ADBT1002BSWZ [ADI]

4-Channel AFE, Digital Controller, and PWM for Battery Formation and Testing;
ADBT1002BSWZ
型号: ADBT1002BSWZ
厂家: ADI    ADI
描述:

4-Channel AFE, Digital Controller, and PWM for Battery Formation and Testing

电池
文件: 总44页 (文件大小:1420K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Data Sheet  
ADBT1002  
4-Channel AFE, Digital Controller, and PWM for Battery Formation and Testing  
FEATURES  
APPLICATIONS  
Precise measurement of the voltage and current  
4 PWM control channels up to 14 bits (effective) resolution  
Selectable synchronous and asynchronous rectifier operation  
Programmable dead time compensation  
Programmable switching frequency from 62.5 kHz to 500 kHz  
in powers of 2 steps  
Multiphase operation  
Interchip digital current sharing  
Interchip frequency synchronization  
Digital control loop  
Programmable PID loop filters  
Fast dc bus voltage feedforward  
Integrated spectrum analysis per channel  
SPI port control and status interface  
Host interrupt on programmable status changes  
Constant current and constant voltage operating modes  
15-bit setpoint resolution  
Input and output inrush current protection  
External NTC thermistor temperature sensing  
Internal die temperature measurement  
User calibration of input voltages and currents  
0°C to 85°C operation  
Battery formation and testing  
High efficiency battery test systems with recycle capability  
Battery conditioning (charging and discharging) systems  
GENERAL DESCRIPTION  
The ADBT1002 is a flexible, feature rich digital controller that tar-  
gets high volume battery testing and formation manufacturing and  
precision battery test instrumentation applications. The ADBT1002  
is optimized for minimal component count, maximum flexibility, and  
minimum design time. Features include differential remote voltage  
sense, current sense, pulse-width modulation (PWM) generation,  
frequency synchronization, overvoltage protection (OVP), and cur-  
rent sharing. Programmable protection features include overcurrent  
protection (OCP), OVP limiting, and external overtemperature pro-  
tection (OTP).  
Parameters can be programmed over the serial peripheral interface  
(SPI), providing extensive programming of the integrated loop filter,  
PWM signal timing, and soft start timing. The SPI provides access  
to the many monitoring and system test functions. Reliability is  
improved through a built-in checksum and programmable protection  
circuits.  
A comprehensive graphical user interface (GUI) is provided for  
simple system and channel configuration and programming of  
the safety features. The ADBT1002 is available in a 100-lead  
LQFP_EP.  
TYPICAL APPLICATION DIAGRAM  
Figure 1.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable "as is". However, no responsibility is assumed by Analog  
Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to  
change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
DOCUMENT FEEDBACK  
TECHNICAL SUPPORT  
Data Sheet  
ADBT1002  
TABLE OF CONTENTS  
Features................................................................ 1  
Applications........................................................... 1  
General Description...............................................1  
Typical Application Diagram.................................. 1  
Specifications........................................................ 3  
Analog Front End and Controller  
Supports Precharge Operation.........................15  
Sequencer........................................................... 16  
Instruction Definition.........................................16  
Sequencing Modes...........................................16  
Charge and Discharge Instruction Modes........18  
Charge and Discharge Instruction Limits......... 18  
Slew Rate.........................................................19  
Parallel Operation.............................................19  
Flags.................................................................19  
Global Register Settings...................................20  
Channel Static Settings....................................20  
Instruction Set Architecture.............................. 20  
Sequencer Operation Example........................ 24  
Memory Mapped Registers................................. 25  
Host SPI Interface Details................................... 37  
SPI Overview....................................................37  
Communications Protocols...............................37  
Applications Information...................................... 39  
Calibration........................................................ 39  
Diagnostics.......................................................39  
Operating Use Cases.......................................39  
Outline Dimensions............................................. 44  
Ordering Guide.................................................44  
Specifications................................................... 3  
Absolute Maximum Ratings...................................8  
Thermal Resistance........................................... 8  
Soldering............................................................ 8  
Electrostatic Discharge (ESD) Ratings...............8  
ESD Caution.......................................................8  
Pin Configuration and Function Descriptions........ 9  
Theory of Operation.............................................13  
Overview.......................................................... 13  
Analog Front End............................................. 14  
Digital Controller...............................................14  
Host SPI........................................................... 14  
Host Interrupt Request..................................... 14  
Clocking............................................................14  
GPIOx Pins.......................................................14  
Auxiliary ADC................................................... 14  
Supports Coulombic Efficiency Measurement..14  
analog.com  
Rev. 0 | 2 of 44  
Data Sheet  
ADBT1002  
SPECIFICATIONS  
AHVDD = 15 V, AHVSS = −15 V, VDDIO = AVDD = DVDD = 3.3 V, and TA = 0°C to 85°C, unless otherwise noted.  
ANALOG FRONT END AND CONTROLLER SPECIFICATIONS  
Table 1.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
CURRENT SENSE CHANNEL  
Gain  
40  
V/V  
Gain Error  
VOUT =±2 V  
0.2  
%
Gain Drift  
10  
ppm/°C  
LSB  
LSB/°C  
nA  
System Input Offset Voltage  
System Input Offset Voltage Drift  
Input Bias Current  
−10  
+10  
0.235  
500  
+62.5  
RTI  
VICM = VREF/2  
30  
Input Differential Voltage Range  
Input Common-Mode Voltage Range  
Differential Input Impedance  
Common-Mode Input Impedance  
Input Resistance  
−62.5  
mV  
AHVSS + 5  
AHVDD − 5  
V
By design  
24  
kΩ  
By design  
246  
492  
110  
kΩ  
Both input pins  
kΩ  
Common-Mode Rejection Ratio (CMRR)  
100  
120  
dB  
CMRR Drift  
0.05  
ppm/°C  
kHz  
dB  
Small Signal −3 dB Bandwidth (Gain = 40)1  
Power Supply Rejection Ratio (PSRR)  
Slew Rate  
TA = 25°C, VOUT = 100 mV p-p  
Supply voltage (Vs) = ±5 V to ±18 V  
VOUT = ±2 V  
600  
0.6  
V/μs  
Readout Data Signal-to-Noise Ratio (SNR)  
Update Rate4  
MAF2 = 16, FIR3 on  
31.25 kHz (OSR = 32)  
66  
69  
72  
75  
dB  
dB  
dB  
dB  
mV  
15.625 kHz (OSR = 64)  
7.8125 kHz (OSR = 128)  
3.90625 kHz (OSR = 256)  
Full-Scale Input Range  
−60  
−10  
+60  
VOLTAGE SENSE AND CAPACITOR VOLTAGE  
SENSE CHANNEL  
Gain  
0.5  
V/V  
%
Gain Error  
VOUT = ±2 V  
0.2  
Gain Drift  
10  
ppm/°C  
LSB  
LSB/°C  
V
Input Offset Voltage  
Offset Voltage Drift  
Input Common-Mode Voltage Range  
Differential Input Impedance  
Common-Mode Input Impedance  
Input Resistance  
+10  
0.235  
AHVDD − 5  
AHVSS + 5  
0.85  
By design  
1
MΩ  
kΩ  
By design  
375  
750  
375  
200  
Noninverting pin  
Inverting pin  
kΩ  
kΩ  
Small Signal −3 dB Bandwidth (G = 0.5)5  
TA = 25°C, VOUT = 100 mV p-p  
kHz  
CMRR  
BVx_x  
CVS_x  
80  
78  
90  
90  
dB  
dB  
analog.com  
Rev. 0 | 3 of 44  
Data Sheet  
ADBT1002  
SPECIFICATIONS  
Table 1.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
CMRR Drift  
BVx_x  
0.235  
3
ppm/°C  
ppm/°C  
dB  
CVS_x  
PSRR  
100  
120  
0.15  
30  
Slew Rate  
V/μs  
Power Dissipation  
mW  
Readout Data SNR  
Update Rate  
MAF = 16, FIR on  
31.25 kHz (OSR = 32)  
15.625 kHz (OSR = 64)  
7.8125 kHz (OSR = 128)  
3.90625 kHz (OSR = 256)  
Full-Scale Input Range  
BATTERY CURRENT AND VOLTAGE ADCS  
SNR  
79  
80  
81  
81  
dB  
dB  
dB  
dB  
V
−4.8  
+4.8  
VREF = 2.5 V  
1 kHz sine wave at 80% full scale  
70  
70  
12  
dB  
Signal-to-Noise-and-Distortion (SINAD) Ratio  
Resolution  
dB  
Bits  
Differential Nonlinearity (DNL)6  
Integral Nonlinearity (INL)  
Sampling Rate  
−1  
−3  
+1  
+3  
LSB  
Internal voltage reference  
LSB  
1
MHz/Channel  
VOLTAGE REFERENCE (INTERNAL)  
Voltage Range  
2.495  
62.5  
2.500  
2.505  
11  
V
Temperature Coefficient  
RMS Noise  
7
7
ppm/°C  
μV rms  
REFCAP = 1 μF  
PULSE-WIDTH MODULATION (PWM)  
Resolution  
External CLK = 16 MHz  
14  
Bits  
kHz  
ns  
Switching Frequency  
Programmable Dead Time  
fSW  
500  
Minimum  
Maximum  
0
992.2  
7.8125  
0
ns  
Dead Time Resolution7  
ns  
Delay from External SYNC (Programmable)  
Minimum8  
µs  
Maximum at fSW  
62.5 kHz9  
=
16  
µs  
Delay Resolution  
7.8125  
ns  
Effective Phase Shift Resolution  
fSW = 62.5 kHz  
0.176  
0.352  
0.703  
1.406  
Degrees  
Degrees  
Degrees  
Degrees  
fSW = 125 kHz  
fSW = 250 kHz  
fSW = 500 kHz  
CHANNEL AC PERFORMANCE  
Loop Bandwidth (Cross over Frequency)  
10  
2
50  
kHz  
μs  
Constant Current to Constant Voltage Transition  
Time  
fSW = 500 kHz  
fSW = 62.5 kHz  
16  
μs  
Channel to Channel Isolation  
Current and Voltage Readout Rate10  
100  
dB  
Minimum OSR11  
Maximum OSR  
31,250  
15.26  
16  
Samples/sec  
Samples/sec  
Bits  
Output Data Resolution  
analog.com  
Rev. 0 | 4 of 44  
Data Sheet  
ADBT1002  
SPECIFICATIONS  
Table 1.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
AUXILIARY ADC  
Resolution (Effective)  
Sampling Rate  
12  
Bits  
DC bus monitor disabled  
DC bus monitor enabled  
100,000  
50,000  
Samples/sec  
Samples/sec  
Input Voltage Range  
Reference Voltage  
0.1  
−1  
2.4  
+1  
V
Unity-Gain Offset  
LSB  
LSB/°C  
μA  
Unity-Gain Offset Drift  
Current Excitation (4-Bit Programmable)  
0.02  
Minimum  
Maximum  
0
750  
50  
μA  
Resolution  
μA  
LOGIC INPUTS (SPI_CS, SPI_SCK, SPI_SDIO,  
SPI_SDO, FAULT_x, GPIOx, AND HW_IRQ)  
Hysteresis = 600 mV  
Input Voltage High (VIH  
)
VDDIO × 0.8  
−1  
V
Input Voltage Low (VIL)  
VDDIO × 0.2  
V
Input Current High (IIH  
)
VIN = VDDIO  
VIN = DVSS  
μA  
μA  
μA  
pF  
Input Current Low (IIL)  
1
Input Pull-Down Current (HW_IRQ Only)  
Input Capacitance  
15  
4
115  
LOGIC OPEN-DRAIN OUTPUTS (SPI_SDIO,  
SPI_SDO, AND HW_IRQ)  
1 mA load  
1 mA load  
Output Low Voltage (VOL  
)
0.4  
V
Output High Leakage Current (IOH  
LOGIC OUTPUTS (GPIO)  
)
±0.1  
±1.0  
μA  
Output Low Voltage (VOL  
)
0.4  
V
Output High Leakage Current (IOH  
)
±0.1  
3
±1.0  
μA  
V
Output High Voltage (VOH  
)
VDDIO = 3.0 V  
VDDIO = 3.3 V  
VDDIO = 3.6 V  
Default settings  
3.3  
3.6  
V
V
Slew Rate12  
Falling Edge  
Rising Edge  
5.2  
4
ns  
ns  
Internal Oscillator Frequency  
External Oscillator Frequency  
Power Supplies  
16  
16  
MHz  
MHz  
AHVDD  
5.3  
30.7  
4.2  
−5.3  
6
V
Quiescent Current  
AHVSS  
Active and standby  
Active and standby  
3
4
mA  
V
−26  
mA  
V
High Voltage Supply Range (AHVDD to AHVSS)  
AVDD  
10.6  
3
36  
3.3  
40  
3.6  
0
3.6  
47  
V
Active  
mA  
mA  
V
Standby  
4.5  
AVSS  
VDDIO  
3.3  
2
V
Active and standby  
6
μA  
V
VDDDRV  
3.3  
4.6  
26  
Active  
4.8  
30  
mA  
μA  
Standby  
analog.com  
Rev. 0 | 5 of 44  
Data Sheet  
ADBT1002  
SPECIFICATIONS  
Table 1.  
Parameter  
DVDD  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
3.3  
21  
V
Active  
22  
mA  
mA  
Standby  
4.8  
5.2  
Power Dissipation  
AHVDD  
AHVDD = 12 V,  
active and standby  
50.4  
63.6  
mW  
mW  
AHVSS  
AHVSS = −12 V,  
active and standby  
VDDIO  
AVDD  
Active and standby  
Active  
19.8  
155  
14.9  
72.6  
17.2  
15.8  
99  
μW  
mW  
mW  
mW  
mW  
mW  
μW  
Standby  
Active  
DVDD  
Standby  
Active  
VDDDRV  
Standby  
PWM DRIVE LOGIC  
DLx and DHx Drive Voltage13  
VOH  
PWM_DRV = 0  
0 mA load  
3
3.29  
2.8  
17  
3.3  
2.9  
25  
1
V
15 mA load  
2.6  
V
VOL  
0 mA load  
mV  
V
15 mA load  
0.6  
10  
0.8  
23  
DLx and DHx Sink Resistance  
DLx and DHx Source Resistance  
PWM_DRV = 0  
PWM_DRV = 15  
PWM_DRV = 0  
PWM_DRV = 15  
40  
5
Ω
1.8  
30  
2.6  
41  
Ω
55  
5.1  
Ω
2.2  
3.2  
1
Ω
Internal Pull-Down Resistance  
Drive Capacitive Load  
MΩ  
pF  
10  
100  
1
Bandwidth is analog only. The readout data bandwidth is limited by the selected over sampling rate (OSR).  
The moving average filter (MAF) is a 3-bit field in the MAF_CFG register (one per channel). The default value is 8.  
The finite impulse response (FIR) filter in the readout filter is not bypassed (default).  
The readout filter update rate is selected in a 5-bit field in the DSP_READOUT_FILT_CFG register.  
The bandwidth is analog only. The readout data bandwidth is limited by the selected OSR.  
Guaranteed by design.  
2
3
4
5
6
7
8
9
For sync mode only.  
CHANNEL_A_PHASE = 0x000 in the PMU_CHANNEL CFG1 register.  
The 11-bit CHANNEL_A_PHASE in the PMU_CHANNEL_CFG1 register = 0x07FF and is the same for other channels.  
10The readout update rate is set in a 5-bit field in the DSP_READOUT_FILT_CFG register. There is one per channel.  
11Minimum OSR is based on the maximum readout rate of the current and voltage data for all four channels.  
12The output pins (SPI_SDIO, SPI_SDO, GPIOx, EXTCLKIO, and HW_IRQ) have xxx_PAD_CFG registers with a 3-bit xxx_SLEW bitfield. The default is 0x7, which is the  
fastest slew rate.  
13PWM_DRV is a 4-bit field in the PWM_CFG1 channel register.  
analog.com  
Rev. 0 | 6 of 44  
Data Sheet  
ADBT1002  
SPECIFICATIONS  
Table 2. SPI Bus Timing  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
TIMING REQUIREMENTS  
Set-Up SPI_CS to SPI_CLK Edge  
Minimum SPI_CLK Low Pulse Width  
Minimum SPI_CLK High Pulse Width  
Minimum SPI_CLK Period  
tS  
4
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tLO  
tHI  
31.25  
31.25  
62.5  
4
tCLK  
tDS  
tDH  
tH  
Data Input Setup Time Before SPI_CLK Edge  
Data Input Hold Time After SPI_CLK Edge  
Hold SCLK to SPI_CS Deactivate  
SWITCHING CHARACTERISTICS  
Data Output Valid After SPI_CLK Edge  
SPI_CS to SPI_SDIO/SPI_SDO High-Z  
4
4
tACCESS  
tZ  
4
4
ns  
ns  
Figure 2. 3-Wire SPI Bus Timing Diagram  
analog.com  
Rev. 0 | 7 of 44  
Data Sheet  
ADBT1002  
ABSOLUTE MAXIMUM RATINGS  
Table 3.  
Table 4. Thermal Resistance  
Package Type  
Parameter  
Rating  
θJA  
θJC  
Unit  
°C/W  
Analog High Voltage Supply (Continuous),  
AHVDD − AHVSS  
50 V  
SW-100-2  
27.8  
3.9  
SOLDERING  
AHVDD − AVSS  
AVSS − AHVSS  
50 V  
30 V  
It is important to follow the correct guidelines when laying out the  
PCB footprint for the ADBT1002 and when soldering the device  
onto the PCB. For detailed information about these guidelines, see  
the EE-352 Engineer-to-Engineer Note.  
Input Pin Voltages  
(ISP_x, ISN_x, BVP_x, BVN_x, and CVS_x)  
−0.3 V + AHVSS to AHVDD +  
0.3 V  
Digital Pins (Relative to DVSS)  
DVSS and AVSS  
−0.3 V to DVDD + 0.3 V  
−0.3 V to +0.3 V  
ELECTROSTATIC DISCHARGE (ESD) RATINGS  
DVDD, AVDD, and VDDDRV  
−0.3 V to DVDD + 0.3 V  
SPI_SCK, SPI_CS, SPI_SDIO, and SPI_SDO −0.3 V to DVDD + 0.3 V  
The following ESD information is provided for handling of ESD-sen-  
sitive devices in an ESD protected area only.  
REFIO  
−0.3 V to DVDD + 0.3 V  
Temperature  
Operating Range  
Storage Range  
Junction  
Human body model (HBM) per ANSI/ESDA/JEDEC JS-001.  
Charged device model (CDM) per ANSI/ESDA/JEDEC JS-002.  
0°C to +85°C  
−65°C to +150°C  
125°C  
ESD Ratings for ADBT1002  
Peak Solder Reflow  
RoHS-Compliant Assemblies  
(20 sec to 40 sec)  
260°C  
Table 5. ADBT1002, 100-Lead LQFP_EP  
ESD Model  
Withstand Threshold  
Class  
Stresses at or above those listed under Absolute Maximum Ratings  
may cause permanent damage to the product. This is a stress  
rating only; functional operation of the product at these or any other  
conditions above those indicated in the operational section of this  
specification is not implied. Operation beyond the maximum operat-  
ing conditions for extended periods may affect product reliability.  
HBM  
CDM  
1.5 kV  
750 V  
1C  
1B  
ESD CAUTION  
THERMAL RESISTANCE  
Thermal performance is directly linked to printed circuit board  
(PCB) design and operating environment. Careful attention to PCB  
thermal design is required.  
θJA is the natural convection junction-to-ambient thermal resistance  
measured in a one cubic foot sealed enclosure. θJC is the junction-  
to-case thermal resistance.  
analog.com  
Rev. 0 | 8 of 44  
Data Sheet  
ADBT1002  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
Figure 3. Pin Configuration  
analog.com  
Rev. 0 | 9 of 44  
Data Sheet  
ADBT1002  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
Table 6. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
NC  
No Connect.  
2
NC  
No Connect.  
3
CVS_A  
BVN_A  
BVP_A  
ISN_A  
ISP_A  
ISP_B  
ISN_B  
BVP_B  
BVN_B  
CVS_B  
AHVDD  
AHVSS  
CVS_C  
BVN_C  
BVP_C  
ISN_C  
ISP_C  
ISP_D  
ISN_D  
BVP_D  
BVN_D  
CVS_D  
NC  
Channel A Capacitor Voltage Sense Input.  
Channel A Voltage Sense Negative Input.  
Channel A Voltage Sense Positive Input.  
Channel A Current Sense Negative Input.  
Channel A Current Sense Positive Input.  
Channel B Current Sense Positive Input.  
Channel B Current Sense Negative Input.  
Channel B Voltage Sense Positive Input.  
Channel B Voltage Sense Negative Input.  
Channel B Capacitor Voltage Sense Input.  
AFE Positive Supply.  
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
AFE Negative Supply. Ensure AVDD is applied before applying AHVSS.  
Channel C Capacitor Voltage Sense Input.  
Channel C Voltage Sense Negative Input.  
Channel C Voltage Sense Positive Input.  
Channel C Current Sense Negative Input.  
Channel C Current Sense Positive Input.  
Channel D Current Sense Positive Input.  
Channel D Current Sense Negative Input.  
Channel D Voltage Sense Positive Input.  
Channel D Voltage Sense Negative Input.  
Channel D Capacitor Voltage Sense Input.  
No Connect.  
NC  
No Connect.  
NC  
No Connect.  
NC  
No Connect.  
DH_D  
DL_D  
PWM Drive High, Channel D.  
PWM Drive Low, Channel D.  
VDDDRV  
DH_C  
DL_C  
PWM Driver Supply.  
PWM Drive High, Channel C  
PWM Drive Low, Channel C.  
DH_B  
DL_B  
PWM Drive High, Channel B.  
PWM Drive Low, Channel B.  
VDDDRV  
DH_A  
DL_A  
PWM Driver Supply.  
PWM Drive High, Channel A.  
PWM Drive Low, Channel A.  
DVDD_CAP  
DVDD  
NC  
Digital Supply Source Capacitor. Connect a 10 μF decoupling capacitor from DVDD_CAP to DVSS.  
Digital Supply Source, 3.3 V Typical.  
No Connect.  
AVDD  
AVSS  
Analog Supply Source, 3.3 V Typical. Ensure AVDD is applied before applying AHVSS.  
Analog Supply Return.  
EXTCLKIO  
DVDD_CAP  
DVSS  
NC  
External Oscillator Input and Clock Output.  
Digital Supply Source Capacitor. Connect a 10 μF decoupling capacitor from DVDD_CAP to DVSS.  
Digital Supply Return.  
No Connect.  
XTALP  
XTALN  
External Crystal High-Side Excitation Pin.  
External Crystal Low-Side Excitation Pin.  
analog.com  
Rev. 0 | 10 of 44  
Data Sheet  
ADBT1002  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
Table 6. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
AVSS  
Analog Supply Return.  
NC  
No Connect.  
AIN_COM  
AIN0  
Analog Input, ADC Common.  
Analog Input, ADC Channel 0.  
AIN1  
Analog Input, ADC Channel 1.  
AIN2  
Analog Input, ADC Channel 2.  
AIN3  
Analog Input, ADC Channel 3.  
AIN4  
Analog Input, ADC Channel 4.  
AIN5  
Analog Input, ADC Channel 5.  
AIN6  
Analog Input, ADC Channel 6.  
AIN7  
Analog Input, ADC Channel 7.  
AVSS  
Analog Power Return.  
REFCAP  
REFGND  
REFIOGND  
REFIO  
AVDD  
Internal Reference Capacitor.  
Internal Reference Ground.  
Ground for Reference Input and Output.  
Reference Input and Output. Connect a 10 μF from REFIO to AVSS.  
Analog Power Supply. Ensure AVDD is applied before applying AHVSS.  
Analog Power Return.  
AVSS  
FAULT_D  
FAULT_C  
FAULT_B  
FAULT_A  
RESET  
GPIO0  
GPIO1  
VDDIO  
VDDIO  
GPIO2  
GPIO3  
GPIO4  
GPIO5  
GPIO6  
GPIO7  
GPIO8  
GPIO9  
GPIO10  
AVDD_CAP  
AVSS  
Fault Detect Input, PWM Channel D Shutdown. Active low.  
Fault Detect Input, PWM Channel C Shutdown. Active low.  
Fault Detect Input, PWM Channel B Shutdown. Active low.  
Fault Detect Input, PWM Channel A Shutdown. Active low.  
Chip Reset. Active low.  
General-Purpose Digital Input and Output 0.  
General-Purpose Digital Input and Output 1.  
Input and Output Supply.  
Input and Output Supply.  
General-Purpose Digital Input and Output 2.  
General-Purpose Digital Input and Output 3.  
General-Purpose Digital Input and Output 4.  
General-Purpose Digital Input and Output 5.  
General-Purpose Digital Input and Output 6.  
General-Purpose Digital Input and Output 7.  
General-Purpose Digital Input and Output 8.  
General-Purpose Digital Input and Output 9.  
General-Purpose Digital Input and Output 10.  
Analog Power Return Capacitor. Connect a 10 μF decoupling capacitor from AVDD_CAP to AVSS.  
Analog Power Return.  
