ADCLK944 [ADI]

2.5 V/3.3 V, Four LVPECL Outputs, SiGe Clock Fanout Buffer; 2.5 V / 3.3 V ,四LVPECL输出的SiGe时钟扇出缓冲器
ADCLK944
型号: ADCLK944
厂家: ADI    ADI
描述:

2.5 V/3.3 V, Four LVPECL Outputs, SiGe Clock Fanout Buffer
2.5 V / 3.3 V ,四LVPECL输出的SiGe时钟扇出缓冲器

时钟
文件: 总12页 (文件大小:217K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
2.5 V/3.3 V, Four LVPECL Outputs,  
SiGe Clock Fanout Buffer  
ADCLK944  
FUNCTIONAL BLOCK DIAGRAM  
FEATURES  
Operating frequency: 7.0 GHz  
Broadband random jitter: 50 fs rms  
On-chip input terminations  
LVPECL  
ADCLK944  
Q0  
Q0  
Power supply (VCC − VEE): 2.5 V to 3.3 V  
V
REF  
REFERENCE  
Q1  
Q1  
Q2  
Q2  
Q3  
Q3  
APPLICATIONS  
V
T
Low jitter clock distribution  
Clock and data signal restoration  
Level translation  
Wireless communications  
Wired communications  
CLK  
CLK  
Medical and industrial imaging  
ATE and high performance instrumentation  
Figure 1.  
The ADCLK944 features four full-swing emitter-coupled logic  
(ECL) output drivers. For LVPECL (positive ECL) operation,  
bias VCC to the positive supply and VEE to ground. For ECL  
operation, bias VCC to ground and VEE to the negative supply.  
GENERAL DESCRIPTION  
The ADCLK944 is an ultrafast clock fanout buffer fabricated on  
the Analog Devices, Inc., proprietary XFCB3 silicon germanium  
(SiGe) bipolar process. This device is designed for high speed  
applications requiring low jitter.  
The ECL output stages are designed to directly drive 800 mV  
each side into 50 Ω terminated to VCC − 2 V for a total differen-  
tial output swing of 1.6 V.  
The device has a differential input equipped with center-tapped,  
differential, 100 Ω on-chip termination resistors. The input can  
accept dc-coupled LVPECL, CML, 3.3 V CMOS (single-ended),  
and ac-coupled 1.8 V CMOS, LVDS, and LVPECL inputs. A VREF  
pin is available for biasing ac-coupled inputs.  
The ADCLK944 is available in a 16-lead LFCSP and is specified  
for operation over the standard industrial temperature range of  
−40°C to +85°C.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2010 Analog Devices, Inc. All rights reserved.  
 
ADCLK944  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
ESD Caution...................................................................................5  
Thermal Performance...................................................................5  
Pin Configuration and Function Descriptions..............................6  
Typical Performance Characteristics ..............................................7  
Theory of Operation .........................................................................9  
Clock Inputs...................................................................................9  
Clock Outputs................................................................................9  
PCB Layout Considerations...................................................... 10  
Input Termination Options....................................................... 11  
Outline Dimensions....................................................................... 12  
Ordering Guide .......................................................................... 12  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Clock Inputs and Outputs ........................................................... 3  
Timing Characteristics ................................................................ 3  
Power.............................................................................................. 4  
Absolute Maximum Ratings............................................................ 5  
Determining Junction Temperature .......................................... 5  
REVISION HISTORY  
3/10—Revision 0: Initial Version  
Rev. 0 | Page 2 of 12  
 
ADCLK944  
SPECIFICATIONS  
Typical values are given for VCC − VEE = 3.3 V and TA = 25°C, unless otherwise noted. Minimum and maximum values are given for the  
full VCC − VEE = 3.3 V + 10% to 2.5 V − 5% and TA = −40°C to +85°C variation, unless otherwise noted.  
CLOCK INPUTS AND OUTPUTS  
Table 1.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
DC INPUT CHARACTERISTICS  
Input Common-Mode Voltage VICM  
VEE + 1.35  
0.4  
VCC − 0.1  
3.4  
V
V p-p  
pF  
Input Differential Voltage  
Input Capacitance  
VID  
CIN  
RIN  
1.ꢀ V between input pins  
0.4  
Input Resistance  
Single-Ended Mode  
Differential Mode  
Common Mode  
50  
100  
50  
Ω
Ω
kΩ  
μA  
VT open  
Input Bias Current  
20  
DC OUTPUT CHARACTERISTICS  
Output Voltage High Level  
Output Voltage Low Level  
VOH  
VOL  
VCC − 1.26  
VCC − 1.99  
600  
VCC − 0.ꢀ6  
VCC − 1.54  
960  
V
V
mV  
Load = 50 Ω to (VCC − 2.0 V)  
Load = 50 Ω to (VCC − 2.0 V)  
VOH − VOL, output static  
Output Voltage, Single-Ended VO  
Voltage Reference  
Output Voltage  
Output Resistance  
VREF  
(VCC + 1)/2  
250  
V
Ω
−500 μA to +500 μA  
TIMING CHARACTERISTICS  
Table 2.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
AC PERFORMANCE  
Maximum Output Frequency  
6.2  
ꢀ.0  
GHz  
Differential output voltage swing > 0.8 V  
(see Figure 4)  
Output Rise/Fall Time  
Propagation Delay  
Temperature Coefficient  
Output-to-Output Skew1  
Part-to-Part Skew  
tR  
tPD  
35  
ꢀ0  
50  
100  
ꢀ5  
ꢀ5  
130  
ps  
ps  
fs/°C  
ps  
ps  
20% to 80%, measured differentially  
VID = 1.6 V p-p  
15  
35  
VID = 1.6 V p-p  
Additive Time Jitter  
Integrated Random Jitter  
Broadband Random Jitter2  
CLOCK OUTPUT PHASE NOISE  
Absolute Phase Noise  
fIN = 1 GHz  
26  
50  
fs rms  
fs rms  
BW = 12 kHz to 20 MHz, CLK = 1 GHz  
VID = 1.6 V p-p, 8 V/ns, VICM = 2 V  
Input slew rate > 1 V/ns (see Figure 11)  
100 Hz offset  
1 kHz offset  
10 kHz offset  
100 kHz offset  
−118  
−135  
−144  
−150  
−150  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
>1 MHz offset  
1 The output-to-output skew is the difference between any two similar delay paths while operating at the same voltage and temperature.  
2 Measured at the rising edge of the clock signal; calculated using the SNR of the ADC method.  
Rev. 0 | Page 3 of 12  
 
 
ADCLK944  
POWER  
Table 3.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
POWER SUPPLY  
Supply Voltage Requirement  
Power Supply Current  
Negative Supply Current  
VCC − VEE  
2.3ꢀ5  
3.63  
V
3.3 V + 10% to 2.5 V − 5%  
Static  
VCC − VEE = 2.5 V 5%  
VCC − VEE = 3.3 V 10%  
VCC − VEE = 2.5 V 5%  
VCC − VEE = 3.3 V 10%  
IVEE  
IVEE  
IVCC  
IVCC  
PSRVCC  
PSRVCC  
35  
3ꢀ  
139  
138  
−3  
28  
mA  
mA  
mA  
mA  
ps/V  
dB  
49  
Positive Supply Current  
165  
Power Supply Rejection1  
Output Swing Supply Rejection2  
1 Change in tPD per change in VCC  
2 Change in output swing per change in VCC.  
.
Rev. 0 | Page 4 of 12  
 
 
ADCLK944  
ABSOLUTE MAXIMUM RATINGS  
DETERMINING JUNCTION TEMPERATURE  
Table 4.  
To determine the junction temperature on the application  
printed circuit board (PCB), use the following equation:  
Parameter  
Rating  
Supply Voltage  
VCC − VEE  
Input Voltage  
CLK, CLK  
6.0 V  
TJ = TCASE + (ΨJT × PD)  
where:  
VEE − 0.5 V to VCC + 0.5 V  
TJ is the junction temperature (°C).  
CLK to CLK  
1.8 V  
2 V  
T
CASE is the case temperature (°C) measured by the customer at  
the top center of the package.  
JT is as indicated in Table 5.  
Input Termination, VT to CLK, CLK  
Input Current, CLK, CLK to VT Pin  
(CML, LVPECL Termination)  
Maximum Voltage on Output Pins  
Maximum Output Current  
Voltage Reference (VREF  
Operating Temperature  
Ambient Range  
40 mA  
Ψ
PD is the power dissipation.  
VCC + 0.5 V  
35 mA  
VCC to VEE  
Values of θJA are provided for package comparison and PCB  
design considerations. θJA can be used for a first-order approx-  
imation of TJ using the following equation:  
)
−40°C to +85°C  
150°C  
−65°C to +150°C  
TJ = TA + (θJA × PD)  
Junction  
Storage Temperature Range  
where TA is the ambient temperature (°C).  
Values of θJB are provided in Table 5 for package comparison  
and PCB design considerations.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
ESD CAUTION  
THERMAL PERFORMANCE  
Table 5.  
Parameter  
Symbol  
Description  
Value1  
Unit  
Junction-to-Ambient Thermal Resistance  
Still Air  
0.0 m/sec Airflow  
Moving Air  
θJA  
Per JEDEC JESD51-2  
Per JEDEC JESD51-6  
ꢀ8  
°C/W  
θJMA  
1.0 m/sec Airflow  
2.5 m/sec Airflow  
68  
61  
°C/W  
°C/W  
Junction-to-Board Thermal Resistance  
Moving Air  
θJB  
θJC  
ΨJT  
Per JEDEC JESD51-8  
1.0 m/sec Airflow  
49  
°C/W  
°C/W  
°C/W  
Junction-to-Case Thermal Resistance (Die-to-Heat Sink)  
Still Air  
Per MIL-STD-883, Method 1012.1  
0.0 m/sec Airflow  
1.5  
Junction-to-Top-of-Package Characterization Parameter  
Still Air  
Per JEDEC JESD51-2  
0.0 m/sec Airflow  
2.0  
1 Results are from simulations. The PCB is a JEDEC multilayer type. Thermal performance for actual applications requires careful inspection of the conditions in the  
application to determine whether they are similar to those assumed in these calculations.  
Rev. 0 | Page 5 of 12  
 
 
 
ADCLK944  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
CLK 1  
12 Q1  
11 Q1  
10 Q2  
V
2
3
T
ADCLK944  
TOP VIEW  
(Not to Scale)  
V
REF  
CLK 4  
9
Q2  
NOTES  
1. EXPOSED PAD MUST BE CONNECTED  
TO V  
.
EE  
Figure 2. Pin Configuration  
Table 6. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
CLK  
Differential Input (Positive).  
2
VT  
Center Tap. This pin provides the center tap of a 100 Ω input resistor for the CLK and CLK inputs.  
3
VREF  
Reference Voltage. This pin provides the reference voltage for biasing ac-coupled CLK and CLK inputs.  
4
CLK  
Differential Input (Negative).  
Negative Supply Pin.  
Differential LVPECL Outputs.  
Positive Supply Pin.  
Differential LVPECL Outputs.  
Differential LVPECL Outputs.  
Differential LVPECL Outputs.  
The exposed pad must be connected to VEE.  
5, 16  
6, ꢀ  
8, 13  
9, 10  
11, 12  
14, 15  
VEE  
Q3, Q3  
VCC  
Q2, Q2  
Q1, Q1  
Q0, Q0  
EPAD  
Rev. 0 | Page 6 of 12  
 
ADCLK944  
TYPICAL PERFORMANCE CHARACTERISTICS  
VCC = 3.3 V, VEE = 0.0 V, VICM = VREF, TA = 25°C, clock outputs terminated at 50 Ω to VCC − 2 V, unless otherwise noted.  
1
1
CH1 300mV  
M 1.25ns 20.0GS/s IT 25.0ps/pt  
A CH1 36.0mV  
CH1 300mV  
M 250ps 20.0GS/s  
A CH1 36.0mV  
IT 5.0ps/pt  
Figure 3. LVPECL Differential Output Waveform at 200 MHz  
Figure 6. LVPECL Differential Output Waveform at 1000 MHz  
1.55  
1.50  
1.45  
1.40  
1.6  
1.4  
1.2  
+25°C  
+85°C  
–40°C  
3.3V  
2.5V  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.35  
1.30  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
0
1000  
2000 3000  
4000 5000  
6000  
7000 8000  
POWER SUPPLY VOLTAGE (V)  
FREQUENCY (MHz)  
Figure 4. Differential Output Voltage Swing vs. Frequency  
Figure 7. Differential Output Voltage Swing vs. Power Supply Voltage  
and Temperature, VID = 1.6 V p-p  
80  
140  
130  
120  
85  
90  
95  
DELAY 3.3V  
110  
2.5V  
100  
105  
110  
100  
3.3V  
DELAY 2.5V  
90  
115  
0.1  
80  
1.0  
0.3  
0.5  
0.7  
0.9  
1.1  
1.5  
2.0  
2.5  
3.0  
– V  
3.5  
DIFFERENTIAL INPUT VOLTAGE SWING (V)  
DC COMMON-MODE VOLTAGE (V  
)
ICM  
EE  
Figure 5. Propagation Delay vs. Differential Input Voltage Swing  
Figure 8. Propagation Delay vs. DC Common-Mode Voltage  
Rev. 0 | Page ꢀ of 12  
 
 
ADCLK944  
160  
140  
120  
100  
80  
300  
250  
200  
150  
100  
50  
I
VCC  
–40°C  
+25°C  
+85°C  
60  
40  
I
VEE  
20  
0
0
2.375  
2.500  
2.625  
2.970  
3.300  
3.630  
0
5
10  
15  
20  
POWER SUPPLY VOLTAGE (V)  
INPUT SLEW RATE (V/ns)  
Figure 9. Power Supply Current vs. Power Supply Voltage and Temperature,  
All Outputs Loaded (50 Ω to VCC − 2 V)  
Figure 11. Random Jitter vs. Input Slew Rate, VID Method  
–90  
–100  
–110  
–120  
–130  
–140  
ADCLK944  
–150  
–160  
CLOCK SOURCE  
–170  
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY OFFSET (Hz)  
Figure 10. Absolute Phase Noise Measured at 1 GHz with Agilent E5052B  
Rev. 0 | Page 8 of 12  
 
ADCLK944  
THEORY OF OPERATION  
Figure 13 through Figure 16 depict various LVPECL output  
termination schemes. When dc-coupled, VCC of the receiving  
buffer should match VS_DRV.  
CLOCK INPUTS  
The ADCLK944 accepts a differential clock input and distrib-  
utes it to all four LVPECL outputs. The maximum specified  
frequency is the point at which the output voltage swing is 50%  
of the standard LVPECL swing (see Figure 4).  
VS_DRV  
V
= VS_DRV  
LVPECL  
ADCLK944  
CC  
Z
= 50  
0
50Ω  
50Ω  
V
– 2V  
CC  
The device has a differential input equipped with center-tapped,  
differential, 100 Ω on-chip termination resistors. The input can  
accept dc-coupled LVPECL, CML, 3.3 V CMOS (single-ended,  
3.3 V operation only), and ac-coupled 1.8 V CMOS, LVDS, and  
LVPECL inputs. A VREF pin is available for biasing ac-coupled  
inputs (see Figure 20 and Figure 21).  
Z
= 50Ω  
0
Figure 13. DC-Coupled, 3.3 V LVPECL  
Thevenin-equivalent termination uses a resistor network to provide  
50 Ω termination to a dc voltage that is below VOL of the LVPECL  
driver. In this case, VS_DRV on the ADCLK944 should equal  
Maintain the differential input voltage swing from approxi-  
mately 400 mV p-p to no more than 3.4 V p-p. See Figure 18  
through Figure 21 for various clock input termination schemes.  
VCC of the receiving buffer. Although the resistor combination  
shown in Figure 14 results in a dc bias point of VS_DRV − 2 V,  
the actual common-mode voltage is VS_DRV − 1.3 V because  
there is additional current flowing from the ADCLK944 LVPECL  
driver through the pull-down resistor.  
Output jitter performance is significantly degraded by an input  
slew rate below 1 V/ns, as shown in Figure 11. The ADCLK944  
is specifically designed to minimize added random jitter over a  
wide input slew rate range. Whenever possible, clamp excessively  
large input signals with fast Schottky diodes because attenuators  
reduce the slew rate. Input signal runs of more than a few centi-  
meters should be over low loss dielectrics or cables with good  
high frequency characteristics.  
VS_DRV  
ADCLK944  
VS_DRV  
V
CC  
127Ω  
127Ω  
50Ω  
SINGLE-ENDED  
(NOT COUPLED)  
LVPECL  
50Ω  
CLOCK OUTPUTS  
83Ω  
83Ω  
The specified performance necessitates using proper transmis-  
sion line terminations. The LVPECL outputs of the ADCLK944  
are designed to directly drive 800 mV into a 50 Ω cable or into  
microstrip/stripline transmission lines terminated with 50 Ω  
referenced to VCC − 2 V, as shown in Figure 13. The LVPECL  
output stage is shown in Figure 12. The outputs are designed  
for best transmission line matching. If high speed signals must  
be routed more than a centimeter, either the microstrip or the  
stripline technique is required to ensure proper transition times  
and to prevent excessive output ringing and pulse-width-dependent  
propagation delay dispersion.  
Figure 14. DC-Coupled, 3.3 V LVPECL Far-End Thevenin Termination  
LVPECL Y-termination (see Figure 15) is an elegant termination  
scheme that uses the fewest components and offers both odd-  
and even-mode impedance matching. Even-mode impedance  
matching is an important consideration for closely coupled trans-  
mission lines at high frequencies. Its main drawback is that it offers  
limited flexibility for varying the drive strength of the emitter-  
follower LVPECL driver. This can be an important consideration  
when driving long trace lengths but is usually not an issue.  
VS_DRV  
V
= VS_DRV  
ADCLK944  
CC  
V
CC  
Z
= 50Ω  
= 50Ω  
0
50Ω  
50Ω  
50Ω  
LVPECL  
Z
0
Figure 15. DC-Coupled, 3.3 V LVPECL Y-Termination  
Q
Q
VS_DRV  
V
ADCLK944  
CC  
0.1nF  
100DIFFERENTIAL  
(COUPLED)  
100Ω  
LVPECL  
0.1nF  
TRANSMISSION LINE  
200Ω  
200Ω  
V
EE  
Figure 12. Simplified Schematic Diagram  
of the LVPECL Output Stage  
Figure 16. AC-Coupled LVPECL with Parallel Transmission Line  
Rev. 0 | Page 9 of 12  
 
 
 
 
 
 
ADCLK944  
If the return is floated, the device exhibits a 100 ꢁ cross-termi-  
nation, but the source must then control the common-mode  
voltage and supply the input bias currents.  
PCB LAYOUT CONSIDERATIONS  
The ADCLK944 buffer is designed for very high speed applica-  
tions. Consequently, high speed design techniques must be used  
to achieve the specified performance. It is critically important to  
use low impedance supply planes for both the negative supply  
(VEE) and the positive supply (VCC) planes as part of a multilayer  
board. Providing the lowest inductance return path for switching  
currents ensures the best possible performance in the target  
application.  
ESD/clamp diodes between the input pins prevent the application  
from developing excessive offsets to the input transistors. ESD  
diodes are not optimized for best ac performance. When a clamp  
is required, it is recommended that appropriate external diodes  
be used.  
Exposed Metal Paddle  
The following references to the ground plane assume that the VEE  
power plane is grounded for LVPECL operation. Note that, for  
ECL operation, the VCC power plane becomes the ground plane.  
The exposed metal paddle on the ADCLK944 package is both an  
electrical connection and a thermal enhancement. For the device  
to function properly, the paddle must be properly attached to  
the VEE pins.  
It is also important to adequately bypass the input and output  
supplies. Place a 1 μF electrolytic bypass capacitor within several  
inches of each VCC power supply pin to the ground plane. In  
addition, place multiple high quality 0.001 ꢀF bypass capacitors  
as close as possible to each VCC supply pin, and connect the  
capacitors to the ground plane with redundant vias. Select high  
frequency bypass capacitors for minimum inductance and ESR.  
To improve the effectiveness of the bypass at high frequencies,  
minimize parasitic layout inductance. Also, avoid discontinuities  
along input and output transmission lines; such discontinuities  
can affect jitter performance.  
When properly mounted, the ADCLK944 also dissipates heat  
through its exposed paddle. The PCB acts as a heat sink for the  
ADCLK944. The PCB attachment must provide a good thermal  
path to a larger heat dissipation area. This requires a grid of vias  
from the top layer of the PCB down to the VEE power plane (see  
Figure 17). The ADCLK944 evaluation board (ADCLK944/PCBZ)  
provides an example of how to attach the part to the PCB.  
In a 50 Ω environment, input and output matching have a signif-  
icant impact on performance. The buffer provides internal 50 Ω  
VIAS TO V POWER  
EE  
CLK  
termination resistors for both the CLK and  
inputs. Normally,  
PLANE  
the return side is connected to the reference pin that is provided.  
Bypass the termination potential using ceramic capacitors to  
prevent undesired aberrations on the input signal due to parasitic  
inductance in the termination return path. If the inputs are dc-  
coupled to a source, take care to ensure that the pins are within  
the rated input differential and common-mode voltage ranges.  
Figure 17. PCB Land for Attaching Exposed Paddle  
Rev. 0 | Page 10 of 12  
 
 
ADCLK944  
INPUT TERMINATION OPTIONS  
V
CC  
V
V
REF  
REF  
V
V
T
T
50  
50Ω  
50  
50Ω  
CLK  
CLK  
CLK  
CLK  
CONNECT V TO V  
.
CONNECT V TO V  
.
REF  
T
CC  
T
Figure 18. Interfacing to CML Inputs  
Figure 20. AC Coupling Differential Signal Inputs, Such as LVDS  
V
REF  
V
T
V
REF  
50Ω  
50Ω  
V
T
CLK  
50Ω  
50Ω  
V
– 2V  
CC  
CLK  
CLK  
CLK  
CONNECT V , V  
REF  
, AND CLK TOGETHER.  
T
PLACE A BYPASS CAPACITOR FROM V TO  
T
GROUND.  
CONNECT V TO V 2V.  
CC  
T
ALTERNATIVELY, V , V  
, AND CLK CAN BE  
T
REF  
CONNECTED TOGETHER, GIVING A CLEANER  
LAYOUT AND A 180° PHASE SHIFT.  
Figure 21. Interfacing to AC-Coupled, Single-Ended Inputs  
Figure 19. Interfacing to PECL Inputs  
Rev. 0 | Page 11 of 12  
 
 
 
ADCLK944  
OUTLINE DIMENSIONS  
3.10  
3.00 SQ  
2.90  
0.30  
0.25  
0.18  
PIN 1  
INDICATOR  
PIN 1  
INDICATOR  
13  
16  
0.50  
BSC  
1
4
12  
EXPOSED  
PAD  
1.60  
1.50 SQ  
1.40  
9
8
5
0.45  
0.40  
0.35  
0.25 MIN  
TOP VIEW  
BOTTOM VIEW  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.20 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-WEED-6.  
Figure 22. 16-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
3 mm × 3 mm Body, Very Very Thin Quad  
(CP-16-18)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
ADCLK944BCPZ-R2  
ADCLK944BCPZ-Rꢀ  
ADCLK944BCPZ-WP  
ADCLK944/PCBZ  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
Package Description  
16-Lead LFCSP_WQ  
16-Lead LFCSP_WQ  
16-Lead LFCSP_WQ  
Evaluation Board  
Package Option  
CP-16-18  
CP-16-18  
Branding Code  
Y2K  
Y2K  
Y2K  
CP-16-18  
1 Z = RoHS Compliant Part.  
©2010 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D08770-0-3/10(0)  
Rev. 0 | Page 12 of 12  
 
 

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY