ADC912AFP [ADI]

CMOS Microprocessor-Compatible 12-Bit A/D Converter; CMOS微处理器兼容的12位A / D转换器
ADC912AFP
型号: ADC912AFP
厂家: ADI    ADI
描述:

CMOS Microprocessor-Compatible 12-Bit A/D Converter
CMOS微处理器兼容的12位A / D转换器

转换器 模数转换器 微处理器 光电二极管
文件: 总16页 (文件大小:235K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CMOS Microprocessor-Compatible  
12-Bit A/D Converter  
a
ADC912A  
FUNCTIONAL BLOCK DIAGRAM  
FEATURES  
Low Cost  
V
A
IN  
AGND  
REFIN  
Low Transition Noise between Code  
12-Bit Accurate  
؎1/2 LSB Nonlinearity Error over Temperature  
No Missing Codes at All Temperatures  
10 s Conversion Time  
5k  
V
DD  
12-BIT DAC  
V
SS  
ADC912A  
SUCCESSIVE  
APPROXIMATION  
REGISTER  
Internal or External Clock  
8- or 16-Bit Data Bus Compatible  
Improved ESD Resistant Design  
Latchup Resistant Epi-CMOS Processing  
Low 95 mW Power Consumption  
Space-Saving 24-Lead 0.3" DIP, or 24-Lead SOIC  
12-BIT LATCH  
BUSY  
CS  
4
8
CONTROL  
LOGIC  
RD  
MULTIPLEXER  
8
HBEN  
APPLICATIONS  
CLK OUT  
CLK IN  
THREE-STATE  
OUTPUT  
DRIVERS  
THREE-STATE  
OUTPUT  
Data Acquisition Systems  
DSP System Front End  
Process Control Systems  
Portable Instrumentation  
CLOCK  
OSCILLATOR  
DRIVERS  
D
D
D
D
DGND D D  
3/11 0/8  
11  
8
7
4
GENERAL DESCRIPTION  
not located at a transition voltage, see Figures 1 and 2. NPN  
digital output transistors provide excellent bus interface timing,  
125 ns access and bus disconnect time which results in faster  
data transfer without the need for wait states. An external  
1.25 MHz clock provides a 10 µs conversion time.  
The ADC912A is a monolithic 12-bit accurate CMOS A/D  
converter. It contains a complete successive-approximation A/D  
converter built with a high-accuracy D/A converter, a precision  
bipolar transistor high-speed comparator, and successive-  
approximation logic including three-state bus interface for logic  
compatibility. The accuracy of the ADC912A results from the  
addition of precision bipolar transistors to Analog Devices’  
advanced-oxide isolated silicon-gate CMOS process. Particular  
attention was paid to the reduction of transition noise between  
adjacent codes achieving a 1/6 LSB uncertainty. The low noise  
design produces the same digital output for dc analog inputs  
In stand-alone applications an internal clock can be used with  
external crystal.  
An external negative five-volt reference sets the 0 V to 10 V  
input range. Plus 5 V and minus 12 V power supplies result in  
95 mW of total power consumption.  
256  
256 SUCCESSIVE  
CONVERSIONS  
100  
90  
WITH  
192  
128  
64  
A
= 4.99756V  
IN  
10  
0%  
TRANSITION NOISE  
0
2045 2046 2047 2048 2049  
OUTPUT CODE – Decimal  
ANALOG INPUT  
Figure 2. Transition Noise Cross Plot  
Figure 1. Code Repetition  
REV. B  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, norforanyinfringementsofpatentsorotherrightsofthirdpartiesthat  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
www.analog.com  
© Analog Devices, Inc., 2001  
(VDD = +5 V ؎ 5%, VSS = –11.4 V to –15.75 V, VREFIN = –5 V, Analog Input O V to  
10 V; External fCLK = 1.25 MHz; –40؇C to +85؇C applies to ADC912A/F unless otherwise noted.)  
ADC912A–SPECIFICATIONS  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
STATIC ACCURACY  
Integral Nonlinearity  
Differential Nonlinearity  
Offset Error  
INL  
DNL  
VZSE  
GFSE  
TCGFS  
–1  
–1  
–5  
–6  
+1  
+1  
+5  
+6  
15  
LSB  
LSB  
LSB  
LSB  
VDD = +5 V, VSS = –12 V  
VDD = +5 V, VSS = –12 V  
Gain Error  
Full-Scale Tempco1  
5
ppm/°C  
ANALOG INPUT  
Input Voltage Range  
Input Current Range  
VIN  
IIN  
0
0
10  
3
V
mA  
POWER SUPPLIES  
Positive Supply Current  
Negative Supply Current  
Power Consumption  
IDD  
ISS  
PDISS  
VDD = +5 V2  
5
3
70  
1/2  
1/2  
7
5
95  
4
4
mA  
mA  
mW  
LSB  
LSB  
VSS = –12 V2  
VDD = +5 V2, VSS = –12 V2  
Power Supply Rejection Ratio PSRR+  
VDD  
=
=
5%, AIN = 10 V  
5%, AIN = 10 V  
PSRR–  
VSS  
DIGITAL INPUTS  
Logic Input High Voltage  
Logic Input Low Voltage  
Logic Input Current  
VINH  
VINL  
IIN  
CS, RD, HBEN  
CS, RD, HBEN  
CS, RD, HBEN  
Digital Inputs, CS, RD, HBEN, CLKIN  
2.4  
4
V
V
µA  
pF  
0.8  
1
10  
Digital Input Capacitance  
CIN  
7
8
DIGITAL OUTPUTS  
Logic Input High Voltage  
Logic Input Low Voltage  
Three-State Output Leakage  
Digital Input Capacitance  
VOH  
VOL  
IOZ  
ISOURCE = 0.2 mA  
ISINK = 1.6 mA  
D11–D0/8  
V
V
µA  
pF  
0.4  
10  
15  
1
COUT  
D11–D0/8  
DYNAMIC PERFORMANCE  
Conversion Time  
TC  
fCLK = 1.25 MHz3  
Synchronous Clock  
Asynchronous Clock  
10.4  
11.2  
µs  
µs  
10.4  
NOTES  
1Guaranteed by design.  