AVDD  
Analog Power Supply. Ensure AVDD is applied before applying AHVSS.  
Digital Input and Output Supply.  
VDDIO  
GPIO11  
GPIO12  
GPIO13  
GPIO14  
GPIO15  
HW_IRQ  
SPI_SDO  
SPI_SDIO  
SPI_SCK  
General-Purpose Digital Input and Output 11.  
General-Purpose Digital Input and Output 12.  
General-Purpose Digital Input and Output 13.  
General-Purpose Digital Input and Output 14.  
General-Purpose Digital Input and Output 15.  
Host Interrupt Request. Active low.  
Host SPI Master Input, Slave Output (MISO).  
Host SPI Master Output, Slave Input (MOSI) or Bidirectional.  
Host SPI Clock.  
analog.com  
Rev. 0 | 11 of 44  
Data Sheet  
ADBT1002  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
Table 6. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
99  
SPI_CS  
VDDIO  
DVSS  
Host SPI Select. Active low.  
100  
EPAD  
Input and Output Supply.  
Exposed Pad. DVSS for DVDD, VDDIO, and VDDDRV.  
analog.com  
Rev. 0 | 12 of 44  
Data Sheet  
THEORY OF OPERATION  
OVERVIEW  
ADBT1002  
a precision analog front end (AFE), measuring both battery current  
and voltage using a high accuracy ADC, a user programmable  
digital compensator, and a precision PWM. Additionally, there are  
8 auxiliary ADC channels and 16 GPIOx pins.  
The ADBT1002 is a highly integrated digital controller that provides  
four channels of charge and discharge control with a focus on bat-  
tery formation and test applications. Each channel is composed of  
Figure 4. Functional Block Diagram  
analog.com  
Rev. 0 | 13 of 44  
Data Sheet  
ADBT1002  
THEORY OF OPERATION  
Additionally, the GPIOx pins can be configured to provide interde-  
vice digital current sharing communications when using multiple  
ADBT1002 devices in parallel.  
ANALOG FRONT END  
Each channel has a precision current sense differential amplifier  
with a fixed gain of 40 and a precision voltage sense differential  
amplifier with a fixed gain of 0.5. A pair of simultaneous sampling  
ADCs converts the conditioned current and voltage signals to 12-bit  
digital representations before transferring the signals to the digital  
controller.  
The GPIO_PAD_CFG register is used to configure the GPIOx pin  
parameters including slew rate, hysteresis, and drive strength. The  
default bitfields, GPIO_SLEW, GPIO_HYST, and GPIO_DRV, have  
default settings of 5 ns, 600 mV, and 10 Ω, respectively. These  
default values are typically acceptable for most applications.  
DIGITAL CONTROLLER  
The GPIOx pins can be individually configured as inputs or outputs  
by using the 16-bit GPIO_IEN_CFG and GPIO_OEN_CFG regis-  
ters, respectively. Bits[15:0] in each register corresponds to GPIO0  
through GPIO15.  
A finite state machine (FSM)-based proportional integral derivative  
(PID) controller provides digital loop control. The controller has  
user-programmable filter coefficients for control loop compensation.  
Current and voltage setpoints are register based and are configured  
by the user over a host SPI. Separate current and voltage control  
loops support constant current and constant voltage operation  
modes. The controller output is used to command the duty cycle of  
an 14-bit digital PWM. Operation of the controller is discussed in  
the Sequencer Operation Example section.  
When configured as standard GPIOx pins, there are five 16-bit  
registers that can interact with these pins. In each case, Bit 0  
corresponds to GPIO0, and Bit 15 corresponds to GPIO15. The  
GPIO_READ register can be read to see the state of each GPIOx  
pin, and the GPIO_WRITE register can be written to set the output  
pins as 1 or 0. The GPIO_SET, GPIO_CLEAR, and GPIO_TOG-  
GLE registers set, clear, or toggle, respectively, the GPIOx pins that  
are set as standard GPIOx pin outputs.  
HOST SPI  
Control is provided by an external host through a 3-wire or a 4-wire  
SPI. Use the SPI_CS, SPI_SCK, and SPI_SDIO pins for the 3-wire  
SPI and use the SPI_CS, SPI_SCK, SPI_SDIO, and SPI_SDO  
pins for the 4-wire SPI. This interface is used to configure the  
controller through the memory mapped registers. These registers  
are introduced in Table 11.  
In addition to basic user-controlled GPIO operations, the GPIOx  
pins can be configured for specific operation modes. This configura-  
tion is done through the GPIO_MODE_CFG0 (for GPIO0 through  
GPIO7 pins) and the GPIO_MODE_CFG1 (for GPIO8 through  
GPIO15 pins) registers. All GPIOx pins can be configured as either  
standard GPIO input and output functions or can be controlled  
by the sequencer. The latter is used to control a battery isolation  
switch that is used as part of the precharge operation. Additional  
options for GPIO0 through GPIO7 are unique functions used for  
interdevice communications when multiple devices are used in  
parallel.  
HOST INTERRUPT REQUEST  
Use the HW_IRQ signal, HW_IRQ, to provide interrupt requests  
to the host. Use the SPI port accessible set of registers to select  
which internal events generate host interrupt requests. Event op-  
tions include system errors, channel data ready, channel voltage  
and current over limit detection, channel operation complete, and  
auxiliary ADC high and low threshold detection.  
When a GPIOx pin is controlled by the sequencer in a particular  
channel, there is also a channel GPIO_CFG register where the  
4 LSBs are used to select which GPIOx pin is controlled by the  
sequencer of the channel.  
CLOCKING  
The ADBT1002 derives all internal clocking from either an internal  
oscillator, an external 16 MHz crystal, or an external 16 MHz  
oscillator. Phase interleaving can be configured to help minimize  
input ripples as well as output ripples when channels are paralleled  
for greater current capacity. The ADBT1002 also has a feature that  
allows multiple ADBT1002 devices to be synchronized together,  
which enables parallel channel operation in multiples of four.  
AUXILIARY ADC  
An 8-channel, 12-bit ADC is available for dedicated (for example,  
internal temperature) or general-purpose external measurements.  
Note that four of the channels have optional current sources for use  
with the external thermistors for temperature measurement. The dc  
bus voltage can also be sensed on an ADC channel and used in  
a feedforward control mechanism to reduce the effect of dc bus  
transients. All auxiliary ADC operations are user configurable.  
GPIOX PINS  
There are 16 GPIOx pins on the ADBT1002. Typical GPIOx pin  
usage includes controlling the dc bus and battery isolation switches  
or getting the digital inputs from the digital sources. The GPIOx  
pins are user-programmable through the following set of memory  
mapped registers. The GPIOx pins used for the battery isolation  
switches can be assigned in the global registers for sequencer  
control. This assigning facilitates the precharge operation at start-  
up that prevents reverse current when connecting to the battery.  
SUPPORTS COULOMBIC EFFICIENCY  
MEASUREMENT  
Coulombic efficiency is a ratio of the capacity during discharge to  
the capacity during charge. The ADBT1002 supports this efficiency  
through the integration of current over time. The integration results  
are accessible through a set of registers.  
analog.com  
Rev. 0 | 14 of 44  
Data Sheet  
ADBT1002  
THEORY OF OPERATION  
user to precharge the output stage before connecting to the cell,  
which is described in additional detail in the Precharge Operation  
section.  
SUPPORTS PRECHARGE OPERATION  
When connecting to a cell before a new formation or test cycle,  
there is a possibility of having a large inrush current from the  
battery to the discharged output stage. The ADBT1002 allows a  
analog.com  
Rev. 0 | 15 of 44  
Data Sheet  
ADBT1002  
SEQUENCER  
limit or a timeout that the ADBT1002 uses to generate a flag that  
goes into the ADBT1002 interrupt controller. The user must service  
the interrupt, write the next instruction, and set the start bit. The  
ADBT1002 continues to execute the last instruction until the host  
CPU services the interrupt.  
INSTRUCTION DEFINITION  
The ADBT1002 works by executing instructions on each of the  
four channels. Each instruction manages the control loop. The  
ADBT1002 can operate with both constant current and constant  
voltage.  
The register map inside the channel provides a fixed layout for  
the instruction. The repercussion of this layout is that all possible  
fields are available independently, whether the instruction uses that  
information or not. The host CPU is responsible for writing to all the  
required fields for the instruction to execute as expected.  
SEQUENCING MODES  
Three possible sequencing modes exist to execute instructions  
from a user point of view: manual, semiautomatic, and automatic.  
Manual Mode  
A double buffer mechanism exists to write the instruction. Only  
when the start bit is written to the channel is a copy of the instruc-  
tion forwarded to the state machine and executed. This technique  
allows the next instruction to be written in advance. Access to the  
registers regarding the instruction executing is available as a debug  
feature.  
In manual sequencing mode, the host central processing unit (CPU)  
is responsible for feeding instructions to the ADBT1002. The user  
writes the full instruction into the next instruction area (that is, the  
registers prefixed with SEQ_NEXT_xxx) of the channel register  
map. The user writes to the self clearing start bit after, which  
initiates the execution of this instruction. The instruction provides a  
Figure 5. Manual Sequencing Mode  
analog.com  
Rev. 0 | 16 of 44  
Data Sheet  
SEQUENCER  
ADBT1002  
The start bit copies the instruction regardless of what the status  
of the previous instruction is. Such an operation clears the internal  
register. A readback for the internal flag is then provided through  
the register map for debug purposes.  
Semiautomatic Mode  
In semiautomatic mode, the copy of the next instruction executes  
when the following conditions are met:  
The current instruction hits the limits (voltage, current, or time),  
which are the same reasons why an interrupt can be raised in  
manual mode.  
A new instruction has been completely written in the register  
map.  
Automatic Mode  
In automatic sequencing mode, all instructions must be program-  
med into the instruction memory before setting the start bit. The  
start bit resets the instruction pointer to the start of the channel  
memory. Each instruction provides a limit or a timeout that termi-  
nates the current instruction and advances the instruction pointer  
to the next instruction. The channel issues a flag to the interrupt  
controller when all instructions complete execution. The ADBT1002  
inhibits any activity on the DH and DL signals once the instruction  
sequence terminates.  
To avoid executing the same instruction sequentially, there is a  
bitfield that indicates when the next instruction is fully programmed  
as follows:  
A flag is set by the user through the self clearing  
NEXT_INSTR_READY bit in the register map.  
A flag is cleared whenever the instruction is copied from the  
register map.  
The instructions stored in the channel memory have variable length  
payloads using 16-bit words. A fixed header is a one word length.  
The payload depends on the instruction declared in the header. The  
instruction pointer advances according to the expected payload. A  
GUI is available to help users code instruction memory.  
Figure 6. Automatic Sequencing Mode  
analog.com  
Rev. 0 | 17 of 44  
Data Sheet  
ADBT1002  
SEQUENCER  
If the VLIMIT_DELTA (MSB) bit is cleared, the VLIMIT bits,  
Bits[14:0], represent an absolute positive voltage.  
CHARGE AND DISCHARGE INSTRUCTION  
MODES  
If the VLIMIT_DELTA bit is set, the limit is understood as an  
increment (charge) or a decrement (discharge) from the first  
VMEAS value read during the execution of an instruction.  
The main purpose of this bit is to set this limit dynamically  
without having to read the ADC value before programming this  
instruction. This bit is related to the VSET_DELTA bit  
(Register SEQ_VSET).  
The ADBT1002 provides two PID control loops per channel, the  
current loop and the voltage loop. Only one PID control loop is in  
control at any given time. The PID control loop in control is the one  
with the smallest error between the filtered ADC sample and the  
target setpoint. Note that, VMEAS is the measurement on the  
V channel.  
The VLIMIT is reached when the measured voltage is higher or  
equal to the VLIMIT threshold with a charge instruction.  
There are two independent bits to configure how the control loop  
behaves:  
The VLIMIT is reached when the measured voltage is lower or  
equal to the VLIMIT threshold with a discharge instruction.  
Constant current, where the I channel is in control, and the loop  
target is set to the current setpoint (ISET).  
Constant voltage, where the V channel is in control, and the loop  
target is set to the voltage setpoint (VSET).  
ILIMIT  
The following details the operation of the ILIMIT bits  
(Register SEQ_ILIMIT):  
There are four possible mode combinations or eight including  
whether the loop is charging or discharging the battery.  
The ILIMIT threshold flags the instruction end on a charge or  
discharge instruction with the constant voltage mode active.  
The ILIMIT bits, Bits[14:0], always represent the absolute current  
magnitude.  
The ILIMIT is reached when the measured current is lower or  
equal to the ILIMIT threshold with a charge instruction. A reverse  
current while charging triggers the limit.  
The ILIMIT is reached when the measured current is higher  
or equal to the negative value of the ILIMIT threshold with a  
battery discharge instruction. A reverse current while discharging  
triggers the limit.  
