ADCLK905_17 [ADI]

Ultrafast SiGe ECL Clock/Data Buffers;
ADCLK905_17
型号: ADCLK905_17
厂家: ADI    ADI
描述:

Ultrafast SiGe ECL Clock/Data Buffers

文件: 总16页 (文件大小:867K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Ultrafast SiGe  
ECL Clock/Data Buffers  
Data Sheet  
ADCLK905/ADCLK907/ADCLK925  
FEATURES  
TYPICAL APPLICATION CIRCUITS  
V
V
REF  
CC  
95 ps propagation delay  
V
T
7.5 GHz toggle rate  
60 ps typical output rise/fall  
D
D
Q
Q
60 fs random jitter (RJ)  
On-chip terminations at both input pins  
Extended industrial temperature range: −40°C to +125°C  
2.5 V to 3.3 V power supply (VCC − VEE  
)
V
EE  
APPLICATIONS  
Figure 1. ADCLK905 ECL 1:1 Clock/Data Buffer  
Clock and data signal restoration and level shifting  
Automated test equipment (ATE)  
High speed instrumentation  
High speed line receivers  
V
1
REF  
V 1  
T
V
CC  
Threshold detection  
D1  
D1  
Q1  
Q1  
Converter clocking  
V
V
EE  
GENERAL DESCRIPTION  
The ADCLK905 (one input, one output), ADCLK907 (dual one  
input, one output), and ADCLK925 (one input, two outputs) are  
ultrafast clock/data buffers fabricated on the Analog Devices, Inc.,  
proprietary XFCB3 silicon germanium (SiGe) bipolar process.  
EE  
D2  
D2  
Q2  
Q2  
V
CC  
V 2  
T
The ADCLK905/ADCLK907/ADCLK925 feature full-swing  
emitter coupled logic (ECL) output drivers. For PECL (positive  
ECL) operation, bias VCC to the positive supply and VEE to ground.  
For NECL (negative ECL) operation, bias VCC to ground and  
V
2
REF  
Figure 2. ADCLK907 ECL Dual 1:1 Clock/Data Buffer  
V
EE to the negative supply.  
V
REF  
V
CC  
V
T
Q1  
Q1  
The buffers offer 95 ps propagation delay, 7.5 GHz toggle rate,  
10 Gbps data rate, and 60 fs random jitter (RJ).  
D
D
The inputs have center tapped, 100 Ω, on-chip termination  
resistors. A VREF pin is available for biasing ac-coupled inputs.  
Q2  
Q2  
The ECL output stages are designed to directly drive 800 mV  
each side into 50 Ω terminated to VCC − 2 V for a total  
differential output swing of 1.6 V.  
V
EE  
Figure 3. ADCLK925 ECL 1:2 Clock/Data Fanout Buffer  
The ADCLK905/ADCLK907/ADCLK925 are available in  
16-lead LFCSP packages.  
Rev. B  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2007–2017 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
ADCLK905/ADCLK907/ADCLK925  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Typical Performance Characteristics ..............................................9  
Applications Information .............................................................. 12  
Power/Ground Layout and Bypassing..................................... 12  
Output Stages ............................................................................... 12  
Optimizing High Speed Performance ..................................... 12  
Buffer Random Jitter.................................................................. 12  
Typical Application Circuits ......................................................... 13  
Evaluation Board Schematic ......................................................... 14  
Outline Dimensions....................................................................... 15  
Ordering Guide .......................................................................... 15  
Applications....................................................................................... 1  
General Description ......................................................................... 1  
Typical Application Circuits............................................................ 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Electrical Characteristics............................................................. 3  
Absolute Maximum Ratings............................................................ 5  
Thermal Resistance ...................................................................... 5  
ESD Caution.................................................................................. 5  
Pin Configurations and Function Descriptions ........................... 6  
REVISION HISTORY  
2/2017—Rev. A to Rev. B  
Changes to Figure 4 and Table 4..................................................... 6  
Changes to Figure 5 and Table 5..................................................... 7  
Changes to Figure 6 and Table 6..................................................... 8  
8/2016—Rev. 0 to Rev. A  
Changed CP-16-3 to CP-16-27 .................................... Throughout  
Changes to Figure 4 and Table 4..................................................... 6  
Changes to Figure 5 and Table 5..................................................... 7  
Changes to Figure 6 and Table 6 ..................................................... 8  
Updated Outline Dimensions....................................................... 15  
Changes to Ordering Guide .......................................................... 15  
8/2007—Revision 0: Initial Version  
Rev. B | Page 2 of 16  
 
Data Sheet  
ADCLK905/ADCLK907/ADCLK925  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS  
Typical (Typ) values are given for VCC − VEE = 3.3 V and TA = 25°C, unless otherwise noted. Minimum (Min) and maximum (Max) values are  
given over the full VCC − VEE = 3.3 V 10% and TA = −40°C to +125°C variation, unless otherwise noted.  