2Converter inactive; CS, RD = High, AIN = 10 V.  
3See Synchronizing Start Conversion information in Converter Operation Details. Typicals (typ) are median values measured at 25 °C. See Typical Performance  
Characteristics for additional information.  
Specifications subject to change without notice.  
5V  
3k  
5V  
DBN  
DBN  
C
C
3k  
L
L
3k⍀  
DBN  
DBN  
DGND  
DGND  
10pF  
10pF  
3k⍀  
B. HIGH-Z TOV (t3)  
A. HIGH-Z TOV (t3)  
OH  
OL  
DGND  
DGND  
ANDV  
TO V (t6)  
OL  
ANDV TO V (t6)  
OH  
OL  
OH  
A.V TO HIGH-Z  
OH  
B.V TO HIGH-Z  
OL  
Figure 3. Load Circuits for Access Time  
Figure 4. Load Circuits for Output Float Delay  
–2–  
REV. B  
ADC912A  
TIMING CHARACTERISTICS1, 2  
(VDD = +5 V ؎ 5%, VSS = –11.4 V to –15.75 V, VREFIN = –5 V, Analog Input 0 V to 10 V;  
External fCLK = 1.25 MHz; –40؇C to +85؇C applies to ADC912A/F unless otherwise noted. See Figures 5 to 8.)  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
CS to RD Setup Time  
t1  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
RD to BUSY Propagation Delay  
Data Access Time after READ  
Read Pulsewidth  
CS to RD Hold Time  
New Data Valid after BUSY  
t23  
t33  
t4  
150  
125  
CL = 100 pF  
CL = 100 pF  
65  
90  
0
t53  
t6  
–30  
60  
0
90  
Bus Disconnect Time  
t7  
t8  
t9  
t10  
20  
20  
20  
350  
HBEN to RD Setup Time  
HBEN to RD Hold Time  
Delay between Successive Read Operations  
250  
NOTES  
1Guaranteed by design.  
2All input control signals are specified with tR = tF = 5 ns (10% to 90% of 5 V) and timed from a voltage level of 1.6 V.  
3t3, t4, and t6 are measured with the load circuits of Figure 3 and timed for and output to cross 0.8 V or 2.4 V.  
4t7 is the time required for the data lines to change 0.5 V when loaded with the circuits of Figure 4.  
Specifications subject to change without notice.  
CS  
TIMING DIAGRAMS  
t5  
t5  
t1  
t1  
t4  
CS  
t4  
RD  
t1  
t1  
t5  
tCONV  
t2  
t2  
t3  
tCONV  
t7  
RD  
BUSY  
t10  
t2  
t3  
t7  
tCONV  
BUSY  
DATA  
NEW DATA  
OLD DATA  
DATA  
DB DB  
DB DB  
11  
0
t6  
11  
0
t3  
t7  
OLD DATA  
NEW DATA  
DB DB  
DATA  
D
D
D
D
D
D
6
D
D
D
D
D
D
DB DB  
11  
10  
9
8
7
5
4
3/11 2/10  
1/9  
0/8  
11  
0
11  
0
OUTPUTS  
FIRST READ  
(OLD DATA)  
DB DB DB DB DB DB DB DB DB DB DB DB  
DATA  
11  
10  
9
8
7
6
5
4
3
2
1
0
D
D
D
D
D
D
D
D
D
D
D
D
11  
10  
9
8
7
6
5
4
3/11 2/10  
1/9 0/8  
OUTPUTS  
SECOND  
READ  
DB DB DB DB DB DB DB DB DB DB DB DB  
DB DB DB DB DB DB DB DB DB DB DB DB  
0
11  
10  
9
8
7
6
5
4
3
2
1
0
READ  
11  
10  
9
8
7
6
5
4
3
2
1
Figure 5. Parallel Read Timing Diagram, Slow-Memory  
Mode (HBEN = LOW)  
Figure 7. Parallel Read Timing Diagram, ROM Mode  
(HBEN = LOW)  
HBEN  
t8  
t8  
t8  
t9  
t9  
t9  
CS  
HBEN  
t1  
t1  
t1  
t8  
t5  
t5  
t5  
t8  
t9  
t9  
t5  
t4  
t4  
t4  
CS  
RD  
RD  
t1  
t10  
t1  
t5  
t2  
t2  
t3  
t4  
tCONV  
t7  
BUSY  
t10  
t2  
t3  
t7  
t7  
tCONV  
t3  
t3  
BUSY  
t7  
OLD DATA  
DB DB  
NEW DATA  
DB DB  
t3  
NEW DATA  
DB DB  
t6  
DATA  
t7  
7
0
7
0
11  
8
OLD DATA  
DATA  
DB DB  
7
0
NEW DATA  
NEW DATA  
DATA  
OUTPUTS  
D
D
D
D
D
D
D
D
0/8  
DB DB  
DB DB  
7
6
5
4
3/11  
2/10  
1/9  
11  
8
7
0
DATA  
FIRST READ  
(OLD DATA)  
D
D
D
D
D
D
D
D
0/8  
DB  
DB  
DB  
DB  
DB  
DB  
DB  
DB  
DB  
7
6
5
4
3/11  
2/10  
1/9  
7
6
5
4
3
2
1
0
OUTPUTS  
DB  
DB  
DB  
DB  
DB  
DB  
DB  
DB  
DB  
DB  
DB  
DB  
DB  
DB  
DB  
FIRST READ  
LOW  
SECOND READ LOW LOW LOW  
DB DB DB  
7
6
5
4
3
2
1
0
10  
9
8
11  
DB  
LOW  
SECOND READ LOW LOW LOW  
DB  
4
DB  
DB  
DB  
0
10  
9
8
THIRD READ  
11  
7
6
5
3
2
1
Figure 6. Two-Byte Read Timing Diagram, Slow-Memory  
Mode  
Figure 8. Two-Byte Read Timing Diagram, ROM Mode  
REV. B  
–3–  
ADC912A  
ABSOLUTE MAXIMUM RATINGS  
(TA = 25°C, unless otherwise noted)  
Operating Temperature Range  
Extended Industrial: ADC912A/F . . . . . . . –40°C to +85°C  
Storage Temperature . . . . . . . . . . . . . . . . . . –65°C to +150°C  
Lead Temperature (Soldering, 10 sec) . . . . . . . . . . . . . 300°C  
Maximum Junction Temperature (TJ max) . . . . . . . . . . 150°C  
Package Power Dissipation . . . . . . . . . . . . . . (TJ max–TA)/θJA  
Thermal Resistance θJA  
VDD to DGND . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to +7 V  
VSS to DGND . . . . . . . . . . . . . . . . . . . . . . . . . +0.3 V to –7 V  
V
REFIN to DGND . . . . . . . . . . . . . . . . . . . . . . . . . . VSS to VDD  
AGND to DGND . . . . . . . . . . . . . . . . –0.3 V to VDD + 0.3 V  
AIN to AGND . . . . . . . . . . . . . . . . . . . . . . . . –15 V to +15 V  
Digital Input Voltage to DGND,  
Pins 17, 19–21 . . . . . . . . . . . . . . . . . –0.3 V to VDD + 0.3 V  
Digital Output Voltage to DGND,  
Plastic DIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57°C/W  
SOIC-24 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70°C  
Pins 4–11, 13–16, 18, 22 . . . . . . . . . –0.3 V to VDD + 0.3 V  
ORDERING GUIDE  
Temperature  
Range  
INL  
(LSB)  
Package  
Option  
Model  
Package Description  
ADC912AFP  
ADC912AFS  
–40°C to +85°C  
–40°C to +85°C  
1
1
24-Lead Narrow-Body Plastic  
24-Lead Wide-Body SOIC  
N-24  
R-24  
Table I. Analog Input to Digital Output Code Conversion  
Analog Input Voltage Output Code*  
0 V to 10 V  
–10 V to +10 V  
DB11 (MSB) DB0 (LSB)  
+FS – 1 LSB  
+FS – 1 1/2 LSB  
9.9976  
9.9964  
9.99951  
9.9927  
1 1 1 1 1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1 1111φ  
Midscale + 1/2 LSB 5.0012  
0.0024  
0.0000  
1 0 0 0 0 0 0 0 0 0 0 φ  
1 0 0 0 0 0 0 0 0 0 0 0  
Midscale  
5.0000  
–FS + 1/2 LSB  
–FS  
0.0012  
0.0000  
–9.9976  
–10.000  
0 0 0 0 0 0 0 0 0 0 0 φ  
0 0 0 0 0 0 0 0 0 0 0 0  
*The symbol”φ” indicates a 0 or 1 with equal probability.  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although  
the ADC912A features proprietary ESD protection circuitry, permanent damage may occur on  
devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are  
recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
–4–  
REV. B  
ADC912A  
(@ V = +5 V, V = 12 V or 15 V, VREF = 5 V, AIN = 0 V to 10 V, and TA = 25؇C, unless otherwise noted.)  
WAFER TEST LIMITS  
DD  
SS  
ADC912AG  
Limit  
Parameter  
Symbol  
Conditions  
Unit  
Integral Nonlinearity  
Differential Nonlinearity  
Offset Error  
INL  
DNL  
VZSE  
GFSE  
RAIN  
VINH  
VINL  
IIN  
1
1
8
LSB max  
LSB max  
LSB max  
LSB max  
kmin/max  
V min  
V max  
µA max  
V min  
Guaranteed by Design  
Gain Error  
8
Analog Input Resistance  
Logic Input High Voltage  
Logic Input Low Voltage  
Logic Input Current  
Logic Output High Voltage  
Logic Output Low Voltage  
Positive Supply Current  
Negative Supply Current  
4/6  
2.4  
0.8  
1
CS, RD, HBEN  
CS, RD, HBEN  
CS, RD, HBEN  
ISOURCE = 0.2 mA  
ISINK = 1.6 mA  
VDD = +5 V, CS = RD = VDD, AIN = +10 V  
VSS = –12 V, CS = RD = VDD, AIN = +10 V  
VOH  
VOL  
IDD  
4
0.4  
7
V max  
mA max  
mA max  
ISS  
5
NOTE  
Electrical tests are performed at wafer probe to the limits shown. Due to variations in assembly methods and normal yield loss, yield after packaging is not guaranteed  
for standard product dice. Consult factory to negotiate specifications based on dice lot qualification through sample lot assembly and testing.  
R
R
10V  
+5V  
+
+
+
+
C1  
C1  
C2  
R
C1  
R
C2  
C2  
1
2
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
5V  
15V  
C2  
C1  
3
NC  
4
R
R
5
ADC912A  
TOP VIEW  
(Not to Scale)  
6
7
NC  
NC  
R
8
9
NC  
NC  
NC  
NC  
10  
11  
12  
R = 10  
C1 = 0.01F  
C2 = 4.7F  
NC = NO CONNECT  
POWER SUPPLY SEQUENCE:  
+5V, 15V, 5V, +10V  
Figure 9. Burn-In Circuit  
REV. B  
–5–  
ADC912A  
PIN FUNCTION DESCRIPTIONS  
Pin  
Mnemonic  
Description  
l
AIN  
Analog Input. 0 V to 10 V.  
2
VREFIN  
AGND  
D11 . . . D4  
Voltage Reference Input. Requires external –5 V reference.  
Analog Ground.  
Three-state data outputs become active when CS and RD are brought low.  
3
4 . . . 11  
13 . . . 16 D3/11 . . . D0/8 Individual pin function is dependent upon High Byte Enable (HBEN) input.  
DATA BUS OUTPUT, CS and RD = LOW  
Pin 4 Pin 5 Pin 6 Pin 7 Pin 8 Pin 9 Pin 10 Pin 11 Pin 13 Pin 14 Pin 15 Pin 16  
D11 D10 D9 D8 D7 D6 D5 D4 D3/11 D2/10 D1/9 D0/8  
DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
Mnemonic*  
HBEN = LOW  
HBEN = HIGH DB11 DB10 DB9 DB8 Low Low Low Low DB11 DB10 DB9 DB8  
*D11 . . . D0/8 are the ADC data output pins.  
DB11 . . . DB0 are the 12-bit conversion results. DB11 is the MSB.  
1
2
DGND  
Digital Ground.  
17  
18  
19  
CLK IN  
Clock Input Pin. An external TTL-compatible clock may be applied to this pin. Alternatively a crystal or  
ceramic resonator may be connected between CLK IN (Pin 17) and CLK OUT (Pin 18).  
Clock Output Pin. An inverted CLK IN signal appears at CLK OUT when an external clock is used. See  
CLK IN (Pin 17) description for crystal (resonator).  
High Byte Enable Input. Its primary function is to multiplex the 12 bits of conversion data onto the lower  
D7 . . . D0/8 outputs (4 MSBs or 8 LSBs). See pin description 4 . . . 11 and 13 . . . 16. Also disables  
conversion start when HBEN is high.  
CLK OUT  
HBEN  
20  
21  
RD  
CS  
READ Input. This active LOW signal, in conjunction with CS, is used to enable the output data three  
state drivers and initiates a conversion if CS and HBEN are low.  
Chip Select Input. This active LOW signal, in conjunction with RD, is used to enable the output data  
three-state drivers and initiates a conversion if RD and HBEN are low.  
22  
23  
24  
BUSY  
VSS  
VDD  
BUSY output indicates converter status. BUSY is LOW during conversion.  
Negative Supply, –12 V or –15 V.  
Positive Supply, +5 V.  
0V TO 10V  
ANALOG INPUT  
5V  
PIN CONFIGURATION  
V
A
24  
23  
+5V  
1
2
DD  
IN  
V
V
REFERENCE  
12V TO 15V  
REFIN  
SS  
C2  
C1  
SOURCE  
+
STATUS  
OUTPUT  
BUSY 22  
3
AGND  
A
IN  
V
DD  
1
2
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
D
21  
4
CS  
11  
V
REFIN  
V
P  
CONTROL  
INPUTS  
SS  
ADC912A  
20  
D
5
RD  
10  
AGND  
3
BUSY  
D
9
HBEN 19  
6
D
11  
4
CS  
C3  
D
8
18  
17  
16  
15  
14  
13  
7
CLK OUT  
CLK IN  
D
5
10  
RD  
ADC912A  
TOP VIEW  
(Not to Scale)  
XTAL  
D
7
8
D
9
6
HBEN  
D
9
D
6
0/8  
C4  
D
D
8
7
CLK OUT  
CLK IN  
D
5
10  
11  
12  
D
1/9  
7
8
D
D
4
2/10  
D
D
D
9
6
0/8  
D
DGND  
3/11  
5
10  
11  
12  
D
D
1/9  
D
4
2/10  
8-BIT OR 16-BIT P DATA BUS  
DGND  
D
3/11  
XTAL = 1MHz, C1 = 0.1 F, C3 = 10 F  
C3, C4 = 30pF TO 100pF DEPENDING ON XTAL CHOSEN  
Figure 10. Basic Connection Diagram  
–6–  
REV. B  
Typical Performance CharacteristicsADC912A  
5
4
6
0.4  
0.2  
5
3
4
2
3
1
2
0
0
1
1  
2  
3  
4  
5  
0
0.2  
0.4  
1  
2  
3  
4  
0
1024  
2048  
3072  
4096  
75 50 25  
0
25  
50  
75 100 125  
75 50 25  
0
25  
50  
75 100 125  
TEMPERATURE –  
C
TEMPERATURE –  
C
DIGITAL OUTPUT CODE  
TPC 3. Gain Error vs. Temperature  
TPC 1. Nonlinearity Error vs. Digital  
Output Code  
TPC 2. Offset Error vs. Temperature  
50  
40  
30  
80  
6
V
@ 5.25V  
P
= IDD 
؋
 5 + ISS 
؋
 12  
= 20pF  
5
4
DD  
DISS  
C
OUT  
f
= 1/13 f  
CONV  
CLK IN  
I
SINK  
T
= 25 C  
A
20  
10  
3
60  
40  
0
EXT CLK IN  
CS, RD = LOGIC HIGH  
= 10V  
2
A
IN  
0
1
CLK = 1MHz XTAL  
10  
0
20  
1  
2  
3  
4  
I
SOURCE  
30  
40  
50  
I
@V  
= 15.75V  
SS  
SS  
0
100k  
10k  
CLK IN FREQUENCY Hz  
1
2
3
4
5
0
25  
50  
75 100 125  
C
1k  
1M  
75 50 25  
TEMPERATURE –  
V
OUTPUTVOLTAGE Volts  
O
TPC 5. Power Dissipation vs. CLK IN  
Frequency  
TPC 4. Supply Current vs.  
Temperature  
TPC 6. Digital Output Current vs.  
Output Voltage  
256  
V
= +5V  
= 12V  
= 25؇C  
4
2
DD  
256 SUCCESSIVE  
CONVERSIONS  
WITH  
V
T
SS  
100  
90  
A
192  
A
= 4.99756V  
IN  
128  
64  
0
0
2  
4  
10  
0%  
TRANSITION NOISE  
ANALOG INPUT  
2045 2046 2047 2048 2049  
20  
15  
CONVERSIONTIME s  
10  
5
0
OUTPUT CODE Decimal  
TPC 8. Transition Noise Cross Plot  
TPC 7. Code Repetition  
TPC 9. Linearity Error vs. Conversion  
Time  
–7–  
REV. B  
ADC912A  
SYNCHRONIZING START CONVERSION  
CIRCUIT CHARACTERISTICS  
Aligning the negative edge of RD with the rising edge of CLK  
IN provides synchronization of the internal start conversion  
signal to other system devices for sampling applications.  
The characteristic curves provide more complete static and  
dynamic accuracy information necessary for repetitive sampling  
applications often used in DSP processing. One of the impor-  
tant characteristic curves provided displays integral nonlinearity  
error (INL) versus output code with a typical value of 1/4 LSB.  
Another very important characteristic associated with INL is the  
transition noise shown in the transition noise cross plot. The  
ADC912A offers extremely small, 1/6 LSB, transition noise  
which maintains the system signal-to-noise ratio in DSP processing  
applications. Code repetition plots show the precision internal  
comparator of the ADC912A making the same decision every  
time for dc input voltages. Code repetition along with no miss-  
ing codes assures proper performance when the ADC912A is  
used in servo-control systems.  
When the negative edge of RD is aligned with the positive edge  
of CLK IN, the conversion will take 10.4 microseconds. The  
minimum setup time between the negative edge of CLK IN and  
the negative edge of RD is 180 ns. Without synchronization the  
conversion time will vary from 12.5 to 13.5 clock cycles. See  
Figure 12.  
CS, RD  
BUSY  
180ns MIN  
CONVERTER OPERATION DETAILS  
CLK IN  
The CS, RD, and HBEN digital inputs control the start of  
conversion. A high-to-low on both CS and RD initiate a conver-  
sion sequence. The HBEN high-byte-enable input must be low  
or coincident with the read RD input edge. The start of conver-  
sion resets the internal successive approximation register (SAR)  
and enables the three-state outputs. See Figure 11. The busy  
line is active low during the conversion process.  
DB  
11  
DB  
10  
DB  
DB  
0
9
(MSB)  
BIT DECISION  
MADE  
Figure 12. External Clock Input Synchronization  
POWER ON INITIALIZATION  
0V TO 10V  
During system power-up the ADC912A comes up in a random  
state. Once the clock is operating or an external clock is applied,  
the first valid conversion begins with the application of a high-  
to-low transition on both CS and RD. The next 13 negative  
clock edges complete the first conversion, producing valid data  
at the digital outputs. This is important in battery-operated  
systems where power supplies are shut down between measure-  
ment times.  
5k⍀  
A
IN  
2.5k⍀  
+
0 TO  
V
REFIN  
COMPARATOR  
V  
REF  
AGND  
12  
DRIVING THE ANALOG INPUT  
SAR  
During conversion, the internal DAC output current modulates  
the analog input current at the CLK IN frequency of 1.25 MHz.  
The analog input to the ADC912A must not change during the  
conversion process. This requires an external buffer with low  
output impedance at 1.25 MHz. Suitable devices meeting this  
requirement include the OP27, OP42, and the SMP-11.  
12-BIT LATCH  
Figure 11. Simplified Analog Input Circuitry of ADC912A  
During conversion, the SAR sequences the internal voltage  
output DAC from the most significant bit (MSB) to the least  
significant bit (LSB). The analog input connects to the  
comparator via a 5 kresistor. The DAC, which has a 2.5 kΩ  
output resistance, connects to the same comparator input.  
The comparator, performing a zero crossing detection, tests the  
addition of successively weighted bits from the DAC output  
versus the analog input signal. The MSB decision occurs 200 ns  
after the second positive edge of the CLK IN following conver-  
sion initiation. The remaining 11-bit trials occur after the next  
11 positive CLK IN edges. Once a conversion cycle is started it  
cannot be stopped or restarted, without upsetting the remaining  
bit decisions. Every conversion cycle must have 13 negative and  
positive CLK IN edges. At the end of conversion the compara-  
tor input voltage is zero. The SAR contains the 12-bit data  
word representing the analog input voltage. The BUSY line  
returns to logic high, signaling end of conversion. The SAR  
transfers the new data to the 12-bit latch.  
CLK  
OUT  
ADC912A  
C1  
*
INTERNAL  
CLOCK  
C2  
CLK  
IN  
1M  
*CRYSTAL OR CERAMIC RESONATOR  
Figure 13. ADC912A Simplified Internal Clock Circuit  
–8–  
REV. B  
ADC912A  
INTERNAL CLOCK OSCILLATOR  
4095  
4094  
Figure 13 shows the ADC912A internal clock circuit. The clock  
oscillates at the external crystal or ceramic resonator frequency.  
The 1.25 MHz crystal or ceramic resonator connects between  
the CLK IN (Pin 17) and the CLK OUT (Pin 18). Capacitance  
values (C1, C2) depend on the crystal or ceramic resonator  
manufacturer. The crystal vendors should be qualified due to  
variations in C1 and C2 values required from vendor to vendor.  
Typical values range from 30 pF to 100 pF.  
FULL-SCALE  
TRANSITION  
AT FS 1.5 LSB  
2
1
EXTERNAL CLOCK INPUT  
FS-2 FS-1 FS  
ANALOG INPUT IN LSB  
2
0 0.5 1  
A
A TTL compatible signal connected to CLK IN provides proper  
converter clock operation. No connection is necessary to the  
CLK OUT pin. The duty cycle of the external clock input can  
vary from 45% to 55%. Figure 12 shows the important waveforms.  
IN  
Figure 15. Ideal ADC912A Input/Output Transfer  
Characteristic  
OFFSET AND FULL-SCALE ERROR ADJUSTMENT,  
UNIPOLAR OPERATION  
EXTERNAL REFERENCE  
A low output resistance, negative five volt reference is necessary.  
The external reference should be able to supply 3 mA of refer-  
ence current. A bypass capacitor is necessary on the reference  
input lead to minimize system noise as the internal DAC switches.  
The reference input to the internal DAC is code dependent requir-  
ing anywhere from zero to 3 mA. The reference voltage tolerance  
has a direct influence on A/D converter full-scale voltage, and  
the maximum input full-scale voltage equals 2 × –VREF. The  
ADC912A is designed for ratiometric operation, but operation  
using reference voltages between –5.00 V and 0 V will result in  
degraded linearity performance. Integral linearity is fully tested and  
guaranteed for references of –5 V. Figure 14 provides a good  
–5 V reference that does not require precision resistors.  
For applications where absolute accuracy is important, offset  
and full-scale errors can be adjusted to zero. Figure 16 shows  
the extra components required for full-scale error adjustment.  
Zero offset is achieved by adjusting the null offset of the op amp  
driving AIN.  
+12V  
3
2
7
V
IN  
0V TO 10V  
10  
6
1
A1  
10k⍀  
A
IN  
5
4
1
ADC912A*  
FULL  
ZERO  
ADJUST  
SCALE  
ADJUST  
12V  
200⍀  
+5V TO +15V  
3
AGND  
20k⍀  
0.01F  
+
2
INPUT  
V
A1: OP27 LOWEST NOISE (TRIMMER CONNECTS  
BETWEEN PINS 1 & 8, WIPER TO 12V)  
OP42 BEST BANDWIDTH  
10F//0.01F  
100⍀  
10k⍀  
2
3
6
5
V+  
OUT  
100⍀  
*EXTRA PINS OMITTED FOR CLARITY  
5V  
OUTPUT  
OP77  
REF02  
TRIM  
GND  
V–  
Figure 16. Unipolar 0 V to 10 V Operation  
Adjust the zero scale first by applying 1.22 mV (equivalent to  
0.5 LSB input) to VIN. Adjust the op amp offset control until  
the digital output toggles between 0000 0000 0000 and 0000  
0000 0001. The next step is adjustment of full scale. Apply  
9.9963 V (equivalent to FS – 1.5 LSB) to VIN and adjust R1  
until the digital output toggles between 1111 1111 1110 and  
1111 1111 1111.  
4
12V TO 15V  
TRIM IS OPTIONAL, ONLY NECESSARY  
FOR ABSOLUTE ACCURACY CIRCUITS  
Figure 14. –5 V Reference  
UNIPOLAR ANALOG INPUT OPERATION  
Figure 15 shows the ideal input/output characteristic for the 0 V  
to 10 V input range of the ADC912A. The designed output  
code transitions occur midway between successive integer LSB  
values (i.e., 0.5 LSB, 1.5 LSBs, 2.5 LSBs . . . FS – 1.5 LSBs).  
The output code is natural binary with 1 LSB = FS/4096 =  
(10/4096) V = 2.44 mV. The maximum full-scale input voltage  
is (10 × 4095/4096) V = 9.9976 V.  
REV. B  
–9–  
ADC912A  
BIPOLAR ANALOG INPUT OPERATION  
Calibration of the bipolar analog input circuits (Figures 17 and  
18) should begin with zero adjustment first. Apply a +1/2 LSB  
analog input to AIN, (see Tables II and III) and adjust RZ until the  
successive digital output codes flicker between the following codes:  
Bipolar analog input operation is achieved with an external  
amplifier providing an analog offset. Figures 17 and 18 show  
two circuit topologies that result in different digital-output cod-  
ing. In Figure 17, offset binary coding is produced when the  
external amplifier is connected in the inverting mode. Figure 19  
shows the ideal transfer characteristics for both the inverting  
and noninverting configurations given in Figures 17 and 18.  
For noninverting, Figure 17  
1000 0000 0000  
1000 0000 0001  
0111 1111 1111  
0111 1111 1110  
For inverting, Figure 18  
R3  
؎V  
IN  
Next, adjust full scale by applying a FS–3/2 LSB analog input to  
AIN, (see Tables II and III) and adjust RFS until the successive  
digital output codes flicker between the following codes:  
R
FS  
1
A
A1  
IN  
R4  
R2  
For Noninverting, Figure 17  
1111 1111 1110  
1111 1111 1111  
0000 0000 0001  
0000 0000 0000  
R
Z
ADC912A*  
R1  
For Inverting, Figure 18  
2
3
5V  
V
REFIN  
10F  
0.1F  
AGND  
Table II. Resistor and Potentiometer Values Required for  
Figure 17  
R1 = R2 = 20k⍀  
SEE TABLE II FOR VALUES OF R3, R4, R , AND R  
Z
FS  
A1: OP27 LOWEST NOISE, OP42 BEST BANDWIDTH  
V
V
IN Range R3  
R4  
k  
RZ  
kk⍀  
RFS  
1/2 LSB FS/2–3/2 LSB  
*EXTRA PINS OMITTED FOR CLARITY  
k⍀  
mV  
V
Figure 17. Noninverting Bipolar Analog Input Operation  
2.5  
5.0  
10.0  
0
40.2 0.5 0.5  
0.61  
1.22  
2.44  
2.49817  
4.99634  
9.99268  
The scaling resistors chosen in bipolar input applications should  
be from the same manufacturer to obtain good resistor tracking  
performance over temperature. When potentiometers are used  
for absolute adjustment, 0.1% tolerance resistors should still be  
used as shown in Figures 17 and 18 to minimize temperature  
coefficient errors.  
20.0 19.8 0.5 1.0  
29.8 10.0 0.5 0.5  
Table III. Resistor and Potentiometer Values Required for  
Figure 18  
VIN Range R1  
R2  
R3  
RZ  
RFS 1/2 LSB FS/2–3/2 LSB  
R2  
V
kkkkkmV  
V
R
FS  
R1  
2.5  
5.0  
10.0  
20.0 41.2 40.2  
20.0 20.5 20.0  
20.0 10.5 10.2 0.5  
2
1
1
1
1
0.61  
1.22  
2.44  
2.49817  
4.99634  
9.99268  
؎V  
IN  
1
A
A1  
IN  
R
Z
ADC912A*  
R3  
DIGITAL OUTPUT  
2
3
V
5V  
REFIN  
111...111  
INVERTING  
FIGURE 18  
10F  
+
0.1F  
111...110  
AGND  
NON-  
INVERTING  
FIGURE 17  
100...001  
SEE TABLE III FOR VALUES OF R1, R2, R3, R4, R , AND R  
Z
A1: OP27 LOWEST NOISE, OP42 BEST BANDWIDTH  
*EXTRA PINS OMITTED FOR CLARITY  
FS  
100...000  
011...111  
011...110  
FS  
+
1LSB  
2
Figure 18. Inverting Bipolar Analog Input  
000...001  
000...000  
FS  
2
0V  
InputVoltage  
FS  
+
2
V
IN  
Figure 19. Ideal Input/Output Transfer Characteristics for  
Bipolar Input Circuits  
–10–  
REV. B  
ADC912A  
MICROPROCESSOR INTERFACING  
is correct, then the Slow-Memory mode is virtually immune to  
subsequent software modifications. Placing the microprocessor  
in the WAIT state has an additional advantage of quieting the  
digital system to reduce noise pickup in the analog conversion  
circuitry. The 12-bit parallel Slow-Memory mode provides the  
fastest analog sampling rate combined with digital data transfer  
rate for sampled-data systems.  
The ADC912A has self-contained logic for both 8-bit and 16-bit  
data bus interfacing. The output data can be formatted into  
either a 12-bit parallel word for a 16-bit data bus or an 8-bit  
data word pair for an 8-bit data bus. Data is always right justi-  
fied, i.e., LSB is the most right-hand bit in a 16-bit word. For a  
two-byte read, only data outputs D7 . . . D0/8 are used. Byte  
selection is governed by the HBEN input which controls an  
internal digital multiplexer. This multiplexes the 12 bits of  
conversion data onto the lower D7 . . . D0/8 outputs (4 MSBs or  
8 LSBs) where it can be read in two read cycles. The 4 MSBs  
always appear on D11 . . . D8 whenever the three-state output  
drivers are turned on. See Figure 20.  
PARALLEL READ, SLOW-MEMORY MODE  
(HBEN = LOW)  
Figure 5 shows the timing diagram and data bus status for Par-  
allel Read, Slow-Memory Mode. CS and RD going low triggers  
a conversion and the ADC912A acknowledges by taking BUSY  
low. Data from the previous conversion appears on the three-  
state data outputs. BUSY returns high at the end of conversion,  
when the output latches have been updated, and the conversion  
Two A/D conversion modes of operation are available for both  
data bus sizes: the ROM mode and the Slow-Memory mode.  
result is placed on data outputs D11 . . . D0/8  
.
"1"  
ADC912A  
CONVERSION START  
(POSITIVE EDGE  
TRIGGER)  
TWO-BYTE READ, SLOW-MEMORY MODE  
D
Q
For a two-byte read only the eight data outputs D7 . . . D0/8  
are used. Conversion start procedure and data output status for  
the first read operation is identical to Parallel Read, Slow-Memory  
Mode. See Figure 6, Timing Diagram and Data Bus Status. At  
the end of conversion, the low data byte (DB7 . . . DB0) is read  
from the A/D converter. A second READ operation with HBEN  
high places the high byte on data outputs D3/11 . . . D0/8 and  
disables conversion start. Note the 4 MSBs also appear on data  
outputs D11 . . . D8 during these two READ operations.  
HBEN  
CS  
RD  
CLR  
BUSY  
ENABLETHREE-STATE  
OUTPUTS  
ACTIVE HIGH  
(HBEN = "0")  
PINS: D ... D  
11  
0/8  
DATA BITS: DB ... DB  
11  
0
ENABLETHREE-STATE  
OUTPUTS  
ACTIVE HIGH  
(HBEN = "1")  
PINS: D ... D  
8
11  
PARALLEL READ, ROM MODE (HBEN = LOW)  
A conversion is started with a READ operation. The 12 bits of  
data from the previous conversion are available on data outputs  
D11 . . . D0/8 (see Figure 7). This data may be disregarded if  
not required. A second READ operation reads the new data  
(DB11 . . . DB0) and starts another conversion. A delay at least  
as long as the ADC912A conversion time must be allowed be-  
tween READ operations. If a READ takes place prior to the end  
of 13 CLKS of the ADC conversion, the remaining bits not yet  
tested will be invalid.  
DATA BITS: DB ... DB  
11  
8
PINS: D ... D  
7
4
DATA BITS: LOGIC LOW  
PINS: D ... D  
3/11  
0/8  
DATA BITS: DB ... DB  
11  
8
Figure 20. Internal Logic for Control Inputs CS, RD, and  
HBEN  
In the ROM mode each READ instruction obtains new, valid  
data, assuming the minimum timing requirements are satisfied.  
However, since the data output from a current READ instruc-  
tion was generated from a conversion initiated by a previous  
READ operation, the current data may be out-of-date. To be  
sure of obtaining up-to-date data, READ instructions may be  
coded in pairs (with some NOPs between them); use only the  
data from the second READ in each pair. The first READ starts  
the conversion, the second READ gets the results.  
TWO-BYTE READ, ROM MODE  
For a two-byte read only the data outputs D7 . . . D0/8 are used.  
Conversion is started in the same way with a READ operation  
and the data output status is the same as the Parallel Read,  
ROM Mode. See Figure 8, Two-Byte Read Timing Diagram,  
ROM Mode. Two more READ operations are required to obtain  
the new conversion result. A delay equal to the ADC912A con-  
version time must be allowed between conversion start and  
places the high byte (4 MSBs) on data outputs D3/11 . . . D0/8. A  
third READ operation accesses the low data byte (DB7 . . . DB0)  
and starts another conversion. The 4 MSBs also appear on data  
outputs D11 . . . D8 during all three read operations above.  
The Slow-Memory mode is the simplest. It is the method of  
choice where compact coding is essential, or where software  
bugs are a hazard. In this mode, a single READ instruction will  
initiate a data conversion, interrupt the microprocessor until  
completion (WAIT states are introduced), then read the results.  
If the system throughput tolerates WAIT states, and the hardware  
REV. B  
–11–  
ADC912A  
CIRCUIT LAYOUT GUIDELINES  
INTERFACING TO THE TMS32010 DSP PROCESSOR  
Figure 22 shows an ADC912A to TMS32010 interface. The  
ADC912A is operating in the ROM mode. The interface  
is designed for the maximum TMS32010 clock frequency  
of 20 MHz.  
As with any high-speed A/D converters, good circuit layout  
practice is essential. Wire-wrap boards are not recommended  
due to stray pickup of the high-frequency digital noise. A PC  
board offers the best results. Digital and analog grounds  
should be separated even if they are ground planes instead of  
ground traces. Do not lay digital traces adjacent to high-  
impedance analog traces. Avoid digital layouts that radiate  
high-frequency clock signals; i.e., do not lay out digital signal  
lines and ground returns in the shape of a loop antenna. Shield  
the analog input if it comes from a different PC board source.  
Set up a single point ground at AGND (Pin 3) of the ADC912A;  
tie all other analog grounds to this point. Also tie the logic  
power supply ground, but no other digital grounds, to this point  
(see Figure 21). Low impedance analog and digital power sup-  
ply common returns are essential to low noise operation of the  
ADC. Their trace widths should be as wide as possible. Good  
power supply bypass capacitors located near the ADC package  
ensure quiet operation. Place a 10 µF capacitor in parallel with a  
0.01 µF ceramic capacitor across VDD to ground and VSS to  
ground (near Pin 3).  
ADDRESS BUS  
PA PA  
0
2
ADDRESS  
DECODE  
CS  
RD  
EN  
DEN  
TMS32010*  
ADC912A*  
D
11  
D
15  
DATA BUS  
D
0/8  
D
0
HBEN  
*ESSENTIAL INTERFACE CIRCUITRY SHOWN FOR CLARITY  
Figure 22. ADC912A to TMS32010 DSP Processor Interface  
The ADC912A is mapped at a user-selected port address (PA).  
The following I/O instruction starts a conversion and reads the  
previous conversion into the data memory:  
ANALOG  
SUPPLY  
DIGITAL  
SUPPLY  
+15V  
GND  
15V  
+5V  
RETURN  
IN DATA, PA  
PA = Port Address  
DATA = Data Memory Location  
COMMON  
GROUND  
When conversion is complete, a second I/O instruction reads the  
new data into the data memory and starts another conversion.  
Sufficient A/D conversion time must be allowed between I/O  
instructions. The very first data read after system power-up  
should be discarded.  
AGND  
V
DGND  
V
DD  
SS  
DIGITAL  
CIRCUITS  
ANALOG  
CIRCUITS  
ADC912A  
USING WAIT STATES  
The TMS32020 DSP processor has the added capability of  
WAIT states. This feature simplifies the hardware required for  
slow memory devices by extending the microprocessor bus  
access time. Figure 23 shows an ADC912A to TMS32020  
interface using one WAIT state to guarantee data interface at  
the full 20 MHz clock frequency. This WAIT state extends the  
bus access time by 200 ns. In this circuit the ADC912A operated  
in the ROM mode where each input instruction (IN DATA, PA)  
takes the previous conversion result and stores it in memory. The  
next input instruction must be delayed for the length of the A/D  
conversion time so that a new conversion result can be read.  
Figure 21. Power Supply Grounding  
In applications where the ADC912A data outputs and control  
signals are connected to a continuously active microprocessor  
bus, it is possible to get LSB level errors in conversion results.  
These errors are due to a feedthrough from the microprocessor  
to the internal comparator. The problem can be minimized by  
forcing the microprocessor into a WAIT state during conversion  
(see Slow-Memory microprocessor interfacing). An alternate  
method is isolation of the data bus with three-state buffers, such  
as the 74HC541.  
–12–  
REV. B  
ADC912A  
SLOW-MEMORY MODE OPERATION USING WAIT  
STATES  
ADDRESS BUS  
A
A
15  
0
The WAIT state feature of the TMS32020 can also be used to  
operate the ADC912A in the Slow-Memory mode. This is  
accomplished by driving the clock input of the 7474 flip-flop in  
Figure 23, from the BUSY output of the ADC912A, instead of  
the CLK OUT 1 of the TMS32020. Once a conversion has  
started the READY input of the TMS32020 is not released until  
the ADC912A completes its 12-bit A/D conversion. This stops  
the TMS32020 during the conversion process reducing micro-  
processor system noise generation. Another advantage for the  
system software is the single instruction IN MEM, PA used to  
start, process, and read the results of the A/D conversion. This  
makes the software code more transportable between systems  
operating at different clock speeds. The disadvantage is some  
loss in instruction processing time.  
ADDRESS  
DECODE  
EN  
IS  
R/W  
READY  
TMS32020  
؋
2/CLK IN  
RD  
CS  
"1"  
D
Q
7474  
20MHz  
CLR CK  
ADC912A*  
CLK OUT  
BUSY  
1
ROM MODE  
SLOW-MEMORY  
MODE  
(ONE WAIT STATE)  
D
11  
D
15  
DATA BUS  
D
0/8  
D
0
HBEN  
*ESSENTIAL INTERFACE CIRCUITRY SHOWN FOR CLARITY  
Figure 23. ADC912A to TMS32020 Interface Using Wait  
States  
REV. B  
–13–  
ADC912A  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
24-Lead Narrow Body Plastic DIP Package  
(N-24)  
1.275 (32.30)  
1.125 (28.60)  
24  
13  
12  
0.280 (7.11)  
0.240 (6.10)  
1
0.325 (8.25)  
0.300 (7.62)  
PIN 1  
0.060 (1.52)  
0.015 (0.38)  
0.210  
(5.33)  
MAX  
0.195 (4.95)  
0.115 (2.93)  
0.150  
(3.81)  
MIN  
0.200 (5.05)  
0.125 (3.18)  
0.015 (0.381)  
0.008 (0.204)  
0.100  
(2.54)  
BSC  
0.022 (0.558)  
0.014 (0.356)  
0.070 (1.77) SEATING  
PLANE  
0.045 (1.15)  
24-Lead Wide Body SOIC Package  
(R-24)  
0.6141 (15.60)  
0.5985 (15.20)  
24  
13  
0.2992 (7.60)  
0.2914 (7.40)  
0.4193 (10.65)  
0.3937 (10.00)  
1
12  
PIN 1  
0.1043 (2.65)  
0.0926 (2.35)  
0.0291 (0.74)  
0.0098 (0.25)  
؋
 45؇  
8؇  
0؇  
SEATING  
PLANE  
0.0500 0.0192 (0.49)  
0.0118 (0.30)  
0.0040 (0.10)  
0.0500 (1.27)  
0.0157 (0.40)  
0.0125 (0.32)  
0.0091 (0.23)  
(1.27)  
0.0138 (0.35)  
BSC  
–14–  
REV. B  
Revision HistoryADC912A  
Location  
Page  
Data Sheet changed from REV. A to REV. B.  
Changes to General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Changes to Static Accuracy section of Specification page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Edits to Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Edits to Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Changes to Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
REV. B  
–15–  
–16–  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY