ADCLK946BCPZ [ADI]

Six LVPECL Outputs, SiGe Clock Fanout Buffer; 六LVPECL输出的SiGe时钟扇出缓冲器
ADCLK946BCPZ
型号: ADCLK946BCPZ
厂家: ADI    ADI
描述:

Six LVPECL Outputs, SiGe Clock Fanout Buffer
六LVPECL输出的SiGe时钟扇出缓冲器

时钟驱动器 逻辑集成电路 PC
文件: 总12页 (文件大小:354K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Six LVPECL Outputs,  
SiGe Clock Fanout Buffer  
ADCLK946  
FUNCTIONAL BLOCK DIAGRAM  
FEATURES  
4.8 GHz operating frequency  
75 fs rms broadband random jitter  
On-chip input terminations  
3.3 V power supply  
LVPECL  
ADCLK946  
Q0  
Q0  
V
REFERENCE  
REF  
Q1  
Q1  
Q2  
Q2  
Q3  
Q3  
Q4  
Q4  
Q5  
Q5  
V
T
APPLICATIONS  
CLK  
CLK  
Low jitter clock distribution  
Clock and data signal restoration  
Level translation  
Wireless communications  
Wired communications  
Medical and industrial imaging  
ATE and high performance instrumentation  
GENERAL DESCRIPTION  
Figure 1.  
The ADCLK946 is an ultrafast clock fanout buffer fabricated on  
the Analog Devices, Inc., proprietary XFCB3 silicon germanium  
(SiGe) bipolar process. This device is designed for high speed  
applications requiring low jitter.  
The device has a differential input equipped with center-tapped,  
differential, 100 Ω on-chip termination resistors. The input accepts  
dc-coupled LVPECL, CML, 3.3 V CMOS (single ended), and  
ac-coupled 1.8 V CMOS, LVDS, and LVPECL inputs. A VREF pin  
is available for biasing ac-coupled inputs.  
The ADCLK946 features six full-swing emitter-coupled logic  
(ECL) output drivers. For LVPECL (positive ECL) operation,  
bias VCC to the positive supply and VEE to ground. For ECL  
operation, bias VCC to ground and VEE to the negative supply.  
The ECL output stages are designed to directly drive 800 mV  
each side into 50 Ω terminated to VCC − 2 V for a total differen-  
tial output swing of 1.6 V.  
The ADCLK946 is available in a 24-lead LFCSP and is specified  
for operation over the standard industrial temperature range of  
−40°C to +85°C.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2009 Analog Devices, Inc. All rights reserved.  
 
 
ADCLK946  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Thermal Performance...................................................................5  
Pin Configuration and Function Descriptions..............................6  
Typical Performance Characteristics ..............................................7  
Functional Description.....................................................................9  
Clock Inputs...................................................................................9  
Clock Outputs................................................................................9  
PCB Layout Considerations...................................................... 10  
Input Termination Options....................................................... 11  
Outline Dimensions....................................................................... 12  
Ordering Guide .......................................................................... 12  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Electrical Characteristics............................................................. 3  
Absolute Maximum Ratings............................................................ 5  
Determining Junction Temperature .......................................... 5  
ESD Caution.................................................................................. 5  
REVISION HISTORY  
4/09—Revision 0: Initial Version  
Rev. 0 | Page 2 of 12  
 
ADCLK946  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS  
Typical (typ) values are given for VCC − VEE = 3.3 V and TA = 25°C, unless otherwise noted. Minimum (min) and maximum (max) values  
are given over the full VCC − VEE = 3.3 V 10ꢀ and TA = −40°C to +85°C variation, unless otherwise noted.  
Table 1. Clock Inputs and Outputs  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
DC INPUT CHARACTERISTICS  
Input Voltage High Level  
Input Voltage Low Level  
Input Differential Range  
Input Capacitance  
VIH  
VIL  
VID  
CIN  
VEE + 1.6  
VEE  
0.4  
VCC  
VCC − 0.2  
3.4  
V
V
V p-p  
pF  
1.ꢀ V between input pins  
0.4  
Input Resistance  
Single-Ended Mode  
Differential Mode  
Common Mode  
Input Bias Current  
Hysteresis  
50  
100  
50  
20  
10  
Ω
Ω
kΩ  
μA  
mV  
Open VT  
DC OUTPUT CHARACTERISTICS  
Output Voltage High Level  
Output Voltage Low Level  
Output Voltage Differential  
Reference Voltage  
VOH  
VOL  
VOD  
VREF  
VCC − 1.26  
VCC − 1.99  
610  
VCC − 0.ꢀ6  
VCC − 1.54  
960  
V
V
mV  
50 Ω to (VCC − 2.0 V)  
50 Ω to (VCC − 2.0 V)  
50 Ω to (VCC − 2.0 V)  
Output Voltage  
Output Resistance  
(VCC + 1)/2  
235  
V
Ω
−500 μA to +500 μA  
Table 2. Timing Characteristics  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
AC PERFORMANCE  
Maximum Output Frequency  
4.5  
4.8  
GHz  
See Figure 4 for differential output voltage vs.  
frequency, >0.8 V differential output swing  
Output Rise/Fall Time  
Propagation Delay  
Temperature Coefficient  
Output-to-Output Skew  
Part-to-Part Skew1  
tR, tF  
tPD  
40  
150  
ꢀ5  
185  
50  
9
90  
220  
ps  
ps  
fs/°C  
ps  
ps  
20% to 80% measured differentially  
VICM = 2 V, VID = 1.6 V p-p  
28  
45  
VID = 1.6 V p-p  
Additive Time Jitter  
Integrated Random Jitter  
Broadband Random Jitter2  
Crosstalk-Induced Jitter3  
CLOCK OUTPUT PHASE NOISE  
Absolute Phase Noise  
fIN = 1 GHz  
28  
ꢀ5  
90  
fs rms  
fs rms  
fs rms  
BW = 12 kHz − 20 MHz, CLK = 1 GHz  
VID = 1.6 V p-p, 8 V/ns, VICM = 2 V  
Input slew rate > 1 V/ns (see Figure 11 for more details)  
−119  
−134  
−145  
−150  
−150  
dBc/Hz @ 100 Hz offset  
dBc/Hz @ 1 kHz offset  
dBc/Hz @ 10 kHz offset  
dBc/Hz @ 100 kHz offset  
dBc/Hz >1 MHz offset  
1 The output skew is the difference between any two similar delay paths while operating at the same voltage and temperature.  
2 Measured at the rising edge of the clock signal; calculated using the SNR of the ADC method.  
3 The amount of added jitter measured at the output while two related, asynchronous, differential frequencies are applied to the inputs.  
Rev. 0 | Page 3 of 12  
 
 
ADCLK946  
Table 3. Power  
Parameter  
Symbol Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
POWER SUPPLY  
Supply Voltage Requirement  
Power Supply Current  
Negative Supply Current  
Positive Supply Current  
Power Supply Rejection1  
Output Swing Supply Rejection2  
VCC − VEE 2.9ꢀ  
3.63  
V
3.3 V + 10%  
Static  
VCC − VEE = 3.3 V 10%  
VCC − VEE = 3.3 V 10%  
VCC − VEE = 3.3 V 10%  
VCC − VEE = 3.3 V 10%  
IVEE  
IVCC  
PSRVCC  
PSRVCC  
90  
115  
2ꢀ5  
mA  
mA  
ps/V  
dB  
245  
<3  
28  
1 Change in tPD per change in VCC  
2 Change in output swing per change in VCC  
.
.
Rev. 0 | Page 4 of 12  
ADCLK946  
ABSOLUTE MAXIMUM RATINGS  
DETERMINING JUNCTION TEMPERATURE  
Table 4.  
To determine the junction temperature on the application  
printed circuit board (PCB), use the following equation:  
Parameter  
Supply Voltage  
VCC − VEE  
Input Voltage  
CLK, CLK  
Rating  
6.0 V  
TJ = TCASE + (ΨJT × PD)  
where:  
VEE − 0.5 V to  
VCC + 0.5 V  
TJ is the junction temperature (°C).  
T
CASE is the case temperature (°C) measured by the customer at  
CLK, CLK to VT Pin (CML, LVPECL  
Termination)  
CLK to CLK  
±±0 mꢀ  
the top center of the package.  
ΨJT is as indicated in Table 5.  
PD is the power dissipation.  
±1.ꢁ V  
Input Termination, VT to CLK, CLK  
Maximum Voltage on Output Pins  
Maximum Output Current  
±2 V  
VCC + 0.5 V  
35 mꢀ  
VCC to VEE  
Values of θJA are provided for package comparison and PCB  
design considerations. θJA can be used for a first-order approx-  
imation of TJ by the equation  
Voltage Reference (VREF  
)
Operating Temperature Range  
ꢀmbient  
Junction  
TJ = TA + (θJA × PD)  
−±0°C to +ꢁ5°C  
150°C  
where TA is the ambient temperature (°C).  
Storage Temperature Range  
−65°C to +150°C  
Values of θJB are provided in Table 5 for package comparison  
and PCB design considerations.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
ESD CAUTION  
THERMAL PERFORMANCE  
Table 5.  
Parameter  
Symbol  
Description  
Value1  
Unit  
Junction-to-ꢀmbient Thermal Resistance  
Still ꢀir  
0.0 m/sec ꢀirflow  
Per JEDEC JESD51-2  
5±.3  
°C/W  
θJꢀ  
Moving ꢀir  
1.0 m/sec ꢀirflow  
Per JEDEC JESD51-6  
Per JEDEC JESD51-6  
±7.5  
±2.6  
°C/W  
°C/W  
θJMꢀ  
θJMꢀ  
2.5 m/sec ꢀirflow  
Junction-to-Board Thermal Resistance  
Moving ꢀir  
1.0 m/sec ꢀirflow  
Per JEDEC JESD51-ꢁ (moving air)  
Per MIL-Std. ꢁꢁ3, Method 1012.1  
33.0  
2.0  
°C/W  
°C/W  
θJB  
θJC  
Junction-to-Case Thermal Resistance (Die-to-Heat Sink)  
Moving ꢀir  
Junction-to-Top-of-Package Characterization Parameter  
Still ꢀir  
0 m/sec ꢀirflow  
Per JEDEC JESD51-2  
0.9  
°C/W  
ΨJT  
1Results are from simulations. The PCB is a JEDEC multilayer type. Thermal performance for actual applications requires careful inspection of the conditions in the  
application to determine if they are similar to those assumed in these calculations.  
Rev. 0 | Page 5 of 12  
 
 
 
ADCLK946  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
PIN 1  
INDICATOR  
V
CLK  
CLK  
1
2
3
4
5
6
18 V  
EE  
CC  
17 Q2  
16 Q2  
15 Q3  
14 Q3  
ADCLK946  
V
TOP VIEW  
REF  
V
V
(Not to Scale)  
T
13 V  
EE  
CC  
NOTES:  
1. EXPOSED PADDLE MUST BE CONNECTED TO V  
.
EE  
Figure 2. Pin Configuration  
Table 6. Pin Function Descriptions  
Pin No.  
1, 6, ꢀ, 12, 19  
2
Mnemonic  
Description  
VEE  
CLK  
CLK  
Negative Supply Pin.  
Differential Input (Positive).  
Differential Input (Negative).  
3
4
VREF  
Reference Voltage. This pin provides the reference voltage for biasing ac-coupled CLK and CLK inputs.  
5
VT  
Center Tap. This pin provides the center tap of a 100 Ω input resistor for CLK and CLK inputs.  
Differential LVPECL Outputs.  
8, 9  
Q5, Q5  
Q4, Q4  
VCC  
Q3, Q3  
Q2, Q2  
Q1, Q1  
Q0, Q0  
EPAD  
10, 11  
13, 18, 24  
14, 15  
16, 1ꢀ  
20, 21  
22, 23  
Differential LVPECL Outputs.  
Positive Supply Pin.  
Differential LVPECL Outputs.  
Differential LVPECL Outputs.  
Differential LVPECL Outputs.  
Differential LVPECL Outputs.  
EPAD must be soldered to VEE.  
Rev. 0 | Page 6 of 12  
 
ADCLK946  
TYPICAL PERFORMANCE CHARACTERISTICS  
VCC = 3.3 V, VEE = 0.0 V, VICM = VREF, TA = 25°C, clock outputs terminated at 50 Ω to VCC − 2 V, unless otherwise noted.  
C4  
C3  
C4  
C3  
C4  
C3  
100mV/DIV  
500ps/DIV  
100mV/DIV  
100ps/DIV  
Figure 3. LVPECL Output Waveform @ 200 MHz  
Figure 6. LVPECL Output Waveform @ 1000 MHz  
1.8  
189  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
188  
187  
186  
185  
184  
183  
182  
0
1000  
2000  
3000  
4000  
5000  
–40  
–20  
0
20  
40  
60  
80  
FREQUENCY (MHz)  
TEMPERATURE (°C)  
Figure 4. Differential Output Swing vs. Frequency  
Figure 7. Propagation Delay vs. Temperature  
205  
200  
195  
190  
185  
180  
175  
170  
165  
160  
205  
195  
185  
175  
165  
+85°C  
+25°C  
–40°C  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5 2.7 2.9 3.1  
DIFFERENTIAL INPUT VOLTAGE SWING (V)  
DC COMMON-MODE VOLTAGE (V)  
Figure 5. Propagation Delay vs. Differential Input Voltage  
Figure 8. Propagation Delay vs. Common-Mode Voltage vs. Temperature,  
Input Slew Rate > 25 V/ns  
Rev. 0 | Page ꢀ of 12  
 
 
ADCLK946  
1.56  
1.54  
1.52  
1.50  
1.48  
1.46  
1.44  
1.42  
–90  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
–40°C  
+25°C  
+85°C  
ADCLK946  
CLOCK SOURCE  
2.75 2.85 2.95 3.05 3.15 3.25 3.35 3.45 3.55 3.65 3.75  
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
POWER SUPPLY (V)  
FREQUENCY OFFSET (Hz)  
Figure 9. Differential Output Swing vs. Power Supply Voltage vs. Temperature,  
VID = 1.6 V p-p  
Figure 11. Absolute Phase Noise Measured @1 GHz with Agilent E5052  
300  
250  
200  
150  
100  
50  
300  
I
VCC  
250  
200  
150  
100  
50  
+85°C  
+25°C  
–40°C  
I
VEE  
0
0
0
5
10  
15  
20  
25  
2.97  
3.30  
POWER SUPPLY (V)  
3.63  
INPUT SLEW RATE (V/ns)  
Figure 12. RMS Jitter vs. Input Slew Rate, VID Method  
Figure 10. Power Supply Current vs. Power Supply Voltage vs. Temperature,  
All Outputs Loaded (50 Ω to VCC − 2 V)  
Rev. 0 | Page 8 of 12  
 
 
ADCLK946  
FUNCTIONAL DESCRIPTION  
Thevenin-equivalent termination uses a resistor network to  
CLOCK INPUTS  
provide 50 Ω termination to a dc voltage that is below VOL of  
the LVPECL driver. In this case, VS_DRV on the ADCLK946  
should equal VCC of the receiving buffer. Although the resistor  
combination shown in Figure 15 results in a dc bias point of  
VS_DRV − 2 V, the actual common-mode voltage is VS_DRV −  
1.3 V because there is additional current flowing from the  
ADCLK946 LVPECL driver through the pull-down resistor.  
The ADCLK946 accepts a differential clock input and distributes it  
to all six LVPECL outputs. The maximum specified frequency is  
the point at which the output voltage swing is 50ꢀ of the standard  
LVPECL swing (see Figure 4).  
The device has a differential input equipped with center-tapped,  
differential, 100 Ω on-chip termination resistors. The input accepts  
dc-coupled LVPECL, CML, 3.3 V CMOS (single ended), and  
ac-coupled 1.8 V CMOS, LVDS, and LVPECL inputs. A VREF pin  
is available for biasing ac-coupled inputs (see Figure 1).  
LVPECL Y-termination is an elegant termination scheme that  
uses the fewest components and offers both odd- and even-mode  
impedance matching. Even-mode impedance matching is an  
important consideration for closely coupled transmission lines  
at high frequencies. Its main drawback is that it offers limited  
flexibility for varying the drive strength of the emitter-follower  
LVPECL driver. This can be an important consideration when  
driving long trace lengths but is usually not an issue.  
Maintain the differential input voltage swing from approximately  
400 mV p-p to no more than 3.4 V p-p. See Figure 14 through  
Figure 17 for various clock input termination schemes.  
Output jitter performance is degraded by an input slew rate  
below 1 V/ns, as shown in Figure 12. The ADCLK946 is  
specifically designed to minimize added random jitter over a  
wide input slew rate range. Whenever possible, clamp excessively  
large input signals with fast Schottky diodes because attenuators  
reduce the slew rate. Input signal runs of more than a few  
centimeters should be over low loss dielectrics or cables with  
good high frequency characteristics.  
VS_DRV  
V
= VS_DRV  
ADCLK946  
S
Z
= 50  
= 50Ω  
0
50Ω  
50Ω  
V
– 2V  
LVPECL  
CC  
Z
0
Figure 14. DC-Coupled, 3.3 V LVPECL  
CLOCK OUTPUTS  
VS_DRV  
The specified performance necessitates using proper trans-  
mission line terminations. The LVPECL outputs of the  
ADCLK946 are designed to directly drive 800 mV into a 50 Ω  
cable or into microstrip/stripline transmission lines terminated  
with 50 Ω referenced to VCC − 2 V, as shown in Figure 14. The  
LVPECL output stage is shown in Figure 13. The outputs are  
designed for best transmission line matching. If high speed  
signals must be routed more than a centimeter, either the  
microstrip or the stripline technique is required to ensure  
proper transition times and to prevent excessive output ringing  
and pulse-width-dependent, propagation delay dispersion.  
ADCLK946  
VS_DRV  
V
CC  
127Ω  
127Ω  
50Ω  
SINGLE-ENDED  
(NOT COUPLED)  
LVPECL  
50Ω  
83Ω  
83Ω  
Figure 15. DC-Coupled, 3.3 V LVPECL Far-End Thevenin Termination  
VS_DRV  
V
= VS_DRV  
ADCLK946  
S
Z
= 50Ω  
0
V
CC  
50Ω  
50Ω  
50Ω  
LVPECL  
Z
= 50Ω  
0
Figure 16. DC-Coupled, 3.3 V LVPECL Y-Termination  
Q
Q
VS_DRV  
V
ADCLK946  
CC  
0.1nF  
100DIFFERENTIAL  
(COUPLED)  
100Ω  
LVPECL  
0.1nF  
TRANSMISSION LINE  
200Ω  
200Ω  
V
EE  
Figure 13. Simplified Schematic Diagram of  
the LVPECL Output Stage  
Figure 17. AC-Coupled, LVPECL with Parallel Transmission Line  
Figure 14 through Figure 17 depict various LVPECL output  
termination schemes. When dc-coupled, VCC of the receiving  
buffer should match the VS_DRV.  
Rev. 0 | Page 9 of 12  
 
 
 
 
ADCLK946  
ensure that the pins are within the rated input differential and  
common-mode ranges.  
PCB LAYOUT CONSIDERATIONS  
The ADCLK946 buffer is designed for very high speed  
applications. Consequently, high speed design techniques must  
be used to achieve the specified performance. It is critically  
important to use low impedance supply planes for both the  
negative supply (VEE) and the positive supply (VCC) planes as  
part of a multilayer board. Providing the lowest inductance  
return path for switching currents ensures the best possible  
performance in the target application.  
If the return is floated, the device exhibits a 100 ꢁ cross-  
termination, but the source must then control the common-  
mode voltage and supply the input bias currents.  
There are ESD/clamp diodes between the input pins to prevent  
the application from developing excessive offsets to the input  
transistors. ESD diodes are not optimized for best ac perfor-  
mance. When a clamp is required, it is recommended that  
appropriate external diodes be used.  
The following references to the ground plane assume that  
the VEE power plane is grounded for LVPECL operation.  
Note that, for ECL operation, the VCC power plane becomes  
the ground plane.  
Exposed Metal Paddle  
The exposed metal paddle on the ADCLK946 package is both  
an electrical connection and a thermal enhancement. For the  
device to function properly, the paddle must be properly  
attached to the VEE pin.  
It is also important to adequately bypass the input and output  
supplies. Place a 1 μF electrolytic bypass capacitor within several  
inches of each VCC power supply pin to the ground plane. In  
addition, place multiple high quality 0.001 μF bypass capacitors  
as close as possible to each of the VCC supply pins, and connect  
the capacitors to the ground plane with redundant vias.  
Carefully select high frequency bypass capacitors for minimum  
inductance and ESR. To improve the effectiveness of the bypass  
at high frequencies, minimize parasitic layout inductance. Also,  
avoid discontinuities along input and output transmission lines  
that can affect jitter performance.  
When properly mounted, the ADCLK946 also dissipates heat  
through its exposed paddle. The PCB acts as a heat sink for the  
ADCLK946. The PCB attachment must provide a good thermal  
path to a larger heat dissipation area. This requires a grid of vias  
from the top layer down to the VEE power plane (see Figure 18).  
The ADCLK946 evaluation board (ADCLK946/PCBZ)  
provides an example of how to attach the part to the PCB.  
In a 50 Ω environment, input and output matching have a  
significant impact on performance. The buffer provides internal  
CLK  
50 Ω termination resistors for both CLK and  
inputs.  
VIAS TO V POWER  
EE  
Normally, the return side is connected to the reference pin that is  
provided. Carefully bypass the termination potential using  
ceramic capacitors to prevent undesired aberrations on the  
input signal due to parasitic inductance in the termination  
return path. If the inputs are dc-coupled to a source, take care to  
PLANE  
Figure 18. PCB Land for Attaching Exposed Paddle  
Rev. 0 | Page 10 of 12  
 
 
ADCLK946  
INPUT TERMINATION OPTIONS  
V
CC  
V
V
REF  
REF  
V
V
T
T
50  
50Ω  
50  
50Ω  
CLK  
CLK  
CLK  
CLK  
CONNECT V TO V  
CC  
.
CONNECT V TO V  
.
REF  
T
T
Figure 19. Interfacing to CML Inputs  
Figure 21. AC-Coupling Differential Signals Inputs, Such as LVDS  
V
REF  
V
T
50  
50Ω  
V
REF  
CLK  
V
T
CLK  
50Ω  
50Ω  
V
– 2V  
CC  
CLK  
CLK  
CONNECT V , V  
, AND CLK. PLACE A BYPASS  
CAPACITOR FROM V TO GROUND.  
T
REF  
T
ALTERNATIVELY, V , V  
, AND CLK CAN BE  
T
REF  
CONNECTED, GIVING A CLEANER LAYOUT AND  
A 180° PHASE SHIFT.  
CONNECT V TO V 2V.  
CC  
T
Figure 20. Interfacing to PECL Inputs  
Figure 22. Interfacing to AC-Coupled Single-Ended Inputs  
Rev. 0 | Page 11 of 12  
 
ADCLK946  
OUTLINE DIMENSIONS  
0.60 MAX  
4.00  
BSC SQ  
0.60 MAX  
PIN 1  
INDICATOR  
1
24  
19  
18  
0.50  
BSC  
PIN 1  
INDICATOR  
*
2.45  
2.30 SQ  
2.15  
TOP  
VIEW  
3.75  
BSC SQ  
EXPOSED  
PA D  
(BOTTOMVIEW)  
0.50  
0.40  
0.30  
6
13  
12  
7
0.23 MIN  
0.80 MAX  
0.65 TYP  
1.00  
0.85  
0.80  
2.50 REF  
12° MAX  
0.05 MAX  
0.02 NOM  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.30  
0.23  
0.18  
COPLANARITY  
0.08  
0.20 REF  
SEATING  
PLANE  
SECTION OF THIS DATA SHEET.  
*
COMPLIANT TO JEDEC STANDARDS MO-220-VGGD-2  
EXCEPT FOR EXPOSED PAD DIMENSION  
Figure 23. 24-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
4 mm × 4 mm Body, Very Thin Quad  
CP-24-2  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
ADCLK946BCPZ1  
ADCLK946BCPZ-REELꢀ1  
ADCLK946/PCBZ1  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
Package Description  
24-Lead LFCSP_VQ  
24-Lead LFCSP_VQ  
Evaluation Board  
Package Option  
CP-24-2  
CP-24-2  
1 Z = RoHS Compliant Part.  
©2009 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D08053-0-4/09(0)  
Rev. 0 | Page 12 of 12  
 
 
 
 
 
 
 
 
 
 

相关型号:

ADCLK946BCPZ-REEL7

Six LVPECL Outputs, SiGe Clock Fanout Buffer
ADI

ADCLK948

Two Selectable Inputs, 8 LVPECL Outputs, SiGe Clock Fanout Buffer
ADI

ADCLK948/PCBZ

Two Selectable Inputs, 8 LVPECL Outputs, SiGe Clock Fanout Buffer
ADI

ADCLK948BCPZ

Two Selectable Inputs, 8 LVPECL Outputs, SiGe Clock Fanout Buffer
ADI

ADCLK948BCPZ-REEL7

Two Selectable Inputs, 8 LVPECL Outputs, SiGe Clock Fanout Buffer
ADI

ADCLK950

Two Selectable Inputs, 10 LVPECL Outputs, SiGe Clock Fanout Buffer
ADI

ADCLK950/PCBZ

Two Selectable Inputs, 10 LVPECL Outputs, SiGe Clock Fanout Buffer
ADI

ADCLK950BCPZ

Two Selectable Inputs, 10 LVPECL Outputs, SiGe Clock Fanout Buffer
ADI

ADCLK950BCPZ-REEL7

Two Selectable Inputs, 10 LVPECL Outputs, SiGe Clock Fanout Buffer
ADI

ADCLK954

Two Selectable Inputs, 12 LVPECL Outputs, SiGe Clock Fanout Buffer
ADI

ADCLK954/PCBZ

Two Selectable Inputs, 12 LVPECL Outputs, SiGe Clock Fanout Buffer
ADI

ADCLK954BCPZ

Two Selectable Inputs, 12 LVPECL Outputs, SiGe Clock Fanout Buffer
ADI