ADAV4622BSTZ [ADI]

Audio Processor for Advanced TV with Sound IF Demodulator and Stereo Decoder; 高级电视音频处理器,内置声音IF解调器和立体声解码器
ADAV4622BSTZ
型号: ADAV4622BSTZ
厂家: ADI    ADI
描述:

Audio Processor for Advanced TV with Sound IF Demodulator and Stereo Decoder
高级电视音频处理器,内置声音IF解调器和立体声解码器

解码器 电视
文件: 总28页 (文件大小:711K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Audio Processor for Advanced TV with  
Sound IF Demodulator and Stereo Decoder  
ADAV4622  
FEATURES  
PRODUCT OVERVIEW  
Sound IF (SIF) processor  
The ADAV4622 is an enhanced audio processor targeting  
SIF demodulator and broadcast stereo decoder  
NICAM (BG, DK, I, L), A2 (BG, DK, M), BTSC (M, N), EIAJ (M)  
Automatic sound IF standard detection  
Fully programmable 28-bit audio processor for enhanced  
ATV sound—default TV audio flow loaded on reset  
Implements Analog Devices and third-party branded audio  
algorithms  
Adjustable digital delay line for audio/video  
Synchronization for up to 200 ms stereo delay  
High performance 24-bit ADC and DAC  
94 dB DNR performance on DAC channels  
95 dB DNR performance on ADC channels  
Dual headphone outputs with integrated amplifiers  
High performance pulse-width modulation (PWM) digital  
outputs  
advanced TV applications with full support for digital and  
analog baseband audio as well as multistandard broadcast SIF  
demodulation and decoding.  
The audio processor, by default, loads a dedicated TV audio  
flow that incorporates full matrix switching (any input to any  
output), automatic volume control that compensates for volume  
changes during advertisements or when switching channels,  
dynamic bass, a multiband equalizer, and up to 200 ms of stereo  
delay memory for audio-video synchronization.  
Alternatively, Analog Devices, Inc., offers an award-winning  
graphical programming tool (SigmaStudio™) that allows custom  
flows to be quickly developed and evaluated. This allows the  
creation of customer-specific audio flows, including use of the  
Analog Devices library of third-party algorithms.  
Multichannel digital baseband I/O  
The analog I/O integrates Analog Devices proprietary  
continuous-time, multibit Σ-Δ architecture to bring a higher  
level of performance to ATV systems, required by third-party  
algorithm providers to meet system branding certification. The  
analog input is provided by 95 dB dynamic range (DNR) ADCs,  
and analog output is provided by 94 dB DNR DACs.  
4 stereo synchronous digital I2S input channels  
One 6-channel sample rate converter (SRC) and one  
stereo SRC supporting input sample rates from  
5 kHz to 50 kHz  
One stereo synchronous digital I2S output  
S/PDIF output with S/PDIF input mux capability  
Fast I2C control  
Operates from 3.3 V (analog), 1.8 V (digital core), and 3.3 V  
(digital interface)  
The main speaker outputs can be supplied as a digitally  
modulated PWM stream to support digital amplifiers.  
The ADAV4622 includes multichannel digital inputs and  
outputs. In addition, digital input channels can be routed  
through integrated sample rate converters (SRC), which are  
capable of supporting any arbitrary sample rate from 5 kHz  
to 50 kHz.  
Available in 80-lead LQFP  
APPLICATIONS  
General-purpose consumer audio postprocessing  
Home audio  
DVD recorders  
Home theater in a box (HTIB) systems and DVD receivers  
Audio processing subsystems for DTV-ready TVs  
Analog broadcast capability for iDTVs  
Rev. B  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
www.analog.com  
Fax: 781.461.3113 ©2008–2009 Analog Devices, Inc. All rights reserved.  
 
ADAV4622  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
VREF............................................................................................ 20  
FILTA and FILTD....................................................................... 20  
Applications....................................................................................... 1  
Product Overview............................................................................. 1  
Revision History ............................................................................... 2  
Functional Block Diagram .............................................................. 3  
Specifications..................................................................................... 4  
Performance Parameters ............................................................. 4  
Timing Specifications .................................................................. 9  
Timing Diagrams........................................................................ 10  
Absolute Maximum Ratings.......................................................... 12  
Thermal Resistance .................................................................... 12  
Thermal Conditions................................................................... 12  
ESD Caution................................................................................ 12  
Pin Configuration and Function Descriptions........................... 13  
Typical Performance Characteristics ........................................... 16  
Terminology .................................................................................... 18  
Pin Functions .................................................................................. 19  
SDIN0, SDIN1, SDIN2, and SDIN3/SPDIF_IN0................... 19  
LRCLK0, BCLK0, LRCLK1, BCLK1, LRCLK2, and BCLK2 19  
SDO0/AD0 .................................................................................. 19  
SPDIF_OUT (SDO1)................................................................. 19  
MCLKI/XIN................................................................................ 19  
XOUT........................................................................................... 19  
MCLK_OUT ............................................................................... 19  
SDA............................................................................................... 19  
SCL ............................................................................................... 20  
PWM1A, PWM1B, PWM2A, PWM2B, PWM3A, PWM3B,  
PWM4A, and PWM4B.............................................................. 20  
PWM_READY ........................................................................... 20  
AVDD .......................................................................................... 20  
DVDD.......................................................................................... 20  
ODVDD....................................................................................... 20  
DGND.......................................................................................... 20  
AGND.......................................................................................... 20  
ODGND ...................................................................................... 20  
SIF_REFP, SIF_REFCM, and SIF_REFN................................ 20  
SIF_IN1 and SIF_IN2................................................................ 20  
SIF_PGA_REF............................................................................ 20  
ISET.............................................................................................. 20  
Functional Descriptions ................................................................ 21  
SIF Processor............................................................................... 21  
Master Clock Oscillator............................................................. 21  
I2C Interface ................................................................................ 22  
ADC Inputs................................................................................. 22  
I2S Digital Audio Inputs ............................................................ 22  
DAC Voltage Outputs ................................................................ 23  
PWM Outputs ............................................................................ 24  
Headphone Outputs................................................................... 24  
I2S Digital Audio Outputs ......................................................... 24  
S/PDIF Input/Output................................................................. 25  
Hardware Mute Control ............................................................ 25  
Audio Processor ......................................................................... 25  
Graphical Programming Environment ................................... 25  
Application Layer ....................................................................... 25  
Loading a Custom Audio Processing Flow............................. 26  
Outline Dimensions....................................................................... 28  
Ordering Guide .......................................................................... 28  
MUTE  
RESET  
.......................................................................................... 20  
.......................................................................................... 20  
AUXIN1L, AUXIN2L, AUXIN1R, and AUXIN2R................ 20  
AUXOUT1L, AUXOUT2L, AUXOUT3L, AUXOUT4L,  
AUXOUT1R, AUXOUT2R, AUXOUT3R, and AUXOUT4R  
....................................................................................................... 20  
HPOUT1L, HPOUT2L, HPOUT1R, and HPOUT2R .......... 20  
PLL_LF......................................................................................... 20  
Change to Hardware Mute Control, Graphical Programming  
Environment, and Application Layer Sections........................... 25  
Changes to Ordering Guide.......................................................... 28  
11/08—Revision A: Initial Version  
REVISION HISTORY  
7/09—Rev. A to Rev. B  
Added Advantiv Logo ...................................................................... 1  
Change to PWM Outputs Section................................................ 24  
Rev. B | Page 2 of 28  
 
ADAV4622  
FUNCTIONAL BLOCK DIAGRAM  
SDO0/AD0  
DIGITAL  
OUTPUTS  
BCLK1  
SIF_IN1  
SIF_IN2  
LRCLK1  
SIF PROCESSOR  
SPDIF_IN0  
SPDIF_IN1  
SPDIF_IN2  
SPDIF_IN3  
SPDIF_IN4  
SPDIF_IN5  
SPDIF_IN6  
MCLK_OUT  
SYSTEM  
CLOCKS  
MCLKI/XIN  
XOUT  
PLL  
S/PDIF I/O  
SPDIF_OUT/SDO1  
SCL  
SDA  
2
I C INTERFACE  
AUDIO  
PROCESSOR  
PWM1A  
PWM1B  
PWM2A  
PWM2B  
PWM3A  
PWM3B  
PWM4A  
PWM4B  
AD0  
MUTE  
PWM  
DIGITAL  
OUTPUT  
2-CHANNEL SRC  
ASYNCHRONOUS  
DIGITAL INPUT  
BCLK2  
LRCLK2  
BCLK1  
LRCLK1  
PWM_READY  
6-CHANNEL SRC  
ASYNCHRONOUS  
DIGITAL INPUT  
BCLK0  
LRCLK0  
AUXOUT4L  
AUXOUT4R  
HPOUT1L  
DAC  
DAC  
DAC  
HPOUT1R  
SDIN0  
SDIN1  
SDIN2  
SDIN3  
SYNCHRONOUS  
MULTICHANNEL  
DIGITAL INPUTS  
AUXOUT1L  
AUXOUT1R  
AUXOUT2L  
AUXOUT2R  
AUXIN1L  
AUXIN1R  
ADC  
ADC  
HPOUT2L  
HPOUT2R  
AUXIN2L  
AUXIN2R  
A-V  
SYNCHRONOUS  
DELAY  
AUXOUT3L  
AUXOUT3R  
MEMORY  
DAC  
ADAV4622  
Figure 1. ADAV4622 with PWM-Based Speaker Outputs  
Rev. B | Page 3 of 28  
 
ADAV4622  
SPECIFICATIONS  
AVDD = 3.3 V, DVDD = 1.8 V, ODVDD = 3.3 V, operating temperature = −40°C to +85°C, master clock = 24.576 MHz, measurement  
bandwidth = 20 Hz to 20 kHz, ADC input signal = DAC output signal = 1 kHz, unless otherwise noted.  
PERFORMANCE PARAMETERS  
Table 1.  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
SIF ADC INPUT SECTION  
Analog Input Frequency Range  
Recommended Analog Input Level  
Maximum Analog Input Range  
Input Impedance  
10  
MHz  
dBu  
V p-p  
kΩ  
90 18 dB  
FM, AGC in PGA priority mode  
Default setting  
1.6  
12  
6
PGA Gain = 0 dB  
KΩ  
PGA Gain = 10 dB  
2.3  
1.9  
60  
32  
kΩ  
PGA Gain = 20 dB  
DC Bias Level  
V
SIF Input Isolation  
FM Limiting Sensitivity  
dB  
SIF_IN1 to SIF_ IN2  
dBu  
A2 (DK), Mono, deviation mode = 100%, fFM = 400 Hz,  
Δf = 50 kHz, BW = 20 Hz to 15 kHz, rms detector  
31  
31  
34  
dBu  
dBu  
dBu  
A2 (I), Mono, deviation mode = 100%, fFM = 400 Hz,  
Δf = 50 kHz, BW = 20 Hz to 15 kHz, rms detector  
A2 (BG), Mono, deviation mode = 100%, fFM = 400 Hz,  
Δf = 50 kHz, BW = 20 Hz to 15 kHz, rms detector  
BTSC (M, N), Mono, deviation mode = 100%,  
f
FM = 400 Hz, Δf = 25 kHz, BW = 20 Hz to 15 kHz,  
rms detector  
28.5  
30  
dBu  
A2 (M), Mono, deviation mode = 100%, fFM = 400 Hz,  
Δf = 25 kHz, BW = 20 Hz to 15 kHz, rms detector  
dBu  
EIAJ (M), Mono, deviation mode = 100%, fFM = 400 Hz,  
Δf = 25 kHz, BW = 20 Hz to 15 kHz, rms detector  
FM Output Level at 25% Deviation Mode  
FM Output Level at 50% Deviation Mode  
FM Output Level at 100% Deviation Mode  
FM Output Level at 200% Deviation Mode  
53.7  
53.6  
56.3  
56.7  
53.7  
53.6  
56.3  
56.7  
53.7  
53.6  
56.3  
56.7  
53.7  
53.6  
56.3  
56.7  
% FS  
% FS  
% FS  
% FS  
% FS  
% FS  
% FS  
% FS  
% FS  
% FS  
% FS  
% FS  
% FS  
% FS  
% FS  
% FS  
A2 (DK, I, BG), Mono, VSIF = 100 mV, fFM = 400 Hz,  
Δf = 12.5 kHz, rms detector  
BTSC (M, N), Mono, VSIF = 100 mV, fFM = 400 Hz,  
Δf = 6.25 kHz, rms detector  
A2 (M), Mono, VSIF = 100 mV, fFM = 400 Hz,  
Δf = 6.25 kHz, rms detector  
EIAJ (M), Mono, VSIF = 100 mV, fFM = 400 Hz,  
Δf = 6.25 kHz, rms detector  
A2 (DK, I, BG), Mono, VSIF = 100 mV, fFM = 400 Hz,  
Δf = 25 kHz, rms detector  
BTSC (M, N), Mono, VSIF = 100 mV, fFM = 400 Hz,  
Δf = 12.5 kHz, rms detector  
A2 (M), Mono, VSIF = 100 mV, fFM = 400 Hz,  
Δf = 12.5 kHz, rms detector  
EIAJ (M), Mono, VSIF = 100 mV, fFM = 400 Hz,  
Δf = 12.5 kHz, rms detector  
A2 (DK, I, BG), Mono, VSIF = 100 mV, fFM = 400 Hz,  
Δf = 50 kHz, rms detector  
BTSC (M, N), Mono, VSIF = 100 mV, fFM = 400 Hz,  
Δf = 25 kHz, rms detector  
A2 (M), Mono, VSIF = 100 mV, fFM = 400 Hz, Δf = 25 kHz,  
rms detector  
EIAJ (M), Mono, VSIF = 100 mV, fFM = 400 Hz, Δf = 25 kHz,  
rms detector  
A2 (DK, I, BG), Mono, VSIF =100 mV, fFM = 400 Hz,  
Δf = 100 kHz, rms detector  
BTSC (M, N), Mono, VSIF = 100 mV, fFM = 400 Hz,  
Δf = 50 kHz, rms detector  
A2 (M), Mono, VSIF = 100 mV, fFM = 400 Hz, Δf = 50 kHz,  
rms detector  
EIAJ (M), Mono, VSIF = 100 mV, fFM = 400 Hz, Δf = 50 kHz,  
rms detector  
Rev. B | Page 4 of 28  
 
ADAV4622  
Parameter  
FM Output Level at 400% Deviation Mode  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
53.7  
% FS  
A2 (DK, I, BG), Mono, VSIF = 100 mV, fFM = 400 Hz,  
Δf = 200 kHz, rms detector  
53.6  
56.4  
56.7  
53.7  
53.6  
56.3  
56.7  
69.5  
% FS  
% FS  
% FS  
% FS  
% FS  
% FS  
% FS  
dB  
BTSC (M, N), Mono, VSIF = 100 mV, fFM = 400 Hz,  
Δf = 100 kHz, rms detector  
A2 (M), Mono, VSIF = 100 mV, fFM = 400 Hz,  
Δf = 100 kHz, rms detector  
EIAJ (M), Mono, VSIF = 100 mV, fFM = 400 Hz, Δf = 100 kHz,  
rms detector  
FM Output Level at 800% Deviation Mode  
A2 (DK, I, BG), Mono, VSIF = 100 mV, fFM = 400 Hz,  
Δf = 400 kHz, rms detector  
BTSC (M, N), Mono, VSIF = 100 mV, fFM = 400 Hz,  
Δf = 200 kHz, rms detector  
A2 (M), Mono, VSIF = 100 mV, fFM = 400 Hz,  
Δf = 200 kHz, rms detector  
EIAJ (M), Mono, VSIF = 100 mV, fFM = 400 Hz,  
Δf = 200 kHz, rms detector  
AM Rejection Ratio  
A2 (DK), Mono, deviation mode = 100%, VSIF = 100 mV,  
f
FM = 400 Hz, Δf = 27 kHz, fAM = 400 Hz, MODAM = 30%,  
BW = 20 Hz to 15 kHz, rms detector  
70  
dB  
A2 (I), Mono, deviation mode = 100%, VSIF = 100 mV,  
fFM = 400 Hz, Δf = 27 kHz, fAM = 400 Hz, MODAM = 30%,  
BW = 20 Hz to 15 kHz, rms detector  
70  
dB  
A2 (BG), Mono, deviation mode = 100%, VSIF = 100 mV,  
fFM = 400 Hz, Δf = 27 kHz, fAM = 400 Hz, MODAM = 30%,  
BW = 20 Hz to 15 kHz, rms detector  
70.5  
40  
dB  
Mono (M), deviation mode = 100%, VSIF = 100 mV,  
fFM = 400 Hz, Δf = 13.5 kHz, fAM = 400 Hz, MODAM = 30%,  
BW = 20 Hz to 15 kHz, rms detector  
AM Sensitivity  
dBu  
Mono (L), fAM = 400 Hz, MOD = 30%, BW = 20 Hz to 15 kHz,  
rms detector, (S + N)/N = 10 dB  
BTSC (M) PERFORMANCE  
Measured at analog audio output, video = 75% color bar,  
fSC = 4.5 MHz, fFM = 1 kHz, Δf = 25 kHz (100%), deemphasis =  
75 μs, measuring BW = 20 Hz to 15 kHz with dBX NR  
Dynamic Range  
Stereo Channel  
62  
68  
dB  
dB  
Stereo L or R (L = −R), 100%, 1 kHz  
SAP channel with Mono 100%, 1 kHz  
SAP Channel  
Total Harmonic Distortion + Noise  
Stereo Channel  
−46  
−40  
dB  
dB  
Stereo L or R (L = −R), 100%, 1 kHz  
SAP 100%, 1 kHz  
SAP Channel  
Frequency Response  
Stereo Channel  
fFM = 20 Hz to 12 kHz  
+0.1/−0.7  
+2.5/−2.5  
dB  
dB  
Stereo L or R, 50%, (L = −R)  
SAP 50%, Mono 100%, 1 kHz  
SAP Channel  
Crosstalk  
Stereo-to-SAP Channel  
SAP-to-Stereo Channel  
Stereo Separation dBX  
EIAJ (M) PERFORMANCE  
−74  
−71  
30  
dB  
dB  
dB  
L or R 50%, 1 kHz  
SAP 50%, 1 kHz  
L off, R 50%, 1 kHz  
Measured at analog audio output, video = 75% color bar,  
f
SC = 4.5 MHz, fFM = 1 kHz, Δf = 25 kHz (100%),  
deemphasis = 75 μs, measuring BW = 20 Hz to 15 kHz  
Dynamic Range  
Stereo Channel  
58  
56  
dB  
dB  
Stereo L or R, 100%, 1 kHz  
Dual Channel  
Dual channel with Mono 100%, 1 kHz  
Total Harmonic Distortion + Noise  
Stereo Channel  
−56  
−47  
dB  
dB  
Stereo L or R, 100%, 1 kHz  
Dual 50%, 1 kHz  
Dual Channel  
Frequency Response  
Stereo Channel  
fFM = 20 Hz to 10 kHz  
Stereo L or R, 100%  
+0.03/−0.53  
+0.17/−1.4  
dB  
dB  
Dual Channel  
Dual 100%, Mono 100%, 1 kHz  
Crosstalk  
Main-to-Dual Channel  
Dual-to-Main Channel  
Stereo Separation  
−75  
−83  
39  
dB  
dB  
dB  
Main 100%, 1 kHz  
Dual 100%, 1 kHz  
Stereo L or R, 100%, 1 kHz  
Rev. B | Page 5 of 28  
ADAV4622  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
A2 (M) PERFORMANCE  
Measured at analog audio output, video = 75% color bar,  
fSC1 = 4.5 MHz, fSC2 = 4.724 MHz, fFM = 1 kHz, Δf = 25 kHz  
(100%), deemphasis = 75 μs, measuring BW = 20 Hz to  
15 kHz  
Dynamic Range  
60  
dB  
dB  
dB  
dB  
dB  
Mono 100%, 1 kHz  
Total Harmonic Distortion + Noise  
Frequency Response  
−64  
Mono 100%, 1 kHz  
+0.4/−0.05  
Mono 100%, fFM = 25 Hz to 15 kHz  
Mono or dual off, 100%, 1 kHz  
Stereo L off, R 50%, 1 kHz  
Crosstalk (Dual)  
−88  
66  
Channel Separation (Stereo)  
A2 (DK1/DK2/DK3) PERFORMANCE  
Measured at analog audio output, video = 75% color bar,  
f
f
SC1 = 6.5 MHz, fSC2 = 6.742 MHz, (DK2 worst case),  
FM = 1 kHz, Δf = 50 kHz (100%), deemphasis = 50 μs,  
measuring BW = 20 Hz to 15 kHz  
Dynamic Range  
74  
dB  
dB  
dB  
dB  
dB  
Mono 100%, 1 kHz  
Total Harmonic Distortion + Noise  
Frequency Response  
−66  
Mono 100%, 1 kHz  
+0.1/−0.3  
Mono 100%, fFM = 20 Hz to 15 kHz  
Mono or dual off, 100%, 1 kHz  
Stereo L off, R 50%, 1 kHz  
Crosstalk (Dual)  
−88  
77  
Channel Separation (Stereo)  
A2 (BG) PERFORMANCE  
Measured at analog audio output, video = 75% color bar,  
fSC1 = 5.5 MHz, fSC2 = 5.742 MHz, fFM = 1 kHz,  
Δf = 50 kHz (100%), deemphasis = 50 μs,  
measuring BW = 20 Hz to 15 kHz  
Dynamic Range  
74  
dB  
dB  
dB  
dB  
dB  
Mono 100%, 1 kHz  
Total Harmonic Distortion + Noise  
Frequency Response  
−61  
Mono 100%, 1 kHz  
+0.1/−0.3  
Mono 100%, fFM = 25 Hz to 15 kHz  
Mono or dual off, 100%, 1 kHz  
Stereo L off, R 50%, 1 kHz  
Crosstalk (Dual)  
−89  
70  
Channel Separation (Stereo)  
NICAM (I) PERFORMANCE  
Measured at analog audio output, video = 75% color bar,  
1 kHz, unweighted, deemphasis = J17, measuring BW = 20  
Hz to 15 kHz  
Dynamic Range  
72  
dB  
dB  
dB  
dB  
dB  
Stereo L or R, 0 dB, 1 kHz  
Stereo L or R, 0 dB, 1 kHz  
Stereo L or R, 0 dB  
Total Harmonic Distortion + Noise  
Frequency Response  
Crosstalk  
−63  
−1.3/+0.07  
−80  
73  
0
Mono or dual, 0 dB, 1 kHz  
L or R, 0 dB, 1 kHz  
Stereo Separation  
Bit Error Rate  
FM and NICAM nominal conditions  
NICAM (BG, DK, L) PERFORMANCE  
Measured at analog audio output, video = 75% color bar,  
1 kHz, unweighted, deemphasis = J17, measuring BW =  
20 Hz to 15 kHz  
Dynamic Range  
Total Harmonic Distortion + Noise  
Frequency Response  
Crosstalk  
72  
dB  
dB  
dB  
dB  
dB  
Stereo L or R, 0 dB, 1 kHz  
Stereo L or R, 0 dB, 1 kHz  
Stereo L or R, 0 dB  
−63  
−1.3/+0.07  
−80  
74  
0
Mono or dual, 0 dB, 1 kHz  
L or R, 0 dB, 1 kHz  
Stereo Separation  
Bit Error Rate  
FM and NICAM nominal conditions  
AM PERFORMANCE  
Measured at analog audio output, 1 kHz,  
AM carrier 6.5 MHz measuring BW = 20 Hz to 15 kHz  
Dynamic Range  
RMS/FLAT  
55  
dB  
dB  
dB  
dB  
AM = 54% modulation  
QP/CCIR  
35  
CCIR filter, AM = 54% modulation  
AM = 54% modulation  
Total Harmonic Distortion + Noise  
Frequency Response  
REFERENCE SECTION  
Absolute Voltage VREF  
VREF Temperature Coefficient  
−49  
+0.03/−1.2  
AM = 54% modulation  
1.53  
100  
V
ppm/°C  
Rev. B | Page 6 of 28  
ADAV4622  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
ADC SECTION  
Number of Channels  
Full-Scale Input Level  
Resolution  
4
Two stereo channels  
100  
24  
μA rms  
Bits  
Dynamic Range (Stereo Channel)  
A-Weighted  
95  
dB  
dB  
−60 dBFS with respect to full-scale analog input  
−3 dBFS with respect to full-scale analog input  
Total Harmonic Distortion + Noise (Stereo  
Channel)  
−90  
Gain Mismatch  
0.2  
dB  
dB  
dB  
kΩ  
Left- and right-channel gain mismatch  
Crosstalk (Left to Right, Right to Left)  
Gain Error  
−110  
−1  
Input signal is 100 μA rms  
Current Setting Resistor (RISET  
)
20  
External resistor to set current input range of ADC for  
nominal 2.0 V rms input signal  
Power Supply Rejection  
−87  
dB  
1 kHz, 300 mV p-p signal at AVDD  
At 48 kHz, guaranteed by design  
ADC DIGITAL DECIMATOR FILTER  
CHARACTERISTICS  
Pass Band  
22.5  
kHz  
dB  
Pass-Band Ripple  
0.0002  
Stop Band  
26.5  
100  
kHz  
dB  
Stop-Band Attenuation  
Group Delay  
1040  
μs  
PWM SECTION  
Frequency  
384  
kHz  
Guaranteed by design  
Guaranteed by design  
Modulation Index  
Dynamic Range  
0.976  
A-Weighted  
98  
dB  
dB  
−60 dB with respect to full-scale code input  
−3 dB with respect to full-scale code input  
Total Harmonic Distortion + Noise  
DAC SECTION  
−78  
Number of Auxiliary Output Channels  
Resolution  
8
Four stereo channels  
24  
1
Bits  
Full-Scale Analog Output  
Dynamic Range  
V rms  
A-Weighted  
94  
dB  
dB  
dB  
dB  
dB  
V
−60 dBFS with respect to full-scale code input  
−3 dBFS with respect to full-scale code input  
Total Harmonic Distortion + Noise  
Crosstalk (Left to Right, Right to Left)  
Interchannel Gain Mismatch  
Gain Error  
−86  
−102  
0.1  
Left- and right-channel gain mismatch  
1 V rms output  
0.525  
1.53  
−90  
235  
DC Bias  
Power Supply Rejection  
Output Impedance  
dB  
Ω
1 kHz, 300 mV p-p signal at AVDD  
At 48 kHz, guaranteed by design  
DAC DIGITAL INTERPOLATION FILTER  
CHARACTERISTICS  
Pass Band  
21.769  
0.01  
kHz  
dB  
Pass-Band Ripple  
Transition Band  
23.95  
26.122  
75  
kHz  
kHz  
dB  
Stop Band  
Stop-Band Attenuation  
Group Delay  
580  
μs  
HEADPHONE AMPLIFIER  
Number of Channels  
Full-Scale Output Power  
Dynamic Range  
Measured at headphone output with 32 Ω load  
Two stereo channels  
4
31  
mW rms  
1 V rms output  
A-Weighted  
93  
dB  
dB  
dB  
V
−60 dBFS with respect to full-scale code input  
−3 dBFS with respect to full-scale code input  
Total Harmonic Distortion + Noise  
Interchannel Gain Mismatch  
DC Bias  
−83  
0.1  
1.53  
−85  
Power Supply Rejection  
dB  
1 kHz, 300 mV p-p signal at AVDD  
Rev. B | Page 7 of 28  
ADAV4622  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
SRC  
Number of Channels  
Dynamic Range  
A-Weighted  
8
Two channels (SRC1), six channels (SRC2)  
115  
dB  
−60 dBFS input (worst-case input fS = 50 kHz)  
−3 dBFS input (worst-case input fS = 50 kHz)  
Total Harmonic Distortion + Noise  
Sample Rate  
−113  
dB  
5
50  
kHz  
SRC DIGITAL INTERPOLATION FILTER  
CHARACTERISTICS  
At 48 kHz, guaranteed by design  
Pass Band  
21.678  
0.005  
26.232  
110  
kHz  
dB  
Pass-Band Ripple  
Stop Band  
kHz  
dB  
Stop-Band Attenuation  
Group Delay  
876  
μs  
DIGITAL INPUT/OUTPUT  
Input Voltage High (VIH)  
Input Voltage Low (VIL)  
Input Leakage  
2.0  
ODVDD  
0.8  
V
V
IIH (SDIN0, SDIN1, SDIN2, SDIN3, LRCLK0,  
LRCLK1, LRCLK2, BCLK0, BCLK1, BCLK2,  
SPDIF_OUT, SPDIF_IN)  
40  
μA  
V
IH = ODVDD, equivalent to a 90 kΩ pull-up resistor  
IH = ODVDD, equivalent to a 266 kΩ pull-up resistor  
RESET  
)
13.5  
−40  
μA  
μA  
V
V
IIH  
(
IIL (SDO0, SCL, SDA)  
VIL = 0 V, equivalent to a 90 kΩ pull-down resistor  
Output Voltage High (VOH  
)
2.4  
1.4  
IOH = 0.4 mA  
IOL = −2 mA  
IOH = 0.4 mA  
IOL = −3.2 mA  
Output Voltage Low (VOL  
)
0.4  
0.4  
V
Output Voltage High (VOH) (MCLK_OUT)  
Output Voltage Low (VOL) (MCLK_OUT)  
Input Capacitance  
V
V
10  
pF  
SUPPLIES  
Analog Supplies (AVDD)  
Digital Supplies (DVDD)  
Interface Supply (ODVDD)  
Supply Currents  
3.0  
3.3  
3.6  
2.0  
3.6  
V
V
V
1.65 1.8  
3.0  
3.3  
MCLK = 24 MHz, ADCs and DACs active, headphone  
outputs active and driving a 16 Ω load  
Analog Current  
Digital Current  
260  
350  
2
mA  
mA  
mA  
W
Interface Current  
Power Dissipation  
Standby Currents  
1.495  
RESET  
ADC, DAC, and headphone outputs floating,  
MCLK = 24 MHz  
low,  
Analog Current  
Digital Current  
10  
4
mA  
mA  
mA  
Interface Current  
1.6  
TEMPERATURE RANGE  
Operating Temperature  
Storage Temperature  
−40  
−65  
+85  
°C  
°C  
+150  
Rev. B | Page 8 of 28  
ADAV4622  
TIMING SPECIFICATIONS  
Table 2.  
Parameter  
Description  
Min  
Max  
Unit  
Comments  
MASTER CLOCK AND RESET  
fMCLKI  
tMCH  
tMCL  
MCLKI frequency  
MCLKI high  
MCLKI low  
3.072  
10  
10  
24.576  
MHz  
ns  
ns  
tRESET  
RESET low  
200  
ns  
MASTER CLOCK OUTPUT  
tJIT  
tCH  
tCL  
Period jitter  
MCLK_OUT high  
MCLK_OUT low  
800  
55  
55  
ps  
%
%
45  
45  
I2C PORT  
fSCL  
tSCLH  
tSCLL  
SCL clock frequency  
SCL high  
SCL low  
400  
kHz  
ns  
μs  
600  
1.3  
Start Condition  
tSCS  
tSCH  
tDS  
tSCR  
tSCF  
tSDR  
tSDF  
Setup time  
Hold time  
600  
600  
100  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Relevant for repeated start condition  
After this period, the first clock is generated  
Data setup time  
SCL rise time  
SCL fall time  
SDA rise time  
SDA fall time  
300  
300  
300  
300  
Stop Condition  
tSCS  
Setup time  
0
ns  
SERIAL PORTS  
Slave Mode  
tSBH  
tSBL  
BCLK high  
BCLK low  
40  
40  
ns  
ns  
fSBF  
tSLS  
tSLH  
tSDS  
BCLK frequency  
LRCLK setup  
LRCLK hold  
SDIN setup  
SDIN hold  
64 × fS  
10  
10  
10  
10  
ns  
ns  
ns  
ns  
ns  
To BCLK rising edge  
From BCLK rising edge  
To BCLK rising edge  
From BCLK rising edge  
From BCLK falling edge  
tSDH  
tSDD  
SDO delay  
50  
Master Mode  
tMLD  
tMDD  
tMDS  
tMDH  
LRCLK delay  
SDO delay  
SDIN setup  
SDIN hold  
25  
15  
ns  
ns  
ns  
ns  
From BCLK falling edge  
From BCLK falling edge  
From BCLK rising edge  
From BCLK rising edge  
10  
10  
Rev. B | Page 9 of 28  
 
ADAV4622  
TIMING DIAGRAMS  
tMP = 1/fMCLKI  
MCLKI  
RESET  
tRESET  
Figure 2. Master Clock and Reset Timing  
tJIT  
DVDD  
GND  
tCH  
tCL  
tCK  
Figure 3. Master Clock Output Timing  
tSLH  
LRCLK1  
BCLK1  
SDINx  
tSLS  
tSDS tSDH  
SDO0  
tSDD  
Figure 4. Serial Port Slave Mode Timing  
tMLD  
LRCLK1  
BCLK1  
SDINx  
tMDS tMDH  
SDO0  
tMDD  
Figure 5. Serial Port Master Mode Timing  
100µA  
I
OL  
TO OUTPUT  
PIN  
ODVDD  
50pF  
100µA  
I
OH  
Figure 6. Load Circuit for Digital Output Timing Specifications  
Rev. B | Page 10 of 28  
 
ADAV4622  
1.8V  
1.65V  
DVDD  
0.18V  
0V  
1.0s MAX  
3.3V  
3.0V  
AVDD  
ODVDD  
0.33V  
0V  
1.0s MAX  
Figure 7. Power-Up Sequence Timing  
1.8V  
0V  
1.65V  
DVDD  
0.18V  
1.0s MAX  
3.3V  
0V  
3.0V  
AVDD  
ODVDD  
0.33V  
1.0s MAX  
Figure 8. Power-Down Sequence Timing  
Rev. B | Page 11 of 28  
ADAV4622  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Table 3.  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages.  
Parameter  
Rating  
DVDD to DGND  
ODVDD to DGND  
AVDD to AGND  
AGND to DGND  
Digital Inputs  
Analog Inputs  
Reference Voltage  
Soldering (10 sec)  
0 V to 2.2 V  
0 V to 4 V  
0 V to 4 V  
−0.3 V to +0.3 V  
DGND − 0.3 V to ODVDD + 0.3 V  
AGND − 0.3 V to AVDD + 0.3 V  
Indefinite short circuit to ground  
300°C  
Table 4. Thermal Resistance1  
Package Type  
θJA  
θJC  
Unit  
80-Lead LQFP  
38.1  
7.6  
°C/W  
1 Based on JEDEC 2S2P PCB.  
THERMAL CONDITIONS  
To ensure correct operation of the device, the case temperature  
(TCASE) must be kept below 121°C to keep the junction tempera-  
ture (TJ) below the maximum allowed, 125°C.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
ESD CAUTION  
Rev. B | Page 12 of 28  
 
ADAV4622  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61  
1
2
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
FILTA  
VREF  
HPOUT2L  
AVDD  
PIN 1  
3
AGND  
HPOUT1R  
HPOUT1L  
AGND  
4
AVDD  
5
SIF_REFP  
SIF_REFCM  
SIF_REFN  
SIF_IN1  
6
AGND  
7
PLL_LF  
AVDD  
8
ADAV4622  
TOP VIEW  
(Not to Scale)  
9
SIF_PGA_REF  
SIF_IN2  
DGND  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
DVDD  
AGND  
RESET  
PWM4B  
PWM4A  
PWM3B  
PWM3A  
PWM2B  
PWM2A  
PWM1B  
PWM1A  
DGND  
AVDD  
DGND  
DVDD  
MUTE  
SDA  
SCL  
SPDIF_IN5/LRCLK2  
SPDIF_IN6/BCLK2  
DGND  
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40  
NC = NO CONNECT  
Figure 9. Pin Configuration  
Table 5. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
FILTA  
ADC Filter Capacitor.  
2
VREF  
Reference Capacitor.  
3
AGND  
ADC Ground.  
4
AVDD  
ADC Supply (3.3 V).  
5
6
7
8
SIF_REFP  
SIF_REFCM  
SIF_REFN  
SIF_IN1  
SIF_PGA_REF  
SIF_IN2  
AGND  
AVDD  
DGND  
DVDD  
MUTE  
SIF ADC Positive Reference (Typical 1.4 V).  
SIF ADC Common-Mode Reference (Typical 1 V).  
SIF ADC Negative Reference (Typical 0.6 V).  
SIF Input 1.  
SIF PGA Reference.  
SIF Input 2.  
SIF AGND.  
SIF Supply (3.3 V).  
Digital Ground.  
Digital Supply (1.8 V).  
Active Low Mute Request Input Signal.  
9
10  
11  
12  
13  
14  
15  
Rev. B | Page 13 of 28  
 
 
ADAV4622  
Pin No.  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
Mnemonic  
Description  
SDA  
SCL  
I2C Data.  
I2C Clock.  
SPDIF_IN5/LRCLK2  
SPDIF_IN6/BCLK2  
DGND  
DVDD  
SDIN0  
SDIN1  
SDIN2  
SPDIF_IN0/SDIN3  
SPDIF_IN1/LRCLK0  
SPDIF_IN2/BCLK0  
ODGND  
ODVDD  
MCLK_OUT  
DVDD  
DGND  
MCLKI/XIN  
XOUT  
SPDIF_IN4/BCLK1  
SPDIF_IN3/LRCLK1  
SDO0/AD0  
External Input to S/PDIF Mux/Left/Right Clock for SRC2 (Default).  
External Input to S/PDIF Mux/Bit Clock for SRC2 (Default).  
Digital Ground.  
Digital Supply (1.8 V).  
Serial Data Input 0/SRC Data Input.  
Serial Data Input 1/SRC Data Input.  
Serial Data Input 2/SRC Data Input.  
External Input to S/PDIF Mux/SRC Data Input/Serial Data Input 3 (Default).  
External Input to S/PDIF Mux/Left/Right Clock for SRC1 (Default).  
External Input to S/PDIF Mux/Bit Clock for SRC1 (Default).  
Digital Ground.  
Digital Interface Supply (3.3 V).  
Master Clock Output.  
Digital Supply (1.8 V).  
Digital Ground.  
Master Clock/Crystal Input.  
Crystal Output.  
External Input to S/PDIF Mux/Bit Clock for Serial Data I/O (Default).  
External Input to S/PDIF Mux/Left/Right Clock for Serial Data I/O (Default).  
Serial Data Output. This pin acts as the I2C address select on reset. It has an internal pull-down  
resistor.  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
SPDIF_OUT/SDO1  
PWM_READY  
DVDD  
Output of S/PDIF Mux/Serial Data Output.  
PWM Ready Flag.  
Digital Supply (1.8 V).  
DGND  
Digital Ground.  
PWM1A  
PWM1B  
PWM2A  
PWM2B  
PWM3A  
PWM3B  
PWM4A  
PWM4B  
RESET  
Pulse-Width Modulated Output 1A.  
Pulse-Width Modulated Output 1B.  
Pulse-Width Modulated Output 2A.  
Pulse-Width Modulated Output 2B.  
Pulse-Width Modulated Output 3A.  
Pulse-Width Modulated Output 3B.  
Pulse-Width Modulated Output 4A.  
Pulse-Width Modulated Output 4B.  
Reset Analog and Digital Cores.  
Digital Supply (1.8 V).  
DVDD  
DGND  
AVDD  
PLL_LF  
AGND  
AGND  
HPOUT1L  
HPOUT1R  
AVDD  
HPOUT2L  
HPOUT2R  
AUXOUT3L  
AUXOUT3R  
AUXOUT4L  
AUXOUT4R  
NC  
Digital Ground.  
PLL Supply (3.3 V).  
PLL Loop Filter.  
PLL Ground.  
Headphone Driver Ground.  
Left Headphone Output 1.  
Right Headphone Output 1.  
Headphone Driver Supply (3.3 V).  
Left Headphone Output 2.  
Right Headphone Output 2.  
Left Auxiliary Output 3.  
Right Auxiliary Output 3.  
Left Auxiliary Output 4.  
Right Auxiliary Output 4.  
No Connection to this Pin Allowed.  
DAC Filter Capacitor.  
FILTD  
Rev. B | Page 14 of 28  
ADAV4622  
Pin No.  
68  
69  
Mnemonic  
AVDD  
AGND  
Description  
DAC Supply (3.3 V).  
DAC Ground.  
70  
AGND  
DAC Ground.  
71  
72  
73  
74  
75  
76  
77  
78  
AVDD  
DAC Supply (3.3 V).  
Left Auxiliary Output 1.  
Right Auxiliary Output 1.  
Left Auxiliary Output 2.  
Right Auxiliary Output 2.  
Left Auxiliary Input 2.  
Right Auxiliary Input 2.  
Left Auxiliary Input 1.  
Right Auxiliary Input 1.  
ADC Current Setting.  
AUXOUT1L  
AUXOUT1R  
AUXOUT2L  
AUXOUT2R  
AUXIN2L  
AUXIN2R  
AUXIN1L  
AUXIN1R  
ISET  
79  
80  
Rev. B | Page 15 of 28  
ADAV4622  
TYPICAL PERFORMANCE CHARACTERISTICS  
0
0
–30  
–20  
–60  
–40  
–90  
–60  
–120  
–150  
–180  
–210  
–240  
–270  
–300  
–80  
–100  
–120  
–140  
–160  
–180  
0
192  
384  
576  
768  
0
128  
256  
384  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
Figure 10. DAC Composite Filter Response (48 kHz)  
Figure 13. ADC Composite Filter Response (48 kHz)  
0
–20  
0
–30  
–60  
–40  
–60  
–80  
–90  
–100  
–120  
–140  
–160  
–120  
–150  
–180  
0
24  
48  
72  
96  
0
24  
48  
72  
96  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
Figure 11. DAC Band-Pass Filter Response (48 kHz)  
Figure 14. ADC Band-Pass Filter Response (48 kHz)  
0.6  
0.4  
0.04  
0.03  
0.02  
0.01  
0
0.2  
0
–0.01  
–0.02  
–0.03  
–0.04  
–0.2  
–0.4  
–0.6  
0
8
16  
FREQUENCY (kHz)  
24  
0
8
16  
FREQUENCY (kHz)  
24  
Figure 12. DAC Pass-Band Ripple (48 kHz)  
Figure 15. ADC Pass-Band Ripple (48 kHz)  
Rev. B | Page 16 of 28  
 
ADAV4622  
0
–20  
0
–20  
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–160  
–100  
–120  
–140  
–160  
0
4000  
8000  
12000  
16000  
20000  
0
4000  
8000  
12000  
16000  
20000  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 19. ADC Total Harmonic Distortion + Noise  
Figure 16. DAC Dynamic Range  
0
–20  
0
–20  
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–160  
–100  
–120  
–140  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
0
4000  
8000  
12000  
16000  
20000  
NORMALIZED FREQUENCY  
FREQUENCY (Hz)  
Figure 17. DAC Total Harmonic Distortion + Noise  
Figure 20. Sample Rate Converter Transfer Function  
0
–20  
–40  
–60  
–80  
–100  
–120  
–140  
–160  
0
4000  
8000  
12000  
16000  
20000  
FREQUENCY (Hz)  
Figure 18. ADC Dynamic Range  
Rev. B | Page 17 of 28  
ADAV4622  
TERMINOLOGY  
Power Supply Rejection  
Dynamic Range  
With no analog input, the signal present at the output when a  
300 mV p-p signal is applied to power supply pins, expressed  
in decibels of full scale.  
The ratio of a full-scale input signal to the integrated input  
noise in the pass band (20 Hz to 20 kHz), expressed in decibels  
(dB). Dynamic range is measured with a −60 dB input signal  
and is equal to (S/[THD+N]) + 60 dB. Note that spurious  
harmonics are below the noise with a −60 dB input, so the noise  
level establishes the dynamic range. The dynamic range is  
specified with and without an A-weight filter applied.  
Group Delay  
Intuitively, the time interval required for an input pulse to  
appear at the converters output, expressed in milliseconds (ms).  
More precisely, the derivative of radian phase with respect to  
radian frequency at a given frequency.  
Pass Band  
The region of the frequency spectrum unaffected by the  
SIF Input Isolation  
attenuation of the digital decimators filter.  
The level of the crosstalk between the SIF inputs in dB.  
Pass-Band Ripple  
FM Limiting Sensitivity  
The peak-to-peak variation in amplitude response from equal  
amplitude input signal frequencies within the pass band,  
expressed in decibels.  
FM limiting sensitivity is given by the modulated carrier level  
that gives half the power to the FM demodulators output  
amplitude comparing to that when the carrier level satisfies  
the demodulators limiting level.  
Stop Band  
The region of the frequency spectrum attenuated by the digital  
decimators filter to the degree specified by stop-band  
attenuation.  
Deviation Mode  
In some regions, the transmitted signal can deviate from the  
specification. In order for the ADAV4622 to decode these high  
deviation signals correctly, the appropriate modulation level  
must be selected.  
Gain Error  
With a near full-scale input, the ratio of the actual output to the  
expected output, expressed in dB.  
AM Rejection Ratio  
AM rejection ratio is given by the ratio of FM (deviation = 54%)  
demodulated audio level vs. residual AM (modulation = 27%)  
demodulated audio level at the same carrier level. It is the ability  
of the receiver to not mistake an AM signal for an FM signal.  
Interchannel Gain Mismatch  
With identical near full-scale inputs, the ratio of the outputs of  
the two stereo channels, expressed in decibels.  
Crosstalk  
AM Sensitivity  
AM sensitivity is a measure of how well the receiver picks up  
very weak AM signals.  
Ratio of response on one channel with a grounded input to a  
full-scale 1 kHz sine wave input on the other channel, expressed  
in decibels.  
Rev. B | Page 18 of 28  
 
ADAV4622  
PIN FUNCTIONS  
Table 5 shows the pin numbers, mnemonics, and descriptions  
for the ADAV4622. The input pins have a logic threshold  
compatible with 3.3 V input levels.  
SDO0/AD0  
Serial data output. This pin can output two channels of digital  
audio using a variety of standard 2-channel formats. The clocks  
for SDO0 are always the same as those used by the synchronous  
inputs; this means that LRCLK1 and BCLK1 are used by default,  
although SDO0 is capable of using any pair of serial clocks,  
LRCLK0/BCLK0, LRCLK1/BCLK1, or LRCLK2/BCLK2.  
The serial port control register selects the serial format for the  
synchronous output. On reset, the SDO0 pin duplicates as the  
I2C® address select pin. In this mode, the logical state of the pin  
is polled for four MCLKI cycles following reset. The address  
select bit is set as the majority poll of the pins logic level after  
the four MCLKI cycles.  
SDIN0, SDIN1, SDIN2, AND SDIN3/SPDIF_IN0  
Serial data inputs. These input pins provide the digital audio  
data to the signal processing core. Any of the inputs can be  
routed to either of the SRCs for conversion; this input is then  
not available as a synchronous input to the audio processor but  
only as an input through the selected SRC. The serial format  
for the synchronous data is selected by Bits [3:2] of the serial  
port control register. If the SRCs are required, the serial format  
is selected by Bits [12:9] of the same register. The synchronous  
inputs are capable of using any pair of serial clocks LRCLK0/  
BCLK0, LRCLK1/BCLK1, or LRCLK2/BCLK2. By default,  
they use LRCLK1 and BCLK1. See Figure 24 for more details  
regarding the configuration of the synchronous inputs.  
SPDIF_OUT (SDO1)  
The ADAV4622 contains an S/PDIF multiplexer functionality  
that allows the SPDIF_OUT signal to be chosen from an  
internally generated S/PDIF signal or from the S/PDIF signal  
from an external source, which is connected via one of the  
SPDIF_IN pins. This pin can also be configured as an  
additional serial data output (SDO1) as an alternate function.  
SDIN3 is a shared pin with SPDIF_IN0. If SDIN3 is not in use,  
this pin can be used to connect an S/PDIF signal from an  
external source, such as an MPEG decoder, to the ADAV4622  
on-chip S/PDIF output multiplexer. If SPDIF_OUT is selected  
from one of the SPDIF_IN (external) signals, the signal is  
simply passed through from input to output.  
MCLKI/XIN  
Master clock input. The ADAV4622 uses a PLL to generate the  
appropriate internal clock for the audio processing core. A clock  
signal of a suitable frequency can be connected directly to this  
pin, or a crystal can be connected between MCLKI/XIN and  
XOUT together with the appropriate capacitors to DGND to  
generate a suitable clock signal.  
LRCLK0, BCLK0, LRCLK1, BCLK1, LRCLK2, AND  
BCLK2  
By default, LRCLK1 and BCLK1 are associated with the  
synchronous inputs, LRCLK0 and BCLK0 are associated with  
SRC1, and LRCLK2 and BCLK2 are associated with SRC2.  
However, the SRCs and synchronous inputs can use any of the  
serial clocks (see Figure 24 for more details). LRCLK0, BCLK0,  
LRCLK1, BCLK1, LRCLK2, and BCLK2 are shared pins with  
SPDIF_IN1, SPDIF_IN2, SPDIF_IN3, SPDIF_IN4, SPDIF_IN5,  
and SPDIF_IN6, respectively. If LRCLK0/LRCLK1/LRCLK2 or  
BCLK0/BCLK1/BCLK2 are not in use, these pins can be used to  
connect an S/PDIF signal from an external source, such as an  
MPEG decoder, to the ADAV4622 on-chip S/PDIF output  
multiplexer. If SPDIF_OUT is selected from one of the  
SPDIF_IN (external) signals, the signal is simply passed  
through from input to output.  
XOUT  
This pin is used in conjunction with MCLKI/XIN to generate a  
clock signal for the ADAV4622.  
MCLK_OUT  
This pin can be used to output MCLKI or one of the internal  
system clocks. It should be noted that the output level of this  
pin is referenced to DVDD (1.8 V) and not ODVDD (3.3 V)  
like all other digital inputs and outputs.  
SDA  
Serial data input for the I2C control port. SDA features a glitch  
elimination filter that removes spurious pulses that are less than  
50 ns wide.  
Rev. B | Page 19 of 28  
 
ADAV4622  
SCL  
FILTA AND FILTD  
Serial clock for the I2C control port. SCL features a glitch  
elimination filter that removes spurious pulses that are less  
than 50 ns wide.  
Decoupling nodes for the ADC and DAC. Decoupling  
capacitors should be connected between these nodes and  
AGND, typically 47 μF/0.1 μF and 10 μF/0.1 μF, respectively.  
MUTE  
PWM1A, PWM1B, PWM2A, PWM2B, PWM3A,  
PWM3B, PWM4A, AND PWM4B  
Mute input request. This active-low input pin controls the  
muting of the output ports (both analog and digital) from the  
ADAV4622. When low, it asserts mute on the outputs that are  
enabled in the audio flow.  
Differential pulse-width modulation outputs are suitable for  
driving Class-D amplifiers.  
PWM_READY  
RESET  
This pin is set high when PWM is enabled and stable.  
RESET  
Active-low reset signal. After  
goes high, all the circuit  
AVDD  
blocks are powered down. The blocks can be individually  
powered up with software. When the part is powered up, it  
takes approximately 3072 internal clocks to initialize the  
internal circuitry. The internal system clock is equal to MCLKI  
until the PLL is powered and enabled, after which the internal  
system clock becomes 2560 × fS (122.88 MHz). Once the PLL  
is powered up and enabled after reset, it takes approximately  
3 ms to lock. When the audio processor is enabled, it takes  
approximately 32,768 internal system clocks to initialize and  
load the default flow to the audio processor memory. The audio  
processor is not available during this time.  
Analog power supply pins. These pins should be connected to  
3.3 V. Each pin should be decoupled with 10 μF and 0.1 μF  
capacitors to AGND, as close to the pin as possible.  
DVDD  
Digital power supply. This pin is connected to a 1.8 V digital  
supply. Connecting 10 μF and 0.1 μF decoupling capacitors to  
DGND, as close to the pin as possible, is strongly recommended  
for optimal performance.  
ODVDD  
Digital interface power supply pin. This pin should be  
connected to a 3.3 V digital supply. The pin should be  
decoupled with 10 μF and 0.1 μF capacitors to DGND, as  
close to the pin as possible.  
AUXIN1L, AUXIN2L, AUXIN1R, AND AUXIN2R  
Analog inputs to the on-chip ADCs.  
AUXOUT1L, AUXOUT2L, AUXOUT3L, AUXOUT4L,  
AUXOUT1R, AUXOUT2R, AUXOUT3R, AND  
AUXOUT4R  
DGND  
Digital ground.  
Auxiliary DAC analog outputs. These pins can be programmed  
to supply the outputs of the internal audio processing for line  
out or record use.  
AGND  
Analog ground.  
ODGND  
HPOUT1L, HPOUT2L, HPOUT1R, AND HPOUT2R  
Ground for the digital interface power supply.  
Analog outputs from the headphone amplifiers.  
SIF_REFP, SIF_REFCM, AND SIF_REFN  
PLL_LF  
Decoupling nodes for the SIF block.  
PLL loop filter connection. A 100 nF capacitor and a 2 kΩ  
resistor in parallel with a 1 nF capacitor tied to AVDD are  
required for the PLL loop filter to operate correctly.  
SIF_IN1 AND SIF_IN2  
Analog inputs for the SIF block.  
VREF  
SIF_PGA_REF  
Voltage reference for DACs and ADCs. This pin is driven by an  
internal 1.5 V reference voltage.  
PGA reference output. This pin should be decoupled to AGND  
with 10 μF and 0.1 μF capacitors.  
ISET  
ADC current setting resistor.  
Rev. B | Page 20 of 28  
 
 
ADAV4622  
FUNCTIONAL DESCRIPTIONS  
SIF PROCESSOR  
SIF Processor Configuration  
The ADAV4622 supports automatic standard detection, which  
is enabled by default. The ASD controller configures the SIF  
processor with the optimum register settings based on the  
detected standard. If the user prefers to operate in manual mode,  
or if the user prefers to use an external ASD loop, all of the ASD  
status registers are available.  
Supported SIF Standards  
The ADAV4622 supports all worldwide standards, as shown in  
Table 6.  
Table 6. ADAV4622 Worldwide SIF Standards  
System  
Sound  
BTSC  
BTSC  
EIAJ  
SC1 (MHz)  
SC2 (MHz)  
M
N
M
4.5  
4.5  
4.5  
4.5  
5.5  
5.5  
6.0  
6.0  
6.5  
6.5  
6.5  
6.5  
6.5  
6.5  
MASTER CLOCK OSCILLATOR  
Internally, the ADAV4622 operates synchronously to the master  
MCLKI input. All internal system clocks are generated from  
this single clock input using an internal PLL. This MCLKI input  
can also be generated by an external crystal oscillator connected  
to the MCLKI/XIN pin or by using a simple crystal resonator  
connected across MCLKI/XIN and XOUT. By default, the  
master clock frequency is 24.576 MHz; however, by using the  
internal dividers, an MCLKI of 12.288 MHz, 6.144 MHz, and  
3.072 MHz are also supported.  
M
A2  
4.724  
5.742  
5.85  
6.552  
6.258  
6.742  
5.742  
5.85  
BG  
BG  
I
A2  
NICAM  
Mono  
NICAM  
A2  
A2  
A2  
NICAM  
Mono  
NICAM  
I
DK1  
DK2  
DK3  
DK  
L
MASTER CLOCK FREQUENCY  
EXTERNAL CLOCK/  
OSC  
[24.576MHz, 12.288MHz,  
6.144MHz, 3.072MHz]  
CRYSTAL  
L
5.85  
SIF Demodulation  
Figure 22 shows a block diagram of the SIF demodulation  
block. The selected SIF input signal is digitized by an ADC with  
a sample rate of 24.576 MHz. An AGC is included to ensure  
that for even low level signals, the full range of the ADC is used.  
The digitized input is passed to the SIF demodulator for  
demodulating. The outputs of the demodulator are then passed  
to the internal audio processor. Internally, the audio processor  
runs at a 48 kHz sampling frequency. When NICAM is selected,  
an internal SRC upsamples the 32 kHz NICAM signal to the  
audio processor rate of 48 kHz.  
PLL  
REFERENCE  
CLOCK  
3.072MHz  
DIVIDER  
DIVIDER WORD  
[÷8, ÷4, ÷2, ÷1]  
2
REGISTER  
I C  
Figure 21. Master Clock  
SC1  
SC2  
SIF_IN1  
A
B
SIF INPUT  
4.5MHz ~ 6.742MHz  
FM/DQPSK/AM  
ADC  
SIF_IN2  
DEMOD  
AGC  
SIF  
24.576MHz  
PARAMETERS  
ASD  
Figure 22. SIF Demodulation  
Rev. B | Page 21 of 28  
 
 
 
ADAV4622  
I2C INTERFACE  
Resistor matching (typically 1%) between RIN and RISET is  
important to ensure a full-scale signal on the ADC without  
clipping.  
The ADAV4622 supports a 2-wire serial (I2C compatible)  
microprocessor bus driving multiple peripherals. The  
ADAV4622 is controlled by an external I2C master device,  
such as a microcontroller. The ADAV4622 is in slave mode  
on the I2C bus, except during self-boot. While the ADAV4622  
is self-booting, it becomes the master, and the EEPROM, which  
contains the ROMs to be booted, is the slave. When the self-  
boot process is complete, the ADAV4622 reverts to slave mode  
on the I2C bus. No other devices should access the I2C bus while  
the ADAV4622 is self-booting (refer to the Application Layer  
section and the Loading a Custom Audio Processing Flow  
section).  
ANALOG INPUT  
100µA rms  
FULL SCALE  
24-BIT  
ADC  
AUXIN1L  
20k  
DC BIAS  
1.5V  
ANALOG INPUT  
100µA rms  
FULL SCALE  
24-BIT  
ADC  
AUXIN1R  
20kΩ  
DC BIAS  
1.5V  
ANALOG INPUT  
100µA rms  
FULL SCALE  
24-BIT  
ADC  
AUXIN2L  
20kΩ  
DC BIAS  
1.5V  
Initially, all devices on the I2C bus are in an idle state, wherein  
the devices monitor the SDA and SCL lines for a start condition  
and the proper address. The I2C master initiates a data transfer  
by establishing a start condition, defined by a high-to-low  
transition on SDA while SCL remains high. This indicates that  
an address/data stream follows. All devices on the bus respond  
to the start condition and read the next byte (7-bit address plus  
ANALOG INPUT  
100µA rms  
FULL SCALE  
24-BIT  
ADC  
AUXIN2R  
20kΩ  
DC BIAS  
1.5V  
ISET  
ISET  
20kΩ  
R
Figure 23. Analog Input Section  
W
the R/ bit) MSB first. The device that recognizes the transmit-  
I2S DIGITAL AUDIO INPUTS  
ted address responds by pulling the data line low during the  
ninth clock pulse. This ninth bit is known as an acknowledge  
bit. All other devices on the bus revert to an idle condition. The  
The ADAV4622 has four I2S digital audio inputs that are, by  
default, synchronous to the master clock. Also available are two  
SRCs capable of supporting any nonsynchronous input with a  
sample rate between 5 kHz and 50 kHz. Any of the serial digital  
inputs can be redirected through the SRC. Figure 24 shows a  
block diagram of the input serial port.  
W
R/ bit determines the direction of the data. A Logic Level 0  
on the LSB of the first byte means the master writes information  
to the peripheral. A Logic Level 1 on the LSB of the first byte  
means the master reads information from the peripheral. A data  
transfer takes place until a stop condition is encountered. A stop  
condition occurs when SDA transitions from low to high while  
SCL is held high.  
SDIN0  
SDIN1  
SDIN2  
SRC2B  
SDIN3  
The ADAV4622 determines its I2C device address by sampling  
the SDO0 pin after reset. Internally, the SDO0 pin is sampled by  
four MCLKI edges to determine the state of the pin (high or  
low). Because the pin has an internal pull-down resistor default,  
the address of the ADAV4622 is 0x34 (write) and 0x35 (read).  
An alternate address, 0x36 (write) and 0x37 (read), is available  
by tying the SDO0 pin to ODVDD via a 10 kΩ resistor. The I2C  
interface supports a clock frequency up to 400 kHz.  
SRC2C  
LRCLK0  
BCLK0  
LRCLK1  
BCLK1  
LRCLK2  
BCLK2  
SDIN0  
SDIN1  
SDIN2  
SDIN3  
AUDIO  
PROCESSOR  
LRCLK0  
SRC1  
ADC INPUTS  
BCLK0  
LRCLK1  
BCLK1  
The ADAV4622 has four ADC inputs. By default, these are  
configured as two stereo inputs; however, because the audio  
processor is programmable, these inputs can be reconfigured.  
LRCLK2  
BCLK2  
SDIN0  
SDIN1  
SDIN2  
The ADC inputs are shown in Figure 23. The analog inputs are  
current inputs (100 μA rms FS) with a 1.5 V dc bias voltage.  
Any input voltage can be accommodated by choosing a suitable  
SRC2A  
SRC2B  
SRC2C  
SDIN3  
LRCLK0  
BCLK0  
SRC2  
combination of input resistor (RIN) and ISET resistor (RISET  
using the formulas  
)
LRCLK1  
BCLK1  
LRCLK2  
BCLK2  
R
R
IN = VFS rms/100 μA rms  
Figure 24. Digital Input Section  
ISET = 2RIN/VIN  
Rev. B | Page 22 of 28  
 
 
 
ADAV4622  
synchronous port; the default clocks in this case are BCLK1 and  
LRCLK1.  
Synchronous Inputs and Outputs  
The synchronous digital inputs and outputs can use any of the  
BCLK or LRCLK inputs as a clock and framing signal. By  
default, BCLK1 and LRCLK1 are the serial clocks used for the  
synchronous inputs. The synchronous port for the ADAV4622  
is in slave mode by default, which means the user must supply  
the appropriate serial clocks, BCLK and LRCLK. The  
synchronous port can also be set to master mode, which means  
that the appropriate serial clocks, BCLK and LRCLK, can be  
generated internally from the MCLK; therefore, the user does  
not need to provide them. The serial data inputs are capable of  
accepting all the popular audio transmission standards (see the  
Serial Data Interface section for more details).  
Serial Data Interface  
LRCLK is the framing signal for the left- and right-channel  
inputs, with a frequency equal to the sampling frequency (fS).  
BCLK is the bit clock for the digital interface, with a frequency  
of 64 × fS (32 BCLK periods for each of the left and right  
channels).  
The serial data interface supports all the popular audio interface  
standards, such as I2S, left-justified (LJ), and right-justified (RJ).  
The interface mode is software selectable, and its default is I2S.  
The data sample width is also software selectable from 16 bits,  
20 bits, or 24 bits. The default is 24 bits.  
Asynchronous Inputs  
I2S Mode  
The ADAV4622 has two SRCs, SRC1 and SRC2, that can be  
used for converting digital data, which is not synchronous to  
the master clock. Each SRC can accept input sample rates in the  
range of 5 kHz to 50 kHz. Data that has been converted by the  
SRC is inputted to the part and is then synchronous to the  
internal audio processor.  
In I2S mode, the data are left-justified, MSB first, with the MSB  
placed in the second BCLK period following the transition of  
the LRCLK. A high-to-low transition of the LRCLK signifies the  
beginning of the left-channel data transfer, and a low-to-high  
transition on the LRCLK signifies the beginning of the right-  
channel data transfer (see Figure 26).  
The SRC1 is a 2-channel (single-stereo) sample rate converter  
that is capable of using any of the three serial clocks available.  
The SRC1 can accept data from any of the serial data inputs  
(SDIN0, SDIN1, SDIN2, and SDIN3). Once selected as an input  
to the SRC, this SDIN line is assumed to contain asynchronous  
data and is then masked as an input to the audio processor to  
ensure that asynchronous data is not processed as synchronous  
data. By default, SRC1 uses the LRCLK0 and BCLK0 as the  
clock and framing signals.  
LJ Mode  
In LJ mode, the data are left-justified, MSB first, with the MSB  
placed in the first BCLK period following the transition of the  
LRCLK. A high-to-low transition of the LRCLK signifies the  
beginning of the right-channel data transfer, and a low-to-high  
transition on the LRCLK signifies the beginning of the left-  
channel data transfer (see Figure 27).  
RJ Mode  
The SRC2 is a 6-channel (3-stereo) sample rate converter that is  
capable of using any of the three serial clocks available. The  
SRC2 can accept data from any of the serial data inputs (SDIN0,  
SDIN1, SDIN2, and SDIN3). Once selected as an input to the  
SRC, this SDIN line is assumed to contain asynchronous data  
and is then masked internally as an input to the audio processor  
to ensure that asynchronous data is not processed as  
In RJ mode, the data are right-justified, LSB last, with the LSB  
placed in the last BCLK period preceding the transition of  
LRCLK. A high-to-low transition of the LRCLK signifies the  
beginning of the right-channel data transfer, and a low-to-high  
transition on the LRCLK signifies the beginning of the left-  
channel data transfer (see Figure 28).  
DAC VOLTAGE OUTPUTS  
synchronous data. By default, SRC2 uses the LRCLK2 and  
BCLK2 as the clock and framing signals.  
The ADAV4622 has eight DAC outputs, configured as four stereo  
auxiliary DAC outputs. However, because the flow is customiza-  
ble, this is programmable. The output level is 1 V rms full scale.  
The first output (SRC2A) from SRC2 is always available to the  
audio processor. The other two outputs are muxed with two of  
the serial inputs before being available to the audio processor.  
SRC2B is muxed with SDIN2 and SRC2C is muxed with SDIN3.  
By default, these muxes are configured so that the synchronous  
inputs are available to the audio processor. The SRC2B and  
SRC2C channels can be made available to the audio processor  
simply by enabling them by register write.  
AUXOUT1L  
DAC  
DAC  
DAC  
DAC  
AUXOUT1R  
AUXOUT2L  
AUXOUT2R  
AUXOUT3L  
AUXOUT3R  
When using the ADAV4622 in an asynchronous digital-in-to-  
digital-out configuration, the input digital data are input to the  
audio processor core from one of the SRCs, using the assigned  
BCLK/LRCLK as a framing signal. The digital output is  
synchronous to the BCLK/LRCLK, which is assigned to the  
AUXOUT4L  
AUXOUT4R  
Figure 25. DAC Output Section  
Rev. B | Page 23 of 28  
 
ADAV4622  
LEFT CHANNEL  
LRCLK  
BCLK  
SDO0  
RIGHT CHANNEL  
LSB  
LSB  
MSB  
MSB  
1 /F  
S
Figure 26. I2S Mode  
RIGHT CHANNEL  
LEFT CHANNEL  
LRCLK  
BCLK  
MSB  
MSB  
LSB  
LSB  
SDO0  
1 /F  
S
Figure 27. Left-Justified Mode  
RIGHT CHANNEL  
LEFT CHANNEL  
LRCLK  
BCLK  
SDO0  
MSB  
LSB  
MSB  
LSB  
1 /F  
S
Figure 28. Right-Justified Mode  
PWM OUTPUTS  
HEADPHONE OUTPUTS  
In the ADAV4622, the main outputs are available as four PWM  
output channels, which are suitable for driving Class-D amplifiers.  
PWM_Ready is a status pin used to signify that the ADAV4622  
PWM outputs are in a valid state. During PWM power-up and  
power-down, this pin remains low to signify that the outputs  
are not in a valid state. The output power stage should remain  
muted until this pin goes high. This functionality helps to  
eliminate pop/click and other unwanted noise on the outputs.  
There are two stereo headphone amplifier outputs capable  
of driving 32 Ω loads at 1 V rms. HPOUT1 is shared with  
AUXOUT4, and HPOUT2 is shared with AUXOUT2, as shown  
in Figure 30.  
AUXOUT4L  
PA  
HPOUT1L  
DAC  
HPOUT1R  
AUXOUT4R  
AUXOUT2L  
PA  
HPOUT2L  
HPOUT2R  
+
PWM  
MODULATOR  
PWM1A  
PWM1B  
DAC  
AUXOUT2R  
+
PWM2A  
PWM2B  
PWM  
MODULATOR  
Figure 30. Headphone Outputs Section  
+
I2S DIGITAL AUDIO OUTPUTS  
PWM3A  
PWM3B  
PWM  
MODULATOR  
One I2S output, SDO0, uses the same serial clocks as the serial  
inputs, which are BCLK1 and LRCLK1 by default. If an addi-  
tional digital output is required, an additional pin can be  
reconfigured as a serial digital output, as shown in Figure 31.  
+
PWM4A  
PWM4B  
PWM  
MODULATOR  
PWM_READY  
Figure 29. PWM Output Section  
L
SDO0  
Each set of PWM outputs is a complementary output. The  
modulation frequency is 384 kHz, and the full-scale duty cycle  
has a ratio of 97:3.  
R
2
I S OUTPUT  
INTERFACE  
L
SPDIF_OUT (SDO1)  
S/PDIF  
OUTPUT  
R
Full details on the use of the PWM outputs are available upon  
request. Contact a local Analog Devices sales representative for  
more details.  
BCLK1  
LRCLK1  
Figure 31. I2S Digital Outputs  
Rev. B | Page 24 of 28  
 
 
 
 
 
 
ADAV4622  
S/PDIF INPUT/OUTPUT  
AUDIO PROCESSOR  
The S/PDIF output (SPDIF_OUT/SDO1) uses a multiplexer to  
select an output from the audio processor or to pass through the  
unprocessed SPDIF_IN signals, as shown in Figure 32. On the  
ADAV4622, the S/PDIF inputs, SPDIF_IN0/SPDIF_IN1/  
SPDIF_IN2/SPDIF_IN3/SPDIF_IN4/SPDIF_IN5/SPDIF_IN6,  
are available on the SDIN3, LRCLK0, BCLK0, LRCLK1,  
BCLK1, LRCLK2, and BCLK2 pins, respectively. It is possible to  
have all seven S/PDIF inputs connected to different S/PDIF  
signals at one time. A consequence of this setup is that none of  
the LRCLKs and BCLKs are available for use with the digital  
inputs SDIN0, SDIN1, SDIN2, and SDIN3. If there is only one  
S/PDIF input in use, using the SDIN3 pin as the dedicated  
S/PDIF input is recommended; this enables BCLK0/LRCLK0,  
BCLK1/LRCLK1, and BCLK2/LRCLK2 to be used as the clock  
and framing signal for the synchronous and asynchronous port.  
If SDIN3 is used as an S/PDIF input, it should not be used  
internally as an input to the audio processor because it contains  
invalid data. Similarly, if BCLK or LRCLK are used as S/PDIF  
inputs, they can no longer be used as the clock and framing  
signals for SDIN0, SDIN1, SDIN2, and SDIN3. The S/PDIF  
encoder supports only consumer formats that conform to  
IEC-600958.  
The internal audio processor runs at 2560 × fS; at 48 kHz, this  
is 122.88 MHz. Internally, the word size is 28 bits, which allows  
24 dB of headroom for internal processing. Designed specific-  
ally with audio processing in mind, it can implement complex  
audio algorithms efficiently.  
By default, the ADAV4622 loads a default audio flow, as shown  
in Figure 34. However, because the audio processor is fully  
programmable, a custom audio flow can be quickly developed  
and loaded to the audio processor.  
The audio flow is contained in program RAM and parameter  
RAM. Program RAM contains the instructions to be processed  
by the audio processor, and parameter RAM contains the  
coefficients that control the flow, such as volume control, filter  
coefficients, and enable bits.  
GRAPHICAL PROGRAMMING ENVIRONMENT  
Custom flows for the ADAV4622 are created in a powerful  
drag-and-drop graphical programming application. No knowl-  
edge of assembly code is required to program the ADAV4622.  
Featuring a comprehensive library of audio processing blocks  
(such as filters, delays, dynamics processors, and third-party  
algorithms), it allows the quick and simple creation of custom  
flows. For debugging purposes, run-time control of the audio  
flow allows the user to fully configure and test the created flow.  
SDIN3 (SPDIF_IN0)  
LRCLK0 (SPDIF_IN1)  
BCLK0 (SPDIF_IN2)  
LRCLK1 (SPDIF_IN3)  
BCLK1 (SPDIF_IN4)  
LRCLK2 (SPDIF_IN5)  
BCLK2 (SPDIF_IN6)  
Training materials and support are available upon request.  
Contact a local Analog Devices sales representative for more  
details.  
APPLICATION LAYER  
S/PDIF  
ENCODER  
SDO1 (SPDIF_OUT)  
Unique to this family is the embedded application layer, which  
allows the user to define a custom set of registers to control the  
audio flow, greatly simplifying the interface between the audio  
processor and the system controller.  
Figure 32. S/PDIF Output  
HARDWARE MUTE CONTROL  
The ADAV4622 mute input can be used to mute any of the  
MUTE  
selected outputs ramp to a muted condition. Unmuting is  
Once a custom flow is created, a user-customized register map  
can be defined for controlling the flow. Each register is 16 bits,  
but controls can use only one bit or all 16 bits. Users have full  
control over which parameters they control and the degree of  
control they have over those parameters during run time. The  
combination of the graphical programming environment and  
the powerful application layer allows the user to quickly develop  
a custom audio flow and still maintain the usability of a simple  
register-based device.  
analog or digital outputs. When the  
pin goes low, the  
handled in one of two ways and depends on the register setting.  
MUTE  
By default, the  
pin going high causes the outputs to  
immediately ramp to an unmuted state. However, it is also  
possible to have the unmute operation controlled by a control  
MUTE  
register bit. In this scenario, even if the  
pin goes high,  
the device does not unmute until a bit in the control register is  
set. This can be used when the user wants to keep the outputs  
muted, even after the pin has gone high again, for example, in  
the case of a fault condition. This allows the system controller  
total control over the unmute operation.  
Comprehensive documentation on developing a custom audio  
flow and the definition and creation of the custom application  
layer for the ADAV4622 is available upon request. Contact a  
local Analog Devices sales representative for more details.  
Full details on register settings and operation of the mute function  
are available upon request. Contact a local Analog Devices sales  
representative for more details.  
Rev. B | Page 25 of 28  
 
 
 
ADAV4622  
LOADING A CUSTOM AUDIO PROCESSING FLOW  
ADDRESS  
DATA  
The ADAV4622 can load a custom audio flow from an external  
I2C ROM. The boot process is initiated by a simple control  
register write. The EEPROM device address and the EEPROM  
start address for the audio flow ROMs can all be programmed.  
AUDIO  
PROCESSOR  
MEMORY  
AUDIO  
PROCESSOR  
LOAD  
LOAD  
ON  
ON  
For the duration of the boot sequence, the ADAV4622 becomes  
the master on the I2C bus. Transfer of the ROMs from the  
EEPROM to the ADAV4622 takes a maximum of 1.06 sec,  
assuming that the full audio processor memory is required,  
during which time no other devices should access the I2C bus.  
Once the transfer is complete, the ADAV4622 automatically  
reverts to slave mode, and the I2C bus master can resume  
sending commands.  
RESET  
COMMAND  
DEFAULT  
CODE  
BOOT-UP  
ROM  
2
I C PORT  
EXTERNAL  
CUSTOM  
CODE  
BOOT-UP ROM  
47260 BYTES (MAX)  
Figure 33. External EEPROM Booting  
Rev. B | Page 26 of 28  
 
 
ADAV4622  
PWM1  
(LHIGH)  
PWM2  
(RHIGH)  
BEEPER  
PWM3  
(LLOW)  
AUXIN1L  
AUXIN1R  
PWM4  
(RLOW)  
AUXIN2L  
AUXIN2R  
SDIN0  
SUB  
CHANNEL  
TO INPUT  
MUXES  
SDIN1  
HPOUT1L/  
AUXOUT4L  
SDIN2/SRC2  
CHANNEL B  
SDIN3/SRC2  
CHANNEL C  
HPOUT1R/  
AUXOUT4R  
SRC1  
SRC2  
CHANNEL A  
AUXOUT2L/  
HPOUT2L  
AUXOUT2R/  
HPOUT2R  
S/PDIF OUTL  
(SDOL1)  
SUB  
CHANNEL  
S/PDIF OUTR  
(SDOR1)  
AUXOUT1L  
AUXOUT1R  
SDOL0  
SDOR0  
AUXOUT3L  
AUXOUT3R  
Figure 34. Default Audio Processing Flow  
Rev. B | Page 27 of 28  
 
ADAV4622  
OUTLINE DIMENSIONS  
16.20  
16.00 SQ  
15.80  
0.75  
0.60  
0.45  
1.60  
MAX  
61  
80  
1
60  
PIN 1  
14.20  
14.00 SQ  
13.80  
TOP VIEW  
(PINS DOWN)  
1.45  
1.40  
1.35  
0.20  
0.09  
7°  
3.5°  
0°  
0.10  
COPLANARITY  
20  
41  
0.15  
0.05  
40  
21  
SEATING  
PLANE  
VIEW A  
0.65  
0.38  
0.32  
0.22  
BSC  
LEAD PITCH  
VIEW A  
ROTATED 90° CCW  
COMPLIANT TO JEDEC STANDARDS MS-026-BEC  
Figure 35. 80-Lead Low Profile Quad Flat Package [LQFP]  
(ST-80-2)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
ADAV4622BSTZ1  
EVAL-ADAV4622EBZ1  
Temperature Range SIF Standard  
−40°C to +85°C PAL/NTSC/SECAM  
Package Description  
Package Option  
80-Lead Low Profile Quad Flat Package (LQFP)  
Evaluation Board  
ST-80-2  
1 Z = RoHS Compliant Part.  
In addition, it is backward compatible with conventional SnPb soldering processes. This means the electroplated Sn coating can be soldered with Sn/Pb solder pastes  
at conventional reflow temperatures of 220°C to 235°C.  
Purchase of licensed I2C components of Analog Devices or one of its sublicensed Associated Companies conveys a license for the purchaser under the Philips I2C Patent  
Rights to use these components in an I2C system, provided that the system conforms to the I2C Standard Specification as defined by Philips.  
©2008–2009 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D07068-0-7/09(B)  
Rev. B | Page 28 of 28  
 

相关型号:

ADAV801

Audio Codec for Recordable DVD
ADI

ADAV801AST

IC SPECIALTY CONSUMER CIRCUIT, PQFP64, PLASTIC, LQFP-64, Consumer IC:Other
ADI

ADAV801ASTZ

Audio Codec for Recordable DVD
ADI

ADAV801ASTZ-REEL

Audio Codec for Recordable DVD
ADI

ADAV802AST

IC SPECIALTY CONSUMER CIRCUIT, PQFP64, PLASTIC, LQFP-64, Consumer IC:Other
ADI

ADAV803

Audio Codec for Recordable DVD
ADI

ADAV803AST

IC SPECIALTY CONSUMER CIRCUIT, PQFP64, PLASTIC, LQFP-64, Consumer IC:Other
ADI

ADAV803AST-REEL

Audio Codec for Recordable DVD; Package: LQFP 1.4 MM; No of Pins: 64; Temperature Range: Commercial
ADI

ADAV803AST-REEL7

Audio Codec for Recordable DVD; Package: LQFP 1.4 MM; No of Pins: 64; Temperature Range: Commercial
ADI

ADAV803AST-U3

IC,SOUNDCARD CIRCUITS,QFP,64PIN,PLASTIC
ADI

ADAV803ASTZ

Audio Codec for Recordable DVD
ADI

ADAV803ASTZ-REEL

Audio Codec for Recordable DVD
ADI