Table 1.  
Parameter  
Symbol Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
DC INPUT CHARACTERISTICS  
Input Voltage High Level  
Input Voltage Low Level  
Input Differential Range  
VIH  
VIL  
VID  
VEE + 1.6  
VCC  
V
VEE  
0.2  
VCC − 0.7  
3.4  
V
V p-p  
−40°C to +85°C  
( 1.7 V between input pins)  
85°C to 125°C  
( 1.4 V between input pins)  
VID  
CIN  
0.2  
2.8  
V p-p  
Input Capacitance  
0.4  
pF  
Input Resistance, Single-Ended Mode  
Input Resistance, Differential Mode  
Input Resistance, Common Mode  
Input Bias Current  
50  
100  
50  
kΩ  
µA  
Open VT  
20  
DC OUTPUT CHARACTERISTICS  
Output Voltage High Level  
Output Voltage Low Level  
Output Voltage Differential  
Reference Voltage  
VOH  
VOL  
VOD  
VREF  
VCC − 1.26  
VCC − 1.99  
610  
VCC − 0.76  
VCC − 1.54  
1040  
V
50 Ω to (VCC − 2.0 V)  
50 Ω to (VCC − 2.0 V)  
50 Ω to (VCC − 2.0 V)  
V
mV  
Output Voltage  
(VCC + 1)/2  
250  
V
−500 µA to +500 µA  
Output Resistance  
AC PERFORMANCE  
Propagation Delay  
tPD  
70  
70  
95  
95  
50  
125  
125  
ps  
ps  
VCC = 3.3 V 10%,  
VICM = VREF, VID = 0.5 V p-p  
VCC = 2.5 V 5%,  
VICM = VREF, VID = 0.5 V p-p  
Propagation Delay Temperature Coefficient  
fs/°C  
ps  
Propagation Delay Skew (Output to Output)  
ADCLK907  
15  
10  
35  
VID = 0.5 V  
VID = 0.5 V  
Propagation Delay Skew (Output to Output)  
ADCLK925  
ps  
Propagation Delay Skew (Device to Device)  
Toggle Rate  
ps  
VID = 0.5 V  
6
7.5  
6.5  
60  
GHz  
>0.8 V differential output swing,  
VCC = 3.3 V 10%  
GHz  
>0.8 V differential output swing,  
VCC = 2.5 V 5%  
Random Jitter  
Rise/Fall Time  
Additive Phase Noise  
622.08 MHz  
RJ  
fs rms  
ps  
VID = 1600 mV, 8 V/ns, VICM = 1.85 V  
20%/80%  
tR/tF  
30  
85  
−138  
−144  
−152  
−159  
−161  
−161  
−135  
−145  
−153  
−160  
−161  
−161  
dBc/Hz @10 Hz offset  
dBc/Hz @100 Hz offset  
dBc/Hz @1 kHz offset  
dBc/Hz @10 kHz offset  
dBc/Hz @100 kHz offset  
dBc/Hz >1 MHz offset  
dBc/Hz @10 Hz offset  
dBc/Hz @100 Hz offset  
dBc/Hz @1 kHz offset  
dBc/Hz @10 kHz offset  
dBc/Hz @100 kHz offset  
dBc/Hz >1 MHz offset  
122.88 MHz  
Rev. B | Page 3 of 16  
ADCLK905/ADCLK907/ADCLK925  
Data Sheet  
Parameter  
Symbol Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
POWER SUPPLY  
Supply Voltage Requirement  
Power Supply Current  
ADCLK905  
VCC − VEE 2.375  
3.63  
V
2.5 V − 5% to 3.3 V + 10%  
Static  
Negative Supply Current  
IVEE  
IVCC  
24  
25  
47  
48  
mA  
mA  
mA  
mA  
VCC − VEE = 2.5 V  
40  
63  
V
CC − VEE = 3.3 V 10%  
VCC − VEE = 2.5 V  
CC − VEE = 3.3 V 10%  
Positive Supply Current  
V
ADCLK907  
Negative Supply Current  
IVEE  
IVCC  
48  
50  
94  
96  
mA  
mA  
mA  
mA  
VCC − VEE = 2.5 V  
CC − VEE = 3.3 V 10%  
VCC − VEE = 2.5 V  
CC − VEE = 3.3 V 10%  
80  
V
Positive Supply Current  
126  
V
ADCLK925  
Negative Supply Current  
IVEE  
IVCC  
29  
31  
76  
77  
3
mA  
mA  
mA  
mA  
ps/V  
dB  
VCC − VEE = 2.5 V  
CC − VEE = 3.3 V 10%  
VCC − VEE = 2.5 V  
CC − VEE = 3.3 V 10%  
51  
97  
V
Positive Supply Current  
V
Power Supply Rejection1  
Output Swing Supply Rejection2  
PSRVCC  
PSRVCC  
VCC − VEE = 3.0 V 20%  
VCC − VEE = 3.0 V 20%  
26  
1 Change in TPD per change in VCC.  
2 Change in output swing per change in VCC.  
Rev. B | Page 4 of 16  
Data Sheet  
ADCLK905/ADCLK907/ADCLK925  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Table 2.  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages.  
Parameter  
Rating  
Supply Voltage  
VCC − VEE  
6.0 V  
Table 3. Thermal Resistance  
Input Voltage  
D (D1, D2), D (D1, D2)  
Package Type  
θJA  
Unit  
VEE − 0.5 V to  
CC + 0.5 V  
16-Lead LFCSP  
70  
°C/W  
V
D1, D2, D1, D2 to VT Pin  
(CML or PECL Termination)  
D (D1, D2) to D (D1, D2)  
40 mA  
ESD CAUTION  
1.8 V  
Maximum Voltage on Output Pins  
Maximum Output Current  
VCC + 0.5 V  
35 mA  
2 V  
Input Termination, VT to D (D1, D2), D (D1, D2)  
Voltage Reference, VREF  
VCC − VEE  
Temperature  
Operating Temperature Range, Ambient  
Operating Temperature, Junction  
Storage Temperature Range  
−40°C to +125°C  
150°C  
−65°C to +150°C  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Rev. B | Page 5 of 16  
ADCLK905/ADCLK907/ADCLK925  
Data Sheet  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
D
1
2
3
4
12  
11  
10  
9
Q
D
NC  
NC  
Q
ADCLK905  
TOP VIEW  
NC  
NC  
(Not to Scale)  
NOTES  
1. NC = NO CONNECT. DO NOT CONNECT TO THIS PIN.  
2. EXPOSED PAD. THE EXPOSED PAD IS NOT ELECTRICALLY CONNECTED TO ANY PART OF THE CIRCUIT.  
IT CAN BE LEFT FLOATING FOR OPTIMAL ELECTRICAL ISOLATION BETWEEN THE PACKAGE HANDLE  
AND THE SUBSTRATE OF THE DIE. IT CAN ALSO BE SOLDERED TO THE APPLICATION BOARD IF IMPROVED  
THERMAL AND/OR MECHANICAL STABILITY IS DESIRED. EXPOSED METAL AT THE CORNERS OF THE PACKAGE  
IS CONNECTED TO THIS EXPOSED PAD. ALLOW SUFFICIENT CLEARANCE TO VIAS AND OTHER COMPONENTS.  
Figure 4. ADCLK905 Pin Configuration  
Table 4. Pin Function Descriptions for 1:1 ADCLK905 Buffer  
Pin No.  
Mnemonic  
Description  
1
2
D
Noninverting Input.  
D
Inverting Input.  
3, 4, 5, 6,  
9, 10  
NC  
No Connect. No physical connection to the die.  
7, 14  
8, 13  
11  
VEE  
VCC  
Q
Negative Supply Voltage.  
Positive Supply Voltage.  
Inverting Output.  
12  
Q
Noninverting Output.  
15  
VREF  
VT  
Reference Voltage. Reference voltage for biasing ac-coupled inputs.  
Center Tap. Center tap of 100 Ω input resistor.  
16  
EPAD  
Exposed Pad. The exposed pad is not electrically connected to any part of the circuit. It can be left floating for  
optimal electrical isolation between the package handle and the substrate of the die. It can also be soldered to  
the application board if improved thermal and/or mechanical stability is desired. Exposed metal at the corners  
of the package is connected to this exposed pad. Allow sufficient clearance to vias and other components.  
Rev. B | Page 6 of 16  
Data Sheet  
ADCLK905/ADCLK907/ADCLK925  
D1  
1
2
3
4
12  
11  
10  
9
Q1  
Q1  
Q2  
Q2  
D1  
D2  
D2  
ADCLK907  
TOP VIEW  
(Not to Scale)  
NOTES  
1. EXPOSED PAD. THE EXPOSED PAD IS NOT ELECTRICALLY CONNECTED TO ANY PART OF THE CIRCUIT.  
IT CAN BE LEFT FLOATING FOR OPTIMAL ELECTRICAL ISOLATION BETWEEN THE PACKAGE HANDLE  
AND THE SUBSTRATE OF THE DIE. IT CAN ALSO BE SOLDERED TO THE APPLICATION BOARD IF IMPROVED  
THERMAL AND/OR MECHANICAL STABILITY IS DESIRED. EXPOSED METAL AT THE CORNERS OF THE PACKAGE  
IS CONNECTED TO THIS EXPOSED PAD. ALLOW SUFFICIENT CLEARANCE TO VIAS AND OTHER COMPONENTS.  
Figure 5. ADCLK907 Pin Configuration  
Table 5. Pin Function Descriptions for Dual 1:1 ADCLK907 Buffer  
Pin No.  
Mnemonic  
Description  
1
D1  
D1  
D2  
D2  
VT2  
Noninverting Input 1.  
2
Inverting Input 1.  
3
Noninverting Input 2.  
4
Inverting Input 2.  
5
Center Tap 2. Center tap of 100 Ω input resistor, Channel 2.  
Reference Voltage 2. Reference voltage for biasing ac-coupled inputs, Channel 2.  
Negative Supply Voltage.  
6
VREF  
VEE  
2
7, 14  
8, 13  
9
VCC  
Q2  
Q2  
Q1  
Q1  
VREF  
VT1  
Positive Supply Voltage. Pin 8 and Pin 13 are not strapped internally.  
Inverting Output 2.  
10  
11  
12  
15  
16  
Noninverting Output 2.  
Inverting Output 1.  
Noninverting Output 1.  
1
Reference Voltage 1. Reference voltage for biasing ac-coupled inputs, Channel 1.  
Center Tap 1. Center tap of 100 Ω input resistor, Channel 1.  
EPAD  
Exposed Pad. The exposed pad is not electrically connected to any part of the circuit. It can be left floating for  
optimal electrical isolation between the package handle and the substrate of the die. It can also be soldered to  
the application board if improved thermal and/or mechanical stability is desired. Exposed metal at the corners  
of the package is connected to this exposed pad. Allow sufficient clearance to vias and other components.  
Rev. B | Page 7 of 16  
ADCLK905/ADCLK907/ADCLK925  
Data Sheet  
D
D
1
2
3
4
12  
11  
Q1  
Q1  
ADCLK925  
TOP VIEW  
10 Q2  
Q2  
NC  
NC  
(Not to Scale)  
9
NOTES  
1. NC = NO CONNECT. DO NOT CONNECT TO THIS PIN.  
2. EXPOSED PAD. THE EXPOSED PAD IS NOT ELECTRICALLY CONNECTED TO ANY PART OF THE CIRCUIT.  
IT CAN BE LEFT FLOATING FOR OPTIMAL ELECTRICAL ISOLATION BETWEEN THE PACKAGE HANDLE  
AND THE SUBSTRATE OF THE DIE. IT CAN ALSO BE SOLDERED TO THE APPLICATION BOARD IF IMPROVED  
THERMAL AND/OR MECHANICAL STABILITY IS DESIRED. EXPOSED METAL AT THE CORNERS OF THE PACKAGE  
IS CONNECTED TO THIS EXPOSED PAD. ALLOW SUFFICIENT CLEARANCE TO VIAS AND OTHER COMPONENTS.  
Figure 6. ADCLK925 Pin Configuration  
Table 6. Pin Function Descriptions for 1:2 ADCLK925 Buffer  
Pin No.  
Mnemonic  
Description  
1
D
Noninverting Input.  
2
D
Inverting Input.  
3, 4, 5, 6  
7, 14  
8, 13  
9
NC  
VEE  
VCC  
Q2  
Q2  
Q1  
Q1  
VREF  
VT  
No Connect. No physical connection to the die.  
Negative Supply Voltage.  
Positive Supply Voltage.  
Inverting Output 2.  
10  
Noninverting Output 2.  
11  
Inverting Output 1.  
12  
Noninverting Output 1.  
15  
Reference Voltage. Reference voltage for biasing ac-coupled inputs.  
Center Tap. Center tap of 100 Ω input resistor.  
16  
EPAD  
Exposed Pad. The exposed pad is not electrically connected to any part of the circuit. It can be left floating for  
optimal electrical isolation between the package handle and the substrate of the die. It can also be soldered to  
the application board if improved thermal and/or mechanical stability is desired. Exposed metal at the corners  
of the package is connected to this exposed pad. Allow sufficient clearance to vias and other components.  
Rev. B | Page 8 of 16  
Data Sheet  
ADCLK905/ADCLK907/ADCLK925  
TYPICAL PERFORMANCE CHARACTERISTICS  
VCC = 3.3 V, VEE = 0.0 V, TA = 25°C, outputs terminated 50 Ω to VCC − 2 V, unless otherwise noted.  
2.37V  
2.37V  
Q
Q
Q
Q
1.37V  
1.37V  
200ps/DIV  
100ps/DIV  
Figure 7. Output Waveform, VCC = 3.3 V  
Figure 10. Output Waveform, VCC = 3.3 V  
–90  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
–90  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
AGILENT E5500  
AGILENT E5500  
CARRIER: 122.88MHz  
NO SPURS  
CARRIER: 622.08MHz  
NO SPURS  
10  
100  
1k  
10k  
100k  
f (Hz)  
1M  
10M  
100M  
10  
100  
1k  
10k  
100k  
f (Hz)  
1M  
10M  
100M  
Figure 11. Phase Noise at 622.08 MHz  
Figure 8. Phase Noise at 122.88 MHz  
300  
250  
200  
150  
100  
50  
–90  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
AGILENT E5500  
CARRIER: 245.76MHz  
NO SPURS  
0
0
1
2
3
4
5
6
7
8
10  
100  
1k  
10k  
100k  
f (Hz)  
1M  
10M  
100M  
INPUT SLEW RATE (V/ns)  
Figure 12. RMS Jitter vs. Input Slew Rate  
Figure 9. Phase Noise at 245.76 MHz  
Rev. B | Page 9 of 16  
ADCLK905/ADCLK907/ADCLK925  
Data Sheet  
1.1  
1.0  
0.9  
0.09  
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0
+125°C  
+25°C  
–55°C  
+125°C  
0.8  
0.7  
+25°C  
0.6  
+125°C  
–55°C  
0.5  
+25°C  
–55°C  
0.4  
0
1
2
3
4
1
2
3
4
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
Figure 13. VOD vs. Power Supply Voltage  
Figure 16. Power Supply Current vs. Supply Voltage, ADCLK925  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0
100  
99  
98  
97  
96  
95  
94  
+125°C  
+25°C  
–55°C  
+125°C  
+25°C  
–55°C  
0.4  
0.6  
0.8  
1.0  
1.2  
(V)  
1.4  
1.6  
1.8  
2.5  
3.0  
3.5  
4.0  
V
POWER SUPPLY VOLTAGE (V)  
ID  
Figure 14. Power Supply Current vs. Power Supply Voltage, ADCLK905  
Figure 17. Propagation Delay vs. VID  
110  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
105  
+125°C  
100  
+25°C  
95  
–55°C  
90  
1.6  
2.1  
2.6  
3.1  
3.6  
INPUT COMMON MODE (V)  
FREQUENCY (GHz)  
Figure 15. Propagation Delay vs. VICM; Input Swing = 200 mV  
Figure 18. Toggle Rate, Differential Output Swing vs. Frequency  
Rev. B | Page 10 of 16  
Data Sheet  
ADCLK905/ADCLK907/ADCLK925  
1
1
C4  
C4  
2
2
17ps/DIV  
58ps/DIV  
3
3
Figure 19. 2.488 Gbps PRBS 223 − 1 with OC-48/STM-16 Mask,  
Measured p-p Jitter 8.1 ps, Source p-p Jitter 3.5 ps  
Figure 22. 8.50 Gbps PRBS 223 − 1 with FC8500E ABS Beta Rx Mask,  
Measured p-p Jitter 10.9 ps, Source p-p Jitter 4.4 ps  
1
1
C4  
C4  
2
2
58ps/DIV  
15ps/DIV  
3
3
Figure 20. 9.95 Gbps PRBS 223 − 1 with OC-193/STM-64 Mask,  
Measured p-p Jitter 10.5 ps, Source p-p Jitter 6.0 ps  
Figure 23. 2.5 Gbps PRBS 223 − 1 with PCI Express 2.5 Rx Mask,  
Measured p-p Jitter 8.1 ps, Source p-p Jitter 3.5 ps  
1
1
C4  
C4  
2
2
29ps/DIV  
34ps/DIV  
3
3
Figure 21. 4.25 Gbps PRBS 223 − 1 with FC4250 (Optical) Mask,  
Measured p-p Jitter 8.2 ps, Source p-p Jitter 3.4 ps  
Figure 24. 5.0 Gbps PRBS 223 − 1 with PCI Express 5.0 Rx Mask,  
Measured p-p Jitter 8.7 ps, Source p-p Jitter 3.5 ps  
Rev. B | Page 11 of 16  
ADCLK905/ADCLK907/ADCLK925  
Data Sheet  
APPLICATIONS INFORMATION  
POWER/GROUND LAYOUT AND BYPASSING  
OPTIMIZING HIGH SPEED PERFORMANCE  
The ADCLK905/ADCLK907/ADCLK925 buffers are designed  
for very high speed applications. Consequently, high speed design  
techniques must be used to achieve the specified performance.  
It is critically important to use low impedance supply planes for  
both the negative supply (VEE) and the positive supply (VCC) planes  
as part of a multilayer board. Providing the lowest inductance  
return path for switching currents ensures the best possible  
performance in the target application.  
As with any high speed circuit, proper design and layout  
techniques are essential to obtaining the specified performance.  
Stray capacitance, inductance, inductive power and ground  
impedances, or other layout issues can severely limit performance  
and cause oscillation. Discontinuities along input and output  
transmission lines can also severely limit the specified jitter  
performance by reducing the effective input slew rate.  
In a 50 Ω environment, input and output matching have a  
It is also important to adequately bypass the input and output  
supplies. A 1 µF electrolytic bypass capacitor should be placed  
within several inches of each power supply pin to ground. In  
addition, multiple high quality 0.001 µF bypass capacitors  
should be placed as close as possible to each of the VEE and VCC  
supply pins and should be connected to the GND plane with  
redundant vias. High frequency bypass capacitors should be  
carefully selected for minimum inductance and ESR. Parasitic  
layout inductance should be strictly avoided to maximize the  
effectiveness of the bypass at high frequencies.  
significant impact on performance. The buffer provides internal  
D
50 Ω termination resistors for both D and inputs. The return  
side should normally be connected to the reference pin provided.  
The termination potential should be carefully bypassed, using  
ceramic capacitors to prevent undesired aberrations on the  
input signal due to parasitic inductance in the termination  
return path. If the inputs are directly coupled to a source, care  
must be taken to ensure the pins are within the rated input  
differential and common-mode ranges.  
If the return is floated, the device exhibits 100 Ω cross termination,  
but the source must then control the common-mode voltage  
and supply the input bias currents.  
OUTPUT STAGES  
The specified performance can be achieved only by using proper  
transmission line terminations. The outputs of the ADCLK905/  
ADCLK907/ADCLK925 buffers are designed to directly drive  
800 mV into 50 Ω cable or microstrip/stripline transmission  
lines terminated with 50 Ω referenced to VCC − 2 V. The PECL  
output stage is shown in Figure 25. The outputs are designed for  
best transmission line matching. If high speed signals must be  
routed more than a centimeter, either the microstrip or the  
stripline technique is required to ensure proper transition times  
and to prevent excessive output ringing and pulse width-  
dependent propagation delay dispersion.  
There are ESD/clamp diodes between the input pins to prevent  
the application of excessive offsets to the input transistors. ESD  
diodes are not optimized for best ac performance. When a  
clamp is desired, it is recommended that appropriate external  
diodes be used.  
BUFFER RANDOM JITTER  
The ADCLK905/ADCLK907/ADCLK925 are specifically  
designed to minimize added random jitter over a wide input  
slew rate range. Provided sufficient voltage swing is present,  
random jitter is affected most by the slew rate of the input signal.  
Whenever possible, excessively large input signals should be  
clamped with fast Schottky diodes because attenuators reduce the  
slew rate. Input signal runs of more than a few centimeters  
should be over low loss dielectrics or cables with good high  
frequency characteristics.  
V
CC  
Q
Q
V
EE  
Figure 25. Simplified Schematic Diagram of  
the ADCLK905/ADCLK907/ADCLK925 PECL Output Stage  
Rev. B | Page 12 of 16  
 
Data Sheet  
ADCLK905/ADCLK907/ADCLK925  
TYPICAL APPLICATION CIRCUITS  
V
CC  
V
V
REF  
REF  
V
V
T
T
D
D
D
D
CONNECT V TO V  
.
CONNECT V TO V  
.
REF  
T
CC  
T
NOTES  
1. PLACING A BYPASS CAPACITOR  
FROM V TO GROUND CAN IMPROVE  
T
THE NOISE PERFORMANCE.  
Figure 26. Interfacing to CML Inputs  
Figure 28. AC Coupling Differential Signals  
V
V
REF  
REF  
V
T
V
T
V
– 2V  
CC  
D
D
D
D
CONNECT V TO V 2V.  
CC  
CONNECT V , V  
, AND D. PLACE A BYPASS  
CAPACITOR FROM V TO GROUND.  
T
T
REF  
T
ALTERNATIVELY, V , V  
, AND D CAN BE  
T
REF  
CONNECTED, GIVING A CLEANER LAYOUT AND  
A 180º PHASE SHIFT.  
Figure 27. Interfacing to PECL  
Figure 29. Interfacing to AC-Coupled Single-Ended Inputs  
Rev. B | Page 13 of 16  
TP5  
RED  
V
1
V
REF  
REF1  
matched length ×2  
J11  
J12  
CAL_1  
0resistors are NOT to be installed.  
TP8  
RED  
C44  
VREF  
2
VREF2  
.01UF  
Solder bridges will be completed  
by end user if desired.  
A1  
J8  
J5  
Q1  
D1  
1
Q1 12  
Q1 11  
D1  
J6  
J2  
Q1_B  
D1_B  
2
D1  
ADCLK9XX  
matched lengths  
Q2  
J1  
J3  
D2  
D2_B  
3
4
D2  
D2  
Q2 10  
LFCSP16-3X3  
J7  
J4  
Q2_B  
Q2  
9
TP6  
RED  
VT1  
VT1  
PAD  
PAD  
VEE  
C16  
.1UF  
VAL  
C45  
.01UF  
0resistors are NOT to be installed.  
Solder bridges will be completed  
by end user if desired.  
TP7  
RED  
V
2
T
VT2  
J10  
J9  
CAL_2  
matched length ×2  
TP2  
RED  
TP1  
TP4  
TP3  
RED  
VCC  
VEE  
BLK  
BLK  
VCC  
VEE  
JP1  
V
T2  
VREF  
2
JP8  
JP7  
1
1
VT1  
VREF1  
2
2
1
1
2
2
0
0
0
0
Jumpers are NOT to be installed.  
JP2  
Solder bridges will be completed  
by end user if desired.  
JP3  
JP4  
JP6  
JP5  
1
1
2
2
1
1
2
2
0
0
0
0
Data Sheet  
ADCLK905/ADCLK907/ADCLK925  
OUTLINE DIMENSIONS  
3.10  
3.00 SQ  
2.90  
0.30  
0.25  
0.20  
PIN 1  
INDICATOR  
PIN 1  
INDICATOR  
13  
16  
0.50  
BSC  
1
12  
EXPOSED  
PAD  
1.65  
1.50 SQ  
1.45  
9
4
8
5
0.50  
0.40  
0.30  
0.20 MIN  
TOP VIEW  
BOTTOM VIEW  
0.80  
0.75  
0.70  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.20 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-WEED-6.  
Figure 31. 16-Lead Lead Frame Chip Scale Package [LFCSP]  
3 mm × 3 mm Body and 0.75 mm Package Height  
(CP-16-27)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
Package Description  
Package Option  
CP-16-27  
CP-16-27  
CP-16-27  
CP-16-27  
CP-16-27  
CP-16-27  
CP-16-27  
CP-16-27  
CP-16-27  
Branding  
Y03  
ADCLK905BCPZ-WP  
ADCLK905BCPZ-R7  
ADCLK905BCPZ-R2  
ADCLK907BCPZ-WP  
ADCLK907BCPZ-R7  
ADCLK907BCPZ-R2  
ADCLK925BCPZ-WP  
ADCLK925BCPZ-R7  
ADCLK925BCPZ-R2  
ADCLK905/PCBZ  
ADCLK907/PCBZ  
ADCLK925/PCBZ  
16-Lead Lead Frame Chip Scale Package [LFCSP]  
16-Lead Lead Frame Chip Scale Package [LFCSP]  
16-Lead Lead Frame Chip Scale Package [LFCSP]  
16-Lead Lead Frame Chip Scale Package [LFCSP]  
16-Lead Lead Frame Chip Scale Package [LFCSP]  
16-Lead Lead Frame Chip Scale Package [LFCSP]  
16-Lead Lead Frame Chip Scale Package [LFCSP]  
16-Lead Lead Frame Chip Scale Package [LFCSP]  
16-Lead Lead Frame Chip Scale Package [LFCSP]  
Evaluation Board  
Y03  
Y03  
Y06  
Y06  
Y06  
Y08  
Y08  
Y08  
Evaluation Board  
Evaluation Board  
1 Z = RoHS Compliant Part.  
Rev. B | Page 15 of 16  
ADCLK905/ADCLK907/ADCLK925  
NOTES  
Data Sheet  
©2007–2017 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D06318-0-2/17(B)  
Rev. B | Page 16 of 16  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY