Power-down. All blocks off except for the PDM  
interface. Normal start-up time.  
Gain optimized for PVDD = 5 V operation. Overrides  
GAIN_FS pin setting.  
Gain optimized for PVDD = 3.6 V operation. Overrides  
GAIN_FS pin setting.  
Gain optimized for PVDD = 2.5 V operation. Overrides  
GAIN_FS pin setting.  
INPUT  
ASRCs  
OUTPUT  
ASRCs  
–2.5dB  
+2.5dB  
0xD1  
0xE1  
0xE2  
0xE4  
fS set to opposite value determined by GAIN_FS pin.  
Ultralow electromagnetic interference (EMI) mode.  
Half clock cycle pulse mode for power savings.  
Special 32 kHz,128 × fS operation mode.  
Figure 57. Signal Level Diagram  
Because of this input and output scaling, output signals from  
the core must be limited to −2.5 dB full scale to prevent the  
DACs and ASRCs from clipping.  
ASYNCHRONOUS SAMPLE RATE CONVERTERS  
The ADAU1777 includes ASRCs to enable synchronous, full  
duplex operation of the serial ports. Two stereo ASRCs are  
available for the digital outputs, and one stereo ASRC is available  
for the digital input signals.  
The ASRCs can convert serial output data from the core rates to  
the serial port rates of 192 kHz down to less than 8 kHz. All  
intermediate frequencies and ratios are also supported.  
Rev. 0 | Page 31 of 108  
 
 
 
 
ADAU1777  
Data Sheet  
SIGNAL PROCESSING  
The ADAU1777 processing core is optimized for ANC  
processing. The processing capabilities of the core include  
biquad filters, limiters, volume controls, and mixing. The core has  
four inputs and four outputs. The core is controlled with a 10-bit  
program word, with a maximum of 32 instructions per frame.  
the CORE_CONTROL register (Address 0x09) or by using the  
multipurpose push-button switches, but not by using a combi-  
nation of the two. Parameters in the active bank must not be  
updated while the core is running; doing so may result in noises  
on the outputs.  
Parameters are assigned to instructions in the order in which  
the instructions are instantiated in the code. The instruction  
types that use parameters are the biquad filters and limiters.  
INSTRUCTIONS  
A complete list of instructions/processing blocks along with  
documentation can be found in the SigmaStudio software for  
the ADAU1777. The processing blocks available are  
Table 17 shows the addresses of each parameter in Bank A that  
are associated with each of the 32 instructions, and Table 18 shows  
the addresses of each parameter in Bank B. Table 16 shows the  
addresses of the LSB aligned, 10-bit program words.  
Single precision biquad/second-order filters  
Absolute value  
Two-input addition  
T connection in SigmaStudio  
Limiter with/without external detector loop  
Linear gain  
Volume slider  
Mute  
DBREG level detection  
Table 16. Program Addresses  
Instruction  
Instruction Address  
0x0080  
0x0081  
0x0082  
0x0083  
0x0084  
0x0085  
0x0086  
0x0087  
0x0088  
0x0089  
0x008A  
0x008B  
0x008C  
0x008D  
0x008E  
0x008F  
0x0090  
0x0091  
0x0092  
0x0093  
0x0094  
0x0095  
0x0096  
0x0097  
0x0098  
0x0099  
0x009A  
0x009B  
0x009C  
0x009D  
0x009E  
0x009F  
0
1
2
3
4
5
6
7
DATA MEMORY  
The ADAU1777 data path is 26 bits (5.21 format). The data  
memory is 32 words of 2 × 26 bits. The double length memory  
enables the core to double precision arithmetic with double  
length data and single length coefficients.  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
PARAMETERS  
Parameters, such as filter coefficients, limiter settings, and volume  
control settings, are saved in parameter registers. Each parameter is  
a 32-bit number. The format of this number depends on whether it  
is controlling a filter or a limiter. The number formats of different  
parameters are shown in Table 15. When the parameter formats  
use less than the full 32-bit memory space, as with the limiter  
parameters, the data is LSB aligned.  
Table 15. Parameter Number Formats  
Parameter Type  
Filter Coefficient (B0, B1, B2)  
Filter Coefficient (A1)  
Filter Coefficient (A2)  
Maximum Gain  
Minimum Gain  
Attack Time  
Decay Time  
Threshold  
Format  
5.27  
2.27 (sign extended)  
1.27 (sign extended)  
2.23  
2.23  
24.0  
24.0  
2.23  
Two parameter banks are available. Each bank can hold a full  
set of 160 parameters (32 filters × 5 coefficients). Users can  
switch between Bank A and Bank B, allowing two sets of parame-  
ters to be saved in memory and switched on-the-fly while the  
codec is running. Bank switching can be achieved by writing to  
Rev. 0 | Page 32 of 108  
 
 
 
 
 
 
Data Sheet  
ADAU1777  
Table 17. Parameter Addresses, Bank A  
Assignment Order  
B0/Maximum Gain  
B1/Minimum Gain  
0x0100  
0x0101  
0x0102  
0x0103  
0x0104  
0x0105  
0x0106  
0x0107  
0x0108  
0x0109  
0x010A  
0x010B  
0x010C  
0x010D  
0x010E  
0x010F  
0x0110  
0x0111  
0x0112  
0x0113  
0x0114  
0x0115  
0x0116  
0x0117  
0x0118  
0x0119  
0x011A  
0x011B  
0x011C  
0x011D  
0x011E  
0x011F  
B2/Attack  
0x0120  
0x0121  
0x0122  
0x0123  
0x0124  
0x0125  
0x0126  
0x0127  
0x0128  
0x0129  
0x012A  
0x012B  
0x012C  
0x012D  
0x012E  
0x012F  
0x0130  
0x0131  
0x0132  
0x0133  
0x0134  
0x0135  
0x0136  
0x0137  
0x0138  
0x0139  
0x013A  
0x013B  
0x013C  
0x013D  
0x013E  
0x013F  
A1/Decay  
0x0140  
0x0141  
0x0142  
0x0143  
0x0144  
0x0145  
0x0146  
0x0147  
0x0148  
0x0149  
0x014A  
0x014B  
0x014C  
0x014D  
0x014E  
0x014F  
0x0150  
0x0151  
0x0152  
0x0153  
0x0154  
0x0155  
0x0156  
0x0157  
0x0158  
0x0159  
0x015A  
0x015B  
0x015C  
0x015D  
0x015E  
0x015F  
A2/Threshold  
0
1
2
3
4
5
6
7
0x00E0  
0x00E1  
0x00E2  
0x00E3  
0x00E4  
0x00E5  
0x00E6  
0x00E7  
0x00E8  
0x00E9  
0x00EA  
0x00EB  
0x00EC  
0x00ED  
0x00EE  
0x00EF  
0x00F0  
0x00F1  
0x00F2  
0x00F3  
0x00F4  
0x00F5  
0x00F6  
0x00F7  
0x00F8  
0x00F9  
0x00FA  
0x00FB  
0x00FC  
0x00FD  
0x00FE  
0x00FF  
0x0160  
0x0161  
0x0162  
0x0163  
0x0164  
0x0165  
0x0166  
0x0167  
0x0168  
0x0169  
0x016A  
0x016B  
0x016C  
0x016D  
0x016E  
0x016F  
0x0170  
0x0171  
0x0172  
0x0173  
0x0174  
0x0175  
0x0176  
0x0177  
0x0178  
0x0179  
0x017A  
0x017B  
0x017C  
0x017D  
0x017E  
0x017F  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
Table 18. Parameter Addresses, Bank B  
Assignment Order  
B0/Maximum Gain  
B1/Minimum Gain  
0x01A0  
0x01A1  
0x01A2  
0x01A3  
0x01A4  
0x01A5  
0x01A6  
0x01A7  
0x01A8  
0x01A9  
0x01AA  
0x01AB  
0x01AC  
0x01AD  
0x01AE  
B2/Attack  
0x01C0  
0x01C1  
0x01C2  
0x01C3  
0x01C4  
0x01C5  
0x01C6  
0x01C7  
0x01C8  
0x01C9  
0x01CA  
0x01CB  
0x01CC  
0x01CD  
0x01CE  
0x01CF  
A1/Decay  
0x01E0  
0x01E1  
0x01E2  
0x01E3  
0x01E4  
0x01E5  
0x01E6  
0x01E7  
0x01E8  
0x01E9  
0x01EA  
0x01EB  
0x01EC  
0x01ED  
0x01EE  
0x01EF  
A2/Threshold  
0x0200  
0x0201  
0x0202  
0x0203  
0x0204  
0x0205  
0x0206  
0x0207  
0x0208  
0x0209  
0x020A  
0x020B  
0x020C  
0x020D  
0x020E  
0x020F  
0
1
2
3
4
5
6
7
0x0180  
0x0181  
0x0182  
0x0183  
0x0184  
0x0185  
0x0186  
0x0187  
0x0188  
0x0189  
0x018A  
0x018B  
0x018C  
0x018D  
0x018E  
0x018F  
8
9
10  
11  
12  
13  
14  
15  
0x01AF  
Rev. 0 | Page 33 of 108  
 
 
ADAU1777  
Data Sheet  
Assignment Order  
B0/Maximum Gain  
0x0190  
0x0191  
0x0192  
0x0193  
0x0194  
0x0195  
0x0196  
0x0197  
B1/Minimum Gain  
0x01B0  
0x01B1  
0x01B2  
0x01B3  
0x01B4  
0x01B5  
0x01B6  
0x01B7  
B2/Attack  
0x01D0  
0x01D1  
0x01D2  
0x01D3  
0x01D4  
0x01D5  
0x01D6  
0x01D7  
0x01D8  
0x01D9  
0x01DA  
0x01DB  
0x01DC  
0x01DD  
0x01DE  
0x01DF  
A1/Decay  
0x01F0  
0x01F1  
0x01F2  
0x01F3  
0x01F4  
0x01F5  
0x01F6  
0x01F7  
0x01F8  
0x01F9  
0x01FA  
0x01FB  
0x01FC  
0x01FD  
0x01FE  
0x01FF  
A2/Threshold  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
0x0210  
0x0211  
0x0212  
0x0213  
0x0214  
0x0215  
0x0216  
0x0217  
0x0218  
0x0219  
0x021A  
0x021B  
0x021C  
0x021D  
0x021E  
0x021F  
0x0198  
0x0199  
0x01B8  
0x01B9  
0x019A  
0x019B  
0x019C  
0x019D  
0x019E  
0x01BA  
0x01BB  
0x01BC  
0x01BD  
0x01BE  
0x019F  
0x01BF  
Rev. 0 | Page 34 of 108  
Data Sheet  
ADAU1777  
CONTROL PORT  
The ADAU1777 has both a 4-wire SPI control port and a 2-wire  
I2C bus control port. Each port can be used to set the memories  
and registers. The IC defaults to I2C mode but can be put into  
BURST MODE COMMUNICATION  
Use burst mode addressing, in which the subaddresses are  
automatically incremented at word boundaries, for writing large  
amounts of data to contiguous memory locations. This increment  
occurs automatically after a single-word write unless the control  
SS  
SPI control mode by pulling the pin low three times.  
The control port is capable of full read/write operation for all  
addressable memories and registers. Most signal processing  
parameters are controlled by writing new values to the param-  
eter memories using the control port. Other functions, such as  
mute and input/output mode control, are programmed through  
the registers.  
port communication is stopped; that is, a stop condition is issued  
2
SS  
for I C mode, or is brought high for SPI mode. The registers  
and RAMs in the ADAU1777 range in width from one to four  
bytes; therefore, the auto-increment feature knows the mapping  
between subaddresses and the word length of the destination  
register (or memory location).  
All addresses can be accessed in either single address mode or  
burst mode. The first byte (Byte 0) of a control port write contains  
the 7-bit IC address plus the R/ bit. The next two bytes (Byte 1  
I2C PORT  
W
The ADAU1777 supports a 2-wire serial (I2C-compatible) micro-  
processor bus driving multiple peripherals. I2C mode uses two  
pins—serial data (SDA) and serial clock (SCL)—to carry data  
between the ADAU1777 and the system I2C master controller.  
In I2C mode, the ADAU1777 is always a slave on the bus, except  
when the IC is self booting. See the Self Boot section for details  
about using the ADAU1777 in self boot mode.  
and Byte 2) are the 16-bit subaddress of the memory or register  
location within the ADAU1777. All subsequent bytes (starting  
with Byte 3) contain the data, such as register data, program  
data, or parameter data. The number of bytes per word depends  
on the type of data that is being written. Table 19 shows the word  
length of the different data types of the ADAU1777. The exact  
formats for specific types of writes are shown in Figure 60 and  
Figure 61.  
Each slave device is recognized by a unique 7-bit address. The  
ADAU1777 I2C address format is shown in Table 21. The LSB of  
this first byte sent from the I2C master sets either a read or write  
operation. Logic Level 1 corresponds to a read operation, and  
Logic Level 0 corresponds to a write operation.  
The ADDR0 and ADDR1 pins set the LSBs of the I2C address  
(see Table 22); therefore, each ADAU1777 can be set to one of  
four unique addresses. This feature allows multiple ICs to exist  
on the same I2C bus without address contention. The 7-bit I2C  
addresses are shown in Table 22.  
Table 19. Data-Word Sizes  
Data Type  
Registers  
Program  
Word Size (Bytes)  
1
2
4
Parameters  
If large blocks of data must be downloaded to the ADAU1777,  
halt the output of the core (using the CORE_RUN bit in the  
core control register (Address 0x09)), load new data, and then  
restart the core. Halting the core is typically done during the  
booting sequence at startup or when loading a new program into  
memory.  
An I2C data transfer is always terminated by a stop condition.  
Both SDA and SCL must have 2.0 kΩ pull-up resistors on the  
lines connected to them. The voltage on these signal lines must  
not be higher than IOVDD.  
Registers and bits shown as reserved in the register map read back  
0s. When writing to these registers and bits, such as during a burst  
write across a reserved register, or when writing to reserved bits  
in a register with other used bits, write 0s.  
Table 21. I2C Address Format  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0
1
1
1
1
ADDR1  
ADDR0  
The control port pins are multifunctional, depending on the  
mode in which the device is operating. Table 20 details these  
multiple functions.  
Table 22. I2C Addresses  
ADDR1  
ADDR0  
Slave Address  
0x3C  
0x3D  
0x3E  
0x3F  
0
0
1
1
0
1
0
1
Table 20. Control Port Pin Functions  
Pin  
I2C Mode  
SPI Mode  
SCL/SCLK  
SDA/MISO  
ADDR1/MOSI  
ADDR0/SS  
SCL, input  
SCLK, input  
MISO, output  
MOSI, input  
SS, input  
SDA, open-collector output  
I2C Address Bit 1, input  
I2C Address Bit 0, input  
Rev. 0 | Page 35 of 108  
 
 
 
 
 
 
 
ADAU1777  
Data Sheet  
Addressing  
high. Figure 58 shows the timing of an I2C write, and Figure 59  
shows the timing of an I2C read.  
Initially, each device on the I2C bus is in an idle state and monitor-  
ing the SDA and SCL lines for a start condition and the proper  
address. The I2C master initiates a data transfer by establishing a  
start condition, defined by a high to low transition on SDA while  
SCL remains high. This condition indicates that an address/data  
stream follows. All devices on the bus respond to the start condi-  
Stop and start conditions can be detected at any stage during the  
data transfer. If these conditions are asserted out of sequence with  
normal read and write operations, the ADAU1777 immediately  
jumps to the idle condition. During a given SCL high period,  
the user must issue only one start condition, one stop condition, or  
a single stop condition followed by a single start condition. If  
the user issues an invalid subaddress, the ADAU1777 does not  
issue an acknowledge and returns to the idle condition. If the  
user exceeds the highest subaddress while in auto-increment mode,  
one of two actions is taken. In read mode, the ADAU1777 outputs  
the highest subaddress register contents until the master device  
issues a no acknowledge, indicating the end of a read. A no  
acknowledge condition is where the SDA line is not pulled low on  
the ninth clock pulse on SCL. If the highest subaddress location  
is reached while in write mode, the data for the invalid byte is  
not loaded into any subaddress register, a no acknowledge is issued  
by the ADAU1777, and the device returns to the idle condition.  
W
tion and shift the next eight bits (the 7-bit address plus the R/ bit)  
MSB first. The device that recognizes the transmitted address  
responds by pulling the data line low during the ninth clock  
pulse. This ninth bit is an acknowledge bit. All other devices  
withdraw from the bus at this point and return to the idle condi-  
W
tion. The R/ bit determines the direction of the data. A Logic 0  
on the LSB of the first byte indicates that the master is writing  
information to the peripheral, whereas a Logic 1 indicates that the  
master is reading information from the peripheral after writing  
the subaddress and repeating the start address. A data transfer  
occurs until a stop condition is encountered. A stop condition  
occurs when SDA transitions from low to high while SCL is held  
SCL  
ADDR1 ADDR0  
0
1
1
1
SDA  
R/W  
1
ACKNOWLEDGE  
BY ADAU1777  
ACKNOWLEDGE  
BY ADAU1777  
START BY  
MASTER  
FRAME 2  
SUBADDRESS BYTE 1  
FRAME 1  
CHIP ADDRESS BYTE  
SCL  
(CONTINUED)  
SDA  
(CONTINUED)  
STOP BY  
MASTER  
ACKNOWLEDGE  
BY ADAU1777  
ACKNOWLEDGE  
BY ADAU1777  
FRAME 3  
SUBADDRESS BYTE 2  
FRAME 4  
DATA BYTE 1  
Figure 58. I2C Write to ADAU1777 Clocking  
SCL  
SDA  
0
1
1
1
ADDR1 ADDR0  
1
R/W  
ACKNOWLEDGE  
BY ADAU1777  
ACKNOWLEDGE  
BY ADAU1777  
START BY  
MASTER  
FRAME 1  
CHIP ADDRESS BYTE  
FRAME 2  
SUBADDRESS BYTE 1  
SCL  
(CONTINUED)  
SDA  
(CONTINUED)  
0
1
1
1
1
ADDR1 ADDR0  
R/W  
ACKNOWLEDGE  
BY ADAU1777  
ACKNOWLEDGE  
BY ADAU1777  
REPEATED  
START BY MASTER  
FRAME 3  
SUBADDRESS BYTE 2  
FRAME 4  
CHIP ADDRESS BYTE  
SCL  
(CONTINUED)  
SDA  
(CONTINUED)  
ACKNOWLEDGE  
BY ADAU1777  
ACKNOWLEDGE STOP BY  
BY ADAU1777 MASTER  
FRAME 5  
READ DATA BYTE 1  
FRAME 6  
READ DATA BYTE 2  
Figure 59. I2C Read from ADAU1777 Clocking  
Rev. 0 | Page 36 of 108  
 
 
Data Sheet  
ADAU1777  
I2C Read and Write Operations  
data back to the master. The master then responds every ninth  
pulse with an acknowledge pulse to the ADAU1777.  
Figure 60 shows the format of a single-word write operation.  
Every ninth clock pulse, the ADAU1777 issues an acknowledge  
by pulling SDA low.  
Figure 63 shows the format of a burst mode read sequence. This  
figure shows an example where the target read words are two  
bytes. The ADAU1777 increments its subaddress every two bytes  
because the requested subaddress corresponds to a register or  
memory area with word lengths of two bytes. Other address  
ranges may have a variety of word lengths, ranging from one to  
four bytes. The ADAU1777 always decodes the subaddress and  
sets the auto-increment circuit so that the address increments  
after the appropriate number of bytes.  
Figure 61 shows the format of a burst mode write sequence. This  
figure shows an example where the target destination words are  
two bytes, such as the program memory. The ADAU1777 knows  
to increment its subaddress register every two bytes because the  
requested subaddress corresponds to a register or memory area  
with a 2-byte word length.  
The format of a single-word read operation is shown in Figure 62.  
Figure 60 to Figure 63 use the following abbreviations:  
W
Note that the first R/ bit is 0, indicating a write operation because  
the subaddress still must be written to set up the internal  
address. After the ADAU1777 acknowledges the receipt of the  
subaddress, the master must issue a repeated start command  
S = start bit  
P = stop bit  
AM = acknowledge by master  
AS = acknowledge by slave  
W
followed by the chip address byte with the R/ set to 1 (read).  
This command causes the SDA pin to reverse and begin driving  
2
I C ADDRESS,  
S
S
S
S
AS  
SUBADDRESS HIGH  
AS  
SUBADDRESS LOW  
AS  
DATA BYTE 1  
AS  
DATA BYTE 2  
...  
AS  
DATA BYTE N  
P
P
P
P
R/W = 0  
Figure 60. Single-Word I2C Write Format  
2
I C ADDRESS,  
R/W = 0  
SUBADDRESS  
SUBADDRESS  
LOW  
DATA-WORD 1,  
BYTE 1  
DATA-WORD 1,  
BYTE 2  
DATA-WORD 2,  
BYTE 1  
DATA-WORD 2,  
BYTE 2  
AS  
AS  
AS  
AS  
AS  
AS  
AS ...  
HIGH  
Figure 61. Burst Mode I2C Write Format  
2
2
I C ADDRESS,  
SUBADDRESS  
SUBADDRESS  
LOW  
I C ADDRESS,  
R/W = 1  
AS  
AS  
AS  
AS  
S
AS  
DATA BYTE 1 AM DATA BYTE 2  
...  
AM DATA BYTE N  
R/W = 0  
HIGH  
Figure 62. Single-Word I2C Read Format  
2
2
I C ADDRESS,  
SUBADDRESS  
SUBADDRESS  
LOW  
I C ADDRESS,  
R/W = 1  
DATA-WORD 1,  
BYTE 1  
DATA-WORD 1,  
BYTE 2  
AS  
AS  
S
AS  
AM  
AM  
...  
R/W = 0  
HIGH  
Figure 63. Burst Mode I2C Read Format  
Rev. 0 | Page 37 of 108  
 
 
 
 
ADAU1777  
Data Sheet  
Read/Write  
The first byte of an SPI transaction indicates whether the com-  
SPI PORT  
By default, the ADAU1777 is in I2C mode, but it can be put into  
W
munication is a read or a write with the R/ bit. The LSB of this  
SS  
SPI control mode by pulling low three times. The device can  
first byte determines whether the SPI transaction is a read (Logic  
Level 1) or a write (Logic Level 0).  
be configured for SPI mode by issuing three SPI writes, which are  
in turn ignored by the ADAU1777. The next (fourth) SPI write is  
then latched into the SPI port.  
Subaddress  
SS  
The SPI port uses a 4-wire interface—consisting of the  
,
The 16-bit subaddress word is decoded into a location of one of  
the memories or registers. This subaddress is the location of the  
appropriate memory location or register.  
SCLK, MOSI, and MISO signals—and is always a slave port.  
The signal goes low at the beginning of a transaction and  
SS  
high at the end of a transaction. The SCLK signal latches MOSI  
on a low to high transition. MISO data is shifted out of the  
ADAU1777 on the falling edge of SCLK and must be clocked into  
a receiving device, such as a microcontroller, on the SCLK rising  
edge. The MOSI signal carries the serial input data, and the  
MISO signal is the serial output data. The MISO signal remains  
tristated until a read operation is requested. Tristating allows other  
SPI-compatible peripherals to share the same readback line.  
Data Bytes  
The number of data bytes varies according to the register or  
memory being accessed. During a burst mode write, an initial  
subaddress is written followed by a continuous sequence of data  
for consecutive memory/register locations.  
A sample clocking diagram for a single write SPI operation to  
the parameter RAM is shown in Figure 64. A sample clocking  
diagram of a single read SPI operation is shown in Figure 65.  
The MISO pin goes from tristate to being driven at the beginning  
of Byte 3. In this example, Byte 0 to Byte 2 contain the addresses  
All SPI transactions have the same basic format shown in Table 23.  
Timing diagrams are shown in Figure 64 and Figure 65. All data  
is written MSB first. The ADAU1777 can be taken out of SPI  
W
and the R/ bit and the subsequent bytes carry the data.  
PD  
mode only by pulling the  
pin low or by powering down the IC.  
Table 23. Generic SPI Word Format  
Byte 0  
Byte 1  
Byte 2  
Byte 3  
Byte 41  
0000000, R/W  
Register/Memory Address[15:8]  
Register/Memory Address[7:0]  
Data  
Data  
1 Continues to the end of data transmission for the burst mode write.  
SS  
SCLK  
MOSI  
Figure 64. SPI Write to ADAU1777 Clocking (Single Write Mode)  
SS  
SCLK  
MOSI  
BYTE 0  
BYTE 1  
BYTE 2  
HIGH-Z  
HIGH-Z  
MISO  
DATA  
DATA  
Figure 65. SPI Read from ADAU1777 Clocking (Single Read Mode)  
Rev. 0 | Page 38 of 108  
 
 
 
 
Data Sheet  
ADAU1777  
Cyclic Redundancy Check (CRC)  
SELF BOOT  
The ADAU1777 boots up from an EEPROM over the I2C bus when  
An 8-bit CRC validates the content of the EEPROM. This CRC is  
strong enough to detect single error bursts of up to eight bits in size.  
The terminate self boot instruction (0x instruction byte) must be  
followed by a CRC byte. The CRC is generated using all of the  
EEPROM bytes from Address 0x00 to the last 0x00 instruction  
byte. The polynomial for the CRC is  
PD  
the SELFBOOT pin is set high at power-up and the  
high. The state of the SELFBOOT pin is checked only when the  
PD  
pin is set  
ADAU1777 exits a reset via the  
is not used after a self boot is complete. During booting, ensure  
PD  
pin, and when the EEPROM  
that a stable DVDD voltage is in the system. The  
pin remains  
x8 + x2 + x + 1  
high during the self boot operation. The master SCL clock output  
from the ADAU1777 is derived from the input clock on XTALI/  
MCLKIN. A divide by 64 circuit ensures that the SCL output  
frequency during the self boot operation is never greater than  
400 kHz for most input clock frequencies. With the external master  
clock to the ADAU1777 between 12 MHz and 27 MHz, the SCL  
frequency ranges from 176 kHz to 422 kHz. If the self boot  
EEPROM is not rated for operation above 400 kHz, use a master  
clock that is no faster than 25.6 MHz.  
If the CRC is incorrect or if an unrecognized instruction byte is  
read during self boot, the boot process is immediately stopped  
and restarted after a 250 ms delay (for a 12.288 MHz input clock).  
When SigmaStudio is used, the CRC byte is generated auto-  
matically when a configuration is downloaded to the EEPROM.  
Delay  
The delay instruction (0x02 instruction byte) delays by the  
16-bit setting × 2048 clock cycles.  
Table 25 shows the list of instructions that are possible during  
an ADAU1777 self boot. The 0x01 and 0x05 instruction bytes  
load the register, program, and parameter settings.  
Boot Time  
The time to self boot the ADAU1777 from an EEPROM can be  
calculated using the following equation:  
EEPROM Size  
Boot Time = 64/MCLK Frequency × Total Bytes + Wait Time  
The self boot circuit is compatible with an EEPROM that has a  
2-byte address. For most EEPROM families, a 2-byte address is  
used on devices that are 32 kB or larger. The EEPROM must be  
set to Address 0x50. Examples of two compatible EEPROMs  
include the Atmel® AT24C32D and STMicroelectronics M24C32-F.  
The self boot operation starts after 16,568 clock cycles are seen on  
PD  
the XTALI/MCLKIN pin after  
is set high. With a 12.288 MHz  
clock, this number of cycles corresponds to approximately a  
1.35 ms wait time from power-up. This delay ensures that the  
crystal used for generating the master clock has ramped up to a  
stable oscillation.  
Table 24 lists the maximum necessary EEPROM size, assuming  
that there is 100% utilization of the program and parameters  
(both banks). There is inherently some overhead for instructions  
to control the self boot procedure.  
Table 25. EEPROM Self Boot Instructions  
Instruction Instruction Byte  
Byte ID  
Description  
Following Bytes  
Table 24. Maximum EEPROM Size  
0x00  
0x01  
End self boot  
CRC  
Word Size  
(Bytes per  
Word)  
Total EEPROM  
Space Require-  
ment (Bytes)  
ADAU1777  
Memory Blocks  
Write multibyte  
length minus two  
bytes, starting at  
target address  
Length (high byte), length  
(low byte), address (high  
byte), address (low byte),  
data (0), data (1), , data  
(length − 3)  
Delay (high byte),  
delay (low byte)  
Words  
Program  
2
4
4
1
32  
64  
Bank A Parameters  
Bank B Parameters  
Registers  
160 (32 × 5) 640  
160  
65  
640  
65  
2049  
0x02  
Delays by the 16-bit  
setting × 2048 clock  
cycles  
Total Bytes  
0x03  
0x04  
0x05  
No operation  
Wait for PLL lock  
Write single byte to  
target address  
None  
None  
Address (high byte),  
address (low byte), data  
0x02  
0x00  
0x04  
0x01  
0x00  
0x05  
0x00  
0x80  
DELAY  
DELAY  
(HIGH BYTE)  
DELAY  
(LOW BYTE)  
WRITE  
LENGTH  
(HIGH BYTE)  
LENGTH  
(LOW BYTE)  
ADDRESS  
(HIGH BYTE)  
ADDRESS  
(LOW BYTE)  
DELAY LENGTH  
LENGTH  
PROGRAM RAM ADDRESS  
0x1A  
0x2B  
0x3C  
0x04  
0x03  
0x00  
END  
DATA  
(0)  
DATA  
(1)  
DATA  
(LENGTH – 3)  
PLL LOCK  
NO OP  
PROGRAM RAM DATA  
Figure 66. Example Self Boot EEPROM Instructions  
Rev. 0 | Page 39 of 108  
 
 
 
ADAU1777  
Data Sheet  
MULTIPURPOSE PINS  
The ADAU1777 has seven multipurpose (MPx) pins that can be  
used for serial data input/output, clock outputs, and control in a  
system without a microcontroller. Each pin can be individually  
set to either its default or MPx setting. The functions include push-  
button volume controls, enabling the compressors, parameter  
bank switching, DSP bypass mode, and muting the outputs.  
When the ADC and/or DAC volumes are controlled with the  
push-buttons, the corresponding volume control registers no  
longer allow control of the volume from the control port.  
Therefore, writing to these volume control registers has no  
effect on the codec volume level.  
LIMITER COMPRESSION ENABLE  
The function of each of these pins is set in Register 0x38 to  
Register 0x3E. By default, each pin is configured as an input.  
The limiter compression enable function allows a user to enable  
limiter compression regardless of the signal level. Setting an  
MPx pin low when this function is enabled causes the limiter to  
compress the incoming signal by the minimum gain setting.  
When the MPx pin is released, the limiter resumes normal  
behavior.  
Table 26. Multipurpose Pin Functions  
Pin No. Default Pin Function  
Secondary Pin Functions  
A2  
A3  
BCLK  
Multipurpose control inputs  
MP1 acts as push-button ADC_SDATA0, PDM output,  
PARAMETER BANK SWITCHING  
volume up  
multipurpose control inputs  
An MPx pin can be used to switch the active parameter bank  
between Bank A and Bank B. When one of these settings is  
selected, Bank A is active when the MPx pin is high and Bank B  
is active when the MPx pin is low. Set the BANK_SL bits in the  
CORE_CONTROL register (Address 0x09) to the default value  
of 0x00 before enabling MPx pin control over bank switching.  
Simultaneous control of bank switching by both register setting  
and MPx pin selection is not possible.  
A4  
MP6 acts as push-  
button volume down  
LRCLK  
DAC_SDATA  
DMIC2_3  
DMIC0_1  
ADC_SDATA1, CLKOUT,  
multipurpose control inputs  
Multipurpose control inputs  
Multipurpose control inputs  
Multipurpose control inputs  
Multipurpose control inputs  
B2  
B3  
B4  
B5  
PUSH-BUTTON VOLUME CONTROLS  
The ZERO_STATE bit selects whether the data memory of the  
codec is set to 0 during a bank switch. If the data is not set to 0  
when a new set of filter coefficients is enabled via a bank switch,  
there may be a pop in the audio as the old data is circulated in  
the new filters.  
The ADC and DAC volume controls can be controlled with two  
push-buttons: one to increase volume and one to decrease volume.  
The volume setting can either be changed with a click of the button  
or can be ramped by holding either button but not both at the same  
time. The volume settings change when the signal on the pin from  
the button goes from low to high.  
MUTE  
The MPx pins can be put into a mode to mute the ADCs or DACs.  
When in this mode, mute is enabled when an MPx pin is set low.  
The full combination of possible mutes for the ADCs and DACs  
using the MPx pins are set in Register 0x38 to Register 0x3E.  
When in push-button mode, the initial volume level is set with  
the PB_VOL_INIT_VAL bits. By default, MP1 acts as the push-  
button volume up control and MP6 acts as the push-button  
volume down control; however, any of the MPx pins can be set  
to act as the push-button up and push-button down volume  
controls.  
Rev. 0 | Page 40 of 108  
 
 
 
 
 
Data Sheet  
ADAU1777  
is pulled low. Pressing and holding the switch closed enables the  
DSP bypass signal path as defined in the TALKTHRU register  
(Address 0x2A). The DAC volume control setting is switched  
from the default gain setting to the new TALKTHRU_GAINx  
register setting (Address 0x2B and Address 0x2C). DSP bypass is  
enabled only on ADC0 and ADC1. The DSP bypass signal path is  
from the output of ADCx to the input of the DAC(s).  
DSP BYPASS MODE  
When DSP bypass mode is enabled, a direct path from the ADC  
outputs to the DACs is set up to enable bypassing the core pro-  
cessing to listen to environmental sounds. This mode is useful  
for listening to someone speaking without having to remove the  
noise canceling headphones. The DSP bypass path is enabled by  
setting an MPx pin low. Figure 67 shows the DSP bypass path  
disabled, and Figure 68 shows the DSP bypass path enabled by  
pressing the push-button switch. The DSP bypass feature works  
for both analog and digital microphone inputs.  
When DSP bypass is enabled, the current DAC volume setting  
is ramped down to −95.625 dB and the DSP bypass volume  
setting is ramped up to avoid pops when switching paths.  
DSP bypass is enabled when a switch connected to an MPx pin  
that is set to DSP bypass mode is closed and the MPx pin signal  
MPx  
ADAU1777  
10k  
DAC AND HP  
AMPLIFIER  
PGA AND ADC  
AINx  
HPOUTxP  
HPOUTxN  
CORE  
PROCESSING  
NORMAL  
SETTING  
Figure 67. DSP Bypass Path Disabled  
MPx  
10kΩ  
ADAU1777  
DAC AND HP  
AMPLIFIER  
PGA AND ADC  
HPOUTxP  
HPOUTxN  
AINx  
CORE  
PROCESSING  
TALKTHRU  
SETTING  
Figure 68. DSP Bypass Path Enabled  
Rev. 0 | Page 41 of 108  
 
 
 
ADAU1777  
Data Sheet  
SERIAL DATA INPUT/OUTPUT PORTS  
it is recommended to use the high drive settings on the serial  
port pins. The high drive strength effectively speeds up the  
transition times of the waveforms, thereby improving the signal  
integrity of the clock and data lines. These can be set in the  
PAD_CONTROL4 register (Address 0x4C).  
The serial data input and output ports of the ADAU1777 can be set  
to accept or transmit data in a 2-channel format or in a 4-channel  
or 8-channel TDM stream mode to interface to external ADCs,  
DACs, DSPs, and systems on chip (SOCs). Data is processed in  
twos complement, MSB first format. The left channel data field  
always precedes the right channel data field in the 2-channel  
streams. In 8-channel TDM mode, the data channels are output  
sequentially, starting with the channel set by the ADC_SDATA0_ST  
and ADC_SDATA1_ST bits. The serial modes and the position  
of the data in the frame are set in the serial data port (SAI_0,  
SAI_1) and serial output control registers (SOUT_SOURCE_x_y,  
Address 0x13 to Address 0x16).  
Table 27. Serial Input/Output Port Master/Slave Mode  
Capabilities  
Serial Data 2-Channel Modes  
Sample  
Rate  
(I2S, Left Justified,  
Right Justified)  
4-Channel  
TDM  
8-Channel  
TDM  
48 kHz  
96 kHz  
192 kHz  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
Yes  
No  
No  
The serial data clocks do not need to be synchronous with the  
ADAU1777 master clock input, but the LRCLK and BCLK pins  
must be synchronous to each other. The LRCLK and BCLK pins  
both clock the serial input and output ports. The ADAU1777  
can be set to be either the master or the slave in a system.  
Because there is only one set of serial data clocks, the input and  
output ports must always both be either master or slave.  
Table 28 describes the proper serial port settings for standard audio  
data formats. More information about the settings in Table 28 is  
in the Serial Port Control 0 register and the Serial Port Control 1  
register (Address 0x32 and Address 0x33) descriptions in Table 87  
and Table 88, respectively.  
The serial data control registers allow control of the clock polarity  
and the data input modes. The valid data formats are I2S, left  
justified, right justified (24- or 16-bit), PCM, and TDM. In all  
modes except for the right justified modes, the serial port inputs  
an arbitrary number of bits up to a limit of 24. Extra bits do not  
cause an error, but they are truncated internally.  
TRISTATING UNUSED CHANNELS  
Unused outputs can be tristated so that multiple ICs can drive a  
single TDM line. This function is available only when the serial  
ports of the ADAU1777 are operating in TDM mode. Set inactive  
channels in the SOUT_CONTROL0 register (Address 0x34).  
The tristating of inactive channels is set in the SAI_1 register  
(Address 0x33), which offers the option of tristating or driving  
the inactive channel.  
The serial port can operate with an arbitrary number of BCLK  
transitions in each LRCLK frame. The LRCLK in TDM mode can  
be input to the ADAU1777 either as a 50% duty cycle clock or as  
a 1-bit wide pulse. Table 27 lists the modes in which the serial  
input/output port can function. When using low IOVDD (1.8 V)  
with a high BCLK rate (12.288 MHz), a sample rate of 192 kHz,  
or a 8-channel TDM mode operating at a sample rate of 48 kHz,  
In a 32-bit TDM frame with 24-bit data, the eight unused bits  
are tristated. Inactive channels are also tristated for the full frame.  
Table 28. Serial Port Data Format Settings  
LRCLK Polarity  
(LR_POL)  
LRCLK Type  
(LR_MODE)  
BCLK Polarity  
(BCLKEDGE)1  
MSB Position  
(SDATA_FMT)  
Format  
I2S (See Figure 69)  
0
1
1
1
1
1
0
0
0
0
0
0
0
X
X
00  
01  
10 or 11  
00  
00  
Left Justified (See Figure 70)  
Right Justified (See Figure 71 and Figure 72)  
TDM (See Figure 73 and Figure 74)  
PCM/DSP Short Frame Sync (See Figure 75)  
PCM/DSP Long Frame Sync (See Figure 76)  
0 or 1  
1
0
01  
1 X means don’t care.  
1
2
3
4
24  
25  
26  
32  
33  
34  
35  
36  
56  
57  
58  
64  
LRCLK  
BCLK (64 × f  
2
)
S
MSB  
LSB  
MSB  
LSB  
I S (24-BIT)  
LEFT CHANNEL  
RIGHT CHANNEL  
Figure 69. I2S Mode, 16 Bits to 24 Bits per Channel  
Rev. 0 | Page 42 of 108  
 
 
 
 
 
Data Sheet  
ADAU1777  
LRCLK  
1
2
3
23  
24  
25  
32  
33  
34  
35  
55  
56  
57  
64  
BCLK (64 × f  
)
S
LJ (24-BIT)  
MSB  
LSB  
MSB  
LSB  
LEFT CHANNEL  
RIGHT CHANNEL  
Figure 70. Left Justified (LJ) Mode, 16 Bits to 24 Bits per Channel  
LRCLK  
BCLK (64 × f  
1
2
9
10  
11  
12  
31  
32  
33  
34  
41  
42  
43  
44  
63  
64  
)
S
RJ (24-BIT)  
MSB  
LSB  
MSB  
LSB  
LEFT CHANNEL  
RIGHT CHANNEL  
Figure 71. Right Justified (RJ) Mode, 24 Bits per Channel  
LRCLK  
BCLK (64 × f  
1
2
17  
18  
19  
20  
31  
32  
33  
34  
49  
50  
51  
52  
63  
64  
)
S
RJ (24-BIT)  
MSB  
LSB  
MSB  
LSB  
LEFT CHANNEL  
RIGHT CHANNEL  
Figure 72. Right Justified (RJ) Mode, 16 Bits per Channel  
LRCLK  
BCLK  
256 BCLKs  
32 BCLKs  
SLOT 1  
DATA  
SLOT 2  
SLOT 3  
SLOT 4  
SLOT 5  
SLOT 6  
SLOT 7  
SLOT 8  
LRCLK  
BCLK  
MSB  
MSB – 1  
MSB – 2  
DATA  
Figure 73. 8-Channel TDM Mode  
LRCLK  
BCLK  
DATA  
MSB TDM  
MSB TDM  
CH  
0
CH  
8
SLOT 0  
SLOT 1  
SLOT 2  
SLOT 3  
SLOT 4  
SLOT 5  
SLOT 6  
SLOT 7  
32  
BCLKs  
Figure 74. 8-Channel TDM Mode, Pulse LRCLK  
Rev. 0 | Page 43 of 108  
 
 
 
 
 
ADAU1777  
Data Sheet  
LRCLK  
1
2
3
4
16  
17  
18  
19  
20  
32  
33  
34  
BCLK (64 × f  
)
S
PCM (24-BIT)  
MSB  
LSB  
MSB  
LSB  
LEFT CHANNEL  
RIGHT CHANNEL  
Figure 75. PCM/DSP Mode, 16 Bits per Channel, Short Frame Sync  
LRCLK  
1
2
3
4
16  
17  
18  
19  
20  
32  
33  
34  
BCLK (64 × f  
)
S
PCM (24-BIT)  
MSB  
LSB  
MSB  
LSB  
LEFT CHANNEL  
RIGHT CHANNEL  
Figure 76. PCM/DSP Mode, 16 Bits per Channel, Long Frame Sync  
Rev. 0 | Page 44 of 108  
 
 
Data Sheet  
ADAU1777  
APPLICATIONS INFORMATION  
POWER SUPPLY BYPASS CAPACITORS  
LAYOUT  
Bypass each analog and digital power supply pin to its nearest  
appropriate ground pin with a single 0.1 μF capacitor. The  
connections to each side of the capacitor must be as short as  
possible, and the trace must be routed on a single layer with no vias.  
For maximum effectiveness, locate the capacitor equidistant from  
the power and ground pins or slightly closer to the power pin if  
equidistant placement is not possible. Make thermal connections  
to the ground planes on the far side of the capacitor.  
Pin D1 and Pin F2 are the AVDD supplies for the headphone  
amplifiers. If the headphone amplifiers are enabled, the PCB trace  
to these pins must be wider than traces to other pins to increase the  
current carrying capacity. A wider trace must also be used for  
the headphone output lines where possible.  
GROUNDING  
A ground plane must be used in the application layout. Place  
components in an analog signal path away from digital signals  
wherever possible.  
Bypass each supply signal on the board with a single bulk  
capacitor (10 μF to 47 μF).  
PCB STACKUP  
AVDD PIN  
AGND PIN  
The example PCB stackup in Figure 78 is a 4-layer design. Four  
is the minimum layer count. The two inner layers are used as  
power and ground planes. The outer layers are used as signal  
layers and are flooded with the ground plane. It is  
recommended to use several 0.1 ꢀF bypass capacitors to  
decouple the power and ground plane for EMI concerns. Place  
these capacitors around the edges of the ground plane.  
CAPACITOR  
TO GND  
FROM AVDD  
Figure 77. Recommended Example Power Supply Bypass Capacitor Layout  
4-LAYER CONSTRUCTION DETAIL  
SCALE: NONE  
SILKSCREEN  
SOLDER MASK  
LAYER 1 TOP SIDE, 1.5 oz. Cu FINISHED  
LAMINATE = 0.010 INCH THICK  
LAYER 2 GROUND PLANE, 1.0 oz. Cu  
0.062 ± 0.005 INCH  
CORE PREPREG = 0.040 INCH THICK  
LAYER 3 POWER PLANE, 1.0 oz. Cu  
LAMINATE = 0.010 INCH THICK  
LAYER 4 BOTTOM SIDE, 1.5 oz. Cu FINISHED  
SOLDER MASK  
SILKSCREEN  
Figure 78. Example PCB Stackup Details  
Rev. 0 | Page 45 of 108  
 
 
 
 
 
 
ADAU1777  
Data Sheet  
LOW LATENCY REGISTER SETTINGS  
The ADAU1777 utilizes the ADAU1772 architecture and incorporates additional register settings for reductions in latency, as shown in  
Table 29 to Table 35.  
Table 29. Core Control Register (Register 0x0009)  
Bits  
Bit Name  
Settings Description  
[4:3]  
FAST_SLOW_RATE  
These bits select the speed of the slow rate relative to the fast rate. This setting must not be  
changed while the core is running. The CORE_RUN bit must be set to 0 for this setting to be  
updated.  
00  
01  
10  
Slow rate = fast rate.  
Slow rate = fast rate/4.  
Slow rate = fast rate/8.  
[2:1]  
CORE_FS  
These bits select the core sample rate. Note that the ADAU1777 supports an additional 768 kHz  
sample rate for reduced latency. This setting must not be changed while the core is running. The  
CORE_RUN bit must be set to 0 for this setting to be updated.  
00  
01  
10  
11  
Reserved.  
96 kHz.  
192 kHz.  
768 kHz.  
Table 30. Sleep on Program Address Count Register (Register 0x000A)  
Bits  
Bit Name  
Settings Description  
[4:0]  
SLEEP  
The sleep on program address count register controls which registers are executed. Subtract 2  
from the SLEEP bit setting to indicate the number of addresses that are affected. For example, if  
SLEEP = 7, only instructions at Address 0x0000 to Address 0x0005 are executed. This setting must  
not be changed while the core is running. The CORE_RUN bit must be set to 0 for this setting to be  
updated.  
00000  
00001  
00010  
00011  
11111  
No sleep, all instructions are executed.  
Reserved.  
Sleep on 0.  
Sleep on 1.  
Sleep on 29.  
Table 31. ADC0/ADC1 Control 0 Register (Register 0x001B)  
Bits  
Bit Name  
Settings Description  
5
ADC_0_1_SINC  
This bit selects either a third-order or fourth-order sinc filter. This setting must not be changed  
while the core is running. The CORE_RUN bit must be set to 0 for this setting to be updated.  
0
1
Fourth-order sinc.  
Third-order sinc.  
[1:0]  
ADC_0_1_FS  
These bits set the ADC sample rate. The ADAU1777 supports the option of 768 kHz as well. Note  
that the frequency selected must match the CORE_FS selected via Bits[2:1] of Register 0x0009.  
00  
01  
10  
11  
96 kHz.  
192 kHz.  
768 kHz.  
Reserved.  
Rev. 0 | Page 46 of 108  
 
 
Data Sheet  
ADAU1777  
Table 32. ADC2/ADC31 Control 0 Register (Register 0x001C)  
Bits  
Bit Name  
Settings Description  
5
ADC_2_3_SINC  
This bit selects either a third-order or fourth-order sinc filter. This setting must not be changed  
while the core is running. The CORE_RUN bit must be set to 0 for this setting to be updated.  
0
1
Fourth-order sinc.  
Third-order sinc.  
[1:0]  
ADC_2_3_FS  
These bits set the ADC sample rate. The ADAU1777 supports the option of 768 kHz as well.  
00  
01  
10  
11  
96 kHz.  
192 kHz.  
768 kHz.  
Reserved.  
Table 33. Fast Rate Control Register (Register 0x004E)  
Bits  
Bit Name  
Settings Description  
[2:0]  
RATE_DIV  
Bits[2:0] set the fast rate division factor. This factor is used to divide the internal master clock  
(6.144 MHz) when CORE_FS = 11. This setting must not be changed while the core is running.  
CORE_RUN must be set to 0 for this setting to be updated. The settings for RATE_DIV follow:  
000  
001  
010  
011  
100  
101  
Divide by 8 (768 kHz).  
Divide by 9 (683 kHz).  
Divide by 10 (614 kHz).  
Divide by 12 (512 kHz).  
Divide by 14 (439 kHz).  
Divide by 16 (384 kHz).  
Table 34. DAC Interpolation Control Register (Register 0x004F)  
Bits  
Bit Name  
Settings Description  
These bits set the DAC_RATE value, which sets the sample rate for the DAC only.  
Core fS.  
[7:6]  
DAC_RATE  
00  
01  
10  
11  
Core fS/4.  
Core fS/8.  
Reserved.  
[5:3]  
DAC_INTP  
These bits set the DAC_INTP value, which sets the interpolation mode for the DAC.  
Both DAC0 and DAC1 set to compensated interpolation.  
DAC0 set to zero-order hold (ZOH), DAC1 set to compensated interpolation.  
DAC0 set to compensated interpolation, DAC1 set to ZOH.  
Both DAC0 and DAC1 set to ZOH.  
DAC0 set to linear interpolation, DAC1 set to compensated interpolation.  
DAC0 set to compensated interpolation, DAC1 set to linear interpolation.  
Both DAC0 and DAC1 set to linear interpolation.  
000  
001  
010  
011  
100  
101  
110  
Rev. 0 | Page 47 of 108  
ADAU1777  
Data Sheet  
Table 35. Volume Control Bypass Register (Register 0x0054)  
Bits  
Bit Name  
Settings Description  
5
DAC1VOL_BY  
DAC1 volume control bypass.  
0
1
Volume control enabled.  
Bypassed.  
4
3
2
1
0
DAC0VOL_BY  
ADC3VOL_BY  
ADC2VOL_BY  
ADC1VOL_BY  
ADC0VOL_BY  
DAC0 volume control bypass.  
Volume control enabled.  
Bypassed.  
0
1
ADC3 volume control bypass.  
Volume control enabled.  
Bypassed.  
0
1
ADC2 volume control bypass.  
Volume control enabled.  
Bypassed.  
0
1
ADC1 volume control bypass.  
Volume control enabled.  
Bypassed.  
0
1
ADC0 volume control bypass.  
Volume control enabled.  
Bypassed.  
0
1
Rev. 0 | Page 48 of 108  
 
Data Sheet  
ADAU1777  
REGISTER SUMMARY  
Table 36. Register Summary  
Reg.  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
Name  
Bits  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
RW  
CLK_CONTROL  
PLL_CTRL0  
PLL_CTRL1  
PLL_CTRL2  
PLL_CTRL3  
PLL_CTRL4  
PLL_CTRL5  
CLKOUT_SEL  
REGULATOR  
PLL_EN  
RESERVED  
SPK_FLT_DIS  
XTAL_DIS  
CLKSRC  
M_MSB  
M_LSB  
N_MSB  
N_LSB  
CC_CDIV  
CC_MDIV  
COREN  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
RESERVED  
R
X
PLL_TYPE  
LOCK  
RESERVED  
RESERVED  
RESERVED  
CLKOUT_FREQ  
REG_PD  
REGV  
CORE_CONTROL [7:0]  
ZERO_  
STATE  
BANK_SL  
FAST_SLOW_RATE  
CORE_FS  
CORE_RUN 0x04  
0x0A  
0x0B  
SLEEP_INST  
[7:0]  
[7:0]  
RESERVED  
SLEEP  
0x00  
R/W  
R/W  
CORE_ENABLE  
RESERVED  
LIM_EN  
DSP_CLK_  
EN  
0x03  
0x0C  
0x0D  
0x0E  
0x0F  
DBREG0  
DBREG1  
DBREG2  
[7:0]  
[7:0]  
[7:0]  
DBVAL0  
DBVAL1  
DBVAL2  
0x00  
0x00  
0x00  
0x10  
R
R
R
CORE_IN_MUX_ [7:0]  
0_1  
CORE_IN_MUX_SEL_1  
CORE_IN_MUX_SEL_3  
DAC_SOURCE1  
CORE_IN_MUX_SEL_0  
CORE_IN_MUX_SEL_2  
DAC_SOURCE0  
R/W  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
CORE_IN_MUX_ [7:0]  
2_3  
0x32  
0x10  
0x32  
0x54  
0x76  
0x54  
0x76  
0x04  
0x10  
0x32  
0x00  
0x19  
0x19  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
DAC_SOURCE_  
0_1  
[7:0]  
PDM_SOURCE_  
0_1  
[7:0]  
PDM_SOURCE1  
SOUT_SOURCE1  
SOUT_SOURCE3  
SOUT_SOURCE5  
SOUT_SOURCE7  
RESERVED  
PDM_SOURCE0  
SOUT_SOURCE_ [7:0]  
0_1  
SOUT_SOURCE0  
SOUT_SOURCE2  
SOUT_SOURCE4  
SOUT_SOURCE6  
SOUT_SOURCE_ [7:0]  
2_3  
SOUT_SOURCE_ [7:0]  
4_5  
SOUT_SOURCE_ [7:0]  
6_7  
ADC_SDATA_  
CH  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
ADC_SDATA1_ST  
ASRC_OUT_SOURCE0  
ASRC_OUT_SOURCE2  
ASRC_IN_CH ASRC_OUT_EN  
RESERVED  
ADC_SDATA0_ST  
ASRCO_  
SOURCE_0_1  
ASRC_OUT_SOURCE1  
ASRC_OUT_SOURCE3  
RESERVED  
ASRCO_  
SOURCE_2_3  
ASRC_MODE  
ASRC_IN_  
EN  
ADC_  
CONTROL0  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
ADC_0_1_  
SINC  
ADC1_MUTE ADC0_MUTE  
ADC3_MUTE ADC2_MUTE  
ADC_0_1_FS  
ADC_2_3_FS  
ADC_  
CONTROL1  
ADC_2_3_  
SINC  
RESERVED  
DCM_0_1  
DCM_2_3  
ADC_  
CONTROL2  
HP_0_1_EN  
DMIC_POL0  
DMIC_POL1  
DMIC_SW0  
DMIC_SW1  
ADC_1_EN  
ADC_3_EN  
ADC_0_EN 0x00  
ADC_2_EN 0x00  
ADC_  
HP_2_3_EN  
CONTROL3  
0x1F  
0x20  
0x21  
0x22  
ADC0_VOLUME [7:0]  
ADC1_VOLUME [7:0]  
ADC2_VOLUME [7:0]  
ADC3_VOLUME [7:0]  
ADC_0_VOL  
ADC_1_VOL  
ADC_2_VOL  
ADC_3_VOL  
0x00  
0x00  
0x00  
0x00  
R/W  
R/W  
R/W  
R/W  
Rev. 0 | Page 49 of 108  
 
ADAU1777  
Data Sheet  
Reg.  
Name  
Bits  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset  
RW  
0x23  
PGA_CONTROL_ [7:0]  
0
PGA_EN0  
PGA_  
MUTE0  
PGA_GAIN0  
0x40  
R/W  
0x24  
0x25  
0x26  
0x27  
0x28  
0x29  
PGA_CONTROL_ [7:0]  
1
PGA_EN1  
PGA_EN2  
PGA_EN3  
PGA_  
MUTE1  
PGA_GAIN1  
PGA_GAIN2  
PGA_GAIN3  
0x40  
0x40  
0x40  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
PGA_CONTROL_ [7:0]  
2
PGA_  
MUTE2  
PGA_CONTROL_ [7:0]  
3
PGA_  
MUTE3  
PGA_STEP_  
CONTROL  
[7:0]  
[7:0]  
[7:0]  
RESERVED  
SLEW_RATE  
SLEW_PD3  
SLEW_PD2  
SLEW_PD1  
SLEW_PD0 0x00  
PGA_10DB_  
BOOST  
RESERVED  
PGA_3_  
BOOST  
PGA_2_BOOST  
PGA_POP_DIS2  
PGA_1_BOOST  
PGA_POP_DIS1  
PGA_0_  
BOOST  
0x00  
POP_SUPPRESS  
RESERVED  
HP_POP_  
HP_POP_  
PGA_POP_  
DIS3  
PGA_POP_ 0x3F  
DIS0  
DIS1  
DIS0  
0x2A  
0x2B  
TALKTHRU  
[7:0]  
[7:0]  
RESERVED  
TALKTHRU_PATH  
0x00  
0x00  
R/W  
R/W  
TALKTHRU_  
GAIN0  
TALKTHRU_GAIN0_VAL  
TALKTHRU_GAIN1_VAL  
0x2C  
0x2D  
0x2E  
TALKTHRU_  
GAIN1  
[7:0]  
[7:0]  
[7:0]  
0x00  
0x00  
0x18  
R/W  
R/W  
R/W  
MIC_BIAS  
RESERVED  
RESERVED  
MIC_EN1  
DAC_POL  
MIC_EN0  
RESERVED  
RESERVED  
RESERVED  
MIC_GAIN1  
DAC1_EN  
MIC_  
GAIN0  
DAC_  
DAC1_MUTE DAC0_MUTE  
DAC0_EN  
CONTROL1  
0x2F  
0x30  
0x31  
DAC0_VOLUME [7:0]  
DAC1_VOLUME [7:0]  
DAC_0_VOL  
DAC_1_VOL  
0x00  
0x00  
0x0F  
R/W  
R/W  
R/W  
OP_STAGE_  
MUTES  
[7:0]  
RESERVED  
HP_MUTE_R  
HP_MUTE_L  
0x32  
0x33  
SAI_0  
SAI_1  
[7:0]  
[7:0]  
SDATA_FMT  
SAI  
SER_PORT_FS  
0x00  
0x00  
R/W  
R/W  
TDM_TS  
BCLK_  
TDMC  
LR_MODE  
TDM5_DIS  
LR_POL  
SAI_MSB  
BCLKRATE  
BCLKEDGE  
SAI_MS  
0x34  
SOUT_  
CONTROL0  
[7:0]  
TDM7_DIS  
TDM6_DIS  
TDM4_DIS  
PDM_CTRL  
TDM3_DIS  
TDM2_DIS  
TDM1_DIS  
TDM0_DIS 0x00  
R/W  
0x36  
0x37  
0x38  
0x39  
0x3A  
0x3B  
0x3C  
0x3D  
0x3E  
0x3F  
0x40  
0x41  
PDM_OUT  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
RESERVED  
PDM_CH  
PDM_EN  
0x00  
0x00  
0x00  
0x10  
0x00  
0x00  
0x00  
0x00  
0x11  
0x00  
0x87  
0x05  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
PDM_PATTERN  
MODE_MP0  
MODE_MP1  
MODE_MP2  
MODE_MP3  
MODE_MP4  
MODE_MP5  
MODE_MP6  
PB_VOL_SET  
PB_VOL_CONV  
PATTERN  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
MODE_MP0_VAL  
MODE_MP1_VAL  
MODE_MP2_VAL  
MODE_MP3_VAL  
MODE_MP4_VAL  
MODE_MP5_VAL  
MODE_MP6_VAL  
PB_VOL_INIT_VAL  
RESERVED  
HOLD  
GAINSTEP  
RAMPSPEED  
PB_VOL_CONV_VAL  
DEBOUNCE  
DEBOUNCE_  
MODE  
0x43  
0x44  
0x45  
0x46  
0x47  
0x48  
0x49  
OP_STAGE_  
CTRL  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
RESERVED  
DEC_3_EN DEC_2_EN  
HP_EN_R  
HP_EN_L  
HP_PDN_R  
SINC_2_EN  
MOD_0_EN  
ADC_IBIAS23  
MIC_IBIAS  
ADC_SDATA1_  
HP_PDN_L  
0x0F  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
DECIM_PWR_  
MODES  
DEC_1_EN  
DEC_0_EN  
SINC_3_EN  
MOD_1_EN  
SINC_1_EN  
INT_1_EN  
SINC_0_EN 0x00  
INTERP_PWR_  
MODES  
RESERVED  
INT_0_EN  
ADC_IBIAS01  
DAC_IBIAS  
0x00  
0x00  
0x00  
0x7F  
BIAS_  
CONTROL0  
HP_IBIAS  
AFE_IBIAS01  
AFE_IBIAS23  
BIAS_  
CONTROL1  
RESERVED  
RESERVED  
CBIAS_DIS  
PAD_  
CONTROL0  
DMIC2_3_  
PU  
DMIC0_1_PU LRCLK_PU  
BCLK_PU  
SCL_PU  
ADC_SDATA0_  
DAC_  
PU  
PU  
SDATA_PU  
PAD_  
CONTROL1  
RESERVED  
SELFBOOT_  
PU  
SDA_PU  
ADDR1_PU  
ADDR0_PU 0x1F  
Rev. 0 | Page 50 of 108  
Data Sheet  
ADAU1777  
Reg.  
Name  
Bits  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset  
RW  
0x4A  
PAD_  
CONTROL2  
[7:0]  
RESERVED  
DMIC2_3_  
PD  
DMIC0_1_PD LRCLK_PD  
BCLK_PD  
ADC_SDATA1_  
PD  
ADC_SDATA0_  
PD  
DAC_  
SDATA_PD  
0x00  
R/W  
0x4B  
0x4C  
0x4D  
PAD_  
CONTROL3  
[7:0]  
[7:0]  
[7:0]  
RESERVED  
RESERVED  
RESERVED  
SELFBOOT_  
PD  
SCL_PD  
SDA_PD  
ADDR1_PD  
ADDR0_  
PD  
0x00  
0x00  
0x00  
R/W  
R/W  
R/W  
PAD_  
CONTROL4  
RESERVED  
RESERVED  
LRCLK_DRV  
BCLK_DRV  
SCL_DRV  
ADC_SDATA1_  
DRV  
ADC_SDATA0_  
DRV  
RESERVED  
PAD_  
RESERVED  
SDA_DRV  
RESERVED  
RESERVED  
CONTROL5  
0x4E  
0x4F  
FAST_RATE  
[7:0]  
[7:0]  
RESERVED  
RATE_DIV  
RESERVED  
0x00  
0x00  
R/W  
R/W  
DAC_  
CONTROL0  
DAC_RATE  
RESERVED  
DAC_INTP  
0x54  
VOL_BYPASS  
[7:0]  
DAC1VOL_BY DAC0VOL_  
BY  
ADC3VOL_BY ADC2VOL_BY  
ADC1VOL_BY  
ADC0VOL_ 0x00  
BY  
R/W  
Rev. 0 | Page 51 of 108  
ADAU1777  
Data Sheet  
REGISTER DETAILS  
CLOCK CONTROL REGISTER  
Address: 0x00, Reset: 0x00, Name: CLK_CONTROL  
This register enables the internal clocks.  
Table 37. Bit Descriptions for CLK_CONTROL  
Bits Bit Name  
Settings Description  
Reset Access  
7
PLL_EN  
Enable PLL. When this bit is set to 0, the PLL is powered down and the PLL output  
0x0  
R/W  
clock is disabled. Do not enable the PLL until after all the PLL control settings  
(Register PLL_CTRL0 to Register PLL_CTRL5) are set. The PLL clock output is active  
when both PLL_EN = 1 and COREN = 1.  
0
1
PLL disabled.  
PLL enabled.  
Reserved.  
6
5
RESERVED  
0x0  
0x0  
R/W  
R/W  
SPK_FLT_DIS  
Disable I2C spike filter. By default, the SDA and SCL inputs have a 50 ns spike  
suppression filter. When the control interface is in SPI mode, this filter is disabled  
regardless of this setting.  
0
1
I2C spike filter enabled.  
I2C spike filter disabled.  
Disable crystal oscillator.  
Crystal oscillator enabled.  
Crystal oscillator disabled.  
Main clock source.  
4
3
XTAL_DIS  
CLKSRC  
0x0  
0x0  
R/W  
R/W  
0
1
0
1
External pin drives main clock.  
PLL drives main clock. This bit must only be set after LOCK in Register PLL_CTRL5 has  
gone high.  
2
CC_CDIV  
SCLK divider control. The core clock (SCLK) is used only by the core. It must run at  
12.288 MHz.  
0x0  
R/W  
0
1
Div 2: divide PLL/external clock by 2.  
Div 1: divide PLL/external clock by 1.  
Rev. 0 | Page 52 of 108  
 
 
Data Sheet  
ADAU1777  
Bits Bit Name  
Settings Description  
MCLK divider control. The internal master clock (MCLK) of the IC is used by all digital  
Reset Access  
1
CC_MDIV  
0x0  
R/W  
logic except the core. It must run at 12.288 MHz.  
0
1
Div 2: divide PLL/external clock by 2.  
Div 1: divide PLL/external clock by 1.  
0
COREN  
Main clock enable. When COREN = 0, it is only possible to write to this register and the 0x0  
PLL control registers (PLL_CTRL0 to PLL_CTRL5). This control also enables the PLL  
clock. If using the PLL, do not set COREN = 1 until LOCK in Register PLL_CTRL5 is 1.  
Note that, after COREN is enabled, writing to the parameters is disabled until setting  
DSP_CLK_EN in the CORE_ENABLE register.  
R/W  
0
1
Main clock disabled.  
Main clock enabled.  
PLL DENOMINATOR MSB REGISTER  
Address: 0x01, Reset: 0x00, Name: PLL_CTRL0  
Only write to this register when PLL_EN = 0 in Register CLK_CONTROL.  
Table 38. Bit Descriptions for PLL_CTRL0  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0]  
M_MSB  
PLL denominator MSB.  
0x0  
R/W  
PLL DENOMINATOR LSB REGISTER  
Address: 0x02, Reset: 0x00, Name: PLL_CTRL1  
Only write to this register when PLL_EN = 0 in Register CLK_CONTROL.  
Table 39. Bit Descriptions for PLL_CTRL1  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0]  
M_LSB  
PLL denominator LSB.  
0x0  
R/W  
PLL NUMERATOR MSB REGISTER  
Address: 0x03, Reset: 0x00, Name: PLL_CTRL2  
Only write to this register when PLL_EN = 0 in Register CLK_CONTROL.  
Table 40. Bit Descriptions for PLL_CTRL2  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0]  
N_MSB  
PLL numerator MSB.  
0x0  
R/W  
Rev. 0 | Page 53 of 108  
 
 
 
ADAU1777  
Data Sheet  
PLL NUMERATOR LSB REGISTER  
Address: 0x04, Reset: 0x00, Name: PLL_CTRL3  
Only write to this register when PLL_EN = 0 in Register CLK_CONTROL.  
Table 41. Bit Descriptions for PLL_CTRL3  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0]  
N_LSB  
PLL numerator LSB.  
0x0  
R/W  
PLL INTEGER SETTING REGISTER  
Address: 0x05, Reset: 0x00, Name: PLL_CTRL4  
Only write to this register when PLL_EN = 0 in Register CLK_CONTROL.  
Table 42. Bit Descriptions for PLL_CTRL4  
Bits  
Bit Name  
RESERVED  
R
Settings  
Description  
Reset  
0x0  
Access  
R/W  
7
Reserved.  
[6:3]  
PLL integer setting.  
0x0  
R/W  
0000 Reserved.  
0001 Reserved.  
0010 2.  
0011 3.  
0100 4.  
0101 5.  
0110 6.  
0111 7.  
1000 8.  
[2:1]  
X
PLL input clock divide ratio.  
0x0  
0x0  
R/W  
R/W  
00 Pin clock input/1.  
01 Pin clock input/2.  
10 Pin clock input/3.  
11 Pin clock input/4.  
PLL type.  
0
PLL_TYPE  
0
1
Integer.  
Fractional.  
Rev. 0 | Page 54 of 108  
 
 
Data Sheet  
ADAU1777  
PLL LOCK FLAG REGISTER  
Address: 0x06, Reset: 0x00, Name: PLL_CTRL5  
Table 43. Bit Descriptions for PLL_CTRL5  
Bits  
[7:1]  
0
Bit Name  
RESERVED  
LOCK  
Settings  
Description  
Reset  
Access  
R/W  
R
Reserved.  
0x0  
0x0  
Flag to indicate if the PLL is locked. This bit is read only.  
0
1
PLL unlocked.  
PLL locked.  
CLKOUT SETTING SELECTION REGISTER  
Address: 0x07, Reset: 0x00, Name: CLKOUT_SEL  
When the ADC_SDATA1/CLKOUT/MP6 pin is set to clock output mode, the frequency of the output clock is set in this register.  
CLKOUT can be used to provide a master clock to another IC, the clock for digital microphones, or as the clock for the PDM output stream.  
The 12 MHz/24 MHz setting is used when clocking another IC, 3 MHz/6 MHz is used for PDMOUT, and 1.5 MHz/3 MHz is used when  
clocking digital microphones. The CLKOUT frequency is derived from the master clock frequency, which is assumed to (and always must) be  
12.288 MHz. The 12.288 MHz and 24.576 MHz output modes are not functional if PDM is enabled (Register PDM_OUT, Bits[1:0]).  
Table 44. Bit Descriptions for CLKOUT_SEL  
Bits  
[7:3]  
[2:0]  
Bit Name  
Settings  
Description  
Reset  
0x0  
Access  
R/W  
RESERVED  
Reserved.  
CLKOUT_FREQ  
CLKOUT pin frequency.  
0x0  
R/W  
000 Master clock × 2 (24.576 MHz).  
001 Master clock (12.288 MHz).  
010 Master clock/2 (6.144 MHz).  
011 Master clock/4 (3.072 MHz).  
100 Master clock/8 (1.536 MHz).  
111 Clock output off = 0.  
Rev. 0 | Page 55 of 108  
 
 
ADAU1777  
Data Sheet  
REGULATOR CONTROL REGISTER  
Address: 0x08, Reset: 0x00, Name: REGULATOR  
Table 45. Bit Descriptions for REGULATOR  
Bits  
[7:3]  
2
Bit Name  
RESERVED  
REG_PD  
Settings  
Description  
Reset  
Access  
R/W  
Reserved.  
0x0  
0x0  
Powers down LDO regulator.  
Regulator active.  
R/W  
0
1
Regulator powered down.  
Set regulator output voltage.  
[1:0]  
REGV  
0x0  
R/W  
00 1.2 V.  
01 1.1 V.  
10 Reserved.  
11 Reserved.  
CORE CONTROL REGISTER  
Address: 0x09, Reset: 0x04, Name: CORE_CONTROL  
7
6
5
4
3
2
1
0
0
0
0
0
0
1
0
0
[7] ZERO_STATE (R/W)  
Zeroes the state of the data memory  
during bank switching  
[0] CORE_RUN (R/W)  
Run bit for the core  
0: Core off.  
0: Do not zero state during bank switch.  
1: Zero state during back switch.  
1: Core on.  
[2:1] CORE_FS (R/W)  
This bit sets the core sample rate  
00: Reserved.  
01: 96 kHz.  
10: 192 kHz.  
[6:5] BANK_SL (R/W)  
Selects active filter bank  
00: Bank A active.  
01: Bank B active.  
10: Reserved.  
11: 768 kHz.  
11: Reserved.  
[4:3] FAST_SLOW_RATE (R/W)  
Selects the speed of the slow rate  
relative to the fast rate  
00: slow rate = fast rate.  
01: slow rate = fast rate/4.  
10: slow rate = fast rate/8.  
Table 46. Bit Descriptions for CORE_CONTROL  
Bits Bit Name Settings Description  
ZERO_STATE  
Reset Access  
7
Zeroes the state of the data memory during bank switching. When switching  
active parameter banks between two settings, zeroing the state of the bank  
prevents the new filter settings from being active on old data that is recirculating in  
the filters. Zeroing the state may prevent filter instability or unwanted noises  
upon bank switching.  
0x0  
R/W  
0
1
Do not zero state during bank switch.  
Zero state during back switch.  
Rev. 0 | Page 56 of 108  
 
 
Data Sheet  
ADAU1777  
Bits Bit Name  
Settings Description  
Selects active filter bank.  
Reset Access  
[6:5] BANK_SL  
0x0  
R/W  
00 Bank A active.  
01 Bank B active.  
10 Reserved.  
11 Reserved.  
[4:3] FAST_SLOW_RATE  
Selects the speed of the slow rate relative to the fast rate. Do not change this  
setting while the core is running. CORE_RUN must be set to 0 for this setting to  
be updated.  
0x0  
R/W  
00 Slow rate = fast rate.  
01 Slow rate = fast rate/4.  
10 Slow rate = fast rate/8.  
[2:1] CORE_FS  
This bit sets the core sample rate. Do not change this setting while the core is  
running. CORE_RUN must be set to 0 for this setting to be updated.  
0x2  
R/W  
00 Reserved.  
01 96 kHz.  
10 192 kHz.  
11 768 kHz. When this mode is set, the fast rate of the core is set in Bits RATE_DIV in  
the fast rate control register.  
0
CORE_RUN  
Run bit for the core. Enable this bit only when the program and parameters are  
loaded and the sample rate settings are set. CORE_RUN starts and stops the  
core at the beginning of the program.  
0x0  
R/W  
0
1
Core off.  
Core on.  
SLEEP ON PROGRAM ADDRESS COUNT REGISTER  
Address: 0x0A, Reset: 0x00, Name: SLEEP_INST  
The SLEEP bits control which registers are sleeping. For example, if SLEEP = 7, only instructions at Address 0x00 to Address 0x05 are  
executed. SLEEP = 0 disables sleeping.  
Rev. 0 | Page 57 of 108  
 
ADAU1777  
Data Sheet  
Table 47. Bit Descriptions for SLEEP_INST  
Bits Bit Name  
[7:5] RESERVED  
[4:0] SLEEP  
Settings Description  
Reset Access  
Reserved.  
0x0  
0x0  
R/W  
R/W  
Sleep at Address SLEEP − 2. These bits control which registers are sleeping. Subtracting  
2 from the SLEEP setting indicates the number of addresses that are affected. For  
example, if SLEEP = 7, only instructions at Address 0x00 to Address 0x05 are executed.  
Do not change this setting while the core is running. CORE_RUN must be set to 0 for  
this setting to be updated.  
00000 No sleep, all instructions are executed.  
00001 Reserved.  
00010 Sleep on 0 (0x00).  
00011 Sleep on 1 (0x01).  
00100 Sleep on 2 (0x02).  
00101 Sleep on 3 (0x03).  
00110 Sleep on 4 (0x04).  
00111 Sleep on 5 (0x05).  
01000 Sleep on 6 (0x06).  
01001 Sleep on 7 (0x07).  
01010 Sleep on 8 (0x08).  
01011 Sleep on 9 (0x09).  
01100 Sleep on 10 (0x0A).  
01101 Sleep on 11 (0x0B).  
01110 Sleep on 12 (0x0C).  
01111 Sleep on 13 (0x0D).  
10000 Sleep on 14 (0x0E).  
10001 Sleep on 15 (0x0F).  
10010 Sleep on 16 (0x10).  
10011 Sleep on 17 (0x11).  
10100 Sleep on 18 (0x12).  
10101 Sleep on 19 (0x13).  
10110 Sleep on 20 (0x14).  
10111 Sleep on 21 (0x15).  
11000 Sleep on 22 (0x16).  
11001 Sleep on 23 (0x17).  
11010 Sleep on 24 (0x18).  
11011 Sleep on 25 (0x19).  
11100 Sleep on 26 (0x1A).  
11101 Sleep on 27 (0x1B).  
11110 Sleep on 28 (0x1C).  
11111 Sleep on 29 (0x1D).  
Rev. 0 | Page 58 of 108  
Data Sheet  
ADAU1777  
FILTER ENGINE AND LIMITER CONTROL REGISTER  
Address: 0x0B, Reset: 0x03, Name: CORE_ENABLE  
Disabling the limiter only disables the attack operation. The decay operation is always active; therefore, a limiter can be safely disabled  
while the decay operation performs gain adjustments.  
Table 48. Bit Descriptions for CORE_ENABLE  
Bits Bit Name  
Settings Description  
Reset Access  
[7:2] RESERVED  
Reserved.  
0x0  
R/W  
R/W  
1
LIM_EN  
Limiter enable. When the limiter function is disabled, a fixed maximum gain setting is 0x1  
applied to instructions using the limiters.  
0
1
Disabled.  
Enabled.  
0
DSP_CLK_EN  
Enable the clock to the core. This bit directly controls the clock to the core. Set this bit 0x1  
to 0 when the chip is used in a codec only configuration, in which the core is not  
used. Writing to any of the biquad coefficient registers (Parameter Memory Address  
0x0E0 to Parameter Memory Address 0x2BF) is blocked until this bit is 1. Do not use  
this bit to start or stop the core while it is running, because it immediately starts or  
stops the core clock and does not allow the program to finish. Instead, use  
CORE_RUN in the CORE_CONTROL register to start or stop the core.  
R/W  
0
1
Core clock disabled.  
Core clock enabled.  
DB VALUE REGISTER 0 READ  
Address: 0x0C, Reset: 0x00, Name: DBREG0  
The core can write data to this register, and the data is automatically converted to a level in dB. The most common use for this register is to determine  
the rms value of a signal by taking the absolute value, and then performing low-pass filtering and moving the result to the DBREG0 register.  
Table 49. Bit Descriptions for DBREG0  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0]  
DBVAL0  
DB Value Register 0 read.  
0x0  
R
00000000 −96 dB.  
00010000 −90 dB.  
00100000 −84 dB.  
00110000 −78 dB.  
11100000 −12 dB.  
11110000 −6 dB.  
11111111 −0.375 dB.  
Rev. 0 | Page 59 of 108  
 
 
ADAU1777  
Data Sheet  
DB VALUE REGISTER 1 READ  
Address: 0x0D, Reset: 0x00, Name: DBREG1  
The core can write data to this register, and the data is automatically converted to a level in dB. The most common use for this register is to deter-  
mine the rms value of a signal by taking the absolute value, and then performing low-pass filtering and moving the result to the DBREG1 register.  
Table 50. Bit Descriptions for DBREG1  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0]  
DBVAL1  
DB Value Register 1 read.  
0x0  
R
00000000 −96 dB.  
00010000 −90 dB.  
00100000 −84 dB.  
00110000 −78 dB.  
11100000 −12 dB.  
11110000 −6 dB.  
11111111 −0.375 dB.  
DB VALUE REGISTER 2 READ  
Address: 0x0E, Reset: 0x00, Name: DBREG2  
The core can write data to this register, and the data is automatically converted to a level in dB. The most common use for this register is to deter-  
mine the rms value of a signal by taking the absolute value, and then performing low-pass filtering and moving the result to the DBREG2 register.  
Table 51. Bit Descriptions for DBREG2  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0]  
DBVAL2  
DB Value Register 2 read.  
0x0  
R
00000000 −96 dB.  
00010000 −90 dB.  
00100000 −84 dB.  
00110000 −78 dB.  
11100000 −12 dB.  
11110000 −6 dB.  
11111111 −0.375 dB.  
Rev. 0 | Page 60 of 108  
 
 
Data Sheet  
ADAU1777  
CORE CHANNEL 0/CORE CHANNEL 1 INPUT SELECT REGISTER  
Address: 0x0F, Reset: 0x10, Name: CORE_IN_MUX_0_1  
Table 52. Bit Descriptions for CORE_IN_MUX_0_1  
Bits  
Bit Name  
Settings Description  
Reset  
0x1  
Access  
[7:4] CORE_IN_MUX_SEL_1  
Core Input Channel 1 source.  
R/W  
0000 AIN0/DMIC0.  
0001 AIN1/DMIC1.  
0010 AIN2/DMIC2.  
0011 AIN3/DMIC3.  
0100 Reserved.  
0101 Reserved.  
0110 Reserved.  
0111 Reserved.  
1000 Reserved.  
1001 Reserved.  
1010 Reserved.  
1011 Reserved.  
1100 Input ASRC Channel 0.  
1101 Input ASRC Channel 1.  
Core Input Channel 0 source.  
0000 AIN0/DMIC0.  
0001 AIN1/DMIC1.  
0010 AIN2/DMIC2.  
0011 AIN3/DMIC3.  
0100 Reserved.  
[3:0] CORE_IN_MUX_SEL_0  
0x0  
R/W  
0101 Reserved.  
0110 Reserved.  
0111 Reserved.  
1000 Reserved.  
1001 Reserved.  
1010 Reserved.  
1011 Reserved.  
1100 Input ASRC Channel 0.  
1101 Input ASRC Channel 1.  
Rev. 0 | Page 61 of 108  
 
ADAU1777  
Data Sheet  
CORE CHANNEL 2/CORE CHANNEL 3 INPUT SELECT REGISTER  
Address: 0x10, Reset: 0x32, Name: CORE_IN_MUX_2_3  
Table 53. Bit Descriptions for CORE_IN_MUX_2_3  
Bits  
Bit Name  
Settings Description  
Reset  
Access  
[7:4] CORE_IN_MUX_SEL_3  
Core Input Channel 3 source.  
0x3  
R/W  
0000 AIN0/DMIC0.  
0001 AIN1/DMIC1.  
0010 AIN2/DMIC2.  
0011 AIN3/DMIC3.  
0100 Reserved.  
0101 Reserved.  
0110 Reserved.  
0111 Reserved.  
1000 Reserved.  
1001 Reserved.  
1010 Reserved.  
1011 Reserved.  
1100 Input ASRC Channel 0.  
1101 Input ASRC Channel 1.  
Core Input Channel 2 source.  
0000 AIN0/DMIC0.  
0001 AIN1/DMIC1.  
0010 AIN2/DMIC2.  
0011 AIN3/DMIC3.  
0100 Reserved.  
[3:0] CORE_IN_MUX_SEL_2  
0x2  
R/W  
0101 Reserved.  
0110 Reserved.  
0111 Reserved.  
1000 Reserved.  
1001 Reserved.  
1010 Reserved.  
1011 Reserved.  
1100 Input ASRC Channel 0.  
1101 Input ASRC Channel 1.  
Rev. 0 | Page 62 of 108  
 
Data Sheet  
ADAU1777  
DAC INPUT SELECT REGISTER  
Address: 0x11, Reset: 0x10, Name: DAC_SOURCE_0_1  
Table 54. Bit Descriptions for DAC_SOURCE_0_1  
Bits Bit Name  
Settings Description  
Reset Access  
[7:4] DAC_SOURCE1  
DAC1 input source. Do not change this setting while the core is running.  
0x1  
R/W  
CORE_RUN must be set to 0 for this setting to be updated.  
0000 Core Output 0.  
0001 Core Output 1.  
0010 Core Output 2.  
0011 Core Output 3.  
0100 Reserved.  
0101 Reserved.  
0110 Reserved.  
0111 Reserved.  
1000 Reserved.  
1001 Reserved.  
1010 Reserved.  
1011 Reserved.  
1100 Input ASRC Channel 0.  
1101 Input ASRC Channel 1.  
[3:0] DAC_SOURCE0  
DAC0 input source. Do not change this setting while the core is running.  
CORE_RUN must be set to 0 for this setting to be updated.  
0x0  
R/W  
0000 Core Output 0.  
0001 Core Output 1.  
0010 Core Output 2.  
0011 Core Output 3.  
0100 Reserved.  
0101 Reserved.  
0110 Reserved.  
0111 Reserved.  
1000 Reserved.  
1001 Reserved.  
1010 Reserved.  
1011 Reserved.  
1100 Input ASRC Channel 0.  
1101 Input ASRC Channel 1.  
Rev. 0 | Page 63 of 108  
 
ADAU1777  
Data Sheet  
PDM MODULATOR INPUT SELECT REGISTER  
Address: 0x12, Reset: 0x32, Name: PDM_SOURCE_0_1  
Table 55. Bit Descriptions for PDM_SOURCE_0_1  
Bits  
Bit Name  
Settings  
Description  
Reset  
0x3  
Access  
[7:4]  
PDM_SOURCE1  
PDM Modulator Channel 1 input source.  
R/W  
0000 Core Output 0.  
0001 Core Output 1.  
0010 Core Output 2.  
0011 Core Output 3.  
0100 Reserved.  
0101 Reserved.  
0110 Reserved.  
0111 Reserved.  
1000 Reserved.  
1001 Reserved.  
1010 Reserved.  
1011 Reserved.  
1100 Input ASRC Channel 0.  
1101 Input ASRC Channel 1.  
[3:0]  
PDM_SOURCE0  
PDM Modulator Channel 0 input source.  
0x2  
R/W  
0000 Core Output 0.  
0001 Core Output 1.  
0010 Core Output 2.  
0011 Core Output 3.  
0100 Reserved.  
0101 Reserved.  
0110 Reserved.  
0111 Reserved.  
1000 Reserved.  
1001 Reserved.  
1010 Reserved.  
1011 Reserved.  
1100 Input ASRC Channel 0.  
1101 Input ASRC Channel 1.  
Rev. 0 | Page 64 of 108  
 
Data Sheet  
ADAU1777  
SERIAL DATA OUTPUT 0/SERIAL DATA OUTPUT 1 INPUT SELECT REGISTER  
Address: 0x13, Reset: 0x54, Name: SOUT_SOURCE_0_1  
Table 56. Bit Descriptions for SOUT_SOURCE_0_1  
Bits  
Bit Name  
Settings  
Description  
Reset  
0x5  
Access  
[7:4]  
SOUT_SOURCE1  
Serial Data Output Channel 1 source select.  
R/W  
0000 Reserved.  
0001 Reserved.  
0010 Reserved.  
0011 Reserved.  
0100 Output ASRC Channel 0.  
0101 Output ASRC Channel 1.  
0110 Output ASRC Channel 2.  
0111 Output ASRC Channel 3.  
1000 Serial Input 0.  
1001 Serial Input 1.  
1010 Serial Input 2.  
1011 Serial Input 3.  
1100 Serial Input 4.  
1101 Serial Input 5.  
1110 Serial Input 6.  
1111 Serial Input 7.  
[3:0]  
SOUT_SOURCE0  
Serial Data Output Channel 0 source select.  
0x4  
R/W  
0000 Reserved.  
0001 Reserved.  
0010 Reserved.  
0011 Reserved.  
0100 Output ASRC Channel 0.  
0101 Output ASRC Channel 1.  
0110 Output ASRC Channel 2.  
0111 Output ASRC Channel 3.  
1000 Serial Input 0.  
1001 Serial Input 1.  
1010 Serial Input 2.  
1011 Serial Input 3.  
1100 Serial Input 4.  
1101 Serial Input 5.  
1110 Serial Input 6.  
1111 Serial Input 7.  
Rev. 0 | Page 65 of 108  
 
ADAU1777  
Data Sheet  
SERIAL DATA OUTPUT 2/SERIAL DATA OUTPUT 3 INPUT SELECT REGISTER  
Address: 0x14, Reset: 0x76, Name: SOUT_SOURCE_2_3  
Table 57. Bit Descriptions for SOUT_SOURCE_2_3  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:4]  
SOUT_SOURCE3  
Serial Data Output Channel 3 source select.  
0x7  
R/W  
0000 Reserved.  
0001 Reserved.  
0010 Reserved.  
0011 Reserved.  
0100 Output ASRC Channel 0.  
0101 Output ASRC Channel 1.  
0110 Output ASRC Channel 2.  
0111 Output ASRC Channel 3.  
1000 Serial Input 0.  
1001 Serial Input 1.  
1010 Serial Input 2.  
1011 Serial Input 3.  
1100 Serial Input 4.  
1101 Serial Input 5.  
1110 Serial Input 6.  
1111 Serial Input 7.  
[3:0]  
SOUT_SOURCE2  
Serial Data Output Channel 2 source select.  
0000 Reserved.  
0x6  
R/W  
0001 Reserved.  
0010 Reserved.  
0011 Reserved.  
0100 Output ASRC Channel 0.  
0101 Output ASRC Channel 1.  
0110 Output ASRC Channel 2.  
0111 Output ASRC Channel 3.  
1000 Serial Input 0.  
1001 Serial Input 1.  
1010 Serial Input 2.  
1011 Serial Input 3.  
1100 Serial Input 4.  
1101 Serial Input 5.  
1110 Serial Input 6.  
1111 Serial Input 7.  
Rev. 0 | Page 66 of 108  
 
Data Sheet  
ADAU1777  
SERIAL DATA OUTPUT 4/SERIAL DATA OUTPUT 5 INPUT SELECT REGISTER  
Address: 0x15, Reset: 0x54, Name: SOUT_SOURCE_4_5  
Table 58. Bit Descriptions for SOUT_SOURCE_4_5  
Bits  
Bit Name  
Settings  
Description  
Reset  
0x5  
Access  
[7:4]  
SOUT_SOURCE5  
Serial Data Output Channel 5 source select.  
R/W  
0000 Reserved.  
0001 Reserved.  
0010 Reserved.  
0011 Reserved.  
0100 Output ASRC Channel 0.  
0101 Output ASRC Channel 1.  
0110 Output ASRC Channel 2.  
0111 Output ASRC Channel 3.  
1000 Serial Input 0.  
1001 Serial Input 1.  
1010 Serial Input 2.  
1011 Serial Input 3.  
1100 Serial Input 4.  
1101 Serial Input 5.  
1110 Serial Input 6.  
1111 Serial Input 7.  
[3:0]  
SOUT_SOURCE4  
Serial Data Output Channel 4 source select.  
0000 Reserved.  
0x4  
R/W  
0001 Reserved.  
0010 Reserved.  
0011 Reserved.  
0100 Output ASRC Channel 0.  
0101 Output ASRC Channel 1.  
0110 Output ASRC Channel 2.  
0111 Output ASRC Channel 3.  
1000 Serial Input 0.  
1001 Serial Input 1.  
1010 Serial Input 2.  
1011 Serial Input 3.  
1100 Serial Input 4.  
1101 Serial Input 5.  
1110 Serial Input 6.  
1111 Serial Input 7.  
Rev. 0 | Page 67 of 108  
 
ADAU1777  
Data Sheet  
SERIAL DATA OUTPUT 6/SERIAL DATA OUTPUT 7 INPUT SELECT REGISTER  
Address: 0x16, Reset: 0x76, Name: SOUT_SOURCE_6_7  
Table 59. Bit Descriptions for SOUT_SOURCE_6_7  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:4]  
SOUT_SOURCE7  
Serial Data Output Channel 7 source select.  
0x7  
R/W  
0000 Reserved.  
0001 Reserved.  
0010 Reserved.  
0011 Reserved.  
0100 Output ASRC Channel 0.  
0101 Output ASRC Channel 1.  
0110 Output ASRC Channel 2.  
0111 Output ASRC Channel 3.  
1000 Serial Input 0.  
1001 Serial Input 1.  
1010 Serial Input 2.  
1011 Serial Input 3.  
1100 Serial Input 4.  
1101 Serial Input 5.  
1110 Serial Input 6.  
1111 Serial Input 7.  
[3:0]  
SOUT_SOURCE6  
Serial Data Output Channel 6 source select.  
0000 Reserved.  
0x6  
R/W  
0001 Reserved.  
0010 Reserved.  
0011 Reserved.  
0100 Output ASRC Channel 0.  
0101 Output ASRC Channel 1.  
0110 Output ASRC Channel 2.  
0111 Output ASRC Channel 3.  
1000 Serial Input 0.  
1001 Serial Input 1.  
1010 Serial Input 2.  
1011 Serial Input 3.  
1100 Serial Input 4.  
1101 Serial Input 5.  
1110 Serial Input 6.  
1111 Serial Input 7.  
Rev. 0 | Page 68 of 108  
 
Data Sheet  
ADAU1777  
ADC_SDATA0/ADC_SDATA1 CHANNEL SELECT REGISTER  
Address: 0x17, Reset: 0x04, Name: ADC_SDATA_CH  
Table 60. Bit Descriptions for ADC_SDATA_CH  
Bits Bit Name  
Settings Description  
Reset Access  
[7:4] RESERVED  
Reserved.  
0x0  
0x1  
R/W  
R/W  
[3:2] ADC_SDATA1_ST  
SDATA1 output channel output select. These bits select the output channel at  
which ADC_SDATA1 starts to output data. The output port sequentially outputs  
data following this start channel according to the setting of Bit SAI.  
00 Channel 0.  
01 Channel 2.  
10 Channel 4.  
11 Channel 6.  
[1:0] ADC_SDATA0_ST  
SDATA0 output channel output select. These bits select the output channel at  
which ADC_SDATA0 starts to output data. The output port sequentially outputs  
data following this start channel according to the setting of Bit SAI.  
0x0  
R/W  
00 Channel 0.  
01 Channel 2.  
10 Channel 4.  
11 Channel 6.  
OUTPUT ASRC0/OUTPUT ASRC1 SOURCE REGISTER  
Address: 0x18, Reset: 0x10, Name: ASRCO_SOURCE_0_1  
Table 61. Bit Descriptions for ASRCO_SOURCE_0_1  
Bits  
Bit Name  
Settings Description  
Reset  
Access  
[7:4] ASRC_OUT_SOURCE1  
Output ASRC Channel 1 source select.  
0x1  
R/W  
0000 Core Output 0.  
0001 Core Output 1.  
0010 Core Output 2.  
0011 Core Output 3.  
0100 ADC0.  
0101 ADC1.  
0110 ADC2.  
0111 ADC3.  
Rev. 0 | Page 69 of 108  
 
 
ADAU1777  
Data Sheet  
Bits  
Bit Name  
Settings Description  
1000 Serial Input 0.  
1001 Serial Input 1.  
1010 Serial Input 2.  
1011 Serial Input 3.  
1100 Serial Input 4.  
1101 Serial Input 5.  
1110 Serial Input 6.  
1111 Serial Input 7.  
Reset  
Access  
[3:0] ASRC_OUT_SOURCE0  
Output ASRC Channel 0 source select.  
0x0  
R/W  
0000 Core Output 0.  
0001 Core Output 1.  
0010 Core Output 2.  
0011 Core Output 3.  
0100 ADC0.  
0101 ADC1.  
0110 ADC2.  
0111 ADC3.  
1000 Serial Input 0.  
1001 Serial Input 1.  
1010 Serial Input 2.  
1011 Serial Input 3.  
1100 Serial Input 4.  
1101 Serial Input 5.  
1110 Serial Input 6.  
1111 Serial Input 7.  
OUTPUT ASRC2/OUTPUT ASRC3 SOURCE REGISTER  
Address: 0x19, Reset: 0x32, Name: ASRCO_SOURCE_2_3  
Table 62. Bit Descriptions for ASRCO_SOURCE_2_3  
Bits  
Bit Name  
Settings Description  
Reset  
Access  
[7:4] ASRC_OUT_SOURCE3  
Output ASRC Channel 3 source select.  
0x3  
R/W  
0000 Core Output 0.  
0001 Core Output 1.  
0010 Core Output 2.  
0011 Core Output 3.  
0100 ADC0.  
Rev. 0 | Page 70 of 108  
 
Data Sheet  
ADAU1777  
Bits  
Bit Name  
Settings Description  
0101 ADC1.  
Reset  
Access  
0110 ADC2.  
0111 ADC3.  
1000 Serial Input 0.  
1001 Serial Input 1.  
1010 Serial Input 2.  
1011 Serial Input 3.  
1100 Serial Input 4.  
1101 Serial Input 5.  
1110 Serial Input 6.  
1111 Serial Input 7.  
[3:0] ASRC_OUT_SOURCE2  
Output ASRC Channel 2 source select.  
0x2  
R/W  
0000 Core Output 0.  
0001 Core Output 1.  
0010 Core Output 2.  
0011 Core Output 3.  
0100 ADC0.  
0101 ADC1.  
0110 ADC2.  
0111 ADC3.  
1000 Serial Input 0.  
1001 Serial Input 1.  
1010 Serial Input 2.  
1011 Serial Input 3.  
1100 Serial Input 4.  
1101 Serial Input 5.  
1110 Serial Input 6.  
1111 Serial Input 7.  
INPUT ASRC CHANNEL SELECT REGISTER  
Address: 0x1A, Reset: 0x00, Name: ASRC_MODE  
Rev. 0 | Page 71 of 108  
 
ADAU1777  
Data Sheet  
Table 63. Bit Descriptions for ASRC_MODE  
Bits  
[7:4]  
[3:2]  
Bit Name  
Settings  
Description  
Reset  
Access  
R/W  
RESERVED  
ASRC_IN_CH  
Reserved.  
0x0  
0x0  
Input ASRC channel select.  
R/W  
00 Serial Input Port Channel 0/Serial Input Port Channel 1.  
01 Serial Input Port Channel 2/Serial Input Port Channel 3.  
10 Serial Input Port Channel 4/Serial Input Port Channel 5.  
11 Serial Input Port Channel 6/Serial Input Port Channel 7.  
Output ASRC enable.  
1
0
ASRC_OUT_EN  
ASRC_IN_EN  
0x0  
0x0  
R/W  
R/W  
0
1
Disabled.  
Enabled.  
Input ASRC enable.  
Disabled.  
0
1
Enabled.  
ADC0/ADC1 CONTROL 0 REGISTER  
Address: 0x1B, Reset: 0x19, Name: ADC_CONTROL0  
Table 64. Bit Descriptions for ADC_CONTROL0  
Bits Bit Name  
Settings Description  
Reset Access  
[7:6] RESERVED  
Reserved.  
0x0  
0x0  
R/W  
R/W  
5
4
3
2
ADC_0_1_SINC  
Selects third- or fourth-order sinc. Do not change this setting while the core is  
running. CORE_RUN must be set to 0 for this setting to be updated.  
0
1
Fourth-order sinc.  
Third-order sinc.  
ADC1_MUTE  
ADC0_MUTE  
RESERVED  
Mute ADC1. Muting is accomplished by setting the volume control to maximum  
attenuation. This bit has no effect if volume control is bypassed.  
0x1  
0x1  
0x0  
R/W  
R/W  
R/W  
0
1
Unmuted.  
Muted.  
Mute ADC0. Muting is accomplished by setting the volume control to maximum  
attenuation. This bit has no effect if volume control is bypassed.  
0
1
Unmuted.  
Muted.  
Reserved.  
Rev. 0 | Page 72 of 108  
 
Data Sheet  
ADAU1777  
Bits Bit Name  
Settings Description  
Sets ADC sample rate. The settings of these bits must be consistent with the  
Reset Access  
[1:0] ADC_0_1_FS  
0x1  
R/W  
settings of the FAST_ SLOW_RATE bits, and CORE_RUN must be set to 0 for this  
setting to be updated.  
00 96 kHz.  
01 192 kHz.  
10 768 kHz.  
11 Reserved.  
ADC2/ADC3 CONTROL 0 REGISTER  
Address: 0x1C, Reset: 0x19, Name: ADC_CONTROL1  
Table 65. Bit Descriptions for ADC_CONTROL1  
Bits Bit Name  
Settings Description  
Reset Access  
[7:6] RESERVED  
Reserved.  
0x0  
0x0  
R/W  
R/W  
5
ADC_2_3_SINC  
Selects third- or fourth-order sinc. Do not change this setting while the core is  
running. CORE_RUN must be set to 0 for this setting to be updated.  
0
1
Fourth-order sinc.  
Third-order sinc.  
Mute ADC3.  
Unmuted.  
4
3
ADC3_MUTE  
ADC2_MUTE  
0x1  
0x1  
R/W  
R/W  
0
1
Muted.  
Mute ADC2. Muting is accomplished by setting the volume control to maximum  
attenuation. This bit has no effect if volume control is bypassed.  
0
1
Unmuted.  
Muted.  
2
RESERVED  
Reserved.  
0x0  
0x1  
R/W  
R/W  
[1:0] ADC_2_3_FS  
Sets ADC sample rate. The settings of these bits must be consistent with the  
settings of the FAST_ SLOW_RATE bits, and CORE_RUN must be set to 0 for this  
setting to be updated.  
00 96 kHz.  
01 192 kHz.  
10 768 kHz.  
11 Reserved.  
Rev. 0 | Page 73 of 108  
 
ADAU1777  
Data Sheet  
ADC0/ADC1 CONTROL 1 REGISTER  
Address: 0x1D, Reset: 0x00, Name: ADC_CONTROL2  
Table 66. Bit Descriptions for ADC_CONTROL2  
Bits Bit Name  
RESERVED  
[6:5] HP_0_1_EN  
Settings Description  
Reset Access  
7
Reserved.  
0x0  
0x0  
R/W  
R/W  
High-pass filter settings.  
00 Off.  
01 1 Hz.  
10 4 Hz.  
11 8 Hz.  
4
3
2
1
DMIC_POL0  
DMIC_SW0  
DCM_0_1  
Selects microphone polarity.  
0x0  
0x0  
0x0  
0x0  
R/W  
R/W  
R/W  
R/W  
0
1
0 positive, 1 negative.  
1 positive, 0 negative.  
Digital microphone swap.  
0
1
Channel swap off (left channel on rising edge, right channel on falling edge).  
Swap left and right.  
Sets the input source to ADCs or digital microphones.  
Decimator source set to ADC.  
0
1
Decimator source set to digital microphones.  
ADC_1_EN  
Enable ADC1. This bit must be set in conjunction with the SINC_1_EN bit in the  
DECIM_PWR_MODES register to fully enable or disable the ADC.  
0
1
Disable.  
Enable.  
0
ADC_0_EN  
Enable ADC0. This bit must be set in conjunction with the SINC_0_EN bit in the  
DECIM_PWR_MODES register to fully enable or disable the ADC.  
0x0  
R/W  
0
1
Disable.  
Enable.  
Rev. 0 | Page 74 of 108  
 
Data Sheet  
ADAU1777  
ADC2/ADC3 CONTROL 1 REGISTER  
Address: 0x1E, Reset: 0x00, Name: ADC_CONTROL3  
Table 67. Bit Descriptions for ADC_CONTROL3  
Bits Bit Name  
RESERVED  
[6:5] HP_2_3_EN  
Settings Description  
Reset Access  
7
Reserved.  
0x0  
0x0  
R/W  
R/W  
High-pass filter settings.  
00 Off.  
01 1 Hz.  
10 4 Hz.  
11 8 Hz.  
4
3
2
1
DMIC_POL1  
DMIC_SW1  
DCM_2_3  
Microphone polarity.  
0x0  
0x0  
0x0  
0x0  
R/W  
R/W  
R/W  
R/W  
0
1
0 positive, 1 negative.  
1 positive, 0 negative.  
Digital microphone swap.  
0
1
Channel swap off (left channel on rising edge, right channel on falling edge).  
Swap left and right.  
Sets the input source to ADCs or digital microphones.  
Decimator source set to ADC.  
0
1
Decimator source set to digital microphone.  
ADC_3_EN  
Enable ADC3. This bit must be set in conjunction with the SINC_3_EN bit in the  
DECIM_PWR_MODES register to fully enable or disable the ADC.  
0
1
Disable.  
Enable.  
0
ADC_2_EN  
Enable ADC2. This bit must be set in conjunction with the SINC_2_EN bit in the  
DECIM_PWR_MODES register to fully enable or disable the ADC.  
0x0  
R/W  
0
1
Disable.  
Enable.  
ADC0 VOLUME CONTROL REGISTER  
Address: 0x1F, Reset: 0x00, Name: ADC0_VOLUME  
When SINC_0_EN is set, the volume starts to ramp from −95.625 dB to the value in this register. The volume ramp time is (number of  
steps) × 16/fS, where there are 256 steps between 0 dB and −95.625 dB. For example, with fS = 192 kHz, the volume ramps from −95.625 dB to  
0 dB in 21 ms.  
Rev. 0 | Page 75 of 108  
 
 
ADAU1777  
Data Sheet  
Table 68. Bit Descriptions for ADC0_VOLUME  
Bits  
Bit Name  
Settings  
Description  
Reset  
0x0  
Access  
[7:0]  
ADC_0_VOL  
ADC0 volume setting.  
R/W  
00000000 0 dB.  
00000001 −0.375 dB.  
11111111 −95.625 dB.  
ADC1 VOLUME CONTROL REGISTER  
Address: 0x20, Reset: 0x00, Name: ADC1_VOLUME  
When SINC_1_EN is set, the volume starts to ramp from −95.625 dB to the value in this register. The volume ramp time is (number of  
steps) × 16/fS, where there are 256 steps between 0 dB and −95.625 dB. For example, with fS = 192 kHz, the volume ramps from −95.625 dB to  
0 dB in 21 ms.  
Table 69. Bit Descriptions for ADC1_VOLUME  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0]  
ADC_1_VOL  
ADC1 volume setting.  
0x0  
R/W  
00000000 0 dB.  
00000001 −0.375 dB.  
11111111 −95.625 dB.  
ADC2 VOLUME CONTROL REGISTER  
Address: 0x21, Reset: 0x00, Name: ADC2_VOLUME  
When SINC_2_EN is set, the volume starts to ramp from −95.625 dB to the value in this register. The volume ramp time is (number of  
steps) × 16/fS, where there are 256 steps between 0 dB and −95.625 dB. For example, with fS = 192 kHz, the volume ramps from  
−95.625 dB to 0 dB in 21 ms.  
Table 70. Bit Descriptions for ADC2_VOLUME  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0]  
ADC_2_VOL  
ADC2 volume setting.  
0x0  
R/W  
00000000 0 dB.  
00000001 −0.375 dB.  
11111111 −95.625 dB.  
Rev. 0 | Page 76 of 108  
 
 
Data Sheet  
ADAU1777  
ADC3 VOLUME CONTROL REGISTER  
Address: 0x22, Reset: 0x00, Name: ADC3_VOLUME  
When SINC_3_EN is set, the volume starts to ramp from −95.625 dB to the value in this register. The volume ramp time is (number of  
steps) × 16/fS, where there are 256 steps between 0 dB and −95.625 dB. For example, with fS = 192 kHz, the volume ramps from  
−95.625 dB to 0 dB in 21 ms.  
Table 71. Bit Descriptions for ADC3_VOLUME  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0]  
ADC_3_VOL  
ADC3 volume setting.  
0x0  
R/W  
00000000 0 dB.  
00000001 −0.375 dB.  
11111111 −95.625 dB.  
PGA CONTROL 0 REGISTER  
Address: 0x23, Reset: 0x40, Name: PGA_CONTROL_0  
This register controls the PGA connected to AIN0.  
Table 72. Bit Descriptions for PGA_CONTROL_0  
Bits Bit Name  
Settings Description  
Reset  
Access  
7
PGA_EN0  
Select line or microphone input. Note that the PGA inverts the signal going  
0x0  
R/W  
through it.  
0
1
AIN0 used as a single-ended line input. PGA powered down.  
AIN0 used as a single-ended microphone input. PGA powered up with slewing.  
6
PGA_MUTE0  
Enable PGA mute. When PGA is muted, PGA_GAIN0 is ignored.  
0x1  
0x0  
R/W  
R/W  
0
1
Unmuted.  
Muted.  
[5:0] PGA_GAIN0  
Set the gain of PGA0.  
000000 −12 dB.  
000001 −11.25 dB.  
010000 0 dB.  
111110 +34.5 dB.  
111111 +35.25 dB.  
Rev. 0 | Page 77 of 108  
 
 
ADAU1777  
Data Sheet  
PGA CONTROL 1 REGISTER  
Address: 0x24, Reset: 0x40, Name: PGA_CONTROL_1  
This register controls the PGA connected to AIN1.  
Table 73. Bit Descriptions for PGA_CONTROL_1  
Bits Bit Name  
Settings Description  
Reset  
Access  
7
PGA_EN1  
Select line or microphone input. Note that the PGA inverts the signal going  
0x0  
R/W  
through it.  
0
1
AIN1 used as a single-ended line input. PGA powered down.  
AIN1 used as a single-ended microphone input. PGA powered up with slewing.  
6
PGA_MUTE1  
Enable PGA1 mute. When PGA is muted, PGA_GAIN1 is ignored.  
0x1  
0x0  
R/W  
R/W  
0
1
Unmuted.  
Muted.  
[5:0] PGA_GAIN1  
Set the gain of PGA1.  
000000 −12 dB.  
000001 −11.25 dB.  
010000 0 dB.  
111110 +34.5 dB.  
111111 +35.25 dB.  
PGA CONTROL 2 REGISTER  
Address: 0x25, Reset: 0x40, Name: PGA_CONTROL_2  
This register controls the PGA connected to AIN2.  
Table 74. Bit Descriptions for PGA_CONTROL_2  
Bits Bit Name  
Settings Description  
Reset  
Access  
7
PGA_EN2  
Select line or microphone input. Note that the PGA inverts the signal going  
0x0  
R/W  
through it.  
0
1
AIN2 used as a single-ended line input. PGA powered down.  
AIN2 used as a single-ended microphone input. PGA powered up with slewing.  
Rev. 0 | Page 78 of 108  
 
 
Data Sheet  
ADAU1777  
Bits Bit Name  
Settings Description  
Enable PGA2 mute. When PGA is muted, PGA_GAIN2 is ignored.  
Unmuted.  
Reset  
Access  
6
PGA_MUTE2  
0x1  
R/W  
0
1
Muted.  
[5:0] PGA_GAIN2  
Set the gain of PGA2.  
0x0  
R/W  
000000 −12 dB.  
000001 −11.25 dB.  
010000 0 dB.  
111110 +34.5 dB.  
111111 +35.25 dB.  
PGA CONTROL 3 REGISTER  
Address: 0x26, Reset: 0x40, Name: PGA_CONTROL_3  
This register controls the PGA connected to AIN3.  
Table 75. Bit Descriptions for PGA_CONTROL_3  
Bits Bit Name  
Settings Description  
Reset  
Access  
7
PGA_EN3  
Select line or microphone input. Note that the PGA inverts the signal going  
0x0  
R/W  
through it.  
0
1
AIN3 used as a single-ended line input. PGA powered down.  
AIN3 used as a single-ended microphone input. PGA powered up with slewing.  
6
PGA_MUTE3  
Enable PGA3 mute. When PGA is muted, PGA_GAIN3 is ignored.  
0x1  
0x0  
R/W  
R/W  
0
1
Unmuted.  
Muted.  
[5:0] PGA_GAIN3  
Set the gain of PGA3.  
000000 −12 dB.  
000001 −11.25 dB.  
010000 0 dB.  
111110 +34.5 dB.  
111111 +35.25 dB.  
Rev. 0 | Page 79 of 108  
 
ADAU1777  
Data Sheet  
PGA SLEW CONTROL REGISTER  
Address: 0x27, Reset: 0x00, Name: PGA_STEP_CONTROL  
If PGA slew is disabled with the SLEW_PDx controls, the SLEW_RATE parameter is ignored for that PGA block.  
Table 76. Bit Descriptions for PGA_STEP_CONTROL  
Bits  
[7:6]  
[5:4]  
Bit Name  
RESERVED  
SLEW_RATE  
Settings  
Description  
Reset  
Access  
R/W  
Reserved.  
0x0  
0x0  
Controls how fast the PGA is slewed when changing gain.  
R/W  
00 21.5 ms.  
01 42.5 ms.  
10 85 ms.  
3
2
1
0
SLEW_PD3  
SLEW_PD2  
SLEW_PD1  
SLEW_PD0  
PGA3 slew disable.  
0x0  
0x0  
0x0  
0x0  
R/W  
R/W  
R/W  
R/W  
0
1
PGA slew enabled.  
PGA slew disabled.  
PGA2 slew disable.  
PGA slew enabled.  
PGA slew disabled.  
PGA1 slew disable.  
PGA slew enabled.  
PGA slew disabled.  
PGA0 slew disable.  
PGA slew enabled.  
PGA slew disabled.  
0
1
0
1
0
1
PGA 10 DB GAIN BOOST REGISTER  
Address: 0x28, Reset: 0x00, Name: PGA_10DB_BOOST  
Each PGA can have an additional +10 dB gain added, making the PGA gain range −2 dB to +46 dB.  
Rev. 0 | Page 80 of 108  
 
 
Data Sheet  
ADAU1777  
Table 77. Bit Descriptions for PGA_10DB_BOOST  
Bits  
[7:4]  
3
Bit Name  
Settings  
Description  
Reset  
Access  
R/W  
RESERVED  
Reserved.  
0x0  
0x0  
PGA_3_BOOST  
Boost control for PGA3.  
R/W  
0
1
Default PGA gain set in Register PGA_CONTROL_3.  
Additional 10 dB gain above setting in Register PGA_CONTROL_3.  
Boost control for PGA2.  
2
1
0
PGA_2_BOOST  
PGA_1_BOOST  
PGA_0_BOOST  
0x0  
0x0  
0x0  
R/W  
R/W  
R/W  
0
1
Default PGA gain set in Register PGA_CONTROL_2.  
Additional 10 dB gain above setting in Register PGA_CONTROL_2.  
Boost control for PGA1.  
0
1
Default PGA gain set in Register PGA_CONTROL_1.  
Additional 10 dB gain above setting in Register PGA_CONTROL_1.  
Boost control for PGA0.  
0
1
Default PGA gain set in Register PGA_CONTROL_0.  
Additional 10 dB gain above setting in Register PGA_CONTROL_0.  
INPUT AND OUTPUT CAPACITOR CHARGING REGISTER  
Address: 0x29, Reset: 0x3F, Name: POP_SUPPRESS  
Table 78. Bit Descriptions for POP_SUPPRESS  
Bits  
[7:6]  
5
Bit Name  
Settings  
Description  
Reset  
0x0  
Access  
R/W  
RESERVED  
Reserved.  
HP_POP_DIS1  
Disable pop suppression on Headphone Output 1.  
0x1  
R/W  
0
Enabled.  
1
Disabled.  
4
3
2
HP_POP_DIS0  
PGA_POP_DIS3  
PGA_POP_DIS2  
Disable pop suppression on Headphone Output 0.  
0x1  
0x1  
0x1  
R/W  
R/W  
R/W  
0
1
Enabled.  
Disabled.  
Disable pop suppression on PGA3 input.  
0
1
Enabled.  
Disabled.  
Disable pop suppression on PGA2 input.  
0
1
Enabled.  
Disabled.  
Rev. 0 | Page 81 of 108  
 
ADAU1777  
Data Sheet  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
1
PGA_POP_DIS1  
Disable pop suppression on PGA1 input.  
0x1  
R/W  
0
Enabled.  
1
Disabled.  
0
PGA_POP_DIS0  
Disable pop suppression on PGA0 input.  
0x1  
R/W  
0
1
Enabled.  
Disabled.  
DSP BYPASS PATH REGISTER  
Address: 0x2A, Reset: 0x00, Name: TALKTHRU  
Table 79. Bit Descriptions for TALKTHRU  
Bits  
[7:2]  
[1:0]  
Bit Name  
Settings  
Description  
Reset  
0x0  
Access  
R/W  
RESERVED  
Reserved.  
TALKTHRU_PATH  
Signal path when DSP bypass is enabled.  
0x0  
R/W  
00 No DSP bypass.  
01 ADC0 to DAC0.  
10 ADC1 to DAC1.  
11 ADC0 and ADC1 to DAC0 and DAC1.  
DSP BYPASS GAIN FOR PGA0 REGISTER  
Address: 0x2B, Reset: 0x00, Name: TALKTHRU_GAIN0  
Table 80. Bit Descriptions for TALKTHRU_GAIN0  
Bits  
Bit Name  
Settings Description  
Reset  
Access  
[7:0] TALKTHRU_GAIN0_VAL  
Sets the DAC0 volume when DSP bypass mode is enabled.  
0x0  
R/W  
DSP BYPASS GAIN FOR PGA1 REGISTER  
Address: 0x2C, Reset: 0x00, Name: TALKTHRU_GAIN1  
Table 81. Bit Descriptions for TALKTHRU_GAIN1  
Bits  
Bit Name  
Settings Description  
Reset  
Access  
[7:0] TALKTHRU_GAIN1_VAL  
Sets the DAC1 volume when DSP bypass mode is enabled.  
0x0  
R/W  
Rev. 0 | Page 82 of 108  
 
 
 
Data Sheet  
ADAU1777  
MICBIAS0_1 CONTROL REGISTER  
Address: 0x2D, Reset: 0x00, Name: MIC_BIAS  
Table 82. Bit Descriptions for MIC_BIAS  
Bits  
[7:6]  
5
Bit Name  
RESERVED  
MIC_EN1  
Settings  
Description  
Reset  
Access  
R/W  
Reserved.  
0x0  
0x0  
MICBIAS1 output enable.  
Disabled.  
R/W  
0
1
Enabled.  
4
MIC_EN0  
MICBIAS0 output enable.  
Disabled.  
0x0  
R/W  
0
1
Enabled.  
3
2
1
RESERVED  
RESERVED  
MIC_GAIN1  
Reserved.  
0x0  
0x0  
0x0  
R/W  
R/W  
R/W  
Reserved.  
Level of the MICBIAS1 output.  
0.9 × AVDD.  
0
1
0.65 × AVDD.  
0
MIC_GAIN0  
Level of the MICBIAS0 output.  
0.9 × AVDD.  
0x0  
R/W  
0
1
0.65 × AVDD.  
DAC CONTROL REGISTER  
Address: 0x2E, Reset: 0x18, Name: DAC_CONTROL1  
Table 83. Bit Descriptions for DAC_CONTROL1  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:6]  
RESERVED  
Reserved.  
0x0  
R/W  
Rev. 0 | Page 83 of 108  
 
 
ADAU1777  
Data Sheet  
Bits  
Bit Name  
Settings  
Description  
Invert input polarity.  
Normal.  
Reset  
Access  
5
DAC_POL  
0x0  
0x1  
0x1  
R/W  
0
1
Inverted.  
4
3
DAC1_MUTE  
DAC0_MUTE  
Mute DAC1.  
Unmuted.  
R/W  
R/W  
0
1
Muted.  
Mute DAC0.  
Unmuted.  
0
1
Muted.  
2
1
RESERVED  
DAC1_EN  
Reserved.  
0x0  
0x0  
R/W  
R/W  
Enable DAC1.  
Disable DAC1.  
Enable DAC1.  
Enable DAC0.  
Disable DAC0.  
Enable DAC0.  
0
1
0
DAC0_EN  
0x0  
R/W  
0
1
DAC0 VOLUME CONTROL REGISTER  
Address: 0x2F, Reset: 0x00, Name: DAC0_VOLUME  
Table 84. Bit Descriptions for DAC0_VOLUME  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0]  
DAC_0_VOL  
DAC0 volume setting.  
0x0  
R/W  
00000000 0 dB.  
00000001 −0.375 dB.  
11111111 −95.625 dB.  
DAC1 VOLUME CONTROL REGISTER  
Address: 0x30, Reset: 0x00, Name: DAC1_VOLUME  
Rev. 0 | Page 84 of 108  
 
 
Data Sheet  
ADAU1777  
Table 85. Bit Descriptions for DAC1_VOLUME  
Bits  
Bit Name  
Settings  
Description  
Reset  
0x0  
Access  
[7:0]  
DAC_1_VOL  
DAC1 volume setting.  
R/W  
00000000 0 dB.  
00000001 −0.375 dB.  
11111111 −95.625 dB.  
HEADPHONE OUTPUT MUTES REGISTER  
Address: 0x31, Reset: 0x0F, Name: OP_STAGE_MUTES  
Table 86. Bit Descriptions for OP_STAGE_MUTES  
Bits Bit Name  
[7:4] RESERVED  
[3:2] HP_MUTE_R  
Settings Description  
Reset  
0x0  
Access  
R/W  
Reserved.  
Mute the right output pins. When a pin is muted, it can be used as a common-mode 0x3  
output.  
R/W  
00 Outputs unmuted.  
01 HPOUTRP/LOUTRP muted, HPOUTRN/LOUTRN unmuted.  
10 HPOUTRP/LOUTRP unmuted, HPOUTRN/LOUTRN muted.  
11 Both output pins muted.  
[1:0] HP_MUTE_L  
Mute the left output pins. When a pin is muted, it can be used as a common-mode  
output.  
0x3  
R/W  
00 Outputs unmuted.  
01 HPOUTLP/LOUTLP muted, HPOUTLN/LOUTLN unmuted.  
10 HPOUTLP/LOUTLP unmuted, HPOUTLN/LOUTLN muted.  
11 Both output pins muted.  
SERIAL PORT CONTROL 0 REGISTER  
Address: 0x32, Reset: 0x00, Name: SAI_0  
Using 16-bit serial input/output limits device performance.  
Rev. 0 | Page 85 of 108  
 
 
ADAU1777  
Data Sheet  
Table 87. Bit Descriptions for SAI_0  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:6]  
SDATA_FMT  
Serial data format.  
00 TDM, I2S—data delayed from edge of LRCLK by 1 BCLK cycle.  
0x0  
0x0  
0x0  
R/W  
01 TDM, left justified—data synchronized to edge of LRCLK.  
10 Right justified, 24-bit data.  
11 Right justified, 16-bit data.  
Serial port mode.  
[5:4]  
[3:0]  
SAI  
R/W  
R/W  
00 Stereo (I2S, left justified, right justified).  
01 TDM2.  
10 TDM4.  
11 TDM8.  
SER_PORT_FS  
Sampling rate on the serial ports.  
0000 48 kHz.  
0001 8 kHz.  
0010 12 kHz.  
0011 16 kHz.  
0100 24 kHz.  
0101 32 kHz.  
0110 96 kHz.  
0111 192 kHz.  
SERIAL PORT CONTROL 1 REGISTER  
Address: 0x33, Reset: 0x00, Name: SAI_1  
Using 16-bit serial input/output limits device performance.  
Table 88. Bit Descriptions for SAI_1  
Bits Bit Name  
Settings Description  
Reset  
0x0  
Access  
7
TDM_TS  
Select whether to tristate unused TDM channels or to actively drive these data slots.  
R/W  
0
1
Unused outputs driven.  
Unused outputs tristated.  
Rev. 0 | Page 86 of 108  
 
 
 
Data Sheet  
ADAU1777  
Bits Bit Name  
Settings Description  
Bit width in TDM mode.  
Reset  
Access  
6
5
4
3
2
1
0
BCLK_TDMC  
LR_MODE  
LR_POL  
0x0  
R/W  
0
1
24-bit data in each TDM channel.  
16-bit data in each TDM channel.  
Sets LRCLK mode.  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0
1
50% duty cycle clock.  
Pulse—LRCLK is a single BCLK cycle wide pulse.  
Sets LRCLK polarity.  
0
1
50%: when LRCLK goes low and then high, pulse mode is short positive pulse.  
50%: when LRCLK goes high and then low, pulse mode is short negative pulse.  
Sets data to be input/output either MSB or LSB first.  
MSB first data.  
SAI_MSB  
BCLKRATE  
BCLKEDGE  
SAI_MS  
0
1
LSB first data.  
Sets the number of bit clock cycles per data channel.  
32 BCLK cycles/channel.  
0
1
16 BCLK cycles/channel.  
Sets the bit clock edge on which data changes.  
Data changes on falling edge.  
0
1
Data changes on rising edge.  
Sets the serial port into master or slave mode.  
LRCLK/BCLK slave.  
0
1
LRCLK/BCLK master.  
TDM OUTPUT CHANNEL DISABLE REGISTER  
Address: 0x34, Reset: 0x00, Name: SOUT_CONTROL0  
This register is for use only in TDM mode.  
Table 89. Bit Descriptions for SOUT_CONTROL0  
Bits  
Bit Name  
Settings  
Description  
Reset  
0x0  
Access  
7
TDM7_DIS  
Disable data in TDM Output Slot 7.  
Output channel enabled.  
Output channel disabled.  
R/W  
0
1
Rev. 0 | Page 87 of 108  
 
ADAU1777  
Data Sheet  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
6
TDM6_DIS  
Disable data in TDM Output Slot 6.  
Output channel enabled.  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
R/W  
0
1
Output channel disabled.  
Disable data in TDM Output Slot 5.  
Output channel enabled.  
5
4
3
2
1
0
TDM5_DIS  
TDM4_DIS  
TDM3_DIS  
TDM2_DIS  
TDM1_DIS  
TDM0_DIS  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0
1
Output channel disabled.  
Disable data in TDM Output Slot 4.  
Output channel enabled.  
0
1
Output channel disabled.  
Disable data in TDM Output Slot 3.  
Output channel enabled.  
0
1
Output channel disabled.  
Disable data in TDM Output Slot 2.  
Output channel enabled.  
0
1
Output channel disabled.  
Disable data in TDM Output Slot 1.  
Output channel enabled.  
0
1
Output channel disabled.  
Disable data in TDM Output Slot 0.  
Output channel enabled.  
0
1
Output channel disabled.  
PDM ENABLE REGISTER  
Address: 0x36, Reset: 0x00, Name: PDM_OUT  
Table 90. Bit Descriptions for PDM_OUT  
Bits Bit Name  
Settings Description  
Reset Access  
[7:5] RESERVED  
Reserved.  
0x0  
0x0  
R/W  
R/W  
4
PDM_CTRL  
Enable the control pattern in the PDM data stream.  
Disabled.  
Enabled.  
0
1
Rev. 0 | Page 88 of 108  
 
Data Sheet  
ADAU1777  
Bits Bit Name  
Settings Description  
Selects the channel on which the control patterns are written. Do not change these  
Reset Access  
[3:2] PDM_CH  
0x0  
R/W  
control bits while the PDM channel is operating and transmitting audio.  
00 Both channels.  
01 Left channel.  
10 Right channel.  
11 Reserved.  
[1:0] PDM_EN  
Enable PDM output on Pin PDMOUT.  
0x0  
R/W  
00 PDM disabled.  
01 PDM left signal in both PDM channels.  
10 PDM right signal in both PDM channels.  
11 PDM stereo.  
PDM PATTERN SETTING REGISTER  
Address: 0x37, Reset: 0x00, Name: PDM_PATTERN  
Table 91. Bit Descriptions for PDM_PATTERN  
Bits Bit Name Settings Description  
Reset Access  
[7:0] PATTERN  
PDM pattern byte. The PDM pattern byte must not be changed while the PDM channel  
is operating and transmitting the pattern.  
0x0  
R/W  
MP0 FUNCTION SETTING REGISTER  
Address: 0x38, Reset: 0x00, Name: MODE_MP0  
Table 92. Bit Descriptions for MODE_MP0  
Bits  
[7:5]  
[4:0]  
Bit Name  
Settings  
Description  
Reset  
0x0  
Access  
R/W  
RESERVED  
Reserved.  
MODE_MP0_VAL  
Sets the function of Pin DAC_SDATA/MP0.  
0x0  
R/W  
00000 Serial Input 0.  
00001 Mute ADC0.  
00010 Mute ADC1.  
00011 Mute ADC2.  
00100 Mute ADC3.  
00101 Mute ADC0 and ADC1.  
00110 Mute ADC2 and ADC3.  
00111 Mute all ADCs.  
Rev. 0 | Page 89 of 108  
 
 
ADAU1777  
Data Sheet  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
01000 Mute DAC0.  
01001 Mute DAC1.  
01010 Mute both DACs.  
01011 A/B bank switch.  
01110 Enable compression.  
01111 DSP bypass enable.  
10000 Push-button volume up.  
10001 Push-button volume down.  
MP1 FUNCTION SETTING REGISTER  
Address: 0x39, Reset: 0x10, Name: MODE_MP1  
Table 93. Bit Descriptions for MODE_MP1  
Bits  
[7:5]  
[4:0]  
Bit Name  
Settings  
Description  
Reset  
0x0  
Access  
R/W  
RESERVED  
Reserved.  
MODE_MP1_VAL  
Sets the function of Pin ADC_SDATA0/PDMOUT/MP1.  
0x10  
R/W  
00000 Serial Output 0.  
00001 Mute ADC0.  
00010 Mute ADC1.  
00011 Mute ADC2.  
00100 Mute ADC3.  
00101 Mute ADC0 and ADC1.  
00110 Mute ADC2 and ADC3.  
00111 Mute all ADCs.  
01000 Mute DAC0.  
01001 Mute DAC1.  
01010 Mute both DACs.  
01011 A/B bank switch.  
01110 Enable compression.  
01111 DSP bypass enable.  
10000 Push-button volume up.  
10001 Push-button volume down.  
10010 PDM modulator output.  
Rev. 0 | Page 90 of 108  
 
Data Sheet  
ADAU1777  
MP2 FUNCTION SETTING REGISTER  
Address: 0x3A, Reset: 0x00, Name: MODE_MP2  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:5] RESERVED  
[4:0] MODE_MP2_VAL (R/W)  
Sets the function of Pin BCLK/MP2  
00000: Bit clock.  
00001: Mute ADC0.  
00010: Mute ADC1.  
...  
01111: DSP bypass enable.  
10000: Push-button volume up.  
10001: Push-button volume down.  
Table 94. Bit Descriptions for MODE_MP2  
Bits  
[7:5]  
[4:0]  
Bit Name  
Settings  
Description  
Reset  
0x0  
Access  
R/W  
RESERVED  
Reserved.  
MODE_MP2_VAL  
Sets the function of Pin BCLK/MP2  
Bit clock.  
0x0  
R/W  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
Mute ADC0.  
Mute ADC1.  
Mute ADC2.  
Mute ADC3.  
Mute ADC0 and ADC1.  
Mute ADC2 and ADC3.  
Mute all ADCs.  
Mute DAC0.  
Mute DAC1.  
Mute both DACs.  
A/B bank switch.  
Reserved.  
Reserved.  
Enable compression.  
DSP bypass enable.  
Push-button volume up.  
Push-button volume down.  
MP3 FUNCTION SETTING REGISTER  
Address: 0x3B, Reset: 0x00, Name: MODE_MP3  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:5] RESERVED  
[4:0] MODE_MP3_VAL (R/W)  
Sets the function of Pin LRCLK/MP3  
00000: Left/right clock.  
00001: Mute ADC0.  
00010: Mute ADC1.  
...  
01111: DSP bypass enable.  
10000: Push-button volume up.  
10001: Push-button volume down.  
Table 95. Bit Descriptions for MODE_MP3  
Bits  
Bit Name  
Settings  
Description  
Reset  
0x0  
Access  
[7:5]  
RESERVED  
Reserved.  
R/W  
Rev. 0 | Page 91 of 108  
 
 
ADAU1777  
Data Sheet  
Bits  
Bit Name  
MODE_MP3_VAL  
Settings  
Description  
Reset  
0x0  
Access  
[4:0]  
Sets the function of Pin LRCLK/MP3  
Left/right clock.  
Mute ADC0.  
R/W  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
Mute ADC1.  
Mute ADC2.  
Mute ADC3.  
Mute ADC0 and ADC1.  
Mute ADC2 and ADC3.  
Mute all ADCs.  
Mute DAC0.  
Mute DAC1.  
Mute both DACs.  
A/B bank switch.  
Reserved.  
Reserved.  
Enable compression.  
DSP bypass enable.  
Push-button volume up.  
Push-button volume down.  
MP4 FUNCTION SETTING REGISTER  
Address: 0x3C, Reset: 0x00, Name: MODE_MP4  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:5] RESERVED  
[4:0] MODE_MP4_VAL (R/W)  
Sets the function of Pin DMIC0_1/MP4  
00000: Digital Microphone Input Channel  
0/Digital Microphone Input Channel 1.  
00001: Mute ADC0.  
00010: Mute ADC1.  
...  
01111: DSP bypass enable.  
10000: Push-button volume up.  
10001: Push-button volume down.  
Table 96. Bit Descriptions for MODE_MP4  
Bits  
Bit Name  
Settings  
Description  
Reset  
0x0  
Access  
[7:5] RESERVED  
Reserved.  
R/W  
R/W  
[4:0] MODE_MP4_VAL  
Sets the function of Pin DMIC0_1/MP4  
0x0  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
Digital Microphone Input Channel 0/Digital Microphone Input Channel 1.  
Mute ADC0.  
Mute ADC1.  
Mute ADC2.  
Mute ADC3.  
Mute ADC0 and ADC1.  
Mute ADC2 and ADC3.  
Mute all ADCs.  
Mute DAC0.  
Rev. 0 | Page 92 of 108  
 
Data Sheet  
ADAU1777  
Bits  
Bit Name  
Settings  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
Description  
Reset  
Access  
Mute DAC1.  
Mute both DACs.  
A/B bank switch.  
Reserved.  
Reserved.  
Enable compression.  
DSP bypass enable.  
Push-button volume up.  
Push-button volume down.  
MP5 FUNCTION SETTING REGISTER  
Address: 0x3D, Reset: 0x00, Name: MODE_MP5  
Table 97. Bit Descriptions for MODE_MP5  
Bits  
Bit Name  
Settings  
Description  
Reset  
0x0  
Access  
R/W  
[7:5] RESERVED  
Reserved.  
[4:0] MODE_MP5_VAL  
Sets the function of Pin DMIC2_3/MP5.  
0x0  
R/W  
00000 Digital Microphone Input Channel 2/Digital Microphone Input Channel 3.  
00001 Mute ADC0.  
00010 Mute ADC1.  
00011 Mute ADC2.  
00100 Mute ADC3.  
00101 Mute ADC0 and ADC1.  
00110 Mute ADC2 and ADC3.  
00111 Mute all ADCs.  
01000 Mute DAC0.  
01001 Mute DAC1.  
01010 Mute both DACs.  
01011 A/B bank switch.  
01100 Reserved.  
01101 Reserved.  
01110 Enable compression.  
01111 DSP bypass enable.  
10000 Push-button volume up.  
10001 Push-button volume down.  
Rev. 0 | Page 93 of 108  
 
ADAU1777  
Data Sheet  
MP6 FUNCTION SETTING REGISTER  
Address: 0x3E, Reset: 0x11, Name: MODE_MP6  
Table 98. Bit Descriptions for MODE_MP6  
Bits  
[7:5]  
[4:0]  
Bit Name  
Settings  
Description  
Reset  
0x0  
Access  
R/W  
RESERVED  
Reserved.  
MODE_MP6_VAL  
Sets the function of Pin ADC_SDATA1/CLKOUT/MP6.  
0x11  
R/W  
00000 Serial Output 1.  
00001 Mute ADC0.  
00010 Mute ADC1.  
00011 Mute ADC2.  
00100 Mute ADC3.  
00101 Mute ADC0 and ADC1.  
00110 Mute ADC2 and ADC3.  
00111 Mute all ADCs.  
01000 Mute DAC0.  
01001 Mute DAC1.  
01010 Mute both DACs.  
01011 A/B bank switch.  
01100 Reserved.  
01101 Reserved.  
01110 Enable compression.  
01111 DSP bypass enable.  
10000 Push-button volume up.  
10001 Push-button volume down.  
10010 Clock output.  
PUSH-BUTTON VOLUME SETTINGS REGISTER  
Address: 0x3F, Reset: 0x00, Name: PB_VOL_SET  
This register must be written before Bits PB_VOL_CONV_VAL are set to something other than the default value. Otherwise, the push-  
button volume control is initialized to −96 dB.  
Rev. 0 | Page 94 of 108  
 
 
Data Sheet  
ADAU1777  
Table 99. Bit Descriptions for PB_VOL_SET  
Bits Bit Name  
Settings Description  
Reset Access  
[7:3] PB_VOL_INIT_VAL  
Sets the initial volume of the push-button volume control. Each increment of  
this register attenuates the level by 1.5 dB, from 0 dB to −46.5 dB.  
0x0  
R/W  
00000 0.0 dB.  
00001 −1.5 dB.  
11111 −46.5 dB.  
[2:0] HOLD  
Sets the length of time that the button is held before the volume ramp begins.  
0x0  
R/W  
000 150 ms.  
001 300 ms.  
010 450 ms.  
011 600 ms.  
100 900 ms.  
101 1200 ms.  
PUSH-BUTTON VOLUME CONTROL ASSIGNMENT REGISTER  
Address: 0x40, Reset: 0x87, Name: PB_VOL_CONV  
Table 100. Bit Descriptions for PB_VOL_CONV  
Bits Bit Name  
Settings Description  
Reset Access  
[7:6] GAINSTEP  
Sets the gain step for each press of the volume control button.  
0x2  
R/W  
00 0.375 dB/press.  
01 1.5 dB/press.  
10 3.0 dB/press.  
11 4.5 dB/press.  
[5:3] RAMPSPEED  
Sets the speed in dB/sec at which the volume control ramps when a button is held.  
0x0  
R/W  
000 60 dB/sec.  
001 48 dB/sec.  
010 36 dB/sec.  
011 30 dB/sec.  
100 24 dB/sec.  
101 18 dB/sec.  
110 12 dB/sec.  
111 6 dB/sec.  
Rev. 0 | Page 95 of 108  
 
ADAU1777  
Data Sheet  
Bits Bit Name  
Settings Description  
Converters controlled by push-button volume. The push-button volume  
Reset Access  
[2:0] PB_VOL_CONV_VAL  
0x7  
R/W  
control is enabled when these bits are set to something other than the default  
setting (111). When set to 111, the push-button volume is disabled and the  
converter volumes are set by the ADCx_VOLUME and DACx_VOLUME  
registers.  
000 ADC0 and ADC1.  
001 ADC2 and ADC3.  
010 All ADCs.  
011 DAC0 and DAC1.  
100 DAC0.  
101 DAC1.  
110 Reserved.  
111 None (default).  
DEBOUNCE MODES REGISTER  
Address: 0x41, Reset: 0x05, Name: DEBOUNCE_MODE  
Table 101. Bit Descriptions for DEBOUNCE_MODE  
Bits  
[7:3]  
[2:0]  
Bit Name  
RESERVED  
DEBOUNCE  
Settings  
Description  
Reset  
Access  
R/W  
Reserved.  
0x0  
0x5  
The debounce time setting for the MPx inputs.  
R/W  
000 Debounce 300 µs.  
001 Debounce 600 µs.  
010 Debounce 900 µs.  
011 Debounce 5 ms.  
100 Debounce 10 ms.  
101 Debounce 20 ms.  
110 Debounce 40 ms.  
111 No debounce.  
Rev. 0 | Page 96 of 108  
 
Data Sheet  
ADAU1777  
HEADPHONE LINE OUTPUT SELECT REGISTER  
Address: 0x43, Reset: 0x0F, Name: OP_STAGE_CTRL  
Table 102. Bit Descriptions for OP_STAGE_CTRL  
Bits Bit Name  
Settings Description  
Reset Access  
[7:6] RESERVED  
Reserved.  
0x0  
0x0  
R/W  
R/W  
5
4
HP_EN_R  
HP_EN_L  
Sets the right channel in line output or headphone mode.  
0
1
Right output in line output mode.  
Right output in headphone mode.  
Sets the left channel in line output or headphone mode  
Left output in line output mode.  
0x0  
0x3  
R/W  
R/W  
0
1
Left output in headphone output mode.  
[3:2] HP_PDN_R  
Output stage power control. These bits power down the right output stage, regardless  
of whether the device is in line output or headphone mode. After enabling the  
headphone output, wait at least 6 ms before unmuting the headphone output by  
setting HP_MUTE_R in the OP_STAGE_MUTES register to 00.  
00 HPOUTRN/LOUTRN and HPOUTRP/LOUTRP outputs enabled.  
01 HPOUTRN/LOUTRN enabled, HPOUTRP/LOUTRP disabled.  
10 HPOUTRN/LOUTRN disabled, HPOUTRP/LOUTRP enabled.  
11 Right output stages powered down.  
[1:0] HP_PDN_L  
Output stage power control. These bits power down the left output stage, regardless of 0x3  
whether the device is in line output or headphone mode. After enabling the  
headphone output, wait at least 6 ms before unmuting the headphone output by  
setting HP_MUTE_L in the OP_STAGE_MUTES register to 00.  
R/W  
00 HPOUTLN/LOUTLN and HPOUTLP/LOUTLP outputs enabled.  
01 HPOUTLN/LOUTLN enabled, HPOUTLP/LOUTLP disabled.  
10 HPOUTLN/LOUTLN disabled, HPOUTLP/LOUTLP enabled.  
11 Left output stages powered down.  
DECIMATOR POWER CONTROL REGISTER  
Address: 0x44, Reset: 0x00, Name: DECIM_PWR_MODES  
The bits in this register enable clocks to the digital filters and the ASRC decimator filters of the ADCs. These bits must be enabled for all  
channels used in the design. To use the ADCs, these SINC_x_EN bits must be enabled along with the appropriate ADC_x_EN bits in the  
ADC_CONTROL2 and ADC_CONTROL3 registers. If the digital microphone inputs are used, the SINC_x_EN bits can be set without  
setting ADC_x_EN.  
Rev. 0 | Page 97 of 108  
 
 
ADAU1777  
Data Sheet  
Table 103. Bit Descriptions for DECIM_PWR_MODES  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
7
DEC_3_EN  
Control power to the ASRC3 decimator.  
Powered down.  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
R/W  
0
1
Powered up.  
6
5
4
3
2
1
0
DEC_2_EN  
DEC_1_EN  
DEC_0_EN  
SINC_3_EN  
SINC_2_EN  
SINC_1_EN  
SINC_0_EN  
Control power to the ASRC2 decimator.  
Powered down.  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0
1
Powered up.  
Control power to the ASRC1 decimator.  
Powered down.  
0
1
Powered up.  
Control power to the ASRC0 decimator.  
Powered down.  
0
1
Powered up.  
ADC3 filter power control.  
Powered down.  
0
1
Powered up.  
ADC2 filter power control.  
Powered down.  
0
1
Powered up.  
ADC1 filter power control.  
Powered down.  
0
1
Powered up.  
ADC0 filter power control.  
Powered down.  
0
1
Powered up.  
Rev. 0 | Page 98 of 108  
Data Sheet  
ADAU1777  
ASRC INTERPOLATOR AND DAC MODULATOR POWER CONTROL REGISTER  
Address: 0x45, Reset: 0x00, Name: INTERP_PWR_MODES  
Table 104. Bit Descriptions for INTERP_PWR_MODES  
Bits  
[7:4]  
3
Bit Name  
RESERVED  
MOD_1_EN  
Settings  
Description  
Reset  
Access  
R/W  
Reserved.  
0x0  
0x0  
DAC Modulator 1 enable.  
Powered down.  
Powered up.  
R/W  
0
1
2
1
0
MOD_0_EN  
INT_1_EN  
INT_0_EN  
DAC Modulator 0 enable.  
Powered down.  
Powered up.  
0x0  
0x0  
0x0  
R/W  
R/W  
R/W  
0
1
ASRC Interpolator 1 enable.  
Powered down.  
Powered up.  
0
1
ASRC Interpolator 0 enable.  
Powered down.  
Powered up.  
0
1
ANALOG BIAS CONTROL 0 REGISTER  
Address: 0x46, Reset: 0x00, Name: BIAS_CONTROL0  
Table 105. Bit Descriptions for BIAS_CONTROL0  
Bits Bit Name  
Settings Description  
Reset Access  
0x0 R/W  
[7:6] HP_IBIAS  
Headphone output bias current setting. Higher bias currents result in higher  
performance.  
00 Normal operation (default).  
01 Extreme power saving.  
10 Enhanced performance.  
11 Power saving.  
Rev. 0 | Page 99 of 108  
 
 
ADAU1777  
Data Sheet  
Bits Bit Name  
Settings Description  
Analog Front-End 0 and Analog Front-End 1 bias current setting. Higher bias  
Reset Access  
[5:4] AFE_IBIAS01  
0x0  
0x0  
0x0  
R/W  
R/W  
R/W  
currents result in higher performance.  
00 Normal operation (default).  
01 Extreme power saving.  
10 Enhanced performance.  
11 Power saving.  
[3:2] ADC_IBIAS23  
ADC2 and ADC3 bias current setting. Higher bias currents result in higher  
performance.  
00 Normal operation (default).  
01 Reserved.  
10 Enhanced performance.  
11 Power saving.  
[1:0] ADC_IBIAS01  
ADC0 and ADC1 bias current setting. Higher bias currents result in higher  
performance.  
00 Normal operation (default).  
01 Reserved.  
10 Enhanced performance.  
11 Power saving.  
ANALOG BIAS CONTROL 1 REGISTER  
Address: 0x47, Reset: 0x00, Name: BIAS_CONTROL1  
Table 106. Bit Descriptions for BIAS_CONTROL1  
Bits Bit Name  
Settings Description  
Reset Access  
7
6
RESERVED  
CBIAS_DIS  
Reserved.  
0x0  
0x0  
R/W  
R/W  
Central analog bias circuitry. Higher bias currents result in higher performance.  
Powered up.  
0
1
Powered down.  
[5:4] AFE_IBIAS23  
Analog Front-End 2 and Analog Front-End 3 bias current setting. Higher bias  
currents result in higher performance.  
0x0  
R/W  
00 Normal operation (default).  
01 Extreme power saving.  
10 Enhanced performance.  
11 Power saving.  
Rev. 0 | Page 100 of 108  
 
Data Sheet  
ADAU1777  
Bits Bit Name  
Settings Description  
Microphone input bias current setting. Higher bias currents result in higher  
Reset Access  
[3:2] MIC_IBIAS  
0x0  
R/W  
performance.  
00 Normal operation (default).  
01 Extreme power saving.  
10 Enhanced performance.  
11 Power saving.  
[1:0] DAC_IBIAS  
DAC bias current setting. Higher bias currents result in higher performance.  
00 Normal operation (default).  
01 Power saving.  
0x0  
R/W  
10 Superior performance.  
11 Enhanced performance.  
DIGITAL PIN PULL-UP CONTROL 0 REGISTER  
Address: 0x48, Reset: 0x7F, Name: PAD_CONTROL0  
Enable pull-up resistors for each digital pin.  
Table 107. Bit Descriptions for PAD_CONTROL0  
Bits  
Bit Name  
Settings  
Description  
Reset  
0x0  
Access  
R/W  
7
RESERVED  
DMIC2_3_PU  
Reserved.  
6
Pull-up disable.  
Pull-up enabled.  
Pull-up disabled.  
Pull-up disable.  
Pull-up enabled.  
Pull-up disabled.  
Pull-up disable.  
Pull-up enabled.  
Pull-up disabled.  
Pull-up disable.  
Pull-up enabled.  
Pull-up disabled.  
0x1  
R/W  
0
1
5
4
3
DMIC0_1_PU  
LRCLK_PU  
BCLK_PU  
0x1  
0x1  
0x1  
R/W  
R/W  
R/W  
0
1
0
1
0
1
Rev. 0 | Page 101 of 108  
 
ADAU1777  
Data Sheet  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
2
ADC_SDATA1_PU  
Pull-up disable.  
Pull-up enabled.  
Pull-up disabled.  
Pull-up disable.  
Pull-up enabled.  
Pull-up disabled.  
Pull-up disable.  
Pull-up enabled.  
Pull-up disabled.  
0x1  
R/W  
0
1
1
0
ADC_SDATA0_PU  
DAC_SDATA_PU  
0x1  
0x1  
R/W  
R/W  
0
1
0
1
DIGITAL PIN PULL-UP CONTROL 1 REGISTER  
Address: 0x49, Reset: 0x1F, Name: PAD_CONTROL1  
Enable pull-up resistors for each digital pin.  
Table 108. Bit Descriptions for PAD_CONTROL1  
Bits  
[7:5]  
4
Bit Name  
Settings  
Description  
Reset  
0x0  
Access  
R/W  
RESERVED  
Reserved.  
SELFBOOT_PU  
Pull-up disable.  
Pull-up enabled.  
Pull-up disabled.  
Pull-up disable.  
Pull-up enabled.  
Pull-up disabled.  
Pull-up disable.  
Pull-up enabled.  
Pull-up disabled.  
Pull-up disable.  
Pull-up enabled.  
Pull-up disabled.  
Pull-up disable.  
Pull-up enabled.  
Pull-up disabled.  
0x1  
R/W  
0
1
3
2
1
0
SCL_PU  
0x1  
0x1  
0x1  
0x1  
R/W  
R/W  
R/W  
R/W  
0
1
SDA_PU  
0
1
ADDR1_PU  
ADDR0_PU  
0
1
0
1
Rev. 0 | Page 102 of 108  
 
Data Sheet  
ADAU1777  
DIGITAL PIN PULL-DOWN CONTROL 0 REGISTER  
Address: 0x4A, Reset: 0x00, Name: PAD_CONTROL2  
Enable pull-down resistors for each digital pin.  
Table 109. Bit Descriptions for PAD_CONTROL2  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
R/W  
7
RESERVED  
DMIC2_3_PD  
Reserved.  
0x0  
0x0  
6
Pull-down enable.  
Pull-down disabled.  
Pull-down enabled.  
Pull-down enable.  
Pull-down disabled.  
Pull-down enabled.  
Pull-down enable.  
Pull-down disabled.  
Pull-down enabled.  
Pull-down enable.  
Pull-down disabled.  
Pull-down enabled.  
Pull-down enable.  
Pull-down disabled.  
Pull-down enabled.  
Pull-down enable.  
Pull-down disabled.  
Pull-down enabled.  
Pull-down enable.  
Pull-down disabled.  
Pull-down enabled.  
R/W  
0
1
5
4
3
2
1
0
DMIC0_1_PD  
LRCLK_PD  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0
1
0
1
BCLK_PD  
0
1
ADC_SDATA1_PD  
ADC_SDATA0_PD  
DAC_SDATA_PD  
0
1
0
1
0
1
DIGITAL PIN PULL-DOWN CONTROL 1 REGISTER  
Address: 0x4B, Reset: 0x00, Name: PAD_CONTROL3  
Enable pull-down resistors for each digital pin.  
Rev. 0 | Page 103 of 108  
 
 
ADAU1777  
Data Sheet  
Table 110. Bit Descriptions for PAD_CONTROL3  
Bits  
[7:5]  
4
Bit Name  
Settings  
Description  
Reset  
Access  
R/W  
RESERVED  
Reserved.  
0x0  
0x0  
SELFBOOT_PD  
Pull-down enable.  
Pull-down disabled.  
Pull-down enabled.  
Pull-down enable.  
Pull-down disabled.  
Pull-down enabled.  
Pull-down enable.  
Pull-down disabled.  
Pull-down enabled.  
Pull-down enable.  
Pull-down disabled.  
Pull-down enabled.  
Pull-down enable.  
Pull-down disabled.  
Pull-down enabled.  
R/W  
0
1
3
2
1
0
SCL_PD  
0x0  
0x0  
0x0  
0x0  
R/W  
R/W  
R/W  
R/W  
0
1
SDA_PD  
0
1
ADDR1_PD  
ADDR0_PD  
0
1
0
1
DIGITAL PIN DRIVE STRENGTH CONTROL 0 REGISTER  
Address: 0x4C, Reset: 0x00, Name: PAD_CONTROL4  
Table 111. Bit Descriptions for PAD_CONTROL4  
Bits  
Bit Name  
RESERVED  
RESERVED  
RESERVED  
Settings  
Description  
Reserved.  
Reserved.  
Reserved.  
Reset  
0x0  
Access  
R/W  
7
6
0x0  
R/W  
5
0x0  
R/W  
Rev. 0 | Page 104 of 108  
 
Data Sheet  
ADAU1777  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
4
LRCLK_DRV  
Drive strength control.  
Low drive strength.  
High drive strength.  
Drive strength control.  
Low drive strength.  
High drive strength.  
Drive strength control.  
Low drive strength.  
High drive strength.  
Drive strength control.  
Low drive strength.  
High drive strength.  
Reserved.  
0x0  
0x0  
0x0  
0x0  
0x0  
R/W  
0
1
3
2
1
0
BCLK_DRV  
R/W  
R/W  
R/W  
R/W  
0
1
ADC_SDATA1_DRV  
ADC_SDATA0_DRV  
RESERVED  
0
1
0
1
DIGITAL PIN DRIVE STRENGTH CONTROL 1 REGISTER  
Address: 0x4D, Reset: 0x00, Name: PAD_CONTROL5  
Table 112. Bit Descriptions for PAD_CONTROL5  
Bits  
[7:5]  
4
Bit Name  
RESERVED  
RESERVED  
SCL_DRV  
Settings  
Description  
Reset  
0x0  
Access  
R/W  
Reserved.  
Reserved.  
0x0  
R/W  
3
Drive strength control.  
Low drive strength.  
High drive strength.  
Drive strength control.  
Low drive strength.  
High drive strength.  
Reserved.  
0x0  
R/W  
0
1
2
SDA_DRV  
0x0  
R/W  
0
1
1
0
RESERVED  
RESERVED  
0x0  
0x0  
R/W  
R/W  
Reserved.  
FAST RATE CONTROL REGISTER  
Address: 0x4E, Reset: 0x00, Name: FAST_RATE  
Rev. 0 | Page 105 of 108  
 
 
ADAU1777  
Data Sheet  
Table 113. Bit Descriptions for FAST_RATE  
Bits Bit Name  
[7:3] RESERVED  
[2:0] RATE_DIV  
Settings Description  
Reset Access  
Reserved.  
0x0  
0x0  
R/W  
R/W  
Set fast rate division factor. This factor is used to divide the internal master clock  
(6.144 MHz) when CORE_FS = 11. Do not change this setting while the core is running.  
CORE_RUN must be set to 0 for this setting to be updated.  
000 Divide by 8 (768 kHz).  
001 Divide by 9 (683 kHz).  
010 Divide by 10 (614 kHz).  
011 Divide by 12 (512 kHz).  
100 Divide by 14 (439 kHz).  
101 Divide by 16 (384 kHz).  
DAC INTERPOLATION CONTROL REGISTER  
Address: 0x4F, Reset: 0x00, Name: DAC_CONTROL0  
The lowest interpolator latency is achieved with a zero-order hold (ZOH) selection. ZOH can be used for both 768 kHz and 192 kHz data.  
For 96 kHz data, use the linear interpolation to attain the lowest latency.  
Table 114. Bit Descriptions for DAC_CONTROL0  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:6]  
DAC_RATE  
Sample rate for DAC.  
0x0  
R/W  
00 Core fS.  
01 Core fS/4.  
10 Core fS/8.  
11 Reserved.  
[5:3]  
DAC_INTP  
Interpolation mode for the DAC.  
0x0  
R/W  
000 Both DAC0 and DAC1 set to compensated interpolation.  
001 DAC0 set to ZOH, DAC1 set to compensated interpolation.  
010 DAC0 set to compensated interpolation, DAC1 set to ZOH.  
011 Both DAC0 and DAC1 set to ZOH.  
100 DAC0 set to linear interpolation, DAC1 set to compensated interpolation.  
101 DAC0 set to compensated interpolation, DAC1 set to linear interpolation.  
110 Both DAC0 and DAC1 set to linear interpolation.  
Rev. 0 | Page 106 of 108  
 
Data Sheet  
ADAU1777  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[2:0]  
RESERVED  
Reserved.  
0x0  
R/W  
VOLUME CONTROL BYPASS REGISTER  
Address: 0x54, Reset: 0x00, Name: VOL_BYPASS  
Table 115. Bit Descriptions for VOL_BYPASS  
Bits  
[7:6]  
5
Bit Name  
Settings  
Description  
Reset  
0x0  
Access  
R/W  
RESERVED  
DAC1VOL_BY  
Reserved.  
DAC1 volume control bypass.  
Volume control enabled.  
Bypassed.  
0x0  
R/W  
0
1
4
3
2
1
0
DAC0VOL_BY  
ADC3VOL_BY  
ADC2VOL_BY  
ADC1VOL_BY  
ADC0VOL_BY  
DAC0 volume control bypass.  
Volume control enabled.  
Bypassed.  
0x0  
0x0  
0x0  
0x0  
0x0  
R/W  
R/W  
R/W  
R/W  
R/W  
0
1
ADC3 volume control bypass.  
Volume control enabled.  
Bypassed.  
0
1
ADC2 volume control bypass.  
Volume control enabled.  
Bypassed.  
0
1
ADC1 volume control bypass.  
Volume control enabled.  
Bypassed.  
0
1
ADC0 volume control bypass.  
Volume control enabled.  
Bypassed.  
0
1
Rev. 0 | Page 107 of 108  
 
ADAU1777  
Data Sheet  
OUTLINE DIMENSIONS  
3.805  
3.765  
3.725  
7
6
5
4
3
2
1
A
B
C
D
E
F
BALL A1  
IDENTIFIER  
3.235  
3.195  
3.155  
2.50  
REF  
0.50  
BSC  
BOTTOM VIEW  
(BALL SIDE UP)  
TOP VIEW  
(BALL SIDE DOWN)  
3.00 REF  
0.390  
0.360  
0.330  
0.660  
0.600  
0.540  
SIDE VIEW  
COPLANARITY  
0.05  
SEATING  
PLANE  
0.360  
0.320  
0.280  
0.270  
0.240  
0.210  
Figure 79. 36-Ball Wafer Level Chip Scale Package [WLCSP]  
(CB-36-4)  
Dimension shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range Package Description  
Package Option  
ADAU1777BCBZRL −40°C to +85°C  
EVAL-ADAU1777Z  
36-Ball Wafer Level Chip Scale Package [WLCSP], 13”Tape and Reel  
Evaluation Board  
CB-36-4  
1 Z = RoHS Compliant Part.  
I2C refers to a communications protocol originally developed by Philips Semiconductors (now NXP Semiconductors).  
©2016 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D14796-0-12/16(0)  
Rev. 0 | Page 108 of 108  
 
 

相关型号:

ADAU1777_17

Four-ADC, Two-DAC, Low Power Codec
ADI

ADAU1781

Low Noise Stereo Codec with SigmaDSP Processing Core
ADI

ADAU1781BCPZ

Low Noise Stereo Codec with SigmaDSP Processing Core
ADI

ADAU1781BCPZ-RL

Low Noise Stereo Codec with SigmaDSP Processing Core
ADI

ADAU1781BCPZ-RL7

Low Noise Stereo Codec with SigmaDSP Processing Core
ADI

ADAU1787

Four ADC, Two DAC, Low Power Codec with Audio DSPs
ADI

ADAU1787BCBZRL

Four ADC, Two DAC, Low Power Codec with Audio DSPs
ADI

ADAU1961

Stereo, Low Power, 96 kHz, 24-Bit Audio Codec with Integrated PLL
ADI

ADAU1961WBCPZ

Stereo, Low Power, 96 kHz, 24-Bit Audio Codec with Integrated PLL
ADI

ADAU1961WBCPZ-R7

Stereo, Low Power, 96 kHz, 24-Bit Audio Codec with Integrated PLL
ADI

ADAU1961WBCPZ-RL

Stereo, Low Power, 96 kHz, 24-Bit Audio Codec with Integrated PLL
ADI

ADAU1962

12-Channel, High Performance Differential Output DAC
ADI