The VSET bits (15 LSBs in Register SEQ_NEXT_VSET) can refer  
to either the absolute value or a delta value based on VMEAS, as  
determined by the VSET_DELTA bit (MSB in  
Register SEQ_NEXT_VSET). The main purpose of the delta is  
to allow the programming of a VSET value at some offset from  
the last VMEAS value. The start-up (that is, precharge) procedure  
uses the VSET_DELTA bit with zero offset to get to the current  
battery voltage value. The precharge operation is discussed in the  
Precharge Operation section.  
CHARGE AND DISCHARGE INSTRUCTION  
LIMITS  
TLIMIT  
There are three 16-bit programmable fields that represent instruc-  
tion limits. VLIMIT is associated with the constant current mode of  
operation and can be used to signal the end point of a constant  
current charge or discharge. ILIMIT is associated with the constant  
voltage mode of operation and is typically used to signal the end  
point for a constant voltage charge or discharge operation. TLIMIT  
can be used to either set the duration of an instruction or to set an  
error overlimit when an instruction should have completed earlier.  
The following details the usage of the NEXT_TLIMIT_SCALE and  
NEXT_TLIMIT_VAL bitfields (Register SEQ_NEXT_TLIMIT):  
TLIMIT is the target for a timeout trigger event. The trigger is  
asserted when the elapsed time is equal or greater than TLIMIT.  
A timeout trigger event can be used for either an error, if an  
instruction must terminate through another limit, or for a timed  
execution of an instruction (no error).  
The SEQ_NEXT_TLIMIT, Bits[15:0], are encoded as the  
following:  
NEXT_TLIMIT_SCALE, Bits[15:14] are the time units, 3 =  
minutes, 2 = minutes, 1 = milliseconds, and 0 = microseconds.  
VLIMIT  
The following details the operation of the VLIMIT bits  
(Register SEQ_VLIMIT):  
The VLIMIT threshold flags the instruction end on a charge or  
discharge instruction with constant current mode.  
In an instruction with both the constant voltage and constant  
current modes, VLIMIT avoids early instruction termination by not  
letting any crossing through ILIMIT (Bits[14:0],  
Register SEQ_ILIMIT) to end the instruction before VLIMIT is  
crossed. In addition, the V channel PID is not allowed to take  
control until this threshold is reached.  
NEXT_TLIMIT_VAL, Bits[13:0] are the integer value.  
The time units set the resolution and the maximum time value.  
On a scale of minutes, the resolution is minutes, and the  
maximum time is 11.3 days. On a scale of microseconds,  
the resolution is microseconds, and the maximum time is approx-  
imately 16.5 ms.  
analog.com  
Rev. 0 | 18 of 44  
Data Sheet  
ADBT1002  
SEQUENCER  
dependent on the interchip SPI communications rate of 8 MHz.  
Communications between the master and slave devices take 2 μs  
per 16-bit IMEAS transfer.  
Zero Value Limit Implications  
The following limit values have special meaning:  
TLIMIT_VAL = 0 means that the timeout is disabled, and no flag  
is generated.  
ILIMIT = 0, or any low value, means that a constant voltage  
operation can take a long time to complete.  
VLIMIT = 0 causes a constant current operation to terminate  
immediately.  
FLAGS  
The flag block generates flags that end up in the interrupt controller  
block of the ADBT1002. The user then unmasks individual flags (in  
the INT_EN_CH_x registers), as required, to generate interrupts.  
Flags are cleared when the channel interrupt status register con-  
taining the flag is read.  
SLEW RATE  
The INSTR_DONE flag is set when an instruction hits the last limit,  
or if it was the REST instruction when the timeout is reached. Keep  
this flag separate from the SEQ_DONE flag for debug purposes.  
When a new instruction loads, the INSTR_DONE flag resets in  
automatic mode. The start bit can only reset the INSTR_DONE flag  
in manual mode.  
The ADBT1002 provides a slew rate function of the programmed  
targets that smooths out the transition between instructions. With  
this function disabled, a step waveform is seen at the error signal  
of the control loop. With this function enabled, the step waveform is  
transformed into a ramp waveform.  
If the target value slewing function is enabled, the ADBT1002  
ramps the target value from its measured value into the program-  
med target value as part of the instruction. The register map  
provides the slew rate for the ISET and VSET bits. The rate is  
described within two fields: code and time. The code units are in  
ADC codes, and the time is within the PID and PWM update rate.  
If in automatic mode, the SEQ_DONE flag is set when the last  
instruction finishes. When in manual mode, this flag is never set,  
and the start bit resets the SEQ_DONE flag.  
The INSTR_TIMEOUT flag results when the timeout is reached if  
the flag was not another limit termination or the HALT instruction.  
The VMEAS_OVER_LMT and IMEAS_OVER_LMT flags result  
when the input data (ADC raw data for better latency) reaches  
user specified VMEAS and IMEAS low and high levels,  
specifically VMEAS_OVER_LIMITS_LOW_THLD and VMEAS_  
OVER_LIMITS_HIGH_THLD, as well as IMEAS_OVER_LIM-  
ITS_LOW_THLD and IMEAS_OVER_LIMITS_HIGH_THLD,  
respectively. User can also specify the number of consecutive  
overlimit samples for detection.  
The starting point for the ramp is the first value measured with the  
following limitations:  
In a charge instruction, ISET cannot be a negative value. If there  
is a back current, ISET starts from 0, ramping up to the setpoint  
target.  
In a discharge instruction, ISET cannot be a positive value. If  
there is a positive current, ISET starts from 0, ramping down to  
the setpoint target.  
The INSTR_USER_IRQ flag is set when the sequencer reads the  
next instruction with the NEXT_USER_IRQ bit set in the  
channel SEQ_NEXT_INST register and finishes the execution of  
that instruction.  
VSET is always positive.  
A charge and discharge instruction that uses constant current  
ramps ISET. A charge and discharge instruction for constant volt-  
age ramps VSET.  
The INSTR_ERR flag is set during various events that are not part  
of the instruction. An instruction error writes a debug error code in  
the channel register map so that it can be read by the host. Codes  
include malformed instruction and division by zero.  
PARALLEL OPERATION  
Multiple channels can work in parallel to increase the working  
current. When multiple channels work in parallel, a channel is  
declared as the master and transmits the measurement for the  
I channel (IMEAS) to the other channels. The master channel works  
as described in the Two Parallel—Two Independent Channels Use  
Case section and the Four Channels in Parallel Use Case section.  
The other channels operate in constant current mode and target the  
raw IMEAS from the master channel. Note that the IMEAS value  
compensates for gain and offset.  
The INSTR_MODE_TRANS flag is set upon detection of a mode  
transition, such as a constant current to constant voltage transition.  
Table 7. Sequencer Flags  
Flag  
Description  
Instruction Finished, INSTR_DONE  
Instruction has ended. If in manual  
sequencing mode, the ADBT1002  
expects a new instruction.  
Sequence Finished, SEQ_DONE  
Timeout, INSTR_TIMEOUT  
Instruction halt was run or instruction  
pointer points outside of the instruction  
memory.  
Groups of channels working in parallel can span multiple  
ADBT1002 chips.  
Transmitting of the IMEAS between channels on a single  
ADBT1002 chip happens inside a PID cycle. Transmitting of the  
IMEAS between channels of different ADBT1002 chips is  
If instruction is set to flag timeouts,  
TLIMIT was met.  
analog.com  
Rev. 0 | 19 of 44  
Data Sheet  
ADBT1002  
SEQUENCER  
Table 7. Sequencer Flags  
Manual sequencing mode provides a limited set of instructions.  
Flag  
Description  
Bits marked with the X mean that the contents of those bits are do  
not care. It is recommended to write 0s in these bits.  
Measurement Current (IMEASUREMENT  
Overlimit, IMEAS_OVER_LMT  
)
IMEAS is outside of the globally  
programmed thresholds.  
Bits[1:0] of the header define the instruction, INST_TYPE.  
Instructions include rest, stop, charge, or discharge.  
Measurement Voltage  
(VMEASUREMENTS) Overlimit,  
VMEAS_OVER_LMT  
VMEAS is outside of the globally  
programmed thresholds.  
CC and CV are bits in the header that represent a mode of  
operation for the charge or the discharge of the battery.  
User Interrupt, INSTR_USER_IRQ  
The instruction with the  
NEXT_USER_IRQ bit was executed.  
Instruction Error, INSTR_ERR  
Various motives. This flag is a read  
instruction error code.  
DISABLE_VI_LIMITS disables the use of VLIMIT or ILIMIT for  
determining instruction end conditions. This bit also disables flag-  
ging any voltage or current measurement overlimits.  
Instruction Mode Transition,  
INSTR_MODE_TRANS  
The instruction transitioned from one  
mode to another, such as from constant  
current to constant voltage mode in  
a constant current to constant voltage  
operation.  
PWM_AUTO_ASYNC_ENABLE enables or disables the automatic  
PWM asynchronous mode transition based on current measure-  
ments.  
GLOBAL REGISTER SETTINGS  
TLIMIT_MODE indicates whether the time limit is a normal end  
condition, or if this bit is a timeout error that, if reached, raises a  
flag.  
The following global register settings list sits outside of the channel  
register map, and these settings affect all four channels:  
SLEW_EN enables a procedure in the charge or the discharge  
where either ISET or VSET targets are ramped.  
PWM and loop update rate, which is common for all changes,  
and the rates can be configured for 500 kHz, 250 kHz, 125 kHz,  
and 62.5 kHz.  
Configuration of channels for parallel operation.  
Interrupt controller settings.  
GPIO_VAL sets the value of the channel associated GPIOx. In a  
standard application, this associated GPIOx controls a switch that  
connects or disconnects the battery from the voltage regulator. A  
static register inside the channel register map determines which  
GPIOx that this GPIO_VAL bit controls.  
Auxiliary ADC configuration and readout.  
CHANNEL STATIC SETTINGS  
LOOP_START, when set, represents the first instruction that is part  
of a loop. The hardware stores the address pointer. When set, the  
first word in the payload must be the number of iterations of the  
loop. The instruction sets the loop counter with this value if the  
internal loop counter is 0.  
The channel static settings that follow are registers that reside  
in each of the channel register maps, but these settings are not  
controllable per instruction.  
Slew rate settings (the enable bit is in the instruction)  
Measurement overlimit thresholds (hard limits that automatically  
turn-off the channel)  
PWM automatic asynchronous mode transition thresholds  
Digital signal processor (DSP) datapath settings follow:  
Readout filter decimation rate  
LOOP_END, when set, represents the last instruction that is part  
of the loop. The loop counter decrements. If the new loop counter  
value is not 0, the program jumps to the first instruction of the loop.  
The V_SEL bit represents the two following options for feeding data  
into the V channel:  
Numerically controlled oscillator (NCO)  
Frequency response analysis (FRA) demodulator  
Battery voltage measurement = 1’b0 means that the measure-  
ment is taken across the BVP_x and BVN_x pins.  
Capacitor voltage measurement = 1’b1 means that the measure-  
ment is taken across the CVS_x and BVN_x pins.  
INSTRUCTION SET ARCHITECTURE  
The instructions that can be programmed into the channel  
sequencer follow. The word size in memory is 16 bits wide. Each  
instruction has one word as the header and zero or more words as  
the payloads.  
PID_COEF_SET represents the different options for the PID  
coefficients. It is desirable to reserve one set for the start-up  
procedure when the battery is not connected, and another set for  
the charge or discharge instructions.  
To simplify register diagrams, 16-bit words are drawn into two rows  
describing the lower 8 bits first and the higher 8 bits second.  
USER_IRQ makes the instruction raise a user-defined interrupt at  
instruction completion.  
analog.com  
Rev. 0 | 20 of 44  
Data Sheet  
ADBT1002  
SEQUENCER  
Table 8. Instruction Header  
Header  
7
6
5
4
3
2
1
0
Header LSB Bits  
PWM_AUTO_  
ASYNC_  
DISABLE_VI_  
LIMITS  
RESERVED  
RESERVED  
CC  
CV  
INST_TYPE[1:0]  
ENABLE  
Header MSB Bits TLIMIT_MODE  
USER_IRQ  
PID_COEF_SET V_SEL  
LOOP_END  
LOOP_START  
GPIO_VAL  
SLEW_EN  
analog.com  
Rev. 0 | 21 of 44  
Data Sheet  
ADBT1002  
SEQUENCER  
During a rest instruction, the PID output is held for the duration of  
TLIMIT to have it ready for the following instruction. The PWM out-  
puts are overridden with a logic low level. GPIO_VAL can be used  
to disconnect the battery. The channels can also be used as a data  
acquisition system for taking voltage and current measurements  
during this instruction.  
Halt  
Halt is coded with INST_TYPE = 2’b00.  
This instruction halts the program thus raising the channel  
SEQ_DONE flag in automatic mode. The program pointer is not  
advanced. The PWM (DHx/DLx) outputs are overridden with a logic  
low level.  
The rest instruction payload is shown in Table 9. Note that TLIMIT  
is a required parameter. A LOOP_CNT value is needed if  
LOOP_START is set. In automatic mode only, LOOP_CNT (8-bit  
count) must be included if the LOOP_START bit is set in the in-  
struction. A later instruction with the LOOP_END bit set determines  
the end of the list of instructions that get repeated in the loop.  
There is no payload associated with the halt instruction.  
Rest  
Rest is coded with INST_TYPE = 2’b01.  
Table 9. Rest Instruction Payload  
Payload  
7
6
5
4
3
2
1
0
Payload 0 LSB Bits  
Payload 0 MSB Bits  
Payload 1 LSB Bits  
Payload 1 MSB Bits  
TLIMIT, Bits[7:0]  
TLIMIT, Bits[15:8]  
LOOP_CNT, Bits[7:0] (Only if LOOP_START is set)  
X (Don't Care)  
analog.com  
Rev. 0 | 22 of 44  
Data Sheet  
ADBT1002  
SEQUENCER  
The DHx and DLx outputs are active and based on the control loop.  
Charge and Discharge Operation  
The VLIMIT_DELTA and VSET_DELTA bits tell whether VLIMIT or  
VSET are based on the last V channel measurement.  
This instruction is the main purpose of the ADBT1002 and controls  
the charge or discharge of the battery.  
The payload depends on which bitfields are enabled in the header.  
Table 10. Charge and Discharge Instruction Payload  
Header or Payload  
7
6
5
4
3
2
1
0
Header LSBs1  
Header MSBs1  
Payload 0 LSB Bits  
ISET, Bits[7:0] (Only if CC is set)  
ISET, Bits[14:8] (Only if CC is set)  
VSET, Bits[7:0] (Only if CV is set)  
Payload 0 MSB Bits X (Don't Care)  
Payload 1 LSB Bits  
VSET_  
Payload 1 MSB Bits  
DELTA  
VSET[14:8] (Only if CV is set)  
Payload 2 LSB Bits  
Reserved  
Reserved  
Payload 2 MSB Bits  
Payload 3 LSB Bits  
Reserved  
Payload 3 MSB Bits  
Reserved  
Payload 4 LSB Bits  
ILIMIT, Bits[7:0] (Only if CV is set)  
ILIMIT, Bits[14:8] (Only if CV is set)  
VLIMIT, Bits[7:0] (Only if CC is set)  
Payload 4 MSB Bits X (Don't Care)  
Payload 5 LSB Bits  
VLIMIT_  
Payload 5 MSB Bits  
DELTA  
VLIMIT, Bits[14:8] (Only if CC is set)  
Payload 6 LSB Bits  
Payload 6 MSB Bits  
Payload 7 LSB Bits  
Payload 7 MSB Bits  
TLIMIT, Bits[7:0]  
TLIMIT, Bits[15:8]  
LOOP_CNT2, Bits[7:0] (Only if LOOP_START is set)  
X (Don't Care)  
1
See the Instruction Set Architecture section and Table 8 for additional information on this row.  
2
In automatic mode only, LOOP_CNT (8-bit count) must be included if the LOOP_START bit is set in the instruction. A later instruction with the LOOP_END bit set determines  
the end of the list of instructions that get repeated in the loop.  
analog.com  
Rev. 0 | 23 of 44  
Data Sheet  
ADBT1002  
SEQUENCER  
The charge operation starts at t0. The charge current is 0, and the  
battery voltage is an open-circuit voltage at the start. From t0 to t1,  
only the constant current loop is in control. t1 is where the battery  
voltage exceeds VLIMIT. Without VLIMIT, the charge can stop  
prematurely because the initial battery current at start is 0, which  
is less than ILIMIT. From t1 to t2, both the constant current and  
the constant voltage loops are competing for control. The loop with  
the lowest error is in control. At t2, control transitions from constant  
current to constant voltage loop. Note that the error between the  
battery voltage and VSET is 0. From t2 to t3, the constant voltage  
loop is in control, and the charge current decreases. At t3, the  
charge current reaches ILIMIT. In manual sequencer mode, an  
INSTR_DONE flag generates that can in turn generate an interrupt  
request. The host must service the interrupt request and either stop  
the instruction or start a new one. Otherwise, in manual mode,  
the current instruction keeps executing. In semiautomatic mode,  
if another instruction is preloaded, it starts executing when the  
current instruction limit is reached. Otherwise, with no preloaded  
next instruction, the same operation continues execution as manual  
mode. In either case, an INSTR_DONE flag is set that can be used  
to generate a host interrupt. In automatic mode, the next instruction  
in the sequence executes.  
SEQUENCER OPERATION EXAMPLE  
To highlight how limits and setpoints interact, a constant current to  
constant voltage charge example description follows.  
Constant Current to Constant Voltage Charge  
Operation  
Figure 7 demonstrates the ISET, VSET, ILIMIT, and VLIMIT usage  
in a constant current to constant voltage charge operation. ISET  
and VSET are the target constant current and constant voltage  
values, respectively. ILIMIT is the battery current level that signifies  
the end of the constant voltage portion of the charge cycle. VLIMIT  
is the minimum battery voltage level before the constant voltage  
loop can compete for control with the constant current loop.  
Figure 7. Constant Current to Constant Voltage Operation  
analog.com  
Rev. 0 | 24 of 44  
Data Sheet  
ADBT1002  
MEMORY MAPPED REGISTERS  
Table 11. Register Block Summary  
The SYSTEM_CTRL block contains a set of global registers. These  
include system configuration, auxiliary ADC configuration, auxiliary  
ADC data readback, multichannel configuration, and interrupt  
management.  
Name  
Block  
Address  
SPI_SLV_CTRL  
SPI_SLV_CTRL  
0x0000  
0x1000  
0x2800  
0x3000  
0x3200  
0x3400  
0x3600  
0x3800  
0x3A00  
0x3C00  
0x3E00  
SYSTEM_CTRL  
ADC_CTRL  
MISC_CTRL_DIG  
ADC_COMMON_SETTINGS  
CHANNEL_REGMAP  
CHANNEL_REGMAP  
CHANNEL_REGMAP  
CHANNEL_REGMAP  
SEQ_MEMORY  
The ADC_CTRL block contains a few registers used to enable the  
auxiliary ADC channels and to enable the current excitation for the  
external temperature measurement.  
CHANNEL_CTRLA  
CHANNEL_CTRLB  
CHANNEL_CTRLC  
CHANNEL_CTRLD  
CHANNEL_MEM0  
CHANNEL_MEM1  
CHANNEL_MEM2  
CHANNEL_MEM3  
Each of the four CHANNEL_CTRLx blocks contain the same set of  
registers, whose addresses are offset by 0x0200 from channel to  
channel. These individual channel blocks configure channel  
sequencer operations, diagnostics configuration, and data  
readback.  
SEQ_MEMORY  
SEQ_MEMORY  
SEQ_MEMORY  
The CHANNEL_MEMx blocks do not contain any registers. Instead,  
these blocks each include 128 16-bit locations to store sequencer  
configuration parameters when automatic mode operation is  
selected.  
Table 11 shows the various ADBT1002 register blocks and their  
starting address. The SPI_SLV_CTRL block contains a set of regis-  
ters used to configure the SPI port and communications protocol.  
Table 12. SPI_SLV_CTRL (SPI_SLV_CTRL) Register Summary  
Address  
Name  
Description  
Reset  
Access  
0x0  
0x1  
0x2  
INTERFACE_CONFIG  
STREAM_MODE  
Interface Configuration  
Configure Loop Count  
Interface Status  
0x06  
0x00  
0x00  
R/W  
R/W  
R/W  
INTERFACE_STATUS  
Table 13. SYSTEM_CTRL (MISC_CTRL_DIG) Register Summary  
Address  
Name  
Description  
Reset  
Access  
0x1000  
0x1001  
RST_CTRL  
Software Reset Control Register 0x0000  
R/W  
R/W  
PMU_CLOCK_SEL  
Power Management Unit (PMU) 0x0001  
Clock Selection Register  
0x1002  
0x1003  
0x1004  
0x1005  
0x1006  
PMU_CHANNEL_CFG0  
PMU_CHANNEL_CFG1  
PMU_CHANNEL_CFG2  
PMU_CHANNEL_CFG3  
PMU_CHANNEL_CFG4  
Channel Enable Selection  
Register  
0x0010  
R/W  
R/W  
R/W  
R/W  
R/W  
Phase Adjustment for Channel A 0x0000  
PWM Signal Register  
Phase Adjustment for Channel B 0x0200  
PWM Signal Register  
Phase Adjustment for Channel C 0x0400  
PWM Signal Register  
Phase Adjustment for Channel D 0x0600  
PWM Signal Register  
0x1010  
0x1012  
0x1013  
0x1014  
0x101F  
0x1020  
RST_STA  
Reset Status Register  
0x0000  
0x0000  
0x0000  
0x0000  
0x00B2  
0x0E2A  
R/W  
R
PMU_CLOCK_STATUS  
PMU_OTP_STATUS  
PMU_CHANNEL_STATUS  
REV_ID_INFO  
PMU Clock Status Register  
PMU OTP Status Register  
PWM Locking Status Register  
Revision ID Register  
R
R
R
SPI_SLV_PAD_CFG  
SPI Slave Pad Configuration  
Register  
R/W  
0x1021  
0x1022  
FAULT_PAD_CFG  
GPIO_PAD_CFG  
Fault Pad Configuration Register 0x0002  
R/W  
R/W  
GPIO0 to GPOI1 Pad  
Configuration Register  
0x0035  
0x1023  
0x1024  
EXTCLKIO_PAD_CFG  
HW_IRQ_PAD_CFG  
External Input and Output Clock 0x0035  
Pad Configuration Register  
R/W  
R/W  
Hardware Interrupt Pad  
Configuration Register  
0x003D  
analog.com  
Rev. 0 | 25 of 44  
Data Sheet  
ADBT1002  
MEMORY MAPPED REGISTERS  
Table 13. SYSTEM_CTRL (MISC_CTRL_DIG) Register Summary  
Address  
Name  
Description  
Reset  
Access  
0x1025  
GPIO_IEN_CFG  
GPIO Input Enable  
Configuration Register  
0x0000  
R/W  
R/W  
R/W  
R/W  
0x1026  
0x1027  
0x1028  
GPIO_OEN_CFG  
GPIO Output Enable  
Configuration Register  
0x0000  
0x0000  
0x0000  
GPIO_MODE_CFG0  
GPIO_MODE_CFG1  
GPIO0 to GPIO7 Mode  
Configuration Register  
GPIO8 to GPIO15 Mode  
Configuration Register  
0x1029  
0x102A  
0x102B  
0x102C  
0x102D  
0x1040  
GPIO_READ  
GPIO Data Read Register  
GPIO Data Write Register  
GPIO Data Set Register  
GPIO Data Clear Register  
GPIO Data Toggle Register  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
R
GPIO_WRITE  
GPIO_SET  
R/W  
W
GPIO_CLEAR  
GPIO_TOGGLE  
AIN0_FILT_CFG0  
W
W
Configuration Register for  
Filtering Applied to AIN0  
R/W  
0x1041  
0x1042  
0x1043  
0x1044  
0x1045  
0x1046  
0x1047  
0x1048  
0x1049  
0x104A  
0x104B  
0x104C  
0x104D  
0x104E  
0x104F  
0x1050  
0x1051  
0x1052  
AIN0_FILT_CFG1  
AIN0_FILT_CFG2  
AIN1_FILT_CFG0  
AIN1_FILT_CFG1  
AIN1_FILT_CFG2  
AIN2_FILT_CFG0  
AIN2_FILT_CFG1  
AIN2_FILT_CFG2  
AIN3_FILT_CFG0  
AIN3_FILT_CFG1  
AIN3_FILT_CFG2  
AIN4_FILT_CFG0  
AIN4_FILT_CFG1  
AIN4_FILT_CFG2  
AIN5_FILT_CFG0  
AIN5_FILT_CFG1  
AIN5_FILT_CFG2  
AIN6_FILT_CFG0  
Configuration Register for  
Filtering Applied to AIN0  
0x0000  
0x0010  
0x0000  
0x0000  
0x0010  
0x0000  
0x0000  
0x0010  
0x0000  
0x0000  
0x0010  
0x0000  
0x0000  
0x0010  
0x0000  
0x0000  
0x0010  
0x0000  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Configuration Register for  
Filtering Applied to AIN0  
Configuration Register for  
Filtering Applied to AIN1  
Configuration Register for  
Filtering Applied to AIN1  
Configuration Register for  
Filtering Applied to AIN1  
Configuration Register for  
Filtering Applied to AIN2  
Configuration Register for  
Filtering Applied to AIN2  
Configuration Register for  
Filtering Applied to AIN2  
Configuration Register for  
Filtering Applied to AIN3.  
Configuration Register for  
Filtering Applied to AIN3  
Configuration Register for  
Filtering Applied to AIN3  
Configuration Register for  
Filtering Applied to AIN4  
Configuration Register for  
Filtering Applied to AIN4  
Configuration Register for  
Filtering Applied to AIN4  
Configuration Register for  
Filtering Applied to AIN5  
Configuration Register for  
Filtering Applied to AIN5  
Configuration Register for  
Filtering Applied to AIN5  
Configuration Register for  
Filtering Applied to AIN6  
analog.com  
Rev. 0 | 26 of 44  
Data Sheet  
ADBT1002  
MEMORY MAPPED REGISTERS  
Table 13. SYSTEM_CTRL (MISC_CTRL_DIG) Register Summary  
Address  
Name  
Description  
Reset  
Access  
0x1053  
AIN6_FILT_CFG1  
Configuration Register for  
Filtering Applied to AIN6  
0x0000  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0x1054  
0x1055  
0x1056  
0x1057  
0x1058  
AIN6_FILT_CFG2  
AIN7_FILT_CFG0  
AIN7_FILT_CFG1  
AIN7_FILT_CFG2  
TEMP_AFE_FILT_CFG0  
Configuration Register for  
Filtering Applied to AIN6  
0x0010  
0x0000  
0x0000  
0x0010  
0x0000  
Configuration Register for  
Filtering Applied to AIN7  
Configuration Register for  
Filtering Applied to AIN7  
Configuration Register for  
Filtering Applied to AIN7  
Configuration Register for  
Filtering Applied to Temperature  
AFE  
0x1059  
0x105A  
0x105B  
0x105C  
0x105D  
TEMP_AFE_FILT_CFG1  
TEMP_AFE_FILT_CFG2  
TEMP_DSP_FILT_CFG0  
TEMP_DSP_FILT_CFG1  
TEMP_DSP_FILT_CFG2  
Configuration Register for  
Filtering Applied to Temperature  
AFE  
0x0000  
0x0010  
0x0000  
0x0000  
0x0010  
R/W  
R/W  
R/W  
R/W  
R/W  
Configuration Register for  
Filtering Applied to Temperature  
AFE  
Configuration Register for  
Filtering Applied to Temperature  
DSP  
Configuration Register for  
Filtering Applied to Temperature  
DSP  
Configuration Register for  
Filtering Applied to Temperature  
DSP  
0x105E  
0x105F  
0x1060  
0x1061  
0x1062  
DC_BUS_FILT_CFG0  
DC_BUS_FILT_CFG1  
DC_BUS_FILT_CFG2  
DC_BUS_FILT_CFG3  
TEMP_INT_CAL_CFG  
Configuration Register for  
Filtering Applied to DC Bus  
0x0000  
0x0000  
0x0001  
0x0000  
0x0000  
R/W  
R/W  
R/W  
R/W  
R/W  
Configuration Register for  
Filtering Applied to DC Bus  
Configuration Register for  
Filtering Applied to DC Bus  
DC Bus Filter Initial Delay in  
Multiples of 32 μs Register  
Configuration for Temperature  
Gain and Offset Internal  
Calibration Register  
0x1063  
0x1064  
0x1065  
0x1066  
0x106B  
TEMP_CAL_0  
Temperature Value for  
Calibration Point 0 Register  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
R/W  
R/W  
R/W  
R/W  
R/W  
TEMP_CAL_1  
Temperature Value for  
Calibration Point 1 Register  
TEMP_CAL_2  
Temperature Value for  
Calibration Point 2 Register  
TEMP_CAL_3  
Temperature Value for  
Calibration Point 3 Register  
TEMP_CAL_INV_MSB_0  
Slope Between Temperature  
0 and Temperature 1 MSBs  
Register  
0x106C  
TEMP_CAL_INV_LSB_0  
Slope Between Temperature  
0 and Temperature 1 LSBs  
Register  
0x0000  
R/W  
analog.com  
Rev. 0 | 27 of 44  
Data Sheet  
ADBT1002  
MEMORY MAPPED REGISTERS  
Table 13. SYSTEM_CTRL (MISC_CTRL_DIG) Register Summary  
Address  
Name  
Description  
Reset  
Access  
0x106D  
TEMP_CAL_INV_MSB_1  
Slope Between Temperature  
1 and Temperature 2 MSBs  
Register  
0x0000  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0x106E  
0x106F  
0x1070  
0x1071  
0x1072  
TEMP_CAL_INV_LSB_1  
TEMP_CAL_INV_MSB_2  
TEMP_CAL_INV_LSB_2  
TEMP_EXT_CAL_CFG0  
TEMP_EXT_CAL_CFG1  
Slope Between Temperature  
1 and Temperature 2 LSBs  
Register  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
Slope Between Temperature  
2 and Temperature 3 MSBs  
Register  
Slope Between Temperature  
2 and Temperature 3 LSBs  
Register  
Configuration for Temperature  
I Gain External Calibration  
Register  
Configuration for Temperature  
I Gain External Calibration  
Register  
0x1080  
0x1081  
0x1082  
0x1083  
0x1084  
0x1085  
0x1086  
0x1087  
0x1088  
AIN0_READOUT  
AIN1_READOUT  
AIN2_READOUT  
AIN3_READOUT  
AIN4_READOUT  
AIN5_READOUT  
AIN6_READOUT  
AIN7_READOUT  
TEMP_AFE_READOUT  
Result of the Measure on the  
External Pin AIN0 Register  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
R
R
R
R
R
R
R
R
R
Result of the Measure on the  
External Pin AIN1 Register  
Result of the Measure on the  
External Pin AIN2 Register  
Result of the Measure on  
External Pin AIN3  
Result of the Measure on the  
External Pin AIN4 Register  
Result of the Measure on the  
External Pin AIN5 Register  
Result of the Measure on the  
External Pin AIN6 Register  
Result of the Measure on the  
External Pin AIN7 Register  
Result of the Temperature  
Measure of the AFE Domain  
Register  
0x1089  
0x1090  
TEMP_DSP_READOUT  
DC_BUS_READOUT  
Result of the Temperature  
Measure of the DSP Domain  
Register  
0x0000  
0x0000  
R
R
Result of the DC Bus Filter  
Used for Correction in All PIDs  
Register  
0x1091  
0x10A0  
0x10A1  
0x10A2  
DC_BUS_CORR_FACTOR_  
READOUT  
DC Bus Correction Factor for All 0x8000  
Channels Register  
R
MC_CTRL  
MC_CFG0  
MC_CFG1  
Multichannel Global Control  
Register  
0x0000  
0x0000  
0x0020  
R/W  
R/W  
R/W  
Multichannel Mode, Slave  
Channels Configuration Register  
Multichannel Mode, External  
Communications Configuration  
Register  
analog.com  
Rev. 0 | 28 of 44  
Data Sheet  
ADBT1002  
MEMORY MAPPED REGISTERS  
Table 13. SYSTEM_CTRL (MISC_CTRL_DIG) Register Summary  
Address  
Name  
Description  
Reset  
Access  
0x10A3  
MC_PAD_CFG0  
Multichannel Mode, Pad  
Configuration Register for Slave  
SPI  
0x002A  
R/W  
0x10A4  
MC_PAD_CFG1  
Multichannel Mode, Pad  
Configuration Register for  
Master SPI  
0x0DDD  
R/W  
0x10C0  
0x10C1  
0x10C2  
0x10C3  
0x10C4  
0x10C5  
0x10C6  
SYSTEM_INT_EN  
INT_EN_CH_A  
System Interrupt Enable  
Register  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Channel A Interrupt Enable  
Register  
INT_EN_CH_B  
Channel B Interrupt Enable  
Register  
INT_EN_CH_C  
Channel C Interrupt Enable  
Register  
INT_EN_CH_D  
Channel D Interrupt Enable  
Register  
INT_EN_AUX_ADC0  
INT_EN_AUX_ADC1  
Auxiliary Measurements  
Interrupt Enable Register  
Auxiliary Measurements  
Interrupt Enable Register  
0x10D0  
0x10D1  
SYSTEM_INT_ST  
INT_ST_CH_A  
System Interrupt Status Register 0x0000  
R/W  
R/W  
Channel A Interrupt Status  
Register  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x10D2  
0x10D3  
0x10D4  
0x10D5  
0x10D6  
INT_ST_CH_B  
Channel B Interrupt Status  
Register  
R/W  
R/W  
R/W  
R/W  
R/W  
INT_ST_CH_C  
Channel C Interrupt Status  
Register  
INT_ST_CH_D  
Channel D Interrupt Status  
Register  
INT_ST_AUX_ADC0  
INT_ST_AUX_ADC1  
Auxiliary Measurements  
Interrupt Status Register  
Auxiliary Measurements  
Interrupt Status Register  
Table 14. ADC_CTRL (ADC_COMMON_SETTINGS) Register Summary  
Address  
Name  
Description  
Reset  
Access  
0x2800  
AUX_ADC_CFG0  
Current Values for External  
Thermistor Applied in AIN0 to  
AIN3 Pins Register  
0x0000  
R/W  
0x2801  
0x2803  
AUX_ADC_CFG1  
Control for Auxiliary Inputs  
and Temperature Sensor Being  
Measured Register  
0x4000  
0x00DA  
R/W  
R/W  
ADC_COMMON_REG  
AFE Chopping and Internal  
Reference Amplifier Settings  
Register  
analog.com  
Rev. 0 | 29 of 44  
Data Sheet  
ADBT1002  
MEMORY MAPPED REGISTERS  
Table 15. CHANNEL_CTRLA (CHANNEL_REGMAP) Register Summary  
Address  
Name  
Description  
Reset  
Access  
0x3000  
SEQ_CTRL  
Channel Sequencer Control  
Register  
0x0000  
R/W  
0x3001  
0x3002  
0x3003  
0x3004  
0x3005  
SEQ_STATUS  
SEQ_MEM_PTR  
SEQ_INST  
Channel Sequencer Status  
Register  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
R
Channel Sequencer Memory  
Address Pointer Register  
R
Channel Sequencer Instruction  
Register  
R/W  
R/W  
R/W  
SEQ_ISET  
Channel Sequencer Current  
Setpoint Register  
SEQ_VSET  
Channel Sequencer Voltage  
Setpoint Register  
0x3006  
0x3007  
0x3008  
Reserved  
Reserved  
SEQ_ILIMIT  
Reserved  
Reserved  
0x0000  
0x0000  
0x0000  
R/W  
R/W  
R/W  
Channel Sequencer Current  
Limit Register  
0x3009  
0x300A  
0x300B  
0x300C  
0x300D  
SEQ_VLIMIT  
Channel Sequencer Voltage  
Limit Register  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
R/W  
R/W  
R/W  
R/W  
R/W  
SEQ_TLIMIT  
Channel Sequencer Time Limit  
Register  
SEQ_NEXT_INST  
SEQ_NEXT_ISET  
SEQ_NEXT_VSET  
Channel Sequencer Next  
Instruction Register  
Channel Sequencer Next  
Current Set Point Register  
Channel Sequencer Next  
Voltage Set Point Register  
0x300E  
0x300F  
0x3010  
Reserved  
Reserved  
Reserved  
0x0000  
0x0000  
0x0000  
R/W  
R/W  
R/W  
Reserved  
SEQ_NEXT_ILIMIT  
Channel Sequencer Current-  
Limit Register  
0x3011  
0x3012  
0x3013  
0x3014  
0x3015  
0x3016  
0x3017  
SEQ_NEXT_VLIMIT  
SEQ_NEXT_TLIMIT  
SLEW_RATE_CFG  
Channel Sequencer Voltage  
Limit Register  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Channel Sequencer Next Time  
Limit Register  
Slew Rate Configuration for the  
Setpoints Register  
GPIO_CFG  
GPIO Configuration Associated  
to the Channel Register  
OPEN_LOOP_CFG  
OPEN_LOOP_DC_VAL_MSB  
OPEN_LOOP_DC_VAL_LSB  
Open-Loop Configuration  
Register  
Open-Loop DC Value (MSB)  
Register  
Open-Loop DC Value (LSB)  
Register  
0x3018  
0x3040  
SLAVE_CFG  
Slave Configuration Register  
0x0008  
0x0000  
R/W  
R/W  
I_PID_KP_SET1_LSB  
Current PID Proportional  
Coefficient (LSB) Register, Set  
to 1  
0x3041  
I_PID_KP_SET1_MSB  
Current PID Proportional  
Coefficient (MSB) Register, Set  
to 1  
0x0010  
R/W  
analog.com  
Rev. 0 | 30 of 44  
Data Sheet  
ADBT1002  
MEMORY MAPPED REGISTERS  
Table 15. CHANNEL_CTRLA (CHANNEL_REGMAP) Register Summary  
Address  
Name  
Description  
Reset  
Access  
0x3042  
I_PID_KI_SET1_LSB  
Current PID Integral Coefficient  
(LSB) Register, Set to 1  
0x0000  
R/W  
R/W  
R/W  
0x3043  
0x3044  
I_PID_KI_SET1_MSB  
I_PID_KD_SET1_LSB  
Current PID Integral Coefficient  
(MSB) Register, Set to 1  
0x0000  
0x0000  
Current PID Derivative  
Coefficient (LSB) Register, Set  
to 1  
0x3045  
0x3046  
0x3047  
I_PID_KD_SET1_MSB  
V_PID_KP_SET1_LSB  
V_PID_KP_SET1_MSB  
Current PID Derivative  
Coefficient (MSB) Register, Set  
to 1  
0x0000  
0x0000  
0x0010  
R/W  
R/W  
R/W  
Voltage PID Proportional  
Coefficient (LSB) Register, Set  
to 1  
Voltage PID Proportional  
Coefficient (MSB) Register, Set  
to 1  
0x3048  
0x3049  
0x304A  
V_PID_KI_SET1_LSB  
V_PID_KI_SET1_MSB  
V_PID_KD_SET1_LSB  
Voltage PID Integral Coefficient  
(LSB) Register, Set to 1  
0x0000  
0x0000  
0x0000  
R/W  
R/W  
R/W  
Voltage PID Integral Coefficient  
(MSB) Register, Set to 1  
Voltage PID Derivative  
Coefficient (LSB) Register, Set  
to 1  
0x304B  
0x304C  
0x304D  
V_PID_KD_SET1_MSB  
I_PID_KP_SET2_LSB  
I_PID_KP_SET2_MSB  
Voltage PID Derivative  
Coefficient (MSB) Register, Set  
to 1  
0x0000  
0x0000  
0x0010  
R/W  
R/W  
R/W  
Current PID Proportional  
Coefficient (LSB) Register, Set  
to 2  
Current PID Proportional  
Coefficient (MSB) Register, Set  
to 2  
0x304E  
0x304F  
0x3050  
I_PID_KI_SET2_LSB  
I_PID_KI_SET2_MSB  
I_PID_KD_SET2_LSB  
Current PID Integral Coefficient  
(LSB) Register, Set to 2  
0x0000  
0x0000  
0x0000  
R/W  
R/W  
R/W  
Current PID Integral Coefficient  
(MSB) Register, Set to 2  
Current PID Derivative  
Coefficient (LSB) Register, Set  
to 2  
0x3051  
0x3052  
0x3053  
I_PID_KD_SET2_MSB  
V_PID_KP_SET2_LSB  
V_PID_KP_SET2_MSB  
Current PID Derivative  
Coefficient (MSB) Register, Set  
to 2  
0x0000  
0x0000  
0x0010  
R/W  
R/W  
R/W  
Voltage PID Proportional  
Coefficient (LSB) Register, Set  
to 2  
Voltage PID Proportional  
Coefficient (MSB) Register, Set  
to 2  
0x3054  
0x3055  
V_PID_KI_SET2_LSB  
V_PID_KI_SET2_MSB  
Voltage PID Integral Coefficient  
(LSB) Register, Set to 2  
0x0000  
0x0000  
R/W  
R/W  
Voltage PID Integral Coefficient  
(MSB) Register, Set to 2  
analog.com  
Rev. 0 | 31 of 44  
Data Sheet  
ADBT1002  
MEMORY MAPPED REGISTERS  
Table 15. CHANNEL_CTRLA (CHANNEL_REGMAP) Register Summary  
Address  
Name  
Description  
Reset  
Access  
0x3056  
V_PID_KD_SET2_LSB  
Voltage PID Derivative  
Coefficient (LSB) Register, Set  
to 2  
0x0000  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0x3057  
0x3058  
0x3059  
0x305A  
0x305B  
0x305C  
0x305D  
0x305E  
0x305F  
0x3060  
0x3061  
0x3062  
0x3063  
0x3064  
0x3065  
0x3066  
0x3067  
V_PID_KD_SET2_MSB  
Voltage PID Derivative  
Coefficient (MSB) Register, Set  
to 2  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
PID_CCCV_KTRANS_SET1  
PID_CCCV_KTRANS_SET2  
TEMP_EXT_CAL_0  
PID Constant Current to  
Constant Voltage Transition  
Coefficient, Set to 1  
PID Constant Current to  
Constant Voltage Transition  
Coefficient, Set to 2  
Temperature Value for the  
External Calibration Point 0  
Register  
TEMP_EXT_CAL_1  
Temperature Value for the  
External Calibration Point 1  
Register  
TEMP_EXT_CAL_2  
Temperature Value for the  
External Calibration Point 2  
Register  
TEMP_EXT_CAL_3  
Temperature Value for the  
External Calibration Point 3  
Register  
TEMP_EXT_CAL_4  
Temperature Value for the  
External Calibration Point 4  
Register  
TEMP_EXT_CAL_5  
Temperature Value for the  
External Calibration Point 5  
Register  
TEMP_EXT_CAL_INV_MSB_0  
TEMP_EXT_CAL_INV_LSB_0  
TEMP_EXT_CAL_INV_MSB_1  
TEMP_EXT_CAL_INV_LSB_1  
TEMP_EXT_CAL_INV_MSB_2  
TEMP_EXT_CAL_INV_LSB_2  
TEMP_EXT_CAL_INV_MSB_3  
TEMP_EXT_CAL_INV_LSB_3  
Slope Between the External  
Temperature 0 and Temperature  
1 MSBs Register  
Slope Between the External  
Temperature 0 and Temperature  
1 LSBs Register  
Slope Between the External  
Temperature 1 and Temperature  
2 MSBs Register  
Slope Between the External  
Temperature 1 and Temperature  
2 LSBs Register  
Slope Between the External  
Temperature 2 and Temperature  
3 MSBs Register  
Slope Between the External  
Temperature 2 and Temperature  
3 LSBs Register  
Slope Between the External  
Temperature 3 and Temperature  
4 MSBs Register  
Slope Between the External  
Temperature 3 and Temperature  
4 LSBs Register  
analog.com  
Rev. 0 | 32 of 44  
Data Sheet  
ADBT1002  
MEMORY MAPPED REGISTERS  
Table 15. CHANNEL_CTRLA (CHANNEL_REGMAP) Register Summary  
Address  
Name  
Description  
Reset  
Access  
0x3068  
TEMP_EXT_CAL_INV_MSB_4  
Slope Between the External  
Temperature 4 and Temperature  
5 MSBs Register  
0x0000  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0x3069  
0x306A  
0x306B  
0x306C  
0x306D  
0x306E  
0x306F  
0x3070  
0x3071  
0x3072  
0x3073  
0x3074  
0x3075  
0x3076  
0x3077  
0x3078  
0x3079  
TEMP_EXT_CAL_INV_LSB_4  
I_GAIN_EXT_CAL_T0  
I_GAIN_EXT_CAL_T1  
I_GAIN_EXT_CAL_T2  
I_GAIN_EXT_CAL_T3  
I_GAIN_EXT_CAL_T4  
I_GAIN_EXT_CAL_T5  
V_GAIN_INT_CAL_T0  
V_GAIN_INT_CAL_T1  
V_GAIN_INT_CAL_T2  
V_GAIN_INT_CAL_T3  
I_GAIN_INT_CAL_T0  
I_GAIN_INT_CAL_T1  
I_GAIN_INT_CAL_T2  
I_GAIN_INT_CAL_T3  
V_OFFSET_INT_CAL_T0  
V_OFFSET_INT_CAL_T1  
Slope Between the External  
Temperature 4 and Temperature  
5 LSBs Register  
0x0000  
0x4000  
0x4000  
0x4000  
0x4000  
0x4000  
0x4000  
Current Gain External  
Calibration for Temperature 0,  
Signed 2.14 Register  
Current Gain External  
Calibration for Temperature 1,  
Signed 2.14 Register  
Current Gain External  
Calibration for Temperature 2,  
Signed 2.14 Register  
Current Gain External  
Calibration for Temperature 3,  
Signed 2.14 Register  
Current Gain External  
Calibration for Temperature 4,  
Signed 2.14 Register  
Current Gain External  
Calibration for Temperature 5,  
Signed 2.14 Register  
Voltage Gain Internal Calibration 0x4000  
for Temperature 0, Signed 2.14  
Register  
Voltage Gain Internal Calibration 0x4000  
for Temperature 1, Signed 2.14  
Register  
Voltage Gain Internal Calibration 0x4000  
for Temperature 2, Signed 2.14  
Register  
Voltage Gain Internal Calibration 0x4000  
for Temperature 3, Signed 2.14  
Register  
Current Gain Internal Calibration 0x4000  
for Temperature 0, Signed 2.14  
Register  
Current Gain Internal Calibration 0x4000  
for Temperature 1, Signed 2.14  
Register  
Current Gain Internal Calibration 0x4000  
for Temperature 2, Signed 2.14  
Register  
Current Gain Internal Calibration 0x4000  
for Temperature 3, Signed 2.14  
Register  
Voltage Offset Internal  
Calibration for Temperature 0,  
Signed 1.15 Register  
0x0000  
Voltage Offset Internal  
Calibration for Temperature 1,  
Signed 1.15 Register  
0x0000  
analog.com  
Rev. 0 | 33 of 44  
Data Sheet  
ADBT1002  
MEMORY MAPPED REGISTERS  
Table 15. CHANNEL_CTRLA (CHANNEL_REGMAP) Register Summary  
Address  
Name  
Description  
Reset  
Access  
0x307A  
V_OFFSET_INT_CAL_T2  
Voltage Offset Internal  
Calibration for Temperature 2,  
Signed 1.15 Register  
0x0000  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0x307B  
0x307C  
0x307D  
0x307E  
0x307F  
V_OFFSET_INT_CAL_T3  
I_OFFSET_INT_CAL_T0  
I_OFFSET_INT_CAL_T1  
I_OFFSET_INT_CAL_T2  
I_OFFSET_INT_CAL_T3  
Voltage Offset Internal  
Calibration for Temperature 3,  
Signed 1.15 Register  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
Current Offset Internal  
Calibration for Temperature 0,  
Signed 1.15 Register  
Current Offset Internal  
Calibration for Temperature 1,  
Signed 1.15 Register  
Current Offset Internal  
Calibration for Temperature 2,  
Signed 1.15 Register  
Current Offset Internal  
Calibration for Temperature 3,  
Signed 1.15 Register  
0x3080  
0x3081  
0x3082  
0x3083  
0x3084  
0x3085  
0x3086  
0x3087  
0x3088  
0x3089  
0x308A  
0x308B  
0x308C  
0x308D  
0x308E  
0x308F  
0x3090  
0x3091  
DSP_READOUT_FILT_CFG  
MAF_CFG  
Configuration for the Readout  
Filters Register  
0x0003  
0x0003  
0x0002  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Configuration for the Moving  
Average Filter Register  
SDM_CFG  
Configuration for the SDM  
Register  
DC_BUS_CORRECTION_CFG  
PWM_CFG0  
DC Bus Correction Configuration 0x0000  
Register  
Configuration for the PWM 0  
Register  
0x050A  
0x0000  
0x0000  
0x0000  
0x0002  
0x8000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0001  
PWM_CFG1  
Configuration for the PWM 1  
Register  
PWM_CFG2  
Configuration for the PWM 2  
Register  
PWM_CFG3  
Configuration for the PWM 3  
Register  
NCO_CFG0  
Configuration for the NCO 0  
Register  
NCO_CFG1  
Configuration for the NCO 1  
Register  
NCO_PHASE_INCR_LSB  
NCO_PHASE_INCR_MSB  
NCO_PHASE_INIT_LSB  
NCO_PHASE_INIT_MSB  
DEMOD_CFG  
NCO Phase Increment LSBs  
Register  
NCO Phase Increment MSBs  
Register  
NCO Initial Phase LSBs  
Register  
NCO Initial Phase MSBs  
Register  
Configuration for the FRA  
Demodulator Register  
DEMOD_ACCUM_COUNT_LSB Demodulator Integration Count  
LSBs Register  
DEMOD_ACCUM_COUNT_  
MSB  
Demodulator Integration Count  
MSBs Register  
FAULT_CFG  
Fault Configuration Register  
analog.com  
Rev. 0 | 34 of 44  
Data Sheet  
ADBT1002  
MEMORY MAPPED REGISTERS  
Table 15. CHANNEL_CTRLA (CHANNEL_REGMAP) Register Summary  
Address  
Name  
Description  
Reset  
Access  
0x3092  
MEAS_OVER_LIMITS_CFG  
Overlimits Detection for  
the Voltage and Current  
Measurement ADC Raw Data  
Configuration Register  
0x0000  
R/W  
0x3093  
0x3094  
0x3095  
0x3096  
0x3100  
VMEAS_OVER_LIMITS_  
HIGH_THLD  
High Overlimit Threshold for the 0x0000  
Voltage Measurement ADC Raw  
Data Register  
R/W  
R/W  
R/W  
R/W  
R
VMEAS_OVER_LIMITS_  
LOW_THLD  
Low Overlimit Threshold for the  
Voltage Measurement ADC Raw  
Data Register  
0x0000  
IMEAS_OVER_LIMITS_  
HIGH_THLD  
High Overlimit Threshold for the 0x0000  
Current Measurement ADC Raw  
Data Register  
IMEAS_OVER_LIMITS_  
LOW_THLD  
Low Overlimit Threshold for the  
Current Measurement ADC Raw  
Data Register  
0x0000  
DSP_READOUT_DATA_0  
Readout Data, MSBs of Voltage 0x0000  
Data Register (Whenever there  
is a read on this register, the rest  
of the readout data registers are  
sampled.)  
0x3101  
0x3102  
DSP_READOUT_DATA_1  
DSP_READOUT_DATA_2  
Readout Data, MSBs of Current 0x0000  
Data Register  
R
R
Readout Data, LSBs of the  
Voltage and Current Data and  
Tag Number Register  
0x0000  
0x3104  
COULOMB_COUNT_0  
Coulomb Integration Result  
for the Ongoing Instruction 0  
Register (Whenever there is a  
read on this register, the rest  
of the COULOMB_COUNT_1 to  
COULOMB_COUNT_3 registers  
are sampled.)  
0x0000  
R
0x3105  
0x3106  
0x3107  
0x3108  
0x3109  
COULOMB_COUNT_1  
Coulomb Integration Result  
for the Ongoing Instruction 1  
Register  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
R
R
R
R
R
COULOMB_COUNT_2  
Coulomb Integration Result  
for the Ongoing Instruction 2  
Register  
COULOMB_COUNT_3  
Coulomb Integration Result  
for the Ongoing Instruction 3  
Register  
COULOMB_COUNT_PREV_0  
COULOMB_COUNT_PREV_1  
Coulomb Integration Result  
for the Previous Instruction 0  
Register  
Coulomb Integration Result  
for the Previous Instruction 1  
Register  
0x310A  
0x310B  
COULOMB_COUNT_PREV_2  
COULOMB_COUNT_PREV_3  
Coulomb Integration Result for  
the Previous Instruction.  
0x0000  
0x0000  
R
R
Coulomb Integration Result  
for the previous Instruction 3  
Register  
analog.com  
Rev. 0 | 35 of 44  
Data Sheet  
ADBT1002  
MEMORY MAPPED REGISTERS  
Table 15. CHANNEL_CTRLA (CHANNEL_REGMAP) Register Summary  
Address  
Name  
Description  
Reset  
Access  
0x310C  
DEMOD_XV_I_RESULT_0  
FRA PID Output + NCO  
Demodulator Current Result 0  
Register  
0x0000  
R
R
R
R
R
R
R
R
0x310D  
0x310E  
0x310F  
0x3110  
0x3111  
0x3112  
0x3113  
DEMOD_XV_I_RESULT_1  
DEMOD_XV_I_RESULT_2  
DEMOD_XV_I_RESULT_3  
DEMOD_XV_Q_RESULT_0  
DEMOD_XV_Q_RESULT_1  
DEMOD_XV_Q_RESULT_2  
DEMOD_XV_Q_RESULT_3  
FRA PID Output + NCO  
Demodulator Current Result 1  
Register  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
FRA PID Output + NCO  
Demodulator Current Result 2  
Register  
FRA PID Output + NCO  
Demodulator Current Result 3  
Register  
FRA PID Output + NCO  
Demodulator Quadrature Result  
0 Register  
FRA PID Output + NCO  
Demodulator Quadrature Result  
1 Register  
FRA PID Output + NCO  
Demodulator Quadrature Result  
2 Register  
FRA PID Output + NCO  
Demodulator Quadrature Result  
3 Register  
0x3114  
0x3115  
0x3116  
0x3117  
0x3118  
0x3119  
0x311A  
0x311B  
DEMOD_YI_I_RESULT_0  
DEMOD_YI_I_RESULT_1  
DEMOD_YI_I_RESULT_2  
DEMOD_YI_I_RESULT_3  
DEMOD_YI_Q_RESULT_0  
DEMOD_YI_Q_RESULT_1  
DEMOD_YI_Q_RESULT_2  
DEMOD_YI_Q_RESULT_3  
FRA PID Output Demodulator  
Current Result 0 Register  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
R
R
R
R
R
R
R
R
FRA PID Output Demodulator  
Current Result 1 Register  
FRA PID Output Demodulator  
Current Result 2 Register  
FRA PID Output Demodulator  
Current Result 3 Register  
FRA PID Output Demodulator  
Quadrature Result 0 Register  
FRA PID Output Demodulator  
Quadrature Result 1 Register  
FRA PID Output Demodulator  
Quadrature Result 2 Register  
FRA PID Output Demodulator  
Quadrature Result 3 Register  
analog.com  
Rev. 0 | 36 of 44  
Data Sheet  
ADBT1002  
HOST SPI INTERFACE DETAILS  
Additional SPI port features include cyclic redundancy check (CRC)  
and address looping. The latter allows streaming over a limited  
range of consecutive register addresses.  
SPI OVERVIEW  
The host communicates with the ADBT1002 through a SPI port.  
The SPI port supports both 3-wire (with a single bidirectional data  
signal) and traditional 4-wire interfaces (default). These interfaces  
are selectable through configuration of the INTERFACE_CONFIG  
register.  
COMMUNICATIONS PROTOCOLS  
All transfers are done with 16-bit words. The first 16-bit word of  
each transaction (instruction phase) consists of a 15-bit register  
address and a R/W bit. The MSB R/W bit is 0 for a write and a 1 for  
a read.  
SPI_SCK functions as a serial shift clock and is generated by the  
host. The default clock polarity (CPOL) and clock phase (CPHA)  
are both 0. The rising edge of SPI_SCK is used to latch data  
from the host while the falling edge latches data to the host. The  
maximum clock rate is 16 MHz.  
Basic Read Operation  
The instruction phase is performed in the first 16-bit word transfer.  
The R/W bit, which is the MSB during the instruction phase shown  
in Figure 8, is set to 1 for a read operation. The other 15 bits specify  
the register address. The next 16-bit transfer from the host specifies  
the number of consecutive 16-bit reads to perform. For a single  
16-bit register read, this field is set to 0 or 1. Starting on the 33rd  
SPI_SCLK, data is read out. If the number of reads is 2 or more,  
SPI_CS must be asserted beyond the three basic single word 16-bit  
transfers through the total number requested.  
SPI_SDIO is a data input pin in 4-wire mode and a bidirectional  
data pin in 3-wire mode.  
SPI_SDO is the data output only pin used in 4-wire-mode. Note that  
MSB first is the default mode, but LSB first can also be configured.  
SPI_CS is an active low SPI chip select signal. A low going asser-  
tion starts a read or write operation. Data streaming can also be  
accommodated with automatic register address increment (default)  
or decrement.  
Figure 8. Basic 4-Wire Read Operation  
analog.com  
Rev. 0 | 37 of 44  
Data Sheet  
ADBT1002  
HOST SPI INTERFACE DETAILS  
phase. Additional data can be written by keeping SPI_CS asserted  
while clocking in additional 16-bit words. The data is transferred to  
sequential register addresses.  
Basic Write Operation  
Timing for basic write operation is shown in Figure 9. The R/W  
bit in the instruction phase is 0 for a write operation. The 16-bit  
data to be written to immediately follows the 16-bit instruction  
Figure 9. Basic 4-Wire Write Operation  
analog.com  
Rev. 0 | 38 of 44  
Data Sheet  
ADBT1002  
APPLICATIONS INFORMATION  
samples, monitor current step changes, determine when the RC  
time constant is complete, and estimate the voltage difference.  
CALIBRATION  
Facilitate System Calibration  
DCIR = ΔV/ΔI  
The ADBT1002 supports a means to facilitate a system calibration,  
which includes registers for each ADC channel to include offset  
and gain scaling calibration data. The user can provide external  
stimulus, measure the results, and calculate the requisite offset and  
gain scaling values over several temperature points. These values  
can then be user programmed into the ADC calibration registers.  
These values can then be used to compensate for system errors  
over a specific temperature range.  
During this measurement, the output data rate can be increased to  
capture the transient response.  
OPERATING USE CASES  
4-Channel Independent Use Case  
For the 4-channel independent use case, each channel conducts  
a separate and independent measurement of the battery voltage  
and current, and has independent control of the same. In addition,  
each channel has independently programmable voltage and current  
setpoints.  
DIAGNOSTICS  
Support DC Internal Resistance (DCIR)  
Measurement  
DCIR measurement is supported indirectly via accurate measure-  
ment of the battery voltage. The external controller must store data  
analog.com  
Rev. 0 | 39 of 44  
Data Sheet  
ADBT1002  
APPLICATIONS INFORMATION  
Figure 10. 4-Channel Independent Use Case  
analog.com  
Rev. 0 | 40 of 44  
Data Sheet  
ADBT1002  
APPLICATIONS INFORMATION  
and current setpoints. However, with the two parallel channels, the  
master channel (Channel A) uses both the voltage and current  
setpoints, while the slave parallel channel uses only the current  
setpoint. The current setpoint is provided automatically from the  
master channel current measurement so that it tracks properly. The  
host must program the master channel current setpoint with half of  
the total desired current.  
Two Parallel—Two Independent Channels Use  
Case  
This use case has two of the four channels operating in parallel  
for increased current capacity, and the other two channels are  
configured as independent channels. Each channel conducts sep-  
arate and independent measurement of the battery voltage and  
current, and has independent control of the same. Each of the two  
independent channels have independently programmable voltage  
Figure 11. Two Parallel—Two Independent Channels Use Case  
analog.com  
Rev. 0 | 41 of 44  
Data Sheet  
ADBT1002  
APPLICATIONS INFORMATION  
(Channel A) uses both the voltage and current setpoints, while the  
slave parallel channels use only the current setpoint. The current  
setpoint is provided automatically from the master channel current  
measurement so that it tracks properly. The host must program the  
master channel current setpoint with ¼ of the total desired current.  
Four Channels in Parallel Use Case  
This use case has all four channels operating in parallel for  
increased current capacity. Each channel conducts separate and  
independent measurement of the battery voltage and current, and  
has independent control of the same. The master channel  
Figure 12. Four Channels in Parallel Use Case  
analog.com  
Rev. 0 | 42 of 44  
Data Sheet  
ADBT1002  
APPLICATIONS INFORMATION  
This results in little to no current flowing upon connection of the  
battery to the power stage.  
Precharge Operation  
When connecting a cell to the power stage, there is a chance  
of a large current surge as a charge flows from the cell to the  
uncharged output capacitor (C1 in Figure 13). The ADBT1002  
supports measurement of both the battery voltage (BVN_x and  
BVP_x) and the power stage output capacitor voltage (CVS_x).  
These measurements allow users to precharge C1 to the potential  
of the battery before closing the isolation switches (Q3 and Q4).  
A GPIOx pin can be configured to provide control of the isolation  
switches.  
Measurement of both the cell and output capacitor voltages is  
available via the SPI port and a set of memory mapped registers.  
Use the VSET bit to control of the output capacitor voltage.  
Figure 13. Precharge Function Diagram  
analog.com  
Rev. 0 | 43 of 44  
Data Sheet  
ADBT1002  
OUTLINE DIMENSIONS  
Figure 14. 100-Lead Low Profile Quad Flat Package, Exposed Pad [LQFP]  
14 mm × 14 mm Body  
(SW-100-2)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
Package Description  
Package Option  
ADBT1002BSWZ  
0°C to 85°C  
0°C to 85°C  
100-Lead Low Profile Quad Flat Package [LQFP]  
100-Lead Low Profile Quad Flat Package [LQFP]  
SW-100-2  
SW-100-2  
ADBT1002BSWZ-RL  
1
Z = RoHS Compliant Part.  
©2021 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Rev. 0 | 44 of 44  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY