ADAU1977 [ADI]

Quad ADC with Diagnostics; 四ADC与诊断
ADAU1977
型号: ADAU1977
厂家: ADI    ADI
描述:

Quad ADC with Diagnostics
四ADC与诊断

文件: 总64页 (文件大小:3415K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Quad ADC with Diagnostics  
Data Sheet  
ADAU1977  
FEATURES  
GENERAL DESCRIPTION  
Programmable microphone bias (5 V to 9 V) with diagnostics  
Four 10 V rms capable direct-coupled differential inputs  
On-chip PLL for master clock  
Low EMI design  
106 dB ADC dynamic range  
The ADAU1977 incorporates four high performance analog-to-  
digital converters (ADCs) with direct-coupled inputs capable of  
10 V rms. The ADC uses multibit sigma-delta (Σ-Δ) architecture  
with continuous time front end for low EMI. The ADCs can be  
connected to the electret microphone (ECM) directly and pro-  
vide the bias for powering the microphone. Built-in diagnostic  
circuitry detects faults on input lines and includes comprehensive  
diagnostics for faults on microphone inputs. The faults reported  
are short to battery, short to microphone bias, short to ground,  
short between positive and negative input pins, and open input  
terminals. In addition, each diagnostic fault is available as an  
IRQ flag for ease in system design. An I2C/SPI control port is  
also included. The ADAU1977 uses only a single 3.3 V supply.  
The part internally generates the microphone bias voltage. The  
microphone bias is programmable in a few steps from 5 V to 9 V.  
The low power architecture reduces the power consumption.  
An on-chip PLL can derive the master clock from an external  
clock input or frame clock (sample rate clock). When fed with  
a frame clock, the PLL eliminates the need for a separate high  
frequency master clock in the system. The ADAU1977 is  
available in a 40-lead LFCSP package.  
−95 dB THD + N  
Selectable digital high-pass filter  
24-bit ADC with 8 kHz to 192 kHz sample rates  
Digital volume control with autoramp function  
I2C/SPI control  
Software-controllable clickless mute  
Software power-down  
Right justified, left justified, I2S justified, and TDM modes  
Master and slave operation modes  
40-lead LFCSP package  
Qualified for automotive applications  
APPLICATIONS  
Automotive audio systems  
Active noise cancellation system  
FUNCTIONAL BLOCK DIAGRAM  
ADAU1977  
5V TO 9V  
BOOST  
3.3V TO 1.8V  
REGULATOR  
CONVERTER  
MICBIAS  
MB_GND  
DVDD  
I
50mA  
OUT  
PROG  
BIAS  
PGND  
AIN1P  
AIN1N  
AIN2P  
AIN2N  
AIN3P  
AIN3N  
AIN4P  
AIN4N  
IOVDD  
ADC  
ADC  
LRCLK  
BCLK  
ADC  
ADC  
SDATAOUT1  
SDATAOUT2  
AGND1  
AVDD2  
AGND3  
PLL  
VBAT  
SCL/CCLK  
SDA/COUT  
ADDR1/CIN  
ADDR0/CLATCH  
FAULT  
AVDDx  
I2C/SPI  
CONTROL  
BG  
REF  
DIAGNOSTICS  
PD/RST  
AGND2  
AGND2  
AGNDx  
Figure 1.  
Rev. A  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2013 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
 
ADAU1977  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Register Details ............................................................................... 35  
Master Power and Soft Reset Register..................................... 35  
PLL Control Register ................................................................. 36  
DC-to-DC Boost Converter Control Register ....................... 37  
MICBIAS and Boost Control Register .................................... 38  
Block Power Control and Serial Port Control Register......... 39  
Serial Port Control Register1.................................................... 40  
Serial Port Control Register2.................................................... 41  
Channel Mapping for Output Serial Ports Register............... 42  
Channel Mapping for Output Serial Ports Register............... 44  
Applications....................................................................................... 1  
General Description ......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Analog Performance Specifications ........................................... 3  
Diagnostic and Fault Specifications........................................... 4  
Digital Input/Output Specifications........................................... 5  
Power Supply Specifications........................................................ 5  
Digital Filters Specifications ....................................................... 6  
Timing Specifications .................................................................. 7  
Absolute Maximum Ratings............................................................ 9  
Thermal Resistance ...................................................................... 9  
ESD Caution.................................................................................. 9  
Pin Configuration and Function Descriptions........................... 10  
Typical Performance Characteristics ........................................... 12  
Theory of Operation ...................................................................... 14  
Overview...................................................................................... 14  
Power Supply and Voltage Reference....................................... 14  
Power-On Reset Sequence ........................................................ 14  
PLL and Clock............................................................................. 15  
DC-to-DC Boost Converter...................................................... 16  
Microphone Bias......................................................................... 17  
Analog Inputs.............................................................................. 17  
ADC ............................................................................................. 21  
ADC Summing Modes .............................................................. 21  
Diagnostics.................................................................................. 21  
Serial Audio Data Output Ports—Data Format ..................... 23  
Control Ports................................................................................... 28  
I2C Mode...................................................................................... 29  
SPI Mode ..................................................................................... 32  
Register Summary .......................................................................... 34  
Serial Output Drive and Overtemperature Protection  
Control Register ......................................................................... 46  
Post ADC Gain Channel 1 Control Register.......................... 47  
Post ADC Gain Channel 2 Control Register.......................... 48  
Post ADC Gain Channel 3 Control Register.......................... 49  
Post ADC Gain Channel 4 Control Register.......................... 50  
High-Pass Filter and DC Offset Control Register and  
Master Mute................................................................................ 51  
Diagnostics Control Register.................................................... 52  
Diagnostics Report Register Channel 1 .................................. 53  
Diagnostics Report Register Channel 2 .................................. 54  
Diagnostics Report Register Channel 3 .................................. 55  
Diagnostics Report Register Channel 4 .................................. 56  
Diagnostics Interrupt Pin Control Register 1......................... 57  
Diagnostics Interrupt Pin Control Register 2......................... 58  
Diagnostics Adjustments Register 1 ........................................ 59  
Diagnostics Adjustments Register 2 ........................................ 60  
ADC Clipping Status Register .................................................. 61  
Digital DC High-Pass Filter and Calibration Register.......... 62  
Applications Circuit ....................................................................... 63  
Outline Dimensions ....................................................................... 64  
Ordering Guide .......................................................................... 64  
Automotive Products................................................................. 64  
REVISION HISTORY  
3/13—Rev. 0 to Rev. A  
Changes to Channel Mapping for Output Serial Ports Register  
Section and Table 34 .......................................................................44  
Changes to Figure 46.......................................................................63  
Changes to Ordering Guide...........................................................64  
Changed CP-40-9 to CP-40-14.........................................Universal  
Changes to Hysteresis AINxP and AINxN Shorted Together  
Parameter, Table 2..............................................................................4  
Changes to Thermal Resistance Section and Table 8....................9  
Changes to SPI Mode Section........................................................32  
1/13—Revision 0: Initial Version  
Rev. A | Page 2 of 64  
 
SPECIFICATIONS  
Performance of all channels is identical, exclusive of the interchannel gain mismatch and interchannel phase deviation specifications.  
AVDDx/IOVDD = 3.3 V; DVDD (internally generated) = 1.8 V; VBAT = 14.4 V; TA = −40°C to +105°C, unless otherwise noted; master  
clock = 12.288 MHz (48 kHz fS, 256 × fS mode); input sample rate = 48 kHz; measurement bandwidth = 20 Hz to 20 kHz; word width =  
24 bits; load capacitance (digital output) = 20 pF; load current (digital output) = 1 mA; digital input voltage high = 2.0 V; digital input  
voltage low = 0.8 V.  
ANALOG PERFORMANCE SPECIFICATIONS  
Table 1.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
LINE INPUT APPLICATION  
Full-Scale Differential Input Voltage  
Full-Scale Single-Ended Input Voltage  
MICROPHONE INPUT APPLICATION  
Differential Input Voltage  
QUASI DC INPUT  
Single-Ended Input Voltage  
Input Common-Mode Voltage  
Peak Input Voltage  
See Figure 46  
DC-coupled, VCM at AINxP/AINxN = 7 V  
DC-coupled, VCM at AINxP/AINxN = 7 V  
See Figure 46, MICBIAS = 8.5 V  
DC-coupled, VCM at AINxP = 5.66 V, AINxN = 2.83 V  
10  
5
V rms  
V rms  
2
5
V rms  
V peak  
V dc  
V
VCM at AINxP/AINxN pins  
VCM + V ac peak at AINxP/AINxN pins  
0
0
8
14  
MICROPHONE BIAS  
Output Voltage  
Programmable from 5 V to 9 V in steps of 0.5 V; the  
output voltage is within the specified load  
regulation  
5
9
V
Load Regulation  
Output Current  
Output Noise  
From no load to maximum load of 25 mA at 5 V  
From no load to maximum load of 45 mA at 9 V  
At MICBIAS = 5 V  
−1  
−1  
+0.2  
+0.3  
+1  
+1  
25  
45  
32  
54  
%
%
mA  
mA  
µV rms  
µV rms  
dB  
At MICBIAS = 9 V  
20 Hz to 20 kHz, MICBIAS = 5 V  
20 Hz to 20 kHz, MICBIAS = 9 V  
350 mV rms, 1 kHz ripple on VBOOST_IN at 10 V  
Referred to full scale at 1 kHz  
With CLOAD = 1 nF  
22  
35  
60  
60  
40  
Power Supply Rejection Ratio (PSRR)  
Interchannel Isolation at MICBIAS Pin  
Start-Up Time  
dB  
ms  
BOOST CONVERTER  
Input Voltage  
Input Current  
2.97  
3.3  
195  
220  
50  
3.63  
V
L = 4.7 µH, fSW = 1.536 MHz, MICBIAS = 9 V at 45 mA load  
L = 2.2 µH, fSW = 3.072 MHz, MICBIAS = 9 V at 45 mA load  
MICBIAS = 5 V  
mA  
mA  
mA  
mA  
%
Output Current  
Load Regulation  
MICBIAS = 9 V  
88  
From no load to maximum load of 50 mA at MICBIAS −1  
= 5 V  
From no load to maximum load of 88 mA at MICBIAS −1  
= 9 V  
+1  
+1  
%
Input Overcurrent Threshold  
Switching Frequency  
900  
mA peak  
MHz  
MHz  
fS = 48 kHz L = 2.2 µH  
fS = 48 kHz, L = 4.7 µH  
4.7  
3.072  
1.536  
10  
External Load Capacitor at VBOOST_OUT Pin  
ANALOG-TO-DIGITAL CONVERTERS  
Input Resistance  
22  
µF  
Differential  
Between AINxP and AINxN  
Between AINxP and AINxN  
50  
25  
24  
kΩ  
kΩ  
Bits  
Single-Ended (Rin1977  
ADC Resolution  
Dynamic Range (A-Weighted)1  
)
Input = 1 kHz, −60 dBFS  
Line Input  
Microphone Input  
Total Harmonic Distortion Plus Noise  
(THD + N)  
Referred to full-scale differential input = 10 V rms  
Referred to full-scale differential input = 2 V rms  
Input = 1 kHz, −1 dBFS (0 dBFS = 10 V rms input)  
103  
106  
92  
−95  
dB  
dB  
dB  
−89  
Digital Gain Post ADC  
Gain Error  
Gain step size = 0.375 dB  
−35.625  
−10  
+60  
+10  
dB  
%
Interchannel Gain Mismatch  
−0.25  
+0.25  
dB  
 
 
 
ADAU1977  
Data Sheet  
Parameter  
Test Conditions/Comments  
Min  
Typ  
0.6  
60  
Max  
Unit  
ppm/°C  
dB  
Gain Drift  
Common-Mode Rejection Ratio (CMRR)  
1 V rms, 1 kHz  
1 V rms, 20 kHz  
56  
dB  
Power Supply Rejection Ratio (PSRR)  
Interchannel Isolation  
Interchannel Phase Deviation  
REFERENCE  
100 mV rms, 1 kHz on AVDDx = 3.3 V  
70  
100  
0
dB  
dB  
Degrees  
Internal Reference Voltage  
Output Impedance  
VREF pin  
1.47  
8
1.50  
20  
1.54  
192  
V
kΩ  
ADC SERIAL PORT  
Output Sample Rate  
kHz  
1 For fS ranging from 44.1 kHz to 192 kHz.  
DIAGNOSTIC AND FAULT SPECIFICATIONS  
Applicable to differential microphone input using MICBIAS on AINxP and AINxN pins.  
Table 2.  
Test Conditions/  
Comments  
Parameter  
Min  
Typ  
Max  
Unit  
INPUT VOLTAGE THRESHOLDS FOR FAULT DETECTION1  
Hysteresis AINxP or AINxN Shorted to VBAT  
SHT_B_TRIP = 10 0.79 × VBAT  
SHT_B_TRIP = 01 0.84 × VBAT  
SHT_B_TRIP = 00 0.89 × VBAT  
SHT_B_TRIP = 11 0.93 × VBAT  
SHT_T_TRIP = 00 MICBIAS(0.5 0.015) MICBIAS(0.5  
0.035)  
0.85 × VBAT  
0.9 × VBAT  
0.95 × VBAT  
0.975 × VBAT  
0.86 × VBAT  
0.91 × VBAT  
0.96 × VBAT  
0.99 × VBAT  
MICBIAS(0.5  
0.047)  
V
V
V
V
V
Hysteresis AINxP and AINxN Shorted Together  
SHT_T_TRIP = 01 MICBIAS(0.5 0.001) MICBIAS(0.5  
0.017)  
MICBIAS(0.5  
0.03)  
MICBIAS(0.5  
0.08)  
V
V
SHT_T_TRIP = 10 MICBIAS(0.5 0.05)  
MICBIAS(0.5  
0.071)  
Hysteresis AINxP or AINxN Shorted to Ground  
Hysteresis AINxP Shorted to MICBIAS  
SHT_G_TRIP = 10  
SHT_G_TRIP = 01  
SHT_G_TRIP = 00  
SHT_G_TRIP = 11  
SHT_M_TRIP = 10 0.82 × MICBIAS  
SHT_M_TRIP = 01 0.87 × MICBIAS  
SHT_M_TRIP = 00 0.92 × MICBIAS  
SHT_M_TRIP = 11 0.95 × MICBIAS  
0.04 × VREF  
0.08 × VREF  
0.12 × VREF  
0.19 × VREF  
0.1 × VREF  
0.133 × VREF  
0.2 × VREF  
0.266 × VREF  
0.85 × MICBIAS  
0.9 × MICBIAS  
0.95 × MICBIAS  
0.975 × MICBIAS  
0.13 × VREF  
0.16 × VREF  
0.22 × VREF  
0.28 × VREF  
0.89 × MICBIAS  
0.94 × MICBIAS  
1.0 × MICBIAS  
1.0 × MICBIAS  
V
V
V
V
V
V
V
V
Hysteresis AINxP or AINxN Open Circuit2  
Refer to the  
AINxP shorted to  
MICBIAS and the  
AINxN shorted  
to ground  
specifications for  
upper and lower  
thresholds.  
FAULT DURATION  
Programmable  
10  
100  
150  
ms  
1 The threshold limits are tested with VREF = 1.5 V, MICBIAS = 5 V to 8.5 V, and VBAT = 11 V to 18 V set using an external source. When VBAT ≤ MICBIAS, a short to VBAT  
cannot be distinguished from a short to MICBIAS, and reporting a short to VBAT fault takes precedence over a short to MICBIAS fault.  
2 The AINxP open terminal fault cannot be distinguished from the AINxN open terminal fault because the voltage at the AINxP and AINxN pins remain at MICBIAS and  
ground, respectively, when either of these two terminals becomes open circuit.  
Rev. A | Page 4 of 64  
 
Data Sheet  
ADAU1977  
DIGITAL INPUT/OUTPUT SPECIFICATIONS  
Table 3.  
Parameter  
Test Conditions/Comments  
Min  
Max  
Unit  
INPUT  
High Level Input Voltage (VIH)  
Low Level Input Voltage (VIL)  
Input Leakage Current  
Input Capacitance  
0.7 × IOVDD  
V
V
µA  
pF  
0.3 × IOVDD  
10  
5
OUTPUT  
High Level Output Voltage (VOH)  
Low Level Output Voltage (VOL)  
IOH = 1 mA  
IOL = 1 mA  
IOVDD − 0.60  
V
V
0.4  
POWER SUPPLY SPECIFICATIONS  
L = 4.7 µH, AVDDx = 3.3 V, DVDD = 1.8 V, IOVDD = 3.3 V, fS = 48 kHz (master mode), unless otherwise noted.  
Table 4.  
Parameter  
Test Conditions/Comments  
Min  
1.62  
3.0  
Typ  
1.8  
3.3  
3.3  
14.4  
Max  
1.98  
3.6  
3.6  
18  
Unit  
DVDD  
AVDDx  
IOVDD  
VBAT 1  
On-chip LDO  
V
V
V
V
1.62  
IOVDD Current  
Normal Operation  
Master clock = 256 fS  
fS = 48 kHz  
fS = 96 kHz  
fS = 192 kHz  
fS = 48 kHz to 192 kHz  
450  
880  
1.75  
20  
µA  
µA  
mA  
µA  
Power-Down  
AVDDx Current  
Normal Operation  
Boost off, 4-channel ADC, DVDD internal  
Boost on, 4-channel ADC, DVDD internal  
Boost off, 4-channel ADC, DVDD external  
Boost on, 4-channel ADC, DVDD external  
14  
14.5  
9.6  
10.1  
270  
mA  
mA  
mA  
mA  
µA  
Power-Down  
Boost Converter Current  
Normal Operation  
Boost on, 4-channel ADC, MICBIAS = 8.5 V, no load  
Boost on, 4-channel ADC, MICBIAS = 8.5 V, 42 mA  
34  
168  
180  
mA  
mA  
µA  
Power-Down  
DVDD Current  
Normal Operation  
Power-Down  
VBAT Current  
DVDD external = 1.8 V  
VBAT = 14.4 V  
4.5  
65  
mA  
µA  
Normal Operation  
Power-Down  
575  
575  
625  
625  
µA  
µA  
POWER DISSIPATION  
Normal Operation  
AVDDx  
Master clock = 256 fS, 48 kHz  
DVDD internal, MICBIAS = 8.5 V at 42 mA load  
PD/RST pin held low  
265  
9
mW  
mW  
Power-Down, All Supplies  
1 When VBAT ≤ MICBIAS, a short to VBAT cannot be distinguished from a short to MICBIAS, and reporting a short to VBAT fault takes precedence over a short to MICBIAS fault.  
Rev. A | Page 5 of 64  
 
 
 
ADAU1977  
Data Sheet  
DIGITAL FILTERS SPECIFICATIONS  
Table 5.  
Parameter  
Mode  
Factor  
Min  
Typ  
Max  
Unit  
ADC DECIMATION FILTER  
Pass Band  
Pass-Band Ripple  
Transition Band  
Stop Band  
All modes, typical at fS = 48 kHz  
0.4375 × fS  
21  
0.015  
24  
27  
kHz  
dB  
kHz  
kHz  
dB  
0.5 × fS  
0.5625 × fS  
Stop-Band Attenuation  
Group Delay  
79  
fS = 8 kHz to 96 kHz  
fS = 192 kHz  
22.9844/fS  
479  
35  
µs  
µs  
HIGH-PASS FILTER  
Cutoff Frequency  
Phase Deviation  
Settling Time  
All modes, typical at 48 kHz  
At −3 dB point  
At 20 Hz  
0.9375  
10  
Hz  
Degrees  
ADC DIGITAL GAIN  
Gain Step Size  
All modes  
0
60  
dB  
dB  
0.375  
Rev. A | Page 6 of 64  
 
Data Sheet  
ADAU1977  
TIMING SPECIFICATIONS  
Table 6.  
Limit at  
Min Max Unit Description  
Parameter  
INPUT MASTER CLOCK (MCLK)  
Duty Cycle  
40  
60  
%
MCLKIN duty cycle; MCLKIN at 256 × fS, 384 × fS, 512 × fS, and 768 × fS  
fMCLK  
See Table 10  
MHz MCLKIN frequency, PLL in MCLK mode  
RESET  
Reset Pulse  
15  
ns  
RST low  
PLL  
Lock Time  
I2C PORT  
fSCL  
tSCLH  
tSCLL  
tSCS  
10  
ms  
400  
0.6  
kHz  
µs  
µs  
SCL frequency  
SCL high  
SCL low  
1.3  
0.6  
µs  
Setup time; relevant for repeated start condition  
tSCH  
0.6  
µs  
Hold time; after this period of time, the first clock pulse is generated  
tDS  
tDH  
100  
0
ns  
Data setup time  
Data hold time  
tSCR  
tSCF  
tSDR  
tSDF  
300  
300  
300  
300  
1.3  
ns  
ns  
ns  
ns  
µs  
µs  
SCL rise time  
SCL fall time  
SDA rise time  
SDA fall time  
Bus-free time; time between stop and start  
Setup time for stop condition  
tBFT  
tSUSTO  
SPI PORT  
tCCPH  
tCCPL  
fCCLK  
tCDS  
0.6  
35  
35  
10  
10  
10  
10  
40  
10  
30  
30  
30  
ns  
ns  
CCLK high  
CCLK low  
MHz CCLK frequency  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CIN setup to CCLK rising  
tCDH  
tCLS  
CIN hold from CCLK rising  
CLATCH setup to CCLK rising  
CLATCH hold from CCLK rising  
CLATCH high  
tCLH  
tCLPH  
tCOE  
COUT enable from CLATCH falling  
COUT delay from CCLK falling  
COUT tristate from CLATCH rising  
tCOD  
tCOTS  
ADC SERIAL PORT  
tABH  
tABL  
tALS  
tALH  
tABDD  
10  
10  
10  
5
ns  
ns  
ns  
ns  
ns  
BCLK high, slave mode  
BCLK low, slave mode  
LRCLK setup to BCLK rising, slave mode  
LRCLK hold from BCLK rising, slave mode  
SDATAOUTx delay from BCLK falling  
18  
Rev. A | Page 7 of 64  
 
ADAU1977  
Data Sheet  
tALS  
LRCLK  
tALH  
tABH  
BCLK  
tABL  
tABDD  
SDATAOUTx  
LEFT JUSTIFIED  
MODE  
MSB  
MSB – 1  
tABDD  
SDATAOUTx  
I S MODE  
MSB  
2
tABDD  
SDATAOUTx  
RIGHT JUSTIFIED  
MODE  
MSB  
LSB  
8-BIT CLOCKS  
(24-BIT DATA)  
12-BIT CLOCKS  
(20-BIT DATA)  
14-BIT CLOCKS  
(18-BIT DATA)  
16-BIT CLOCKS  
(16-BIT DATA)  
Figure 2. Serial Output Port Timing  
tCLH  
tCLS  
tCLPH  
tCOE  
tCCPL  
tCCPH  
CLATCH  
CCLK  
CIN  
tCDH  
tCDS  
tCOTS  
COUT  
tCOD  
Figure 3. SPI Port Timing  
tSCH  
STOP  
START  
tDS  
tSCH  
tSDR  
SDA  
tSDF  
tSCLH  
tBFT  
tSCR  
SCL  
tSCS  
tSUSTO  
tSCLL  
tSCF  
tDH  
Figure 4. I2C Port Timing  
Rev. A | Page 8 of 64  
 
Data Sheet  
ADAU1977  
ABSOLUTE MAXIMUM RATINGS  
Table 7.  
THERMAL RESISTANCE  
θJA represents thermal resistance, junction-to-ambient, and θJC  
represents the thermal resistance, junction-to-case. All  
characteristics are for a standard JEDEC board per JESD51.  
Parameter  
Rating  
Analog Supply (AVDDx)  
Digital Supply  
−0.3 V to +3.63 V  
DVDD  
IOVDD  
−0.3 V to +1.98 V  
−0.3 V to +3.63 V  
20 mA  
−0.3 V to +18 V  
−0.3 V to +3.63 V  
−40°C to +105°C  
−40°C to +125°C  
−65°C to +150°C  
Table 8. Thermal Resistance  
Package Type  
40-Lead LFCSP  
θJA  
θJC  
Unit  
Input Current (Except Supply Pins)  
Analog Input Voltage (AINx, VBAT Pins)  
Digital Input Voltage (Signal Pins)  
Operating Temperature Range (Ambient)  
Junction Temperature Range  
Storage Temperature Range  
32.8  
1.93  
°C/W  
ESD CAUTION  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. A | Page 9 of 64  
 
 
 
ADAU1977  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
PIN 1  
AGND1  
VREF  
1
2
3
4
5
6
7
8
9
30 VBAT  
INDICATOR  
29 AGND3  
28 MB_GND  
27 MICBIAS  
26 VBOOST_IN  
25 VBOOST_OUT  
24 SW  
PLL_FILT  
AVDD2  
ADAU1977  
AGND2  
TOP VIEW  
(Not to Scale)  
PD/RST  
MCLKIN  
FAULT  
23 SW  
SA_MODE  
22 PGND  
DVDD 10  
21 PGND  
NOTES  
1. THE EXPOSED PAD MUST BE CONNECTED TO THE GROUND PLANE ON THE PCB.  
Figure 5. Pin Configuration, 40-Lead LFCSP  
Table 9. Pin Function Descriptions  
Pin No.  
Mnemonic  
In/Out1  
Description  
1
2
3
4
AGND1  
VREF  
PLL_FILT  
AVDD2  
P
O
O
P
P
I
Analog Ground.  
Voltage Reference. Decouple this pin to AGNDx with 10 µF||100 nF capacitors.  
PLL Loop Filter. Return this pin to AVDDx using recommended loop filter components.  
Analog Power Supply. Connect this pin to analog 3.3 V supply.  
Analog Ground.  
5
AGND2  
6
PD/RST  
Power-Down Reset (Active Low).  
7
8
9
MCLKIN  
FAULT  
SA_MODE  
DVDD  
DGND  
IOVDD  
SDATAOUT1  
SDATAOUT2  
LRCLK  
I
O
I
Master Clock Input.  
Fault Output. Programmable logic output.  
Standalone Mode. Connect this pin to IOVDD using a 10 kΩ pull-up resistor for standalone mode.  
1.8 V Digital Power Supply Output. Decouple this pin to DGND with a 0.1 µF capacitor.  
Digital Ground.  
Digital Input and Output Power Supply. Connect this pin to a supply in the range of 1.8 V to 3.3 V.  
ADC Serial Data Output Pair 1.  
ADC Serial Data Output Pair 2.  
Frame Clock for the ADC Serial Port.  
Bit Clock for the ADC Serial Port.  
Serial Data Output I2C/Control Data Output (SPI).  
Serial Clock Input I2C/Control Clock Input (SPI).  
Chip Address Bit 0 Setting I2C/Chip Select Input for Control Data (SPI).  
Chip Address Bit 1 Setting I2C/Control Data Input (SPI).  
Power Ground Boost Converter.  
Power Ground Boost Converter.  
Inductor Switching Terminal.  
Inductor Switching Terminal.  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
O
P
P
O
O
I/O  
I/O  
I/O  
I
BCLK  
SDA/COUT  
SCL/CCLK  
ADDR0/CLATCH  
ADDR1/CIN  
PGND  
PGND  
SW  
SW  
VBOOST_OUT  
VBOOST_IN  
MICBIAS  
MB_GND  
I
I
P
P
I
I
O
I
Boost Converter Output. Decouple this pin to PGND with a 10 µF capacitor.  
MICBIAS Regulator Input. Connect this pin to VBOOST_OUT (Pin 25).  
Microphone Bias Output. Decouple this pin to AGNDx using a 10 µF capacitor.  
Analog Return Ground for the Microphone Bias Regulator. Connect this pin directly to AGNDx  
for best noise performance.  
O
P
29  
30  
AGND3  
VBAT  
P
I
Analog Ground.  
Voltage Sense for Diagnostics. Connect this pin to a load dump suppressed battery voltage.  
Decouple this to AGNDx using a 0.1 µF capacitor.  
Rev. A | Page 10 of 64  
 
Data Sheet  
ADAU1977  
Pin No.  
31  
32  
33  
34  
35  
36  
37  
38  
Mnemonic  
In/Out1  
Description  
AVDD3  
AIN1N  
AIN1P  
AIN2N  
AIN2P  
AIN3N  
AIN3P  
AIN4N  
AIN4P  
AVDD1  
EP  
P
I
I
I
I
I
I
I
I
Analog Power Supply. Connect this pin to an analog 3.3 V supply.  
Analog Input Channel 1 Inverting Input.  
Analog Input Channel 1 Noninverting Input.  
Analog Input Channel 2 Inverting Input.  
Analog Input Channel 2 Noninverting Input.  
Analog Input Channel 3 Inverting Input.  
Analog Input Channel 3 Noninverting Input.  
Analog Input Channel 4 Inverting Input.  
Analog Input Channel 4 Noninverting Input.  
Analog Power Supply. Connect this pin to an analog 3.3 V supply.  
39  
40  
P
Exposed Pad. The exposed pad must be connected to the ground plane on the printed circuit  
board (PCB).  
1 I = input, O = output, I/O = input/output, and P= power.  
Rev. A | Page 11 of 64  
ADAU1977  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
0
–10  
0
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
–95  
–100  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
20k  
100k  
1M  
10M 20M  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
FREQUENCY (Hz)  
FREQUENCY (kHz)  
Figure 6. Fast Fourier Transform, 2 mV Differential Input at fS = 48 kHz  
Figure 9. CMRR Differential Input, Referenced to 1 V Differential Input  
0
–10  
0
–10  
–20  
–20  
–30  
–30  
–40  
–40  
–50  
–50  
–60  
–60  
–70  
–70  
–80  
–80  
–90  
–90  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
Figure 7. Fast Fourier Transform, −1 dBFS Differential Input  
Figure 10. Fast Fourier Transform, No Input  
0
0.10  
0.08  
0.06  
0.04  
0.02  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–0.02  
–0.04  
–0.06  
–0.08  
–0.10  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
0
2000 4000 6000 8000 10000 12000 14000 16000 18000  
FREQUENCY (Hz)  
12  
0
2
4
6
8
10  
INPUT AMPLITUDE (V rms)  
Figure 8. THD + N vs. Input Amplitude  
Figure 11. ADC Pass-Band Ripple at fS = 48 kHz  
Rev. A | Page 12 of 64  
 
Data Sheet  
ADAU1977  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
5000 10000 15000 20000 25000 30000 35000 40000  
FREQUENCY (Hz)  
Figure 12. ADC Filter Stop-Band Response at fS = 48 kHz  
Rev. A | Page 13 of 64  
ADAU1977  
Data Sheet  
THEORY OF OPERATION  
the part enables the DVDD regulator. However, the internal ADC  
OVERVIEW  
POR  
and digital core reset is controlled by the internal  
signal  
The ADAU1977 incorporates four high performance ADCs  
with an integrated boost converter for microphone bias, the  
associated microphone diagnostics for fault detection, and a  
phase-locked loop circuit for generating the necessary on-chip  
clock signals.  
(power-on reset) circuit, which monitors the DVDD level.  
Therefore, the device does not come out of a reset until DVDD  
POR  
reaches 1.2 V and the  
signal is released. The DVDD settling  
time depends on the charge-up time for the external capacitors  
and on the AVDDx ramp-up time.  
POWER SUPPLY AND VOLTAGE REFERENCE  
The internal POR circuit is provided with hysteresis to ensure  
that a reset of the part is not initiated by an instantaneous glitch  
The ADAU1977 requires a single 3.3 V power supply. Separate  
power supply input pins are provided for the analog and boost  
converter. These pins should be decoupled to AGND with 100 nF  
ceramic chip capacitors placed as close as possible to the pins to  
minimize noise pickup. A bulk aluminum electrolytic capacitor  
of at least 10 μF must be provided on the same PCB as the ADC.  
It is important that the analog supply be as clean as possible for  
best performance.  
RST  
on DVDD. The typical trip points are 1.2 V with  
high and  
low. This ensures that the core is not  
reset until the DVDD level falls below the 0.6 V trip point.  
PD RST  
pin is pulled high, the internal regulator  
RST  
0.6 V ( 20%) with  
As soon as the  
/
starts charging up the CEXT on the DVDD pin. The DVDD charge-  
up time is based on the output resistance of the regulator and  
the external decoupling capacitor. The time constant can be  
calculated as  
The supply voltage for the digital core (DVDD) is generated  
using an internal low dropout regulator. The typical DVDD  
output is 1.8 V and must be decoupled using a 100 nF ceramic  
capacitor and a 10 µF capacitor. Place the 100 nF ceramic  
capacitor as close as possible to the DVDD pin.  
tC = ROUT × CEXT (ROUT = 20 Ω typical)  
For example, if CEXT is 10 µF, then tC is 200 µs and is the time to  
reach the DVDD voltage, within 63.6%.  
The voltage reference for the analog blocks is generated  
internally and output at the VREF pin (Pin 2). The typical  
voltage at the pin is 1.5 V with an AVDDx of 3.3 V.  
The POR circuit releases an internal reset of the core when DVDD  
reaches 1.2 V (see Figure 13). Therefore, it is recommended to  
wait for at least the tC period to elapse before sending I2C or SPI  
control signals.  
All digital inputs are compatible with TTL and CMOS levels.  
All outputs are driven from the IOVDD supply. The IOVDD  
can be in the range of 1.8 V to 3.3 V. The IOVDD pin must  
be decoupled with a 100 nF capacitor placed as close to the  
IOVDD pin as possible. It is recommended to connect the  
AGND, DGND, PGND, and exposed pad to a single GND  
plane on the PCB for best performance.  
AVDDx  
PD/RST  
1.2V  
tRESET  
The ADC internal voltage reference is output from the VREF pin  
and should be decoupled using a 100 nF ceramic capacitor in  
parallel with a 10 μF capacitor. The VREF pin has limited  
current capability. The voltage reference is used as a reference to  
the ADC; therefore, it is recommended not to draw current  
from this pin for external circuits. When using this reference,  
use a noninverting amplifier buffer to provide a reference to  
other circuits in the application.  
tC  
DVDD (1.8V)  
tD  
0.48V  
POR  
Figure 13. Power-On Reset Timing  
When applying a hardware reset to the part by pulling the  
In reset mode, the VREF pin is disabled to save power and is  
PD RST  
/
pin (Pin 6) low and then high, there are certain time  
RST  
enabled only when the  
pin is pulled high.  
RST  
restrictions. During the  
low pulse period, the DVDD starts  
POWER-ON RESET SEQUENCE  
discharging. The discharge time constant is decided by the internal  
resistance of the regulator and CEXT. The time required for DVDD  
to fall from 1.8 V to 0.48 V (0.6 V − 20%) can be estimated using  
the following equation:  
The ADAU1977 requires that a single 3.3 V power supply be  
provided externally at the AVDDx pin. The part internally generates  
DVDD (1.8 V), which is used for the digital core of the ADC.  
The DVDD supply output pin (Pin 10) is provided to connect  
the decoupling capacitors to DGND. The typical recommended  
values for the decoupling capacitors are 100 nF in parallel with  
10 µF. During a reset, the DVDD regulator is disabled to reduce  
tD = 1.32 × RINT × CEXT  
where RINT = 64 kΩ typical. (RINT can vary due to process by 20%.)  
For example, if CEXT is 10 µF, then tD is 0.845 sec.  
PD RST  
power consumption. After the  
/
pin (Pin 6) is pulled high,  
Rev. A | Page 14 of 64  
 
 
 
 
 
Data Sheet  
ADAU1977  
Depending on CEXT, tD may vary and in turn decide the minimum  
The PLL_LOCK bit (Bit 7) of Register 0x01 indicates the lock  
status of the PLL. It is recommended that after initial power-up  
the PLL lock status be read to ensure that the PLL outputs the  
correct frequency before unmuting the audio outputs.  
RST  
RST  
hold period for the  
for the tD time period to initialize the core properly.  
RST  
pulse. The  
pulse must be held low  
The required  
low pulse period can be reduced by adding a  
resistor across CEXT. The new tD value can then be calculated as  
Table 10. Required Input MCLK for Common Sample Rates  
MCS  
(Bits[2:0])  
Frequency Multi- MCLKIN Frequency  
tD = 1.32 × REQ × CEXT  
fS (kHz) plication Ratio  
(MHz)  
where REQ = 64 kΩ || REXT  
.
000  
001  
010  
011  
100  
000  
001  
010  
011  
100  
000  
001  
010  
011  
100  
000  
001  
010  
011  
100  
000  
001  
010  
011  
100  
32  
32  
32  
32  
128 × fS  
256 × fS  
384 × fS  
512 × fS  
768 × fS  
128 × fS  
256 × fS  
384 × fS  
512 × fS  
768 × fS  
128 × fS  
256 × fS  
384 × fS  
512 × fS  
768 × fS  
64 × fS  
4.096  
8.192  
The resistor ensures that DVDD not only discharges quickly during  
a reset or an AVDDx power loss but also resets the internal blocks  
correctly. Note that some power loss in this resistor is to be  
expected because the resistor constantly draws current from  
DVDD. The typical value for CEXT is 10 µF and for REXT is 3 kΩ.  
This results in a time constant of  
12.288  
16.384  
24.576  
5.6448  
11.2896  
16.9344  
22.5792  
33.8688  
6.144  
12.288  
18.432  
24.576  
36.864  
6.144  
32  
44.1  
44.1  
44.1  
44.1  
44.1  
48  
48  
48  
48  
48  
tD = 1.32 × REQ × CEXT = 37.8 ms  
where REQ = 2.866 kΩ (64 kΩ || 3 kΩ).  
Using this equation at a set CEXT value, the REXT can be  
RST  
calculated for a desired  
pulse period.  
There is also a software reset register (S_RST, Bit 7 of Register 0x00)  
available that can be used to reset the part, but it must be noted  
that during an AVDDx power loss, the software reset may not  
ensure proper initialization because DVDD may not be stable.  
+3.3V  
96  
96  
96  
96  
128 × fS  
192 × fS  
256 × fS  
384 × fS  
32 × fS  
12.288  
18.432  
24.576  
36.864  
6.144  
AVDD1 AVDD3 AVDD2  
96  
192  
192  
192  
192  
192  
DVDD  
64 × fS  
96 × fS  
128 × fS  
192 × fS  
12.288  
18.432  
24.576  
36.864  
3.3V TO 1.8V  
REGULATOR  
C
0.1µF  
C
10µF  
MLCC X7R  
R
EXT  
3kΩ  
EXT  
TO INTERNAL  
BLOCKS  
+1.8V OR +3.3V  
IOVDD  
The PLL can accept the audio frame clock (sample rate clock) as  
input, but the serial port must be configured as a slave and the  
frame clock must be fed to the part from the master. It is strongly  
recommended that the PLL be disabled, reprogrammed with the  
new setting, and then reenabled. A lock bit is provided that can be  
polled via the I2C to check whether the PLL has acquired lock.  
ADAU1977  
C
0.1µF  
Figure 14. DVDD Regulator Output Connections  
PLL AND CLOCK  
The PLL requires an external filter, which is connected at the  
PLL_FILT pin (Pin 3). The recommended PLL filter circuit for  
MCLK or LRCLK mode is shown in Figure 15. Using NPO  
capacitors is recommended for temperature stability. Place the  
filter components close to the device for best performance.  
The ADAU1977 has a built-in analog PLL to provide a jitter-  
free master clock to the internal ADC. The PLL must be  
programmed for the appropriate input clock frequency. The  
PLL Control Register 0x01 is used for setting the PLL.  
The CLK_S bit (Bit 4) of Register 0x01 is used for setting the  
clock source for the PLL. The clock source can be either the  
MCLKIN pin or the LRCLK pin (slave mode). In LRCLK mode,  
the PLL can support sample rates between 32 kHz and 192 kHz.  
AVDDx  
AVDDx  
39nF  
5.6nF  
2.2nF  
390pF  
4.87kΩ  
1kΩ  
PLL_LF  
PLL_LF  
In MCLK input mode, the MCS bits (Bits[2:0] of Register 0x01)  
must be set to the desired input clock frequency for the MCLKIN  
pin. Table 10 shows the input MCLK required for the most  
common sample rates and the MCS bit settings.  
LRCLK MODE  
MCLK MODE  
Figure 15. PLL Filter  
Rev. A | Page 15 of 64  
 
 
 
ADAU1977  
Data Sheet  
and if it exceeds the set current threshold for 1.2 ms, the boost  
converter shuts down. The fault condition is recorded into  
Register 0x02 and asserts the fault interrupt pin. This condi  
tion is cleared after reading the BOOST_OV bit (Bit 2) or  
the BOOST_OC bit (Bit 0) in Register 0x02. The overcurrent  
protection bit, OC_EN (Bit 1), or the overvoltage protection bit,  
OV_EN (Bit 3), is on by default, and it is recommended not to  
disable the bit.  
DC-TO-DC BOOST CONVERTER  
The boost converter generates a supply voltage for the  
microphone bias circuit from a fixed 3.3 V supply. The boost  
converter output voltage is programmable using Register 0x03.  
The boost converter output voltage is approximately 1 V above  
the set microphone bias voltage. The boost converter uses the  
clock from the PLL, and the switching frequency is dependent  
on the sample rate of the ADC. The FS_RATE bits (Bits[6:5] of  
Register 0x02) must be set to the desired sample rate. The boost  
converter switching frequency can be selected to be 1.5 MHz or  
3 MHz using Bit 4 of Register 0x02. For the 1.5 MHz switching  
frequency, the recommended value for the inductor is 4.7 µH,  
whereas for the 3 MHz switching frequency, the recommended  
value for the inductor is 2.2 µH.  
Each protection circuit has two modes for recovery after a fault  
event: autorecovery and manual recovery. The recovery mode  
can be selected using Bit 0 of Register 0x03. The autorecovery  
mode attempts to enable the boost converter after a set recovery  
time, typically 20 ms. The manual recovery mode enables the boost  
converter only if the user writes 1 to the MRCV bit (Bit 1). If the  
fault persists, the boost converter remains in shutdown mode  
until the fault is cleared.  
Table 12 lists the typical switching frequency based on the  
sample rates.  
The boost converter is capable of supplying the 42 mA of total  
output current at the MICBIAS output. The boost converter has  
overcurrent protection at the input; the threshold is around  
900 mA peak. Ensure that the 3.3 V power supply feeding the  
boost converter has built-in overcurrent protection because there is  
no protection internal to ADAU1977 for a short circuit to any of  
the ground pins (AGND/DGND/PGND) at the VBOOST_OUT  
or VBOOST_IN pin.  
Inductor Selection  
For the boost converter to operate efficiently, the inductor selection  
is critical. The two most important parameters for the inductor  
are the saturation current rating and the dc resistance. The recom-  
mended saturation rating for the inductor must be >1 A. The dc  
resistance affects the efficiency of the boost converter. Assuming  
that the board trace resistances are negligible for 80% efficiency,  
the dc resistance of the inductor should be less than 50 mΩ.  
By default, the boost converter is disabled on power-up to allow  
the flexibility of connecting an external voltage source at the  
VBOOST_IN pin to power the microphone bias circuit. The boost  
converter can be enabled by using the BOOST_EN bit (Bit 2 of  
Register 0x03).  
Table 11 lists some of the recommended inductors for the  
application.  
Table 11. Recommended Inductors1  
Value  
2.2 µH  
4.7 µH  
Manufacturer  
Würth Elektronik  
Würth Elektronik  
Manufacturer Part Number  
Capacitor Selection  
7440430022  
7440530047  
The boost converter output is available at the VBOOST_OUT pin  
(Pin 25) and must be decoupled to PGND using a 10 µF ceramic  
capacitor to remove the ripple at the switching frequency. The  
capacitor must have low ESR and good temperature stability.  
The MLCC X7R/NPO dielectric type with 25 V is recommended.  
Care must be taken to place this capacitor as close as possible to  
the VBOOST_OUT pin (Pin 25).  
1 Check with the manufacturer for the appropriate temperature ratings for a  
given application.  
The boost converter has a soft start feature that prevents inrush  
current from the input source.  
The boost converter has built-in overcurrent and overtemperature  
protection. The input current to the boost converter is monitored  
Table 12. Typical Switching Frequency Based on the Sample Rates  
Boost Converter Switching Frequency  
Base Sample Rate (kHz) Sample Rates (kHz)  
Inductor = 2.2 µH  
(1024/12) × fS  
(1024/16) × fS  
(1024/16) × fS  
Inductor = 4.7 µH  
(1024/22) × fS  
(1024/30) × fS  
(1024/32) × fS  
32  
8/16/32/64  
44.1  
48  
11.025/22.05/44.1/88.2/176.4  
12/24/48/96/192  
Rev. A | Page 16 of 64  
 
 
 
Data Sheet  
ADAU1977  
The block diagram shown in Figure 16 represents the typical  
input circuit.  
MICROPHONE BIAS  
The microphone bias is generated by the input voltage at the  
VBOOST_IN pin (Pin 26) via a linear regulator to ensure low  
noise performance and to reject the high frequency noise from  
the boost converter. If the internal boost converter output is  
used, the VBOOST_OUT pin (Pin 25) must be connected to  
the VBOOST_IN pin (Pin 26). If an external supply is used for  
the microphone bias, the supply can be fed at the VBOOST_IN  
pin (Pin 26); in this case, leave the VBOOST_OUT pin (Pin 25)  
open. The microphone bias voltage is programmable from 5 V  
to 9 V by using the MB_VOLTS bits (Bits[7:4] of Register 0x03).  
The microphone bias output voltage is available at the MICBIAS pin  
(Pin 27). This pin can be decoupled to AGND using a maximum of  
up to a 10 µF capacitor with an ESR of at least 1 Ω. For higher  
value capacitors, especially those above 1 nF, the ESR of the capa-  
citor should be ≥ 1 Ω to ensure the stability of the microphone  
bias regulator. Register 0x03 can be used to enable the microphone  
bias. Table 12 lists the switching frequency of the boost converter  
based on the inductor value and common sample rates.  
In most audio applications, the dc content of the signal is removed  
by using a coupling capacitor. However, the ADAU1977 consists  
of a unique input structure that allows direct coupling of the  
input signal, eliminating the need for using a large coupling  
capacitor at the input. Each input has a fixed 14 dB attenuator  
connected to AGND for accommodating a 10 V rms differential  
input. The typical input resistance is approximately 26 kΩ from  
each input to AGND.  
In dc-coupled applications, if the VCM at AINxP and AINxN is  
the same, the dc content in the ADC output is close to 0. If the  
input pins are presented with different common-mode dc levels,  
the difference between the two levels appears at the ADC output  
and can be removed by enabling the high-pass filter.  
The high-pass filter has a 1.4 Hz, 6 dB per octave cutoff at a  
48 kHz sample rate. The cutoff frequency scales directly with  
the sample frequency. However, care is required in dc-coupled  
applications to ensure that the common-mode dc voltage does  
not exceed the specified limit. The common-mode loop can  
accommodate a common-mode dc voltage from 0 V to 7 V. The  
input required for the full-scale ADC output (0 dBFS) is typically  
10 V rms differential.  
ANALOG INPUTS  
The ADAU1977 has four differential analog inputs. The ADCs  
can accommodate both dc- and ac-coupled input signals.  
R
V
2R  
2R  
R
R
X
AINxP  
AINxN  
R
V
REF  
V
Y
R
R
V
V
V
= V INPUT DIFFERENTIAL  
ID  
= V  
= V  
AT AINx+  
AT AINx–  
ICM+  
ICM–  
CM  
CM  
Figure 16. Analog Input Block  
Rev. A | Page 17 of 64  
 
 
 
ADAU1977  
Data Sheet  
Line Inputs  
Line Input Unbalanced or Single-Ended Pseudo Differential  
AC-Coupled Case  
This section describes some of the possible ways to connect the  
ADAU1977 for line level inputs.  
For a single-ended application, the signal swing is reduced by half  
because only one input is used for the signal, and the other input is  
connected to 0 V. As a result, the input signal capability is reduced  
to 5 V rms in a single-ended application. With a common-mode dc  
voltage of 7.2 V, the signal can swing between (7.2 V + 7.07 V)  
= +14.27 V p-p and (7.2 V − 7 V) = 0.13 V. Therefore, this  
results in approximately a 14.14 V p-p differential signal swing  
and measures around −6.16 dBFS (ac only with dc high-pass  
filter) at the ADC output. See Figure 19.  
Line Input Balanced or Differential Input DC-Coupled Case  
For example, in the case of a typical power amplifier for an auto-  
mobile, the output can swing around 10 V rms differential with  
approximately 7.2 V common-mode dc input voltage (assuming  
a 14.4 V battery and bridge-tied load connection). The signal at  
each input pin has a 5 V rms or 14.14 V p-p signal swing. With  
a common-mode dc voltage of 7.2 V, the signal can swing between  
(7.2 V + 7.07 V) = +14.27 V p-p and (7 V − 7.07 V) = 0.13 V at  
each input. Therefore, this results in approximately a 28.54 V p-p  
differential signal swing and measures around −0.16 dBFS (ac  
only with dc high-pass filter) at the ADC output. See Figure 17.  
The values of the resistors (R1/R2) and capacitors (C1/C2) are  
similar to those for the balanced ac-coupled case described in  
the Line Input Balanced or Differential Input AC-Coupled Case  
section.  
Line Input Balanced or Differential Input AC-Coupled Case  
Line Input Unbalanced or Single-Ended AC-Coupled Case  
For an amplifier output case with ac coupling, refer to Figure 18  
for information about connecting the line level inputs to the  
ADAU1977. In this case, the AINxP/AINxN pins must be  
pulled up to the required common-mode level using the  
resistors on MICBIAS. The VCM must be such that the input  
never swings below a ground. In other words, if the input signal  
is 14 V p-p, the VCM must be around 14 V/2 = 7 V to ensure that  
the signal never swings below a ground. The microphone bias  
can provide the required clean reference for generating the VCM  
The R1 value can be calculated as follows:  
R1 = Rin1977 (MB VCM)/VCM  
For a single-ended application, the signal swing is reduced by half  
because only one input is used for the signal, and the other input is  
connected to 0 V. As a result, the input signal capability is reduced  
to 5 V rms in a single-ended application. With a common-mode dc  
voltage of 7.2 V, the signal can swing between (7.2 V + 7.07 V) =  
+14.27 V p-p and (7.2 V − 7 V) = 0.13 V. Therefore, this results  
in approximately a 14.14 V p-p differential signal swing and  
measures around −6.16 dBFS (ac only with dc high-pass filter)  
at the ADC output. The difference in the common-mode dc  
voltage between the positive and negative input (7.2 V) would  
appear at the ADC output if the signal was not high-pass filtered.  
See Figure 20.  
.
where:  
V
CM is the peak-to-peak input swing divided by 2.  
The values of the resistor (R1) and capacitor (C1) are similar to  
those for the balanced ac-coupled case described in the Line  
Input Balanced or Differential Input AC-Coupled Case section.  
MB = 8.5 V.  
Rin1977 is the single-ended input resistance (see Table 1).  
However, in this case the equivalent input resistance of AINxP/  
AINxN is reduced and can be calculated as R1 || Rin1977  
Input Resistance = R1 × Rin1977/(R1 + Rin1977  
where Rin1977 is the single-ended value from Table 1.  
.
)
The C1 and C2 values can be determined for the required low  
frequency cutoff using the following equation:  
C1 or C2 = 1/(2 × π × fC × Input Resistance)  
Rev. A | Page 18 of 64  
 
 
Data Sheet  
ADAU1977  
TYPICAL AUDIO POWER  
AMPLIFIER OUTPUT  
AINx+  
AINx–  
ATTENUATOR  
14dB  
ADAU1977  
V
V
= 10V rms AC  
= 7V DC  
DIFF  
CM  
Figure 17. Connecting the Line Level Inputs—Differential DC-Coupled Case  
C3  
MICBIAS  
TYPICAL AUDIO POWER  
AMPLIFIER OUTPUT  
R1  
R2  
C1  
AINx+  
AINx–  
ATTENUATOR  
14dB  
C2  
ADAU1977  
V
f = 10V RMS AC  
DIF  
Figure 18. Connecting the Line Level Inputs—Differential AC-Coupled Case  
C3  
MICBIAS  
TYPICAL AUDIO POWER  
AMPLIFIER OUTPUT  
R1  
R2  
C1  
AINx+  
AINx–  
ATTENUATOR  
14dB  
C2  
ADAU1977  
V
= 5V rms AC  
IN  
Figure 19. Connecting the Line Level Inputs—Pseudo Differential AC-Coupled Case  
C3  
MICBIAS  
TYPICAL AUDIO POWER  
AMPLIFIER OUTPUT  
R1  
C1  
AINx+  
AINx–  
ATTENUATOR  
14dB  
ADAU1977  
V
= 5V rms AC  
IN  
Figure 20. Connecting the Line Level Inputs—Single-Ended AC-Coupled Case  
Rev. A | Page 19 of 64  
 
 
 
 
ADAU1977  
Data Sheet  
Microphone Inputs  
level of 2/3 × MICBIAS on the AINxP and 1/3 × MICBIAS on  
the AINxN pins, this results in around −14 dBFS (ac only with  
dc high-pass filter) at the ADC output because the input is 14 dB  
below the full-scale input of 10 V rms differential. See Figure 21.  
This section describes some ways to connect the ADAU1977 for  
microphone input applications. The MICBIAS voltage and the  
bias resistor value depend on the ECM selected. The ADAU1977  
can provide the MICBIAS from 5 V up to 9 V in 0.5 V steps. In  
an application requiring multiple microphones, care must be  
taken not to exceed the MICBIAS output current rating.  
ECM Pseudo Differential Input AC-Coupled Case  
For a typical MEMS ECM module, the output signal swing is  
low. With a typical 3.3 V supply, the ECM module can output a  
2 V rms differential signal. The signal at the input pin has a 1 V rms  
or 2.8 V p-p signal swing. For this application, it is recommended  
to bias the input pins using resistors to 7 V dc, similar to the  
case described in the Line Input Unbalanced or Single-Ended  
Pseudo Differential AC-Coupled Case section. See Figure 22.  
ECM Balanced or Differential Input DC-Coupled Case  
For example, in a typical ECM, the output signal swing depends  
on the MICBIAS voltage. With a typical 8.5 V supply, the ECM can  
output a 2 V rms differential signal. The signal at each input pin  
has a 1 V rms or 2.8 V p-p signal swing. With a common-mode dc  
MICBIAS  
TYPICAL  
R
ECM MODULE  
MICROPHONE  
AINx+  
AINx–  
ATTENUATOR  
14dB  
ADAU1977  
R
V
V
V
= 2V rms AC DIFFERENTIAL  
IN  
2/3 × MICBIAS  
1/3 × MICBIAS  
CM+  
CM–  
R = TYPICAL 300TO 500Ω  
NOTES  
1. THE DIAGNOSTICS FEATURE IS AVAILABLE.  
Figure 21. Connecting the Microphone Inputs—Differential Input DC-Coupled Case  
TYPICAL ECM  
WITH PREAMP  
MODULE  
C3  
MICBIAS  
V
DD  
R1  
R2  
AINx+  
ATTENUATOR  
14dB  
AINx–  
ADAU1977  
V
= 5V rms AC  
MAX  
NOTES  
1. THE DIAGNOSTICS FEATURE IS NOT AVAILABLE.  
Figure 22. Connecting the Microphone Inputs—Pseudo Differential Input AC-Coupled Case  
Rev. A | Page 20 of 64  
 
 
Data Sheet  
ADAU1977  
is enabled and the microphone is connected as recommended  
in the appropriate application circuit (see Figure 21).  
ADC  
The ADAU1977 contains four Δ-Σ ADC channels configured  
as two stereo pairs with configurable differential/single-ended  
inputs. The ADC can operate at a nominal sample rate of 32 kHz  
up to 192 kHz. The ADCs include on-board digital antialiasing  
filters with 79 dB stop-band attenuation and linear phase response.  
Digital outputs are supplied through two serial data output pins  
(one for each stereo pair) and a common frame clock (LRCLK)  
and bit clock (BCLK). Alternatively, one of the TDM modes can  
be used to support up to 16 channels on a single TDM data line.  
Diagnostics Reporting  
The diagnostics status is reported individually for each channel  
in Register 0x11 through Register 0x14. The faults listed in  
Table 13 are reported on each input pin.  
Table 13. Faults Reported  
Fault  
AINxP AINxN  
Short to Battery  
Short to MICBIAS  
Short to Ground  
Short Between Positive and Negative Inputs  
Open Input  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
Yes  
Yes  
Yes  
With smaller amplitude input signals, a 10-bit programmable  
digital gain compensation for an individual channel is provided  
to scale up the output word to full scale. Care must be taken to  
avoid overcompensation (large gain compensation), which leads  
to clipping and THD degradation in the ADC.  
Diagnostics Adjustments  
The ADCs also have a dc-offset calibration algorithm to null  
the systematic dc offset of the ADC. This feature is useful for dc  
measurement applications.  
Short Circuit to Battery Supply  
When an input terminal is shorted to the battery, the voltage at  
the terminal approaches the battery voltage. Any voltage higher  
than the set threshold is reported as a fault. The threshold can  
be set using the SHT_B_TRIP bits, Bits[1:0] of Register 0x17  
(see Table 14).  
ADC SUMMING MODES  
The four ADCs can be grouped into either a single stereo ADC  
or a single mono ADC to increase the signal-to-noise ratio (SNR)  
for the application. Two options are available: one option for  
summing two channels of the ADC and another option for  
summing all four channels of the ADC. Summing is performed  
in the digital block.  
Table 14. Setting the Short to Battery Threshold  
SHT_B_TRIP  
(Register 0x17, Bits[1:0])  
Short to Battery Threshold  
0.95 × VBAT  
0.9 × VBAT  
0.85 × VBAT  
0.975 × VBAT  
00  
01  
10  
11  
2-Channel Summing Mode  
When the SUM_MODE Bits (Bits[7:6] of Register 0x0E) are  
set to 01, the Channel 1 and Channel 2 ADC data are combined  
and output from the SDATAOUT1 pin. Similarly, the Channel 3  
and Channel 4 ADC data are combined and output from the  
SDATAOUT2 pin. As a result, the SNR improves by 3 dB. For  
this mode, both Channel 1 and Channel 2 must be connected to  
the same input signal source. Similarly, Channel 3 and Channel 4  
must be connected to the same input signal source.  
Short Circuit to MICBIAS  
This feature is supported only on the AINxP terminal. When  
an AINxP terminal is shorted to MICBIAS, the voltage at the  
AINxP terminal approaches the MICBIAS voltage. Any voltage  
higher than the set threshold is reported as a fault. The threshold  
can be set using the SHT_M_TRIP bits, Bits[5:4] of Register 0x17  
(see Table 15).  
4-Channel Summing Mode  
When the SUM_MODE Bits (Bits[7:6] of Register 0x0E) are set  
to 10, the Channel 1 through Channel 4 ADC data are combined  
and output from the SDATAOUT1 pin. As a result, the SNR  
improves by 6 dB. For this mode, all four channels must be  
connected to the same input signal source.  
Table 15. Setting the Short to MICBIAS Threshold  
SHT_M_TRIP  
(Register 0x17, Bits[5:4])  
Short to MICBIAS Threshold  
0.95 × MICBIAS  
0.9 × MICBIAS  
0.85 × MICBIAS  
0.975 × MICBIAS  
00  
01  
10  
11  
DIAGNOSTICS  
The diagnostics block monitors the input pins in real time and  
reports a fault as an interrupt signal on the FAULT pin (Pin 8),  
which triggers sending an interrupt request to an external  
controller. The diagnostics status registers (Register 0x11 through  
Register 0x14) for Channel 1 through Channel 4 are also updated.  
Refer to the register map table (Table 25) and the register details  
tables (Table 42, Table 43, Table 44, and Table 45) for more infor-  
mation about the diagnostics register content. The diagnostics  
can be enabled or disabled for each channel using Bits[3:0] of  
Register 0x10. The diagnostics are provided only when MICBIAS  
Short Circuit to Ground  
When an input terminal is shorted to ground, the terminal  
voltage reaches close to 0 V. Any voltage lower than the set  
threshold is reported as a fault. The threshold is referenced to  
VREF and, therefore, scales with the voltage at the VREF pin.  
Rev. A | Page 21 of 64  
 
 
 
 
 
 
ADAU1977  
Data Sheet  
The threshold can be set using the SHT_G_TRIP bits, Bits[3:2]  
of Register 0x17 (see Table 16).  
reported. The fault cannot indicate which terminal is open  
circuited because any terminal that is open circuited pulls AINxP  
to MICBIAS and AINxN to a common ground.  
Table 16.  
SHT_G_TRIP  
FAULT Pin  
The FAULT pin is an output pin that can be programmed to be  
active high or active low logic using the IRQ_POL bit (Bit 4 of  
Register 0x15). In addition, the FAULT pin can be set using the  
IRQ_DRIVE bit (Bit 5 of Register 0x15) to drive always or to drive  
only during a fault and is otherwise set to high-Z. The fault status  
is registered in the IRQ_RESET bit (Bit 6 of Register 0x15). The  
IRQ_RESET bit is a latched bit and is set in the event of a fault  
and cleared only after the fault status bit is read.  
(Register 0x17, Bits[3:2])  
Short to Ground Threshold  
0.2 × VREF  
0.133 × VREF  
0.1 × VREF  
0.266 × VREF  
00  
01  
10  
11  
Microphone Terminal Short Circuited  
When both input terminals are shorted, both the AINxP and  
AINxN input terminals are at the same voltage—around  
MICBIAS/2. Any voltage between the set thresholds is reported  
as a fault. The upper and lower threshold voltages can be set  
using the SHT_T_TRIP bits, Bits[7:6] of Register 0x17 (see  
Table 17).  
Fault Timeout  
To prevent the false triggering of a fault event, the fault timeout  
adjust bits (Bits[5:4] of Register 0x18) are provided. These bits  
can be used to set the time that the fault needs to persist before  
being reported. The timeout can be set to 0 ms, 50 ms, 100 ms,  
or 150 ms using the FAULT_TO bits (Bits[5:4] of Register 0x18).  
The default value is 100 ms. A fault is recorded only if the  
condition persists for more than a set minimum timeout.  
The following equations can be used to calculate the upper and  
lower thresholds:  
Upper Threshold = MICBIAS(0.5 + x)  
Lower Threshold = MICBIAS(0.5 − x)  
Fault Masking  
The faults can be masked to prevent triggering an interrupt  
on the FAULT pin. Fault masking can be set using Bits[6:0] of  
Register 0x16. The mask can be set for the faults listed in Table 18.  
where x can be set using the SHT_T_TRIP bits, Bits[7:6] of  
Register 0x17 (see Table 17).  
Table 17.  
SHT_T_TRIP  
(Register 0x17, Bits [7:6])  
Table 18. Fault Masking  
Fault  
Short to Battery  
Short to MICBIAS  
Short to Ground  
Short Between Positive and Negative Inputs  
Open Input  
AINxP AINxN  
x
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
Yes  
Yes  
Yes  
00  
01  
10  
11  
0.035  
0.017  
0.071  
Reserved  
Microphone Terminals Open  
When a fault mask bit is set, it is applied to all the channels.  
There is no individual fault mask available per channel using this  
bit. To mask individual channels, use the DIAG_MASK[4:1] bits  
(Bits[3:0] of Register 0x15).  
In the event that any of the input terminals becomes open  
circuited, AINxP is pulled to MICBIAS and AINxN is pulled to  
a common ground. When the AINxP terminal is at a voltage  
that is higher than the short to the MICBIAS threshold (set  
using Bits[5:4] of Register 0x17) and the AINxN terminal  
voltage is at a voltage that is less than the short to the ground  
threshold (set using Bits[3:2] of Register 0x17), a fault is  
Diagnostics Sequence  
The sequence shown in Figure 23 is recommended for reading  
the faults reported by diagnostics.  
NORMAL  
NORMAL  
AINx+/  
AINx–  
FAULT EVENT  
FAULT  
FAULT  
FAULT  
FAULT  
FAULT  
TIMEOUT  
TIMEOUT  
TIMEOUT  
TIMEOUT  
TIMEOUT  
IRQ TO  
SYSTEM MICRO  
IRQ TO  
SYSTEM MICRO  
IRQ TO  
SYSTEM MICRO  
IRQ TO  
SYSTEM MICRO  
IRQ TO  
SYSTEM MICRO  
FAULT  
PIN  
2
2
2
2
2
2
I C SEQUENCE  
I C SEQUENCE  
I C SEQUENCE  
I C SEQUENCE  
I C SEQUENCE  
I C  
Figure 23. Diagnostics Sequence  
Rev. A | Page 22 of 64  
 
 
 
 
Data Sheet  
ADAU1977  
7. If after the fifth reading, the diagnostics still report the  
In the event of a fault on an input pin, the FAULT pin goes low or  
high depending on the setting of the IRQ_POL bit in Register 0x15  
to send an interrupt request to the system microcontroller. The  
system microcontroller responds to the interrupt request by  
communicating with the ADAU1977 via the I2C.  
presence of a fault, the fault exists on the respective input  
and must be attended to.  
SERIAL AUDIO DATA OUTPUT PORTS—DATA  
FORMAT  
The following is the typical interrupt service routine:  
The serial audio port comprises four pins: BCLK, LRCLK,  
SDATAOUT1, and SDATAOUT2. The ADAU1977 ADC outputs  
are available on the SDATAOUT1 and SDATAOUT2 pins in  
serial format. The BCLK and LRCLK pins serve as the bit clock  
and frame clock, respectively. The port can be operated as master  
or slave and can be set either in stereo mode (2-channel mode)  
or in TDM multichannel mode. The supported popular audio  
formats are I2S, left justified (LJ), right justified (RJ).  
1. An interrupt request is generated from the ADAU1977 to  
the system microcontroller.  
2. Read Register 0x11 through Register 0x14. (It is recom-  
mended to read all four diagnostics status registers—  
Register 0x11 through Register 0x14—in one sequence.  
Reading the registers as a single read may not report the  
status accurately.)  
3. Write Register 0x15, Bit 6 (the IRQ_RESET bit).  
4. Wait for the fault timeout period to expire.  
5. If the fault was temporary and did not persist, the interrupt  
service ends and the intermittent fault is ignored. If the  
fault persists, another interrupt request is generated from  
the ADAU1977, and the user should continue on to Step 6.  
6. Repeat Step 2 through Step 4 four times.  
Stereo Mode  
In 2-channel or stereo mode, the SDATAOUT1 outputs ADC  
data for Channel 1 and Channel 2, and the SDATOUT2 outputs  
ADC data for Channel 3 and Channel 4. Figure 24 through  
Figure 28 show the supported audio formats.  
BCLK  
LRCLK  
SDATAOUT1  
CHANNEL 1  
(I2S MODE)  
CHANNEL 2  
8 TO 32 BCLKs  
8 TO 32 BCLKs  
CHANNEL 4  
SDATAOUT2  
CHANNEL 3  
(I2S MODE)  
NOTES  
1. SAI = 0.  
2. SDATA_FMT = 0 (I2S).  
Figure 24. I2S Audio Format  
BCLK  
LRCLK  
SDATAOUT1  
(LJ MODE)  
CHANNEL 1  
CHANNEL 3  
CHANNEL 2  
CHANNEL 4  
SDATAOUT2  
(LJ MODE)  
NOTES  
1. SDATA_FMT = 1 (LJ).  
Figure 25. LJ Audio Format  
BCLK  
LRCLK  
SDATAOUT1  
(RJ MODE)  
CHANNEL 1  
CHANNEL 3  
CHANNEL 2  
CHANNEL 4  
SDATAOUT2  
(RJ MODE)  
NOTES  
1. SDATA_FMT = 2 (RJ, 24-BIT).  
Figure 26. RJ Audio Format  
Rev. A | Page 23 of 64  
 
 
ADAU1977  
Data Sheet  
output pin goes high-Z so that the same data line can be shared  
with other devices on the TDM bus.  
TDM Mode  
Register 0x05 through Register 0x08 provide programmability  
for the TDM mode. The TDM slot width, data width, and  
channel assignment, as well as the pin used to output the data,  
are programmable.  
The TDM port can be operated as either a master or a slave.  
In master mode, the BCLK and LRCLK are output from the  
ADAU1977, whereas in slave mode, the BCLK and LRCLK pins  
are set to receive the clock from the master in the system.  
By default, serial data is output on the SDATAOUT1 pin;  
however, the SDATA_SEL bit (Bit 7 of Register 0x06) can be  
used to change the setting so that serial data is output from the  
SDATAOUT2 pin.  
Both the nonpulse and pulse modes are supported. In nonpulse  
mode, the LRCLK signal is typically 50% of the duty cycle, whereas  
in pulse mode, the LRCLK signal must be at least one BCLK wide  
(see Figure 27 and Figure 28).  
The TDM mode supports 2, 4, 8, or 16 channels. The ADAU1977  
outputs four channels of data in the assigned slots (Figure 29  
shows the data slot assignments). During the unused slots, the  
BCLK  
32/24/16 BCLKs  
32/24/16 BCLKs  
32/24/16 BCLKs  
LRCLK  
2
CHANNEL 1  
CHANNEL 2  
8 TO 32 BCLKs  
CHANNEL N  
SDATA I  
S
8 TO 32 BCLKs  
8 TO 32 BCLKs  
CHANNEL 2  
CHANNEL 1  
CHANNEL N  
SDATA LJ  
8 TO 32 BCLKs  
8 TO 32 BCLKs  
8 TO 32 BCLKs  
2
CHANNEL 1  
24 OR 16 BCLKs  
CHANNEL 2  
24 OR 16 BCLKs  
CHANNEL N  
SDATA I  
S
24 OR 16 BCLKs  
NOTES  
1. SAI = 001 (2 CHANNELS), 010 (4 CHANNELS), 011 (8 CHANNELS), 100 (16 CHANNELS).  
2
2. SDATA_FMT = 00 (I S), 01 (LJ), 10 (RJ, 24-BIT), 11 (RJ, 16-BIT).  
3. BCLK_EDGE = 0.  
4. LRCLK_MODE = 0.  
5. SLOT_WIDTH = 00 (32 BCLKs), 01 (24 BCLKs), 10 (16 BCLKs).  
Figure 27. TDM Nonpulse Mode Audio Format  
BCLK  
LRCLK  
2
32/24/16 BCLKs  
32/24/16 BCLKs  
32/24/16 BCLKs  
CHANNEL 1  
CHANNEL 2  
8 TO 32 BCLKs  
CHANNEL N  
8 TO 32 BCLKs  
SDATA I  
S
8 TO 32 BCLKs  
CHANNEL 2  
CHANNEL 1  
CHANNEL N  
SDATA LJ  
8 TO 32 BCLKs  
8 TO 32 BCLKs  
8 TO 32 BCLKs  
2
CHANNEL 1  
24 OR 16 BCLKs  
CHANNEL 2  
CHANNEL N  
24 OR 16 BCLKs  
SDATA I  
S
24 OR 16 BCLKs  
NOTES  
1. SAI = 001 (2 CHANNELS), 010 (4 CHANNELS), 011 (8 CHANNELS), 100 (16 CHANNELS)  
2
2. SDATA_FMT = 00 (I S), 01 (LJ), 10 (RJ, 24-BIT), 11 (RJ, 16-BIT)  
3. BCLK_EDGE = 0  
4. LRCLK_MODE = 1  
5. SLOT_WIDTH = 00 (32 BCLKs), 01 (24 BCLKs), 10 (16 BCLKs)  
Figure 28. TDM Pulse Mode Audio Format  
Rev. A | Page 24 of 64  
 
 
Data Sheet  
ADAU1977  
LRCLK  
NUMBER OF BCLK CYCLES = (NUMBER OF BCLKs/SLOT) × NUMBER OF SLOTS  
BCLK  
SLOT1  
SLOT2  
SDATAOUTx-TDM2  
SDATAOUTx-TDM4  
SDATAOUTx-TDM8  
SDATAOUTx-TDM16  
SLOT1  
SLOT2  
SLOT3  
SLOT4  
SLOT1  
SLOT2  
SLOT3  
SLOT4  
SLOT5  
SLOT6  
SLOT7  
SLOT8  
SLOT1  
SLOT2  
SLOT3  
SLOT4  
SLOT5  
SLOT6  
SLOT7  
SLOT8  
SLOT9  
SLOT10  
SLOT11  
SLOT12  
SLOT13  
SLOT14  
SLOT15  
SLOT16  
DATA WIDTH  
16/24 BITS  
HIGH-Z  
HIGH-Z  
SLOT WIDTH  
16/24/32BITS  
Figure 29. TDM Mode Slot Assignment  
Rev. A | Page 25 of 64  
 
ADAU1977  
Data Sheet  
The bit clock frequency depends on the sample rate, the slot  
width, and the number of bit clocks per slot. Table 19 can be  
used to calculate the BCLK frequency.  
care must be taken to choose the combination that is most  
suitable for the application.  
Connection Options  
The sample rate (fS) can range from 8 kHz up to 192 kHz.  
Figure 30 through Figure 34 show the available options for  
connecting the serial audio port in I2S or TDM mode. In TDM  
mode, it is recommended to include the pull-down resistor on  
the data signal to prevent the line from floating when the  
SDATAOUTx pin of ADAU1977 goes high-Z during an inactive  
period. The resistor value should be such that no more than  
2 mA is drawn from the SDATAOUTx pin. Although the resistor  
value is typically in the range of 10 kΩ to 47 kΩ, the appropriate  
resistor value depends on the devices on the data bus.  
However, in master mode, the maximum bit clock frequency  
(BCLK) is 24.576 MHz. For example, for a sample rate of  
192 kHz, 128 × fS is the maximum possible BCLK frequency.  
Therefore, only 128 bit clock cycles are available per TDM  
frame. There are two options in this case: either operate with a  
32-bit data width in TDM4 or operate with a 16-bit data width  
in TDM8. In slave mode, this limitation does not exist because  
the bit clock and frame clock are fed to the ADAU1977. Various  
combinations of BCLK frequency and mode are available, but  
Table 19. Bit Clock Frequency TDM Mode  
BCLK Frequency  
Mode  
TDM2  
TDM4  
TDM8  
TDM16  
16 Bit Clocks Per Slot  
32 × fS  
64 × fS  
128 × fS  
256 × fS  
24 Bit Clocks Per Slot  
48 × fS  
96 × fS  
192 × fS  
384 × fS  
32 Bit Clocks Per Slot  
64 × fS  
128 × fS  
256 × fS  
512 × fS  
MASTER  
SLAVE  
DSP  
ADAU1977  
BCLK  
LRCLK  
SDATAOUT1  
SDATAOUT2  
Figure 30. Serial Port Connection Option 1—I2S/LJ/RJ Mode, ADAU1977 Master  
SLAVE  
MASTER  
DSP  
ADAU1977  
BCLK  
LRCLK  
SDATAOUT1  
SDATAOUT2  
Figure 31. Serial Port Connection Option 2—I2S/LJ/RJ Mode, ADAU1977 Slave  
Rev. A | Page 26 of 64  
 
 
Data Sheet  
ADAU1977  
MASTER  
SLAVE  
DSP  
ADAU1977  
BCLK  
LRCLK  
SDATAOUTx  
SLAVE  
ADAU1977  
OR  
SIMILIAR ADC  
BCLK  
LRCLK  
SDATAOUTx  
Figure 32. Serial Port Connection Option 3—TDM Mode, ADAU1977 Master  
SLAVE  
SLAVE  
DSP  
ADAU1977  
BCLK  
LRCLK  
SDATAOUTx  
MASTER  
ADAU1977  
OR  
SIMILIAR ADC  
BCLK  
LRCLK  
SDATAOUTx  
Figure 33. Serial Port Connection Option 4—TDM Mode, Second ADC Master  
SLAVE  
MASTER  
DSP  
ADAU1977  
BCLK  
LRCLK  
SDATAOUTx  
SLAVE  
ADAU1977  
OR  
SIMILIAR ADC  
BCLK  
LRCLK  
SDATAOUTx  
Figure 34. Serial Port Connection Option 5—TDM Mode, DSP Master  
Rev. A | Page 27 of 64  
 
ADAU1977  
Data Sheet  
CONTROL PORTS  
The ADAU1977 control port allows two modes of operation—  
either 2-wire I2C mode or 4-wire SPI mode—that are used for  
setting the internal registers of the part. Both the I2C and SPI  
modes allow read and write capability of the registers. All the  
registers are eight bits wide. The registers start at Address 0x00  
and end at Address 0x1A.  
However, to operate the PLL, serial audio ports, and boost  
converter, the master clock is necessary.  
By default, the ADAU1977 operates in I2C mode, but the part can  
CLATCH  
be put into SPI mode by pulling the  
pin low three times.  
The control port pins are multifunctional, depending on the  
mode in which the part is operating. Table 20 describes the  
control port pin functions in both modes.  
The control port in both I2C and SPI modes is slave only and,  
therefore, requires the master in the system to operate. The registers  
can be accessed with or without the master clock to the part.  
Table 20. Control Port Pin Functions  
I2C Mode  
SPI Mode  
Pin No.  
17  
18  
Pin Name  
Pin Functions  
SDA: data  
SCL: clock  
I2C Device Address Bit 0  
I2C Device Address Bit 1  
Pin Type  
Pin Functions  
Pin Type  
SDA/COUT  
SCL/CCLK  
ADDR0/CLATCH  
ADDR1/CIN  
I/O  
COUT: output data  
CCLK: input clock  
CLATCH: input  
O
I
I
I
I
I
19  
20  
CIN: input data  
I
Rev. A | Page 28 of 64  
 
 
Data Sheet  
ADAU1977  
I2C MODE  
VIL is the maximum voltage at Logic Level 0 (that is, 0.4 V, as  
per the I2C specifications).  
The ADAU1977 supports a 2-wire serial (I2C-compatible) bus  
protocol. Two pins—serial data (SDA) and serial clock (SCL)—  
are used to communicate with the system I2C master controller.  
In I2C mode, the ADAU1977 is always a slave on the bus, meaning  
that it cannot initiate a data transfer. Each slave device on the  
I2C bus is recognized by a unique device address. The device  
ISINK is the current sink capability of the I/O pin.  
The SDA pin can sink 2 mA current; therefore, the minimum  
value of RPULL UP for an IOVDD of 3.3 V is 1.5 kΩ.  
Depending on the capacitance of the board, the speed of the bus  
can be restricted to meet the rise time and fall time specifications.  
W
address and R/ byte for the ADAU1977 are shown in Table 21.  
For fast mode with a bit rate time of around 1 Mbps, the rise  
time must be less than 550 ns. Use the following equation to  
determine whether the rise time specification can be met:  
The address resides in the first seven bits of the I2C write. Bit 7  
and Bit 6 of the I2C address for the ADAU1977 are set by the  
levels on the ADDR1 and ADDR0 pins. The LSB of the first I2C  
t = 0.8473 × RPULL UP × CBOARD  
.
W
byte (the R/ bit) from the master identifies whether it is a read  
To meet the 300 ns rise time requirement, the CBOARD must be  
less than 236 pF.  
or write operation. Logic Level 1 in LSB corresponds to a read  
operation, and Logic Level 0 corresponds to a write operation.  
For the SCL pin, the calculations depend on the current sink  
capability of the I2C master used in the system.  
Table 21. ADAU1977 I2C First Byte Format  
Bit 7  
Bit 6  
Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0  
Addressing  
ADDR1 ADDR0  
1
0
0
0
1
R/W  
Initially, each device on the I2C bus is in an idle state and monitors  
the SDA and SCL lines for a start condition and the proper address.  
The I2C master initiates a data transfer by establishing a start  
condition, defined by a high-to-low transition on SDA while  
SCL remains high. This indicates that an address/data stream  
follows. All devices on the bus respond to the start condition  
and acquire the next eight bits from the master (the 7-bit address  
The first seven bits of the I2C chip address for the ADAU1977  
are xx10001. Bit 0 and Bit 1 of the address byte can be set using  
the ADDR1 and ADDR0 pins to set the chip address to the  
desired value.  
The 7-bit I2C device address can be set to one of four possible  
options using the ADDR1 and ADDR0 pins:  
W
plus the R/ bit) MSB first. The master sends the 7-bit device  
I2C Device Address 0010001 (0x11)  
I2C Device Address 0110001 (0x31)  
I2C Device Address 1010001 (0x51)  
I2C Device Address 1110001 (0x71)  
address with the read/write bit to all the slaves on the bus. The  
device with the matching address responds by pulling the data  
line (SDA) low during the ninth clock pulse. This ninth bit is  
known as an acknowledge bit. All other devices withdraw from  
the bus at this point and return to the idle condition.  
In I2C mode, both the SDA and SCL pins require that an  
appropriate pull-up resistor be connected to IOVDD. The  
voltage on these signal lines should not exceed the voltage on  
the IOVDD pin. Figure 46 shows a typical connection diagram  
for the I2C mode.  
W
The R/ bit determines the direction of the data. A Logic 0 on the  
LSB of the first byte means that the master is to write information  
to the slave, whereas a Logic 1 means that the master is to read  
information from the slave after writing the address and repeating  
the start address. A data transfer takes place until a master initiates  
a stop condition. A stop condition occurs when SDA transitions  
from low to high while SCL is held high.  
The value of the pull-up resistor for the SDA or SCL pin can be  
calculated as follows.  
Minimum RPULL UP = (IOVDD VIL)/ISINK  
Stop and start conditions can be detected at any stage during  
the data transfer. If these conditions are asserted out of sequence  
during normal read and write operations, the ADAU1977  
immediately jumps to the idle condition.  
where:  
IOVDD is the I/O supply voltage, typically ranging from 1.8 V  
up to 3.3 V.  
Rev. A | Page 29 of 64  
 
 
ADAU1977  
Data Sheet  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
SCL  
FIRST BYTE (DEVICE ADDRESS)  
SECOND BYTE (REGISTER ADDRESS)  
THIRD BYTE (DATA)  
ADDR1 ADDR0  
1
0
0
0
1
R/W  
SDA  
STOP  
ACK  
ADAU1977  
ACK  
ADAU1977  
START  
Figure 35. I2C Write to ADAU1977 Single Byte  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
SCL  
FIRST BYTE (DEVICE ADDRESS)  
SECOND BYTE (REGISTER ADDRESS)  
ADDR1 ADDR0  
1
0
0
0
1
R/W  
SDA  
ACK  
ADAU1977  
ACK  
ADAU1977  
START  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
SCL  
SDA  
THIRD BYTE (DEVICE ADDRESS)  
DATA BYTE FROM ADAU1977  
ADDR1 ADDR0  
1
0
0
0
1
R/W  
NO ACK  
ACK  
ADAU1977  
REPEAT START  
STOP  
Figure 36. I2C Read from ADAU1977 Single Byte  
Rev. A | Page 30 of 64  
Data Sheet  
ADAU1977  
I2C Read and Write Operations  
W
followed by the chip address byte with the R/ bit set to 1  
(read). This causes the ADAU1977 SDA to reverse and begin  
driving data back to the master. The master then responds every  
ninth pulse with an acknowledge pulse to the ADAU1977.  
Figure 37 shows the format of a single-word write operation.  
Every ninth clock pulse, the ADAU1977 issues an acknowledge  
by pulling SDA low.  
Figure 40 shows the format of a burst mode read sequence. This  
figure shows an example of a read from sequential single-byte  
registers. The ADAU1977 increments its address registers after  
every byte because the ADAU1977 uses an 8-bit register address.  
Figure 38 shows the format of a burst mode write sequence.  
This figure shows an example of a write to sequential single-  
byte registers. The ADAU1977 increments its address register  
after every byte because the requested address corresponds to a  
register or memory area with a 1-byte word length.  
Figure 37 to Figure 40 use the following abbreviations:  
S = start bit  
P = stop bit  
AM = acknowledge by master  
AS = acknowledge by slave  
Figure 39 shows the format of a single-word read operation.  
W
Note that the first R/ bit is 0, indicating a write operation.  
This is because the address still needs to be written to set up the  
internal address. After the ADAU1977 acknowledges the receipt  
of the address, the master must issue a repeated start command  
S
CHIP ADDRESS,  
R/W = 0  
AS  
REGISTER ADDRESS  
8 BITS  
AS  
DATA BYTE  
P
Figure 37. Single-Word I2C Write Format  
S
CHIP  
ADDRESS,  
R/W = 0  
AS REGISTER  
CHIP  
AS DATA AS DATA AS DATA AS DATA  
BYTE 1 BYTE 2 BYTE 3 BYTE 4  
AS ...  
P
ADDRESS ADDRESS,  
8 BITS R/W = 0  
Figure 38. Burst Mode I2C Write Format  
S
CHIP  
ADDRESS,  
R/W = 0  
AS  
REGISTER  
ADDRESS  
8 BITS  
AS  
S
CHIP  
ADDRESS,  
R/W = 1  
AS  
DATA  
BYTE 1  
P
Figure 39. Single-Word I2C Read Format  
S
CHIP  
ADDRESS,  
R/W = 0  
AS REGISTER AS  
ADDRESS  
S
CHIP  
ADDRESS,  
R/W = 1  
AS DATA AM  
BYTE 1  
DATA AM ...  
BYTE 2  
P
8 BITS  
Figure 40. Burst Mode I2C Read Format  
Rev. A | Page 31 of 64  
 
 
 
 
ADAU1977  
Data Sheet  
Data Bytes  
SPI MODE  
By default, the ADAU1977 is in I2C mode. To invoke SPI control  
The number of data bytes varies according to the register being  
accessed. During a burst mode write, an initial register address is  
written followed by a continuous sequence of data for consecutive  
register locations.  
CLATCH  
mode, pull  
low three times. This can be done by per-  
forming three dummy writes to the SPI port (the ADAU1977 does  
not acknowledge these three writes; see Figure 41). Beginning  
with the fourth SPI write, data can be written to or read from  
the device. The ADAU1977 can be taken out of SPI mode only  
by a full reset initiated by power cycling the device.  
A sample timing diagram for a single-word SPI write operation to a  
register is shown in Figure 42. A sample timing diagram of a single-  
word SPI read operation is shown in Figure 43. The COUT pin  
goes from being high-Z to being driven at the beginning of Byte 3.  
In this example, Byte 0 to Byte 1 contain the device address, the  
CLATCH  
The SPI port uses a 4-wire interface, consisting of the  
CCLK, CIN, and COUT signals, and it is always a slave port.  
CLATCH  
,
W
R/ bit, and the register address to be read. Subsequent bytes  
The  
signal should go low at the beginning of a trans-  
carry the data from the device.  
action and high at the end of a transaction. The CCLK signal  
latches CIN on a low-to-high transition. COUT data is shifted out  
of the ADAU1977 on the falling edge of CCLK and should be  
clocked into a receiving device, such as a microcontroller, on  
the CCLK rising edge. The CIN signal carries the serial input  
data, and the COUT signal carries the serial output data. The  
COUT signal remains tristated until a read operation is requested.  
This allows direct connection to other SPI-compatible peripheral  
COUT ports for sharing the same system controller port. All  
SPI transactions have the same basic format shown in Table 24.  
A timing diagram is shown in Figure 3. All data should be written  
MSB first.  
Standalone Mode  
The ADAU1977 can also be operated in standalone mode.  
However, in standalone mode, the boost converter, microphone  
bias, and diagnostics blocks are powered down. To set the part  
in standalone mode, pull the SA_MODE pin to IOVDD. In this  
mode, some pins change functionality to provide more flexibility  
(see Table 23 for more information).  
Table 23. Pin Functionality in Standalone Mode  
Pin Function  
Setting  
Description  
ADDR0  
0
1
I2S SAI format  
TDM modes, determined by the  
SDATAOUT2 pin  
W
Chip Address R/  
W
The LSB of the first byte of an SPI transaction is a R/ bit. This bit  
determines whether the communication is a read (Logic Level 1)  
or a write (Logic Level 0). This format is shown in Table 22.  
ADDR1  
SDA  
0
1
0
1
0
1
0
1
0
1
Master mode SAI  
Slave mode SAI  
MCLK = 256 × fS, PLL on  
MCLK = 384 × fS, PLL on  
48 kHz sample rate  
96 kHz sample rate  
TDM4—LRCLK pulse  
TDM8—LRCLK pulse  
Slot 1 to Slot 4 in TDM8  
Slot 5 to Slot 8 in TDM8  
W
Table 22. ADAU1977 SPI Address and R/ Byte Format  
SCL  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0
0
0
0
0
0
0
R/W  
SDATAOUT2  
FAULT  
Register Address  
The 8-bit address word is decoded to a location in one of the  
registers. This address is the location of the appropriate register.  
If set for TDM8 mode, the FAULT pin is used as an input for  
assigning the ADC data slot to prevent collision with other data  
on TDM bus.  
Table 24. Generic Control Word Format  
Byte 0  
Byte 1  
Byte 2  
Byte 31  
Device Address[6:0], R/W  
Register Address[7:0]  
Data[7:0]  
Data[7:0]  
1 Continues to end of data.  
Rev. A | Page 32 of 64  
 
 
 
 
Data Sheet  
ADAU1977  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
CLATCH  
CCLK  
CIN  
Figure 41. SPI Mode Initial Sequence  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
15  
16  
17  
18  
19  
20  
21 22  
23  
24  
25  
14  
CLATCH  
CCLK  
DEVICE ADDRESS (7 BITS)  
R/W  
REGISTER ADDRESS BYTE  
DATA BYTE  
CIN  
Figure 42. SPI Write to ADAU1977 Clocking (Single-Word Write Mode)  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
15  
16  
17  
18  
19  
20  
21 22  
23  
24  
25  
14  
CCLK  
CLATCH  
DEVICE ADDRESS (7 BITS)  
REGISTER ADDRESS BYTE  
DATA BYTE  
CIN  
R/W  
DATA BYTE FROM ADAU1977  
COUT  
Figure 43. SPI Read from ADAU1977 Clocking (Single-Word Read Mode)  
CLATCH  
CCLK  
CIN  
DATA BYTE1  
DEVICE  
ADDRESS  
BYTE  
REGISTER  
ADDRESS  
BYTE  
DATA BYTE2  
DATA BYTE n – 1  
DATA BYTE n  
Figure 44. SPI Write to ADAU1977 (Multiple Bytes)  
CLATCH  
CCLK  
CIN  
DEVICE  
ADDRESS  
BYTE  
REGISTER  
ADDRESS  
BYTE  
COUT  
DATA BYTE1  
DATA BYTE2  
DATA BYTE3  
DATA BYTE n – 1  
DATA BYTE n  
Figure 45. SPI Read from ADAU1977 (Multiple Bytes)  
Rev. A | Page 33 of 64  
 
 
 
ADAU1977  
Data Sheet  
REGISTER SUMMARY  
Table 25 is the control register summary. The registers can be accessed using the I2C control port or the SPI control port.  
Table 25. ADAU1977 Register Summary  
Reg Name  
Bits Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset RW  
0x00 M_POWER  
0x01 PLL_CONTROL  
0x02 BST_CONTROL  
[7:0] S_RST  
RESERVED  
PWUP  
0x00 RW  
0x41 RW  
0x4A RW  
[7:0] PLL_LOCK  
[7:0] BST_GOOD  
PLL_MUTE  
RESERVED  
CLK_S  
RESERVED  
OV_EN  
MCS  
FS_RATE  
BOOST_SW_  
FREQ  
BOOST_OV  
OC_EN  
BOOST_OC  
0x03 MB_BST_CONTROL [7:0]  
MB_VOLTS  
LDO_EN  
MB_EN  
BOOST_EN  
ADC_EN3  
MRCV  
BOOST_RCVR 0x7D RW  
0x04 BLOCK_POWER_SAI [7:0] LR_POL  
BCLKEDGE  
VREF_EN  
SAI  
ADC_EN4  
ADC_EN2  
FS  
ADC_EN1  
0x3F RW  
0x02 RW  
0x00 RW  
0x10 RW  
0x32 RW  
0xF0 RW  
0xA0 RW  
0xA0 RW  
0xA0 RW  
0xA0 RW  
0x02 RW  
0x0F RW  
0x00 RW  
0x00 RW  
0x00 RW  
0x00 RW  
0x05 SAI_CTRL0  
[7:0]  
SDATA_FMT  
0x06 SAI_CTRL1  
[7:0] SDATA_SEL  
SLOT_WIDTH  
CMAP_C2  
DATA_WIDTH LR_MODE  
SAI_MSB  
BCLKRATE  
SAI_MS  
0x07 SAI_CMAP12  
0x08 SAI_CMAP34  
0x09 SAI_OVERTEMP  
0x0A POSTADC_GAIN1  
0x0B POSTADC_GAIN2  
0x0C POSTADC_GAIN3  
0x0D POSTADC_GAIN4  
0x0E MISC_CONTROL  
0x10 DIAG_CONTROL  
0x11 DIAG_STATUS1  
0x12 DIAG_STATUS2  
0x13 DIAG_STATUS3  
0x14 DIAG_STATUS4  
0x15 DIAG_IRQ1  
[7:0]  
CMAP_C1  
CMAP_C3  
[7:0]  
CMAP_C4  
[7:0] SAI_DRV_C4  
SAI_DRV_C3  
SAI_DRV_C2  
SAI_DRV_C1  
DRV_HIZ  
OT_MCRV  
OT_RCVR  
OT  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
PADC_GAIN1  
PADC_GAIN2  
PADC_GAIN3  
PADC_GAIN4  
[7:0]  
SUM_MODE  
RESERVED  
RESERVED  
MIC_SHORT1 MICH_OPEN1 MICH_SB1  
MMUTE  
RESERVED  
DIAG_EN3  
DC_CAL  
[7:0]  
DIAG_EN4  
MICH_SG1  
MICH_SG2  
MICH_SG3  
MICH_SG4  
DIAG_EN2  
MICL_SB1  
MICL_SB2  
MICL_SB3  
MICL_SB4  
DIAG_EN1  
MICL_SG1  
MICL_SG2  
MICL_SG3  
MICL_SG4  
[7:0] RESERVED  
[7:0] RESERVED  
[7:0] RESERVED  
[7:0] RESERVED  
[7:0] RESERVED  
MICH_SMB1  
MICH_SMB2  
MICH_SMB3  
MICH_SMB4  
MIC_SHORT2 MIC_OPEN2  
MIC_SHORT3 MIC_OPEN3  
MIC_SHORT4 MIC_OPEN4  
MICH_SB2  
MICH_SB3  
MICH_SB4  
IRQ_POL  
IRQ_RESET  
IRQ_DRIVE  
DIAG_MASK4 DIAG_MASK3 DIAG_MASK2 DIAG_MASK1 0x20 RW  
0x16 DIAG_IRQ2  
[7:0] BST_FAULT_  
MASK  
MIC_SHORT_ MIC_OPEN_  
MICH_SB_  
MASK  
MICH_SG_  
MASK  
RESERVED  
MICL_SB_  
MASK  
MICL_SG_  
MASK  
0x00 RW  
MASK  
MASK  
0x17 DIAG_ADJUST1  
0x18 DIAG_ADJUST2  
0x19 ASDC_CLIP  
[7:0]  
[7:0]  
[7:0]  
SHT_T_TRIP  
RESERVED  
SHT_M_TRIP  
FAULT_TO  
SHT_G_TRIP  
SHT_B_TRIP  
HYST_SM_EN HYST_SG_EN HYST_SB_EN  
0x00 RW  
0x20 RW  
0x00 RW  
0x00 RW  
RESERVED  
ADC_CLIP4  
DC_HPF_C4  
RESERVED  
ADC_CLIP3  
DC_HPF_C3  
ADC_CLIP2  
DC_HPF_C2  
ADC_CLIP1  
DC_HPF_C1  
0x1A DC_HPF_CAL  
[7:0] DC_SUB_C4  
DC_SUB_C3  
DC_SUB_C2  
DC_SUB_C1  
Rev. A | Page 34 of 64  
 
 
Data Sheet  
ADAU1977  
REGISTER DETAILS  
MASTER POWER AND SOFT RESET REGISTER  
Address: 0x00, Reset: 0x00, Name: M_POWER  
The power management control register is used for enabling boost regulator, microphone bias, PLL, band gap reference, ADC, and LDO  
regulator.  
Table 26. Bit Descriptions for M_POWER  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
7
S_RST  
Software Reset. The software reset resets all internal circuitry and places  
all control registers to their default state. It is not necessary to reset the  
ADAU1977 during a power-up or power-down cycle.  
0x0  
RW  
0
1
Normal Operation  
Software Reset  
Reserved.  
[6:1]  
0
RESERVED  
PWUP  
0x00  
RW  
RW  
Master Power-Up Control. The master power-up control fully powers up or 0x0  
powers down the ADAU1977. This must be set to 1 to power up the  
ADAU1977. Individual blocks can be powered down via their respective  
power control registers.  
0
1
Full Power-Down  
Master Power-Up  
Rev. A | Page 35 of 64  
 
 
ADAU1977  
Data Sheet  
PLL CONTROL REGISTER  
Address: 0x01, Reset: 0x41, Name: PLL_CONTROL  
Table 27. Bit Descriptions for PLL_CONTROL  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
7
PLL_LOCK  
PLL Lock Status. PLL lock status bit. When one PLL is locked.  
0x0  
R
0
1
PLL Not Locked  
PLL Locked  
6
PLL_MUTE  
PLL Unlock Automute. When set to 1, mutes the ADC output if PLL  
becomes unlocked.  
0x1  
RW  
0
1
No Automatic Mute on PLL Unlock  
Automatic Mute with PLL Unlock  
5
4
RESERVED  
CLK_S  
Reserved.  
0x0  
0x0  
RW  
RW  
PLL Clock Source Select. Selecting input clock source for PLL.  
MCLK Used for PLL Input  
LRCLK Used for PLL Input; Only Supported for Sample Rates > 32 kHz  
0
1
[2:0]  
MCS  
Master Clock Select. MCS bits determine the frequency multiplication  
ratio of the PLL. It must be set based on the input MCLK frequency and  
sample rate.  
0x1  
RW  
001 256 × fS MCLK for 32 kHz up to 48 kHz (see the PLL section for other  
sample rates)  
010 384 × fS MCLK for 32 kHz up to 48 kHz (see the PLL section for other  
sample rates)  
011 512 × fS MCLK for 32 kHz up to 48 kHz (see the PLL section for other  
sample rates)  
100 768 × fS MCLK for 32 kHz up to 48 kHz (see the PLL section for other  
sample rates)  
000 128 × fS MCLK for 32 kHz up to 48 kHz (see the PLL section for other  
sample rates)  
Rev. A | Page 36 of 64  
 
Data Sheet  
ADAU1977  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
101 Reserved  
110 Reserved  
111 Reserved  
DC-TO-DC BOOST CONVERTER CONTROL REGISTER  
Address: 0x02, Reset: 0x4A, Name: BST_CONTROL  
Table 28. Bit Descriptions for BST_CONTROL  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
7
BST_GOOD  
Boost Converter Output Status.  
Boost Converter Output Not Stabilized  
Boost Converter Output Good  
Sample Rate Control for Boost Switching Frequency.  
0x0  
R
0
1
[6:5]  
FS_RATE  
0x2  
RW  
00 8 kHz/16 kHz/32 kHz/64 kHz/128 kHz fS  
01 11.025 kHz/22.05 kHz/44.1 kHz/88.2 kHz/176.4 kHz fS  
10 12 kHz/24 kHz/48 kHz/96 kHz/192 kHz fS  
11 Reserved  
4
3
2
1
0
BOOST_SW_FREQ  
OV_EN  
Boost Regulator Switching Frequency.  
0x0  
0x1  
0x0  
0x1  
0x0  
RW  
RW  
R
0
1
1.5 MHz Switching Frequency  
3 MHz Switching Frequency  
Overvoltage Fault Protection Enable.  
Disable  
0
1
Enable  
BOOST_OV  
OC_EN  
Boost Converter Overvoltage Fault Status.  
Normal Operation  
Overvoltage Fault  
0
1
Overcurrent Fault Protection Enable.  
Disable  
Enable  
RW  
R
0
1
BOOST_OC  
Boost Converter Overcurrent Fault Status.  
Normal Operation  
Boost Overcurrent Protection Active  
0
1
Rev. A | Page 37 of 64  
 
ADAU1977  
Data Sheet  
MICBIAS AND BOOST CONTROL REGISTER  
Address: 0x03, Reset: 0x7D, Name: MB_BST_CONTROL  
Table 29. Bit Descriptions for MB_BST_CONTROL  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:4]  
MB_VOLTS  
MICBIAS Output Voltage.  
0x7  
RW  
0000 5.0 V  
0001 5.5 V  
0010 6.0 V  
0011 6.5 V  
0100 7.0 V  
0101 7.5 V  
0110 8.0 V  
0111 8.5 V  
1000 9.0 V  
1001 Reserved  
1010 Reserved  
1011 Reserved  
1100 Reserved  
1101 Reserved  
1110 Reserved  
1111 Reserved  
3
2
1
MB_EN  
MICBIAS Enable.  
MICBIAS Powered Down  
MICBIAS Enabled  
0x1  
0x1  
0x0  
RW  
RW  
W
0
1
BOOST_EN  
MRCV  
Boost Enable.  
Boost Off  
Boost On  
0
1
Boost Fault Manual Recovery.  
Normal Operation  
Attempt Manual Boost Fault Recovery  
0
1
Rev. A | Page 38 of 64  
 
Data Sheet  
ADAU1977  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
0
BOOST_RCVR  
Boost Recovery Mode.  
0x1  
RW  
0
1
Automatic Fault Recovery  
Manual Fault Recovery; Use MRCV to Recover  
BLOCK POWER CONTROL AND SERIAL PORT CONTROL REGISTER  
Address: 0x04, Reset: 0x3F, Name: BLOCK_POWER_SAI  
Table 30. Bit Descriptions for BLOCK_POWER_SAI  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
7
LR_POL  
Sets LRCLK Polarity.  
0x0  
RW  
0
1
LRCLK Low then High  
LRCLK High then Low  
6
5
4
3
2
1
0
BCLKEDGE  
LDO_EN  
Sets the Bit Clock Edge on Which Data Changes.  
Data Changes on Falling Edge  
Data Changes on Rising Edge  
LDO Regulator Enable.  
LDO Powered Down  
LDO Enabled  
0x0  
0x1  
0x1  
0x1  
0x1  
0x1  
0x1  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
0
1
0
1
VREF_EN  
ADC_EN4  
ADC_EN3  
ADC_EN2  
ADC_EN1  
Voltage Reference Enable.  
Voltage Reference Powered Down  
Voltage Reference Enabled  
ADC Channel 3 Enable.  
ADC Channel Powered Down  
ADC Channel Enabled  
0
1
0
1
ADC Channel 3 Enable.  
ADC Channel Powered Down  
ADC Channel Enabled  
0
1
ADC Channel 2 Enable.  
ADC Channel Powered Down  
ADC Channel Enabled  
0
1
ADC Channel 1 Enable.  
ADC Channel Powered Down  
ADC Channel Enabled  
0
1
Rev. A | Page 39 of 64  
 
ADAU1977  
Data Sheet  
SERIAL PORT CONTROL REGISTER1  
Address: 0x05, Reset: 0x02, Name: SAI_CTRL0  
Table 31. Bit Descriptions for SAI_CTRL0  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:6]  
SDATA_FMT  
Serial Data Format.  
00 I2S Data Delayed from Edge of LRCLK by 1 BCLK  
01 Left Justified  
0x0  
RW  
10 Right Justified, 24-Bit Data  
11 Right Justified, 16-Bit Data  
Serial Port Mode.  
[5:3]  
[2:0]  
SAI  
FS  
0x0  
0x2  
RW  
RW  
000 Stereo (I2S, LJ, RJ)  
001 TDM2  
010 TDM4  
011 TDM8  
100 TDM16  
Sampling Rate.  
000 8 kHz to 12 kHz  
001 16 kHz to 24 kHz  
010 32 kHz to 48 kHz  
011 64 kHz to 96 kHz  
100 128 kHz to 192 kHz  
Rev. A | Page 40 of 64  
 
Data Sheet  
ADAU1977  
SERIAL PORT CONTROL REGISTER2  
Address: 0x06, Reset: 0x00, Name: SAI_CTRL1  
Table 32. Bit Descriptions for SAI_CTRL1  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
7
SDATA_SEL  
SDATAOUTx Pin Selection in TDM4 or Greater Modes.  
SDATAOUT1 used for output  
SDATAOUT2 used for output  
0x0  
RW  
0
1
[6:5]  
SLOT_WIDTH  
Number of BCLKs per Slot in TDM Mode.  
0x0  
RW  
00 32 BCLKs per TDM slot  
01 24 BCLKs per TDM slot  
10 16 BCLKs per TDM slot  
11 Reserved  
4
3
2
1
DATA_WIDTH  
LR_MODE  
SAI_MSB  
Output Data Bit Width.  
24-bit data  
16-bit data  
0x0  
0x0  
0x0  
0x0  
RW  
RW  
RW  
RW  
0
1
Sets LRCLK Mode.  
50% duty cycle clock  
Pulse—LRCLK is a single BCLK cycle wide pulse  
Sets Data to be Input/Output either MSB or LSB First.  
MSB first data  
0
1
0
1
LSB first data  
BCLKRATE  
Sets the Number of Bit Clock Cycles per Data Channel Generated When in  
Master Mode.  
0
1
32 BCLKs/channel  
16 BCLKs/channel  
0
SAI_MS  
Sets the Serial Port into Master or Slave Mode.  
LRCLK/BCLK Slave  
LRCLK/BCLK Master  
0x0  
RW  
0
1
Rev. A | Page 41 of 64  
 
ADAU1977  
Data Sheet  
CHANNEL MAPPING FOR OUTPUT SERIAL PORTS REGISTER  
Address: 0x07, Reset: 0x10, Name: SAI_CMAP12  
Table 33. Bit Descriptions for SAI_CMAP12  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:4]  
CMAP_C2  
ADC Channel 2 Output Mapping.  
0x1  
RW  
0000 Slot 1 for Channel  
0001 Slot 2 for Channel  
0010 Slot 3 for Channel (on SDATAOUT2 in stereo modes)  
0011 Slot 4 for Channel (on SDATAOUT2 in stereo modes)  
0100 Slot 5 for Channel (TDM8+ only)  
0101 Slot 6 for Channel (TDM8+ only)  
0110 Slot 7 for Channel (TDM8+ only)  
0111 Slot 8 for Channel (TDM8+ only)  
1000 Slot 9 for Channel (TDM16 only)  
1001 Slot 10 for Channel (TDM16 only)  
1010 Slot 11 for Channel (TDM16 only)  
1011 Slot 12 for Channel (TDM16 only)  
1100 Slot 13 for Channel (TDM16 only)  
1101 Slot 14 for Channel (TDM16 only)  
1110 Slot 15 for Channel (TDM16 only)  
1111 Slot 16 for Channel (TDM16 only)  
Rev. A | Page 42 of 64  
 
Data Sheet  
ADAU1977  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[3:0]  
CMAP_C1  
ADC Channel 1 Output Mapping. If CMAP is set to a slot that doesn’t exist  
for a given serial mode, then that channel will not be driven. For example,  
if CMAP is set to Slot 9 and the serial format is I2S, then that channel will  
not be driven. If more than one channel is set to the same slot, only the  
lowest channel number will be driven; other channels will not be driven.  
0x0  
RW  
0000 Slot 1 for Channel  
0001 Slot 2 for Channel  
0010 Slot 3 for Channel (on SDATAOUT2 in stereo modes)  
0011 Slot 4 for Channel (on SDATAOUT2 in stereo modes)  
0100 Slot 5 for Channel (TDM8+ only)  
0101 Slot 6 for Channel (TDM8+ only)  
0110 Slot 7 for Channel (TDM8+ only)  
0111 Slot 8 for Channel (TDM8+ only)  
1000 Slot 9 for Channel (TDM16 only)  
1001 Slot 10 for Channel (TDM16 only)  
1010 Slot 11 for Channel (TDM16 only)  
1011 Slot 12 for Channel (TDM16 only)  
1100 Slot 13 for Channel (TDM16 only)  
1101 Slot 14 for Channel (TDM16 only)  
1110 Slot 15 for Channel (TDM16 only)  
1111 Slot 16 for Channel (TDM16 only)  
Rev. A | Page 43 of 64  
ADAU1977  
Data Sheet  
CHANNEL MAPPING FOR OUTPUT SERIAL PORTS REGISTER  
Address: 0x08, Reset: 0x32, Name: SAI_CMAP34  
Table 34. Bit Descriptions for SAI_CMAP34  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:4]  
CMAP_C4  
ADC Channel 4 Output Mapping.  
0x3  
RW  
0000 Slot 1 for Channel  
0001 Slot 2 for Channel  
0010 Slot 3 for Channel (on SDATAOUT2 in stereo modes)  
0011 Slot 4 for Channel (on SDATAOUT2 in stereo modes)  
0100 Slot 5 for Channel (TDM8+ only)  
0101 Slot 6 for Channel (TDM8+ only)  
0110 Slot 7 for Channel (TDM8+ only)  
0111 Slot 8 for Channel (TDM8+ only)  
1000 Slot 9 for Channel (TDM16 only)  
1001 Slot 10 for Channel (TDM16 only)  
1010 Slot 11 for Channel (TDM16 only)  
1011 Slot 12 for Channel (TDM16 only)  
1100 Slot 13 for Channel (TDM16 only)  
1101 Slot 14 for Channel (TDM16 only)  
1110 Slot 15 for Channel (TDM16 only)  
1111 Slot 16 for Channel (TDM16 only)  
Rev. A | Page 44 of 64  
 
Data Sheet  
ADAU1977  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[3:0]  
CMAP_C3  
ADC Channel 3 Output Mapping.  
0x2  
RW  
0000 Slot 1 for Channel  
0001 Slot 2 for Channel  
0010 Slot 3 for Channel (on SDATAOUT2 in stereo modes)  
0011 Slot 4 for Channel (on SDATAOUT2 in stereo modes)  
0100 Slot 5 for Channel (TDM8+ only)  
0101 Slot 6 for Channel (TDM8+ only)  
0110 Slot 7 for Channel (TDM8+ only)  
0111 Slot 8 for Channel (TDM8+ only)  
1000 Slot 9 for Channel (TDM16 only)  
1001 Slot 10 for Channel (TDM16 only)  
1010 Slot 11 for Channel (TDM16 only)  
1011 Slot 12 for Channel (TDM16 only)  
1100 Slot 13 for Channel (TDM16 only)  
1101 Slot 14 for Channel (TDM16 only)  
1110 Slot 15 for Channel (TDM16 only)  
1111 Slot 16 for Channel (TDM16 only)  
Rev. A | Page 45 of 64  
ADAU1977  
Data Sheet  
SERIAL OUTPUT DRIVE AND OVERTEMPERATURE PROTECTION CONTROL REGISTER  
Address: 0x09, Reset: 0xF0, Name: SAI_OVERTEMP  
Table 35. Bit Descriptions for SAI_OVERTEMP  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
7
SAI_DRV_C4  
Channel 4 Serial Output Drive Enable.  
0x1  
RW  
0
1
Channel Not Driven on Serial Output Port  
Channel Driven on Serial Output Port; Slot Determined by CMAP  
Channel 3 Serial Output Drive Enable.  
6
5
4
3
SAI_DRV_C3  
SAI_DRV_C2  
SAI_DRV_C1  
DRV_HIZ  
0x1  
0x1  
0x1  
0x0  
RW  
RW  
RW  
RW  
0
1
Channel Not Driven on Serial Output Port  
Channel Driven on Serial Output Port; Slot Determined by CMAP  
Channel 2 Serial Output Drive Enable.  
Channel Not Driven on Serial Output Port  
Channel Driven on Serial Output Port; Slot Determined by CMAP  
Channel 1 Serial Output Drive Enable.  
0
1
0
1
Channel Not Driven on Serial Output Port  
Channel Driven on Serial Output Port; Slot Determined by CMAP  
Select Whether to Tristate Unused SAI Channels or to Actively Drive These  
Data Slots.  
0
1
Unused Outputs Driven Low  
Unused Outputs High-Z  
2
1
OT_MCRV  
OT_RCVR  
Overtemperature Manual Recovery Attempt.  
Normal Operation  
Attempt Manual Overtemperature Recovery  
Overtemperature Manual Recovery.  
Automatic Recovery from Overtemperature Fault  
0x0  
0x0  
W
0
1
RW  
0
1
Manual Recovery from Overtemperature Fault, Must Set OT_MCRV Register  
Rev. A | Page 46 of 64  
 
Data Sheet  
ADAU1977  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
0
OT  
Overtemperature Status.  
Normal Operation  
Overtemperature Fault  
0x0  
R
0
1
POST ADC GAIN CHANNEL 1 CONTROL REGISTER  
Address: 0x0A, Reset: 0xA0, Name: POSTADC_GAIN1  
Table 36. Bit Descriptions for POSTADC_GAIN1  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0]  
PADC_GAIN1  
Channel 1 Post ADC Gain.  
0xA0  
RW  
00000000 +60 dB Gain  
00000001 +59.625 dB Gain  
00000010 +59.25 dB Gain  
... ...  
10011111 +0.375 dB Gain  
10100000 0 dB Gain  
10100001 −0.375 dB Gain  
... ...  
11111110 −35.625 dB Gain  
11111111 Mute  
Rev. A | Page 47 of 64  
 
ADAU1977  
Data Sheet  
POST ADC GAIN CHANNEL 2 CONTROL REGISTER  
Address: 0x0B, Reset: 0xA0, Name: POSTADC_GAIN2  
Table 37. Bit Descriptions for POSTADC_GAIN2  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0]  
PADC_GAIN2  
Channel 2 Post ADC Gain.  
0xA0  
RW  
00000000 +60 dB Gain  
00000001 +59.625 dB Gain  
00000010 +59.25 dB Gain  
... ...  
10011111 +0.375 dB Gain  
10100000 0 dB Gain  
10100001 −0.375 dB Gain  
... ...  
11111110 −35.625 dB Gain  
11111111 Mute  
Rev. A | Page 48 of 64  
 
Data Sheet  
ADAU1977  
POST ADC GAIN CHANNEL 3 CONTROL REGISTER  
Address: 0x0C, Reset: 0xA0, Name: POSTADC_GAIN3  
Table 38. Bit Descriptions for POSTADC_GAIN3  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0]  
PADC_GAIN3  
Channel 3 Post ADC Gain.  
0xA0  
RW  
00000000 +60 dB Gain  
00000001 +59.625 dB Gain  
00000010 +59.25 dB Gain  
... ...  
10011111 +0.375 dB Gain  
10100000 0 dB Gain  
10100001 −0.375 dB Gain  
... ...  
11111110 −35.625 dB Gain  
11111111 Mute  
Rev. A | Page 49 of 64  
 
ADAU1977  
Data Sheet  
POST ADC GAIN CHANNEL 4 CONTROL REGISTER  
Address: 0x0D, Reset: 0xA0, Name: POSTADC_GAIN4  
Table 39. Bit Descriptions for POSTADC_GAIN4  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0]  
PADC_GAIN4  
Channel 4 Post ADC Gain.  
0xA0  
RW  
00000000 +60 dB Gain  
00000001 +59.625 dB Gain  
00000010 +59.25 dB Gain  
... ...  
10011111 +0.375 dB Gain  
10100000 0 dB Gain  
10100001 −0.375 dB Gain  
... ...  
11111110 −35.625 dB Gain  
11111111 Mute  
Rev. A | Page 50 of 64  
 
Data Sheet  
ADAU1977  
HIGH-PASS FILTER AND DC OFFSET CONTROL REGISTER AND MASTER MUTE  
Address: 0x0E, Reset: 0x02, Name: MISC_CONTROL  
Table 40. Bit Descriptions for MISC_CONTROL  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:6]  
SUM_MODE  
Channel Summing Mode Control for Higher SNR.  
0x0  
RW  
00 Normal 4-Channel Operation  
01 2-Channel Summing Operation (See the ADC Summing Modes Section)  
10 1-Channel Summing Operation (See the ADC Summing Modes Section)  
11 Reserved  
Reserved.  
5
4
RESERVED  
MMUTE  
0x0  
0x0  
RW  
RW  
Master Mute.  
0
1
Normal Operation  
All Channels Muted  
Reserved.  
[3:1]  
0
RESERVED  
DC_CAL  
0x1  
0x0  
RW  
RW  
DC Calibration Enable.  
Normal Operation  
Perform DC Calibration  
0
1
Rev. A | Page 51 of 64  
 
ADAU1977  
Data Sheet  
DIAGNOSTICS CONTROL REGISTER  
Address: 0x10, Reset: 0x0F, Name: DIAG_CONTROL  
Table 41. Bit Descriptions for DIAG_CONTROL  
Bits  
[7:4]  
3
Bit Name  
RESERVED  
DIAG_EN4  
Settings  
Description  
Reset  
0x0  
Access  
RW  
Reserved.  
Diagnostics Enable Channel 4.  
Diagnostics Disabled  
Diagnostics Enabled  
Diagnostics Enable Channel 3.  
Diagnostics Disabled  
Diagnostics Enabled  
Diagnostics Enable Channel 2.  
Diagnostics Disabled  
Diagnostics Enabled  
Diagnostics Enable Channel 1.  
Diagnostics Disabled  
Diagnostics Enabled  
0x1  
RW  
0
1
2
1
0
DIAG_EN3  
DIAG_EN2  
DIAG_EN1  
0x1  
0x1  
0x1  
RW  
RW  
RW  
0
1
0
1
0
1
Rev. A | Page 52 of 64  
 
Data Sheet  
ADAU1977  
DIAGNOSTICS REPORT REGISTER CHANNEL 1  
Address: 0x11, Reset: 0x00, Name: DIAG_STATUS1  
Table 42. Bit Descriptions for DIAG_STATUS1  
Bits  
Bit Name  
Settings  
Description  
Reset  
0x0  
Access  
RW  
7
RESERVED  
MIC_SHORT1  
Reserved.  
6
Mic Terminals Shorted.  
Normal Operation  
Mic Terminals Shorted  
Mic Open Connection.  
Normal Operation  
Mic Open Connection  
Mic High Shorted to Supply.  
Normal Operation  
Mic High Shorted to Supply  
Mic High Shorted to Ground.  
Normal Operation  
Mic High Shorted to Ground  
Mic High Shorted to MICBIAS.  
Normal Operation  
Mic High Shorted to MICBIAS  
Mic Low Shorted to Supply.  
Normal Operation  
Mic Low Shorted to Supply  
Mic Low Shorted to Ground.  
Normal Operation  
0x0  
R
0
1
5
4
3
2
1
0
MICH_OPEN1  
MICH_SB1  
MICH_SG1  
MICH_SMB1  
MICL_SB1  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
R
R
R
R
R
R
0
1
0
1
0
1
0
1
0
1
MICL_SG1  
0
1
Mic Low Shorted to Ground  
Rev. A | Page 53 of 64  
 
 
ADAU1977  
Data Sheet  
DIAGNOSTICS REPORT REGISTER CHANNEL 2  
Address: 0x12, Reset: 0x00, Name: DIAG_STATUS2  
Table 43. Bit Descriptions for DIAG_STATUS2  
Bits  
Bit Name  
Settings  
Description  
Reset  
0x0  
Access  
RW  
7
RESERVED  
MIC_SHORT2  
Reserved.  
6
Mic Terminals Shorted.  
Normal Operation  
Mic Terminals Shorted  
Mic Open Connection.  
Normal Operation  
Mic Open Connection  
Mic High Shorted to Supply.  
Normal Operation  
Mic High Shorted to Supply  
Mic High Shorted to Ground.  
Normal Operation  
Mic High Shorted to Ground  
Mic High Shorted to MICBIAS.  
Normal operation  
Mic High Shorted to MICBIAS  
Mic Low Shorted to Supply.  
Normal Operation  
Mic Low Shorted to Supply  
Mic Low Shorted to Ground.  
Normal Operation  
0x0  
R
0
1
5
4
3
2
1
0
MIC_OPEN2  
MICH_SB2  
MICH_SG2  
MICH_SMB2  
MICL_SB2  
MICL_SG2  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
R
R
R
R
R
R
0
1
0
1
0
1
0
1
0
1
0
1
Mic Low Shorted to Ground  
Rev. A | Page 54 of 64  
 
 
Data Sheet  
ADAU1977  
DIAGNOSTICS REPORT REGISTER CHANNEL 3  
Address: 0x13, Reset: 0x00, Name: DIAG_STATUS3  
Table 44. Bit Descriptions for DIAG_STATUS3  
Bits  
Bit Name  
Settings  
Description  
Reset  
0x0  
Access  
RW  
7
RESERVED  
MIC_SHORT3  
Reserved.  
6
Mic Terminals Shorted.  
Normal Operation  
Mic Terminals Shorted  
Mic Open Connection.  
Normal Operation  
Mic Open Connection  
Mic High Shorted to Supply.  
Normal Operation  
Mic High Shorted to Supply  
Mic High Shorted to Ground.  
Normal Operation  
Mic High Shorted to Ground  
Mic High Shorted to MICBIAS.  
Normal Operation  
Mic High Shorted to MICBIAS  
Mic Low Shorted to Supply.  
Normal Operation  
Mic Low Shorted to Supply  
Mic Low Shorted to Ground.  
Normal Operation  
0x0  
R
0
1
5
4
3
2
1
0
MIC_OPEN3  
MICH_SB3  
MICH_SG3  
MICH_SMB3  
MICL_SB3  
MICL_SG3  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
R
R
R
R
R
R
0
1
0
1
0
1
0
1
0
1
0
1
Mic Low Shorted to Ground  
Rev. A | Page 55 of 64  
 
 
ADAU1977  
Data Sheet  
DIAGNOSTICS REPORT REGISTER CHANNEL 4  
Address: 0x14, Reset: 0x00, Name: DIAG_STATUS4  
Table 45. Bit Descriptions for DIAG_STATUS4  
Bits  
Bit Name  
Settings  
Description  
Reset  
0x0  
Access  
RW  
7
RESERVED  
MIC_SHORT4  
Reserved.  
6
Mic Terminals Shorted.  
Normal Operation  
Mic Terminals Shorted  
Mic Open Connection.  
Normal Operation  
Mic Open Connection  
Mic High Shorted to Supply.  
Normal Operation  
Mic High Shorted to Supply  
Mic High Shorted to Ground.  
Normal Operation  
Mic High Shorted to Ground  
Mic High Shorted to MICBIAS.  
Normal Operation  
Mic High Shorted to MICBIAS  
Mic Low Shorted to Supply.  
Normal Operation  
Mic Low Shorted to Supply  
Mic Low Shorted to Ground.  
Normal Operation  
0x0  
R
0
1
5
4
3
2
1
0
MIC_OPEN4  
MICH_SB4  
MICH_SG4  
MICH_SMB4  
MICL_SB4  
MICL_SG4  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
R
R
R
R
R
R
0
1
0
1
0
1
0
1
0
1
0
1
Mic Low Shorted to Ground  
Rev. A | Page 56 of 64  
 
 
Data Sheet  
ADAU1977  
DIAGNOSTICS INTERRUPT PIN CONTROL REGISTER 1  
Address: 0x15, Reset: 0x20, Name: DIAG_IRQ1  
Table 46. Bit Descriptions for DIAG_IRQ1  
Bits  
Bit Name  
RESERVED  
IRQ_RESET  
Settings  
Description  
Reset  
0x0  
Access  
RW  
7
Reserved.  
6
FAULT Pin Reset.  
0x0  
RW  
0
1
Normal Operation  
Reset FAULT Pin  
5
4
3
2
1
0
IRQ_DRIVE  
FAULT Pin Drive Options.  
FAULT Pin Always Driven  
FAULT Pin Only Driven During Fault, Otherwise High-Z  
FAULT Pin Polarity.  
Faults Set FAULT Pin Low  
0x1  
0x0  
0x0  
0x0  
0x0  
0x0  
RW  
RW  
RW  
RW  
RW  
RW  
0
1
IRQ_POL  
0
1
Faults Set FAULT Pin High  
DIAG_MASK4  
DIAG_MASK3  
DIAG_MASK2  
DIAG_MASK1  
FAULT Pin Mask for All Channel 4 Faults.  
Faults on Channel 4 Trigger FAULT Pin  
Faults on Channel 4 Do Not Trigger FAULT Pin  
FAULT Pin Mask for All Channel 3 Faults.  
Faults on Channel 3 Trigger FAULT Pin  
Faults on Channel 3 Do Not Trigger FAULT Pin  
FAULT Pin Mask for All Channel 2 Faults.  
Faults on Channel 2 Trigger FAULT Pin  
Faults on Channel 2 Do Not Trigger FAULT Pin  
FAULT Pin Mask for All Channel 1 Faults.  
Faults on Channel 1 Trigger FAULT Pin  
Faults on Channel 1 Do Not Trigger FAULT Pin  
0
1
0
1
0
1
0
1
Rev. A | Page 57 of 64  
 
ADAU1977  
Data Sheet  
DIAGNOSTICS INTERRUPT PIN CONTROL REGISTER 2  
Address: 0x16, Reset: 0x00, Name: DIAG_IRQ2  
Table 47. Bit Descriptions for DIAG_IRQ2  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
7
BST_FAULT_MASK  
FAULT Pin Mask for Boost Faults.  
Boost Faults Assert FAULT Pin  
Boost Faults Do Not Assert FAULT Pin  
FAULT Pin Mask for Mic Terminal Short Fault.  
Faults Trigger FAULT Pin  
Faults Do Not Trigger FAULT Pin  
FAULT Pin Mask for Mic Open Connection Fault.  
Faults Trigger FAULT Pin  
Faults Do Not Trigger FAULT Pin  
FAULT Pin Mask for Mic High Short to Supply Fault.  
Faults Trigger FAULT Pin  
Faults Do Not Trigger FAULT Pin  
FAULT Pin Mask for Mic High Short to Ground Fault.  
Faults Trigger FAULT Pin  
Faults Do Not Trigger FAULT Pin  
FAULT Pin Mask for Mic Low Short to Supply Fault.  
Faults Trigger FAULT Pin  
Faults Do Not Trigger FAULT Pin  
FAULT Pin Mask for Mic Low Short to Ground Fault.  
Faults Trigger FAULT Pin  
0x0  
RW  
0
1
6
5
4
3
1
0
MIC_SHORT_MASK  
MIC_OPEN_MASK  
MICH_SB_MASK  
MICH_SG_MASK  
MICL_SB_MASK  
MICL_SG_MASK  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
RW  
RW  
RW  
RW  
RW  
RW  
0
1
0
1
0
1
0
1
0
1
0
1
Faults Do Not Trigger FAULT Pin  
Rev. A | Page 58 of 64  
 
Data Sheet  
ADAU1977  
DIAGNOSTICS ADJUSTMENTS REGISTER 1  
Address: 0x17, Reset: 0x00, Name: DIAG_ADJUST1  
Table 48. Bit Descriptions for DIAG_ADJUST1  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:6]  
SHT_T_TRIP  
Short Fault to Other Terminal Trip Point Adjust.  
00 0.465 × MICBIAS to 0.535 × MICBIAS  
01 0.483 × MICBIAS to 0.517 × MICBIAS  
10 0.429 × MICBIAS to 0.571 × MICBIAS  
11 Reserved  
0x0  
RW  
[5:4]  
[3:2]  
[1:0]  
SHT_M_TRIP  
SHT_G_TRIP  
SHT_B_TRIP  
Short Fault to Mic Bias Trip Point Adjust.  
00 0.95 × MICBIAS  
01 0.9 × MICBIAS  
10 0.85 × MICBIAS  
11 0.975 × MICBIAS  
0x0  
0x0  
0x0  
RW  
RW  
RW  
Short Fault to Ground Trip Point Adjust.  
00 0.2 × VREF  
01 0.133 × VREF  
10 0.1 × VREF  
11 0.266 × VREF  
Short Fault to Supply/Battery Trip Point Adjust.  
00 0.95 × VBAT  
01 0.9 × VBAT  
10 0.85 × VBAT  
11 0.975 × VBAT  
Rev. A | Page 59 of 64  
 
ADAU1977  
Data Sheet  
DIAGNOSTICS ADJUSTMENTS REGISTER 2  
Address: 0x18, Reset: 0x20, Name: DIAG_ADJUST2  
Table 49. Bit Descriptions for DIAG_ADJUST2  
Bits  
[7:6]  
[5:4]  
Bit Name  
RESERVED  
FAULT_TO  
Settings  
Description  
Reset  
0x0  
Access  
RW  
Reserved.  
Fault Timeout Adjust.  
0x2  
RW  
00 No Fault Timeout Period (That Is, the Time That the Fault Needs to Persist  
Before Being Reported)  
01 50 ms Fault Timeout Period  
10 100 ms Fault Timeout Period (Default)  
11 150 ms Fault Timeout Period  
Reserved.  
3
2
RESERVED  
0x0  
0x0  
RW  
RW  
HYST_SM_EN  
Hysteresis Short to MICBIAS Enable.  
0
1
Disable  
Enable  
1
0
HYST_SG_EN  
HYST_SB_EN  
Hysteresis Short to Ground Enable.  
Disable  
Enable  
0x0  
0x0  
RW  
RW  
0
1
Hysteresis Short to Battery Enable.  
0
1
Disable  
Enable  
Rev. A | Page 60 of 64  
 
Data Sheet  
ADAU1977  
ADC CLIPPING STATUS REGISTER  
Address: 0x19, Reset: 0x00, Name: ASDC_CLIP  
Table 50. Bit Descriptions for ASDC_CLIP  
Bits  
[7:4]  
3
Bit Name  
RESERVED  
ADC_CLIP4  
Settings  
Description  
Reset  
0x0  
Access  
RW  
Reserved.  
ADC Channel 4 Clip Status.  
Normal Operation  
ADC Channel Clipping  
ADC Channel 3 Clip Status.  
Normal Operation  
ADC Channel Clipping  
ADC Channel 2 Clip Status.  
Normal Operation  
ADC Channel Clipping  
ADC Channel 1 Clip Status.  
Normal Operation  
0x0  
R
0
1
2
1
0
ADC_CLIP3  
ADC_CLIP2  
ADC_CLIP1  
0x0  
0x0  
0x0  
R
R
R
0
1
0
1
0
1
ADC Channel Clipping  
Rev. A | Page 61 of 64  
 
ADAU1977  
Data Sheet  
DIGITAL DC HIGH-PASS FILTER AND CALIBRATION REGISTER  
Address: 0x1A, Reset: 0x00, Name: DC_HPF_CAL  
Table 51. Bit Descriptions for DC_HPF_CAL  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
7
DC_SUB_C4  
Channel 4 DC Subtraction from Calibration.  
No DC Subtraction  
DC Value from DC Calibration Is Subtracted  
Channel 3 DC Subtraction from Calibration.  
No DC Subtraction  
DC Value from DC Calibration Is Subtracted  
Channel 2 DC Subtraction from Calibration.  
No DC Subtraction  
DC Value from DC Calibration Is Subtracted  
Channel 1 DC Subtraction from Calibration.  
No DC Subtraction  
0x0  
RW  
0
1
6
5
4
3
2
1
0
DC_SUB_C3  
DC_SUB_C2  
DC_SUB_C1  
DC_HPF_C4  
DC_HPF_C3  
DC_HPF_C2  
DC_HPF_C1  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
0
1
0
1
0
1
DC Value from DC Calibration Is Subtracted  
Channel 4 DC High-Pass Filter Enable.  
HPF Off  
0
1
HPF On  
Channel 3 DC High-Pass Filter Enable.  
HPF Off  
HPF On  
0
1
Channel 2 DC High-Pass Filter Enable.  
HPF Off  
HPF On  
0
1
Channel 1 DC High-Pass Filter Enable.  
HPF Off  
HPF On  
0
1
Rev. A | Page 62 of 64  
 
Data Sheet  
ADAU1977  
APPLICATIONS CIRCUIT  
+3.3V  
10µF  
MLCC X7R  
C12  
0.1µF  
C13  
0.1µF  
C11  
0.1µF  
C14  
0.1µF  
C10  
10µF  
MLCC X7R  
DVDD  
BOOST  
CONVERTER  
50mA  
MICBIAS  
5V TO 9V  
3.3V TO 1.8V  
REGULATOR  
C9  
C15  
0.1µF  
C16  
I
OUT  
R
10µF ELECTROLYTIC  
1nF MAX MLCC  
EXT  
10µF  
MLCC X7R  
ADAU1977  
PROG  
BIAS  
R1  
R3  
PGND  
+1.8V OR +3.3V  
IOVDD  
C7  
0.1µF  
AIN1+  
AIN1–  
AIN2+  
AIN2–  
AIN3+  
AIN3–  
AIN4+  
AIN4–  
MIC1  
ADC  
ADC  
ADC  
ADC  
V
V
= 2V DIFF  
AC  
LRCLK  
BCLK  
SDATAOUT1  
SDATAOUT2  
MIC2  
= 2V DIFF  
AC  
TO DSP  
LINE1  
V
= 7V, V = 10V DIFF  
CM  
AC  
LINE2  
IOVDD  
V
= 7V, V = 10V DIFF  
CM  
AC  
VBAT  
AGND1  
AVDD2  
AGND3  
AVDDx  
C1 C2 C3 C4 C5 C6 C7 C8 R2  
R4  
SCL/CCLK  
SDA/COUT  
ADDR1/CIN  
ADDR0/CLATCH  
FAULT  
DIAGNOSTICS  
C1 TO C8 = 1000pF  
R1 TO R4 TYP = 500Ω ±0.1%  
BG  
REF  
I2C/SPI  
CONTROL  
MICRO-  
CONTROLLER  
PLL  
AGNDx  
MB_GND  
PD/RESET  
AGND2  
AGND2  
R13  
R14  
C18  
10µF  
C19  
0.1µF  
C21  
R17  
C20  
+3.3V (AVDD2)  
NOTES  
1. R9, R10, R15 = TYPICAL 2kΩ FOR IOVDD = 3.3V, 1kΩ FOR 1.8V.  
2. R11 THROUGH R14 USED FOR SETTING THE DEVICE IN I C MODE.  
3. R16 = TYPICAL 47kΩ FOR IOVDD = 3.3V, 22kΩ FOR 1.8V.  
4. PLL LOOP FILTER:  
2
PLL INPUT OPTION  
LRCLK  
MCLK  
R17  
C20  
C21  
4.87kΩ  
2200pF  
39nF  
1kΩ  
390pF  
5600pF  
5. FOR MORE INFORMATION ABOUT CALCULATING THE VALUE OF R  
, SEE THE POWER-ON RESET SEQUENCE SECTION.  
EXT  
Figure 46. Typical Application Schematic—Two Microphones, Two Line Inputs, I2C and I2S Mode  
Rev. A | Page 63 of 64  
 
 
ADAU1977  
Data Sheet  
OUTLINE DIMENSIONS  
6.10  
6.00 SQ  
5.90  
0.30  
0.25  
0.18  
PIN 1  
INDICATOR  
PIN 1  
INDICATOR  
31  
30  
40  
1
0.50  
BSC  
4.05  
3.90 SQ  
3.75  
EXPOSED  
PAD  
21  
20  
10  
11  
0.45  
0.40  
0.35  
0.25 MIN  
TOP VIEW  
BOTTOM VIEW  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
SECTION OF THIS DATA SHEET.  
COPLANARITY  
0.08  
0.20 REF  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-220-WJJD.  
Figure 47. 40-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
6 mm × 6 mm Body, Very Very Thin Quad  
(CP-40-14)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1, 2  
Temperature Range  
–40°C to +105°C  
–40°C to +105°C  
–40°C to +105°C  
Package Description  
Package Option  
ADAU1977WBCPZ  
ADAU1977WBCPZ-R7  
ADAU1977WBCPZ-RL  
EVAL-ADAU1977Z  
40-Lead LFCSP_WQ  
CP-40-14  
CP-40-14  
CP-40-14  
40-Lead LFCSP_WQ, 7” Tape and Reel  
40-Lead LFCSP_WQ, 13Tape and Reel  
Evaluation Board  
1 Z = RoHS Compliant Part.  
2 W = Qualified for Automotive Applications.  
AUTOMOTIVE PRODUCTS  
The ADAU1977W models are available with controlled manufacturing to support the quality and reliability requirements of automotive  
applications. Note that these automotive models may have specifications that differ from the commercial models; therefore, designers  
should review the Specifications section of this data sheet carefully. Only the automotive grade products shown are available for use in  
automotive applications. Contact your local Analog Devices account representative for specific product ordering information and to obtain  
the specific Automotive Reliability reports for these models.  
©2013 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D10296-0-3/13(A)  
Rev. A | Page 64 of 64  
 
 
 
 
 

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY