ADCLK914BCPZ-WP [ADI]

Ultrafast, SiGe, Open-Collector HVDS Clock/Data Buffer; 超快,锗,开集HVDS时钟/数据缓冲器
ADCLK914BCPZ-WP
型号: ADCLK914BCPZ-WP
厂家: ADI    ADI
描述:

Ultrafast, SiGe, Open-Collector HVDS Clock/Data Buffer
超快,锗,开集HVDS时钟/数据缓冲器

缓冲放大器 放大器电路 信息通信管理 时钟
文件: 总12页 (文件大小:304K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Ultrafast, SiGe, Open-Collector  
HVDS Clock/Data Buffer  
ADCLK914  
FUNCTIONAL BLOCK DIAGRAM  
FEATURES  
7.5 GHz operating frequency  
160 ps propagation delay  
V
V
CC  
REF  
100 ps output rise/fall  
110 fs random jitter  
On-chip input terminations  
Extended industrial temperature range: −40°C to +125°C  
3.3 V power supply (VCC − VEE  
ADCLK914  
V
T
50  
50Ω  
5050Ω  
Q
Q
D
D
)
APPLICATIONS  
Clock and data signal restoration  
High speed converter clocking  
Broadband communications  
Cellular infrastructure  
V
EE  
Figure 1.  
High speed line receivers  
ATE and high performance instrumentation  
Level shifting  
Threshold detection  
GENERAL DESCRIPTION  
The input has a center tapped, 100 Ω, on-chip termination  
resistor and accepts LVPECL, CML, CMOS, LVTTL, or LVDS  
(ac-coupled only). A VREF pin is available for biasing ac-coupled  
inputs.  
The ADCLK914 is an ultrafast clock/data buffer fabricated on  
the Analog Devices, Inc., proprietary, complementary bipolar  
(XFCB-3) silicon-germanium (SiGe) process. The ADCLK914  
features high voltage differential signaling (HVDS) outputs  
suitable for driving the latest Analog Devices high speed digital-  
to-analog converters (DACs). The ADCLK914 has a single,  
differential open-collector output.  
The HVDS output stage is designed to directly drive 1.9 V each  
side into 50 Ω terminated to VCC for a total differential output  
swing of 3.8 V.  
The ADCLK914 buffer operates up to 7.5 GHz with a 160 ps  
propagation delay and adds only 110 fs random jitter (RJ).  
The ADCLK914 is available in a 16-lead LFCSP. It is specified  
for operation over the extended industrial temperature range of  
−40°C to +125°C.  
Rev. A  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2008 Analog Devices, Inc. All rights reserved.  
 
ADCLK914  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Typical Performance Characteristics ..............................................7  
Applications Information.................................................................9  
Power/Ground Layout and Bypassing........................................9  
HVDS Output Stage......................................................................9  
Interfacing to High Speed DACs.................................................9  
Optimizing High Speed Performance ........................................9  
Random Jitter.................................................................................9  
Typical Application Circuits ..................................................... 10  
Outline Dimensions....................................................................... 11  
Ordering Guide .......................................................................... 11  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Electrical Characteristics............................................................. 3  
Absolute Maximum Ratings............................................................ 5  
Thermal Resistance ...................................................................... 5  
ESD Caution.................................................................................. 5  
Pin Configuration and Function Descriptions............................. 6  
REVISION HISTORY  
10/08—Rev. 0 to Rev. A  
Changes to Input Low Voltage Parameter, Table 1....................... 3  
Changes to Output High Voltage Parameter, Table 1 ................ 3  
Changes to Output Low Voltage Parameter, Table 1.................. 3  
Output Differential Range Parameter, Table 1 ............................ 3  
Changes to Absolute Maximum Ratings Section ........................ 5  
7/08—Revision 0: Initial Version  
Rev. A | Page 2 of 12  
 
ADCLK914  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS  
VCC = 3.3 V, VEE = 0 V, TA = −40°C to +125°C. All outputs terminated through 50 Ω to VCC, unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
DC INPUT CHARACTERISTICS  
Input High Voltage  
Input Low Voltage  
VIH  
VIL  
VID  
VEE + 1.65  
VEE  
0.2  
VCC  
VCC − 0.2  
3.4  
V
V
V p-p  
Input Differential Range  
TA = −40°C to +85°C  
( 1.ꢀ V between input pins)  
0.2  
2.8  
V p-p  
TA = 85°C to 125°C  
( 1.4 V between input pins)  
Input Capacitance  
Input Resistance  
CIN  
0.4  
50  
pF  
Ω
Differential Mode  
Common Mode  
Input Bias Current  
100  
50  
20  
Ω
kΩ  
μA  
Open termination  
DC OUTPUT CHARACTERISTICS  
Output High Voltage  
Output Low Voltage  
Output Differential Range  
Reference Voltage  
Output Voltage  
Output Resistance  
AC PERFORMANCE  
Operating Frequency  
VOH  
VOL  
VOD  
VREF  
VCC − 0.55  
VCC − 2.ꢀ5  
1.54  
VCC − 0.40  
VCC − 2.35  
1.95  
VCC − 0.25  
VCC − 1.9  
2.22  
V
V
V
(VCC + 1)/2  
250  
V
Ω
−500 ꢁA to +500 ꢁA  
ꢀ.5  
GHz  
ps  
>1.1 V differential output swing,  
VCC = 3.3 V 10%  
VCC = 3.3 V 10%,VICM = VREF  
VID = 1.6 V p-p  
Propagation Delay  
tPD  
12ꢀ  
158  
140  
202  
65  
,
Propagation Delay Temperature  
Coefficient  
Propagation Delay Skew (Device  
to Device)  
fs/°C  
ps  
VID = 1.6 V p-p  
Output Rise Time  
Output Fall Time  
tR  
tF  
100  
80  
125  
95  
ps  
ps  
20%/80%  
80%/20%  
Wideband Random Jitter1  
Additive Phase Noise  
622.08 MHz  
RJ  
110  
fs rms  
VID = 1.6 V p-p, 6 V/ns, VICM = 1.85 V  
−132  
−143  
−151  
−156  
−15ꢀ  
−156  
−133  
−143  
−153  
−158  
−159  
−158  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
@10 Hz offset  
@100 Hz offset  
@1 kHz offset  
@10 kHz offset  
@100 kHz offset  
>1 MHz offset  
@10 Hz offset  
@100 Hz offset  
@1 kHz offset  
@10 kHz offset  
@100 kHz offset  
>1 MHz offset  
245.ꢀ6 MHz  
Rev. A | Page 3 of 12  
 
ADCLK914  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
@10 Hz offset  
@100 Hz offset  
@1 kHz offset  
@10 kHz offset  
122.88 MHz  
−150  
−156  
−160  
−161  
−161  
−160  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
@100 kHz offset  
>1 MHz offset  
POWER SUPPLY  
Supply Voltage Requirement  
Power Supply Current  
VCC  
2.9ꢀ  
3.63  
V
Negative Supply Current  
Positive Supply Current  
Power Supply Rejection2  
Output Swing Supply Rejection3  
IVEE  
IVCC  
PSRVCC  
66  
34  
111  
55  
13  
150  
ꢀ3  
mA  
mA  
ps/V  
dB  
Includes output current  
VCC = 3.3 V 10%  
VCC = 3.3 V 10%  
−15  
1 Calculated from SNR of ADC method. See Figure 8 for rms jitter vs. input slew rate.  
2 Change in tPD per change in VCC  
3 Change in output swing per change in VCC.  
.
Rev. A | Page 4 of 12  
 
 
ADCLK914  
ABSOLUTE MAXIMUM RATINGS  
Table 2.  
Values of θJA are provided for package comparison and PCB  
Parameter  
Rating  
design considerations. θJA can be used for a first-order  
Supply Voltage (VCC to GND)  
Input Voltage  
Maximum Output Voltage  
Minimum Output Voltage  
Input Termination  
6.0 V  
approximation of TJ by the equation  
−0.5 V to VCC + 0.5 V  
VCC + 0.5 V  
VEE − 0.5 V  
2 V  
VCC − VEE  
−40°C to +125°C  
150°C  
TJ = TA + (θJA × PD)  
where TA is the ambient temperature (°C).  
Values of θJB are provided for package comparison and PCB  
design considerations.  
Voltage Reference  
Operating Temperature Range, Ambient  
Operating Temperature, Junction  
Storage Temperature Range  
Table 3. Thermal Parameters for ADCLK914 16-Lead LFCSP  
Symbol Description1  
Value Units  
−65°C to +150°C  
Junction-to-ambient thermal  
resistance, 0.0 meters per sec air  
flow per JEDEC JESD51-2 (still air)  
ꢀ8.4  
68.5  
61.4  
48.8  
1.5  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
θJA  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Junction-to-ambient thermal  
resistance, 1.0 meter per sec air flow  
per JEDEC JESD51-6 (moving air)  
θJMA  
θJMA  
θJB  
Junction-to-ambient thermal  
resistance, 2.5 m/s air flow per  
JEDEC JESD51-6 (moving air)  
Junction-to-board thermal  
resistance, 1.0 meter per sec air flow  
per JEDEC JESD51-8 (moving air)  
THERMAL PERFORMANCE  
The ADCLK914 is specified for a case temperature (TCASE). To  
ensure that TCASE is not exceeded, use an airflow source.  
Junction-to-case thermal resistance  
(die-to-heatsink) per MIL-Std 883,  
Method 1012.1  
θJC  
To determine the junction temperature on the application PCB  
Junction-to-top-of-package  
characterization parameter, 0  
meters per sec air flow per JEDEC  
JESD51-2 (still air)  
2.0  
ΨJT  
TJ = TCASE + (ΨJT × PD)  
where:  
TJ is the junction temperature (°C).  
1 Descriptions based on using a 2s2p test board.  
TCASE is the case temperature (°C) measured by the customer at  
top center of package.  
ESD CAUTION  
ΨJT is determined by the values listed in Table 3.  
PD is the power dissipation.  
Rev. A | Page 5 of 12  
 
 
 
ADCLK914  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
PIN 1  
INDICATOR  
12 Q  
11 Q  
10 NC  
D
D
1
2
3
4
ADCLK914  
NC  
NC  
TOP VIEW  
(Not to Scale)  
9
NC  
NC = NO CONNECT  
Figure 2. Pin Configuration  
Table 4. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
2
D
D
Noninverting Input.  
Inverting Input.  
3, 4, 5, 6, 9, 10 NC  
No Connect. No physical connection to the die.  
Negative Supply Voltage.  
Positive Supply Voltage.  
ꢀ, 14  
8, 13  
11  
VEE  
VCC  
Q
Inverting Output.  
12  
Q
Noninverting Output.  
15  
16  
VREF  
VT  
Reference Voltage. Reference voltage for biasing ac-coupled inputs.  
Center Tap. Center tap of 100 Ω input resistor.  
Heat Sink/  
Exposed Pad  
NC  
No Connect. The metallic back surface of the package is not electrically connected to any part of the circuit.  
It can be left floating for optimal electrical isolation between the package handle and the substrate of the  
die. It can also be soldered to ground on the application board if improved thermal and/or mechanical  
stability is needed. Exposed metal at the corners of the package is connected to this back surface. Allow  
sufficient clearance for vias and other components.  
Rev. A | Page 6 of 12  
 
ADCLK914  
TYPICAL PERFORMANCE CHARACTERISTICS  
VCC = 3.3 V, VEE = 0 V, TA = 25°C. All outputs terminated through 50 ꢀ to VCC, unless otherwise noted.  
Q
Q
Q
Q
62.5ps/DIV  
100ps/DIV  
Figure 3. Output Waveform at 1 GHz, VCC = 3.3 V  
Figure 6. Output Waveform at 1 GHz, VCC = 3.3 V  
–120  
–120  
–130  
–140  
–150  
–160  
–130  
–140  
–150  
–160  
–170  
–170  
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 4. Phase Noise at 122.88 MHz  
Figure 7. Phase Noise at 622.08 MHz  
–120  
350  
T
= 25°C  
A
300  
250  
–130  
–140  
–150  
–160  
200  
150  
100  
50  
–170  
0
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
0
1
2
3
4
5
6
7
8
FREQUENCY (Hz)  
INPUT SLEW RATE (V/ns)  
Figure 5. Phase Noise at 245.76 MHz  
Figure 8. RMS Jitter vs. Input Slew Rate  
Rev. A | Page ꢀ of 12  
 
 
ADCLK914  
3.80  
3.75  
3.70  
3.65  
3.60  
3.55  
162  
160  
158  
156  
154  
152  
150  
148  
146  
3.50  
2.97  
3.13  
3.30  
3.46  
3.63  
0.4  
0.8  
1.2  
1.6  
2.0  
POWER SUPPLY VOLTAGE (V)  
INPUT DIFFERENTIAL (V p-p)  
Figure 9. Differential Output Swing vs. Power Supply Voltage  
Figure 12. Propagation Delay vs. VID; VICM = 2.15 V  
115  
4.0  
114  
113  
112  
111  
110  
109  
108  
107  
106  
105  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5 12.5  
2.97  
3.13  
3.30  
3.46  
3.63  
FREQUENCY (GHz)  
POWER SUPPLY VOLTAGE (V)  
Figure 10. Power Supply Current vs. Power Supply Voltage  
Figure 13. Toggle Rate, Differential Output Swing vs. Frequency  
200  
180  
160  
140  
120  
100  
80  
60  
40  
20  
0
0.5  
1.0  
1.5  
2.0  
2.5  
INPUT COMMON MODE (V)  
Figure 11. Propagation Delay vs. VICM; VID = 1.6 V p-p  
Rev. A | Page 8 of 12  
ADCLK914  
APPLICATIONS INFORMATION  
losses. The ADCLK914, in turn, may be driven directly by  
POWER/GROUND LAYOUT AND BYPASSING  
standard or low swing PECL, CML, CMOS, or LVTTL sources,  
or by LVDS with simple ac coupling, as illustrated in Figure 15  
through Figure 19.  
The ADCLK914 buffer is designed for very high speed applica-  
tions. Consequently, high speed design techniques must be used  
to achieve the specified performance. It is critically important to  
use low impedance supply planes for both the negative supply  
(VEE) and the positive supply (VCC) planes as part of a multilayer  
board. Providing the lowest inductance return path for switching  
currents ensures the best possible performance in the target  
application.  
OPTIMIZING HIGH SPEED PERFORMANCE  
As with any high speed circuit, proper design and layout tech-  
niques are essential to obtaining the specified performance.  
Stray capacitance, inductance, inductive power, and ground  
impedances, as well as other layout issues, can severely limit  
performance and can cause oscillation. Discontinuities along  
input and output transmission lines can also severely limit the  
specified jitter performance by reducing the effective input  
slew rate.  
It is also important to adequately bypass the input and output  
supplies. Place a 1 μF electrolytic bypass capacitor within several  
inches of each power supply pin to ground. In addition, place  
multiple high quality 0.001 μF bypass capacitors as close as  
possible to each VEE and VCC supply pin and connect these cap-  
acitors to the GND plane with redundant vias. Carefully select  
high frequency bypass capacitors for minimum inductance and  
ESR. To maximize the effectiveness of the bypass capacitors at  
high frequencies, strictly avoid parasitic layout inductance.  
Input and output matching have a significant impact on  
performance. The ADCLK914 buffer provides internal 50 Ω  
D
termination resistors for both D and inputs. The return side  
can be connected to the reference pin provided or to a current  
sink at VCC − 2 V for use with differential PECL, or to VCC for  
direct coupled CML. The VREF pin should be left floating any  
time that it is not used to minimize power consumption.  
Slew currents may also appear at the VDD and VSS pins of the  
device being driven by the ADCLK914.  
HVDS OUTPUT STAGE  
Note that the ADCLK914 VREF source is current-limited to resist  
damage from momentary shorts to VEE or VCC and from capacitor  
charging currents; for this reason, the VREF source cannot be  
used as a PECL termination supply.  
The ADCLK914 has been developed to provide a bipolar interface  
to any CMOS device that requires extremely low jitter, high  
amplitude clocks. It is intended to be placed as close as possible  
to the receiving device and allows the rest of the clock distribu-  
tion to run at standard CML or PECL levels.  
Carefully bypass the termination potential using ceramic capa-  
citors to prevent undesired aberrations on the input signal due  
to parasitic inductance in the termination return path. If the  
inputs are directly coupled to a source, care must be taken to  
ensure that the pins remain within the rated input differential  
and common-mode ranges.  
Interconnects must be short and very carefully designed  
because the single terminated design provides much less  
margin for error than lower voltage, double terminated  
transmission techniques.  
Q
If the return is floated, the device exhibits 100 Ω cross-term-  
ination, but the source must then control the common-mode  
voltage and supply the input bias currents.  
Q
ESD/clamp diodes between the input pins prevent the appli-  
cation of excessive offsets to the input transistors. ESD diodes  
are not optimized for best ac performance. If a clamp is needed,  
it is recommended that appropriate external diodes be used.  
40mA  
7mA  
7mA  
V
V
V
EE  
EE  
EE  
RANDOM JITTER  
Figure 14. Simplified Schematic Diagram  
of the ADCLK914 HVDS Output Stage  
The ADCLK914 buffer has been specifically designed to  
minimize random jitter over a wide input range. Provided  
that sufficient voltage swing is present, random jitter is affected  
most by the slew rate of the input signal. Whenever possible,  
clamp excessively large input signals with fast Schottky diodes  
because attenuators reduce the slew rate. Input signal runs of  
more than a few centimeters should be over low loss dielectrics  
or cables with good high frequency characteristics.  
INTERFACING TO HIGH SPEED DACs  
The ADCLK914 is designed to drive high amplitude, low jitter  
clock signals into high speed, multi-GSPS DACs. The ADCLK914  
should be placed as close as possible to the clock input of the  
DAC so that the high slew rate and high amplitude clock signal  
that these devices require do not cause routing difficulties,  
generate EMI, or become degraded by dielectric and other  
Rev. A | Page 9 of 12  
 
ADCLK914  
TYPICAL APPLICATION CIRCUITS  
V
CC  
V
V
REF  
REF  
V
V
T
T
V
– 2V  
CC  
D
D
D
D
CONNECT V TO V  
CC  
.
CONNECT V TO V – 2V.  
CC  
T
T
Figure 15. Interfacing to CML Inputs  
Figure 18. Interfacing to ECL Inputs  
V
V
REF  
REF  
V
V
T
T
D
D
D
D
CONNECT V TO V  
REF  
.
CONNECT V , V  
T
, AND D. PLACE A BYPASS  
T
REF  
CAPACITOR FROM V TO GROUND.  
NOTES  
T
1. PLACING A BYPASS CAPACITOR  
ALTERNATIVELY, V , V  
, AND D CAN BE  
T
REF  
FROM V TO GROUND CAN IMPROVE  
CONNECTED, GIVING A CLEANER LAYOUT AND  
T
THE NOISE PERFORMANCE.  
A 180º PHASE SHIFT.  
Figure 19. Interfacing to AC-Coupled, Single-Ended Inputs  
Figure 16. AC Coupling Differential Signals  
V
CC  
Q
Q
40mA  
7mA  
7mA  
V
V
V
EE  
EE  
EE  
Figure 17. Interfacing to High Speed DAC  
Rev. A | Page 10 of 12  
 
 
 
ADCLK914  
OUTLINE DIMENSIONS  
0.50  
0.40  
0.30  
0.60 MAX  
3.00  
BSC SQ  
PIN 1  
INDICATOR  
BOTTOM VIEW  
*
1.65  
1.50 SQ  
1.35  
13  
12  
16  
1
0.45  
PIN 1  
INDICATOR  
2.75  
BSC SQ  
TOP  
VIEW  
EXPOSED  
PAD  
4
9
8
0.50  
BSC  
5
0.25 MIN  
1.50 REF  
0.80 MAX  
12° MAX  
0.65 TYP  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.90  
0.85  
0.80  
0.05 MAX  
0.02 NOM  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.30  
0.23  
0.18  
0.20 REF  
*
COMPLIANT TO JEDEC STANDARDS MO-220-VEED-2  
EXCEPT FOR EXPOSED PAD DIMENSION.  
Figure 20. 16-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
3 mm × 3 mm Body, Very Thin Quad  
(CP-16-3)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
ADCLK914BCPZ-WP1  
ADCLK914BCPZ-Rꢀ1  
ADCLK914BCPZ-R21  
ADCLK914/PCBZ1  
Temperature Range  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
Package Description  
Package Option  
16-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
16-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
16-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
Evaluation Board  
CP-16-3  
CP-16-3  
CP-16-3  
1 Z = RoHS Compliant Part.  
Rev. A | Page 11 of 12  
 
ADCLK914  
NOTES  
©2008 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D06561-0-10/08(A)  
Rev. A | Page 12 of 12  

相关型号:

ADCLK925

Ultrafast SiGe ECL Clock/Data Buffers
ADI

ADCLK925BCPZ-R2

Ultrafast SiGe ECL Clock/Data Buffers
ADI

ADCLK925BCPZ-R7

Ultrafast SiGe ECL Clock/Data Buffers
ADI

ADCLK925BCPZ-WP

Ultrafast SiGe ECL Clock/Data Buffers
ADI

ADCLK925_15

Ultrafast SiGe ECL Clock/Data Buffers
ADI

ADCLK944

2.5 V/3.3 V, Four LVPECL Outputs, SiGe Clock Fanout Buffer
ADI

ADCLK944/PCBZ

2.5 V/3.3 V, Four LVPECL Outputs, SiGe Clock Fanout Buffer
ADI

ADCLK944BCPZ-R2

2.5 V/3.3 V, Four LVPECL Outputs, SiGe Clock Fanout Buffer
ADI

ADCLK944BCPZ-R7

2.5 V/3.3 V, Four LVPECL Outputs, SiGe Clock Fanout Buffer
ADI

ADCLK944BCPZ-WP

2.5 V/3.3 V, Four LVPECL Outputs, SiGe Clock Fanout Buffer
ADI

ADCLK946

Six LVPECL Outputs, SiGe Clock Fanout Buffer
ADI

ADCLK946/PCBZ

Six LVPECL Outputs, SiGe Clock Fanout Buffer
ADI