ADCLK948BCPZ-REEL7 [ADI]

Two Selectable Inputs, 8 LVPECL Outputs, SiGe Clock Fanout Buffer; 两个可选的输入,8个LVPECL输出的SiGe时钟扇出缓冲器
ADCLK948BCPZ-REEL7
型号: ADCLK948BCPZ-REEL7
厂家: ADI    ADI
描述:

Two Selectable Inputs, 8 LVPECL Outputs, SiGe Clock Fanout Buffer
两个可选的输入,8个LVPECL输出的SiGe时钟扇出缓冲器

时钟驱动器 逻辑集成电路 PC
文件: 总12页 (文件大小:366K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Two Selectable Inputs, 8 LVPECL Outputs,  
SiGe Clock Fanout Buffer  
ADCLK948  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
LVPECL  
2 selectable differential inputs  
4.8 GHz operating frequency  
75 fs rms broadband random jitter  
On-chip input terminations  
3.3 V power supply  
ADCLK948  
Q0  
Q0  
Q1  
Q1  
APPLICATIONS  
Q2  
Q2  
Low jitter clock distribution  
Clock and data signal restoration  
Level translation  
Q3  
V
0
REFERENCE  
Wireless communications  
REF  
Q3  
Wired communications  
Medical and industrial imaging  
ATE and high performance instrumentation  
Q4  
Q4  
V 0  
T
CLK0  
CLK0  
GENERAL DESCRIPTION  
Q5  
Q5  
The ADCLK948 is an ultrafast clock fanout buffer fabricated  
on the Analog Devices, Inc., proprietary XFCB3 silicon german-  
ium (SiGe) bipolar process. This device is designed for high  
speed applications requiring low jitter.  
V 1  
T
CLK1  
CLK1  
Q6  
Q6  
The device has two selectable differential inputs via the IN_SEL  
control pin. Both inputs are equipped with center tapped,  
differential, 100 Ω on-chip termination resistors. The inputs  
accept dc-coupled LVPECL, CML, 3.3 V CMOS (single-ended),  
and ac-coupled 1.8 V CMOS, LVDS, and LVPECL inputs. A  
Q7  
Q7  
IN_SEL  
V
1
REFERENCE  
REF  
V
REFx pin is available for biasing ac-coupled inputs.  
Figure 1.  
The ADCLK948 features eight full-swing emitter coupled logic  
(ECL) output drivers. For LVPECL (positive ECL) operation,  
bias VCC to the positive supply and VEE to ground. For ECL  
operation, bias VCC to ground and VEE to the negative supply.  
The output stages are designed to directly drive 800 mV each  
side into 50 Ω terminated to VCC − 2 V for a total differential  
output swing of 1.6 V.  
The ADCLK948 is available in a 32-lead LFCSP and specified  
for operation over the standard industrial temperature range of  
−40°C to +85°C.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2009 Analog Devices, Inc. All rights reserved.  
 
 
ADCLK948  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Pin Configuration and Function Descriptions..............................6  
Typical Performance Characteristics ..............................................7  
Functional Description.....................................................................9  
Clock Inputs...................................................................................9  
Clock Outputs................................................................................9  
Clock Input Select (IN_SEL) Settings...................................... 10  
PCB Layout Considerations...................................................... 10  
Input Termination Options....................................................... 11  
Outline Dimensions....................................................................... 12  
Ordering Guide .......................................................................... 12  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Electrical Characteristics............................................................. 3  
Absolute Maximum Ratings............................................................ 5  
Determining Junction Temperature .......................................... 5  
ESD Caution.................................................................................. 5  
Thermal Performance.................................................................. 5  
REVISION HISTORY  
7/09—Revision 0: Initial Version  
Rev. 0 | Page 2 of 12  
 
ADCLK948  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS  
Typical (Typ column) values are given for VCC − VEE = 3.3 V and TA = 25°C, unless otherwise noted. Minimum (Min column) and maximum  
(Max column) values are given over the full VCC − VEE = 3.3 V 10ꢀ and TA = −40°C to +85°C variation, unless otherwise noted.  
Table 1. Clock Inputs and Outputs  
Parameter  
Symbol Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
DC INPUT CHARACTERISTICS  
Input Common Mode Voltage VICM  
VEE + 1.5  
0.4  
VCC − 0.1  
3.4  
V
V p-p  
pF  
Input Differential Range  
Input Capacitance  
VID  
CIN  
1.ꢀ V between input pins  
0.4  
Input Resistance  
Single-Ended Mode  
Differential Mode  
Common Mode  
Input Bias Current  
Hysteresis  
50  
100  
50  
20  
10  
Ω
Ω
kΩ  
μA  
mV  
Open VTx  
DC OUTPUT CHARACTERISTICS  
Output Voltage High Level  
Output Voltage Low Level  
Output Voltage Differential  
Reference Voltage  
VOH  
VOL  
VOD  
VREF  
VCC − 1.26  
VCC − 1.99  
610  
VCC − 0.ꢀ6  
VCC − 1.54  
960  
V
V
mV  
50 Ω to (VCC − 2.0 V)  
50 Ω to (VCC − 2.0 V)  
50 Ω to (VCC − 2.0 V)  
Output Voltage  
Output Resistance  
(VCC + 1)/2  
235  
V
Ω
−500 μA to +500 μA  
Table 2. Timing Characteristics  
Parameter  
Symbol Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
AC PERFORMANCE  
Maximum Output Frequency  
4.5  
4.8  
GHz  
See Figure 4 for differential output voltage  
vs. frequency, >0.8 V differential output  
swing  
Output Rise Time  
Output Fall Time  
Propagation Delay  
Temperature Coefficient  
Output-to-Output Skew1  
Part-to-Part Skew  
tR  
tF  
tPD  
40  
40  
1ꢀ5  
ꢀ5  
ꢀ5  
210  
50  
9
90  
90  
245  
ps  
ps  
ps  
fs/°C  
ps  
20% to 80% measured differentially  
VICM = 2 V, VID = 1.6 V p-p  
25  
45  
ps  
VID = 1.6 V p-p  
Additive Time Jitter  
Integrated Random Jitter  
Broadband Random Jitter2  
Crosstalk-Induced Jitter3  
CLOCK OUTPUT PHASE NOISE  
Absolute Phase Noise  
28  
ꢀ5  
90  
fs rms  
fs rms  
fs rms  
BW = 12 kHz − 20 MHz, CLK = 1 GHz  
VID = 1.6 V p-p, 8 V/ns, VICM = 2 V  
Input slew rate > 1 V/ns (see Figure 11, the  
phase noise plot, for more details)  
fIN = 1 GHz  
−119  
−134  
−145  
−150  
−150  
dBc/Hz @100 Hz offset  
dBc/Hz @1 kHz offset  
dBc/Hz @10 kHz offset  
dBc/Hz @100 kHz offset  
dBc/Hz >1 MHz offset  
1 The output skew is the difference between any two similar delay paths while operating at the same voltage and temperature.  
2 Measured at the rising edge of the clock signal; calculated using the SNR of the ADC method.  
3 This is the amount of added jitter measured at the output while two related, asynchronous, differential frequencies are applied to the inputs.  
Rev. 0 | Page 3 of 12  
 
 
ADCLK948  
Table 3. Input Select Control Pin  
Parameter  
Symbol  
Min  
Typ  
Max  
VCC  
1
100  
0.6  
Unit  
V
V
ꢁA  
mA  
pF  
Logic 1 Voltage  
Logic 0 Voltage  
Logic 1 Current  
Logic 0 Current  
VIH  
VIL  
IIH  
VCC − 0.4  
VEE  
IIL  
Capacitance  
2
Table 4. Power  
Parameter  
Symbol Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
POWER SUPPLY  
Supply Voltage Requirement  
Power Supply Current  
Negative Supply Current  
Positive Supply Current  
Power Supply Rejection1  
Output Swing Supply Rejection2  
VCC − VEE 2.9ꢀ  
3.63  
V
3.3 V + 10%  
Static  
VCC − VEE = 3.3 V 10%  
VCC − VEE = 3.3 V 10%  
VCC − VEE = 3.3 V 10%  
VCC − VEE = 3.3 V 10%  
IVEE  
IVCC  
PSRVCC  
PSRVCC  
96  
120  
330  
mA  
mA  
ps/V  
dB  
288  
<3  
28  
1 Change in tPD per change in VCC  
2 Change in output swing per change in VCC.  
.
Rev. 0 | Page 4 of 12  
 
 
ADCLK948  
ABSOLUTE MAXIMUM RATINGS  
DETERMINING JUNCTION TEMPERATURE  
Table 5.  
To determine the junction temperature on the application  
printed circuit board (PCB), use the following equation:  
Parameter  
Rating  
Supply Voltage  
VCC − VEE  
Input Voltage  
CLK0, CLK1, CLK0, CLK1, IN_SEL  
6 V  
TJ = TCASE + (ΨJT × PD)  
where:  
VEE − 0.5 V to  
VCC + 0.5 V  
TJ is the junction temperature (°C).  
T
CASE is the case temperature (°C) measured by the customer at  
CLK0, CLK1, CLK0, CLK1 to VTx Pin (CML,  
LVPECL Termination)  
40 mA  
the top center of the package.  
ΨJT is from Table 6.  
PD is the power dissipation.  
CLK0, CLK1 to CLK0, CLK1  
1.8 V  
2 V  
Input Termination, VTx to CLK0, CLK1, CLK0,  
and CLK1  
Values of θJA are provided for package comparison and PCB  
design considerations. θJA can be used for a first-order approxi-  
mation of TJ by the equation  
Maximum Voltage on Output Pins  
Maximum Output Current  
Voltage Reference (VREFx)  
Operating Temperature Range  
Ambient  
VCC + 0.5 V  
35 mA  
VCC to VEE  
TJ = TA + (θJA × PD)  
−40°C to +85°C  
150°C  
−65°C to +150°C  
where TA is the ambient temperature (°C).  
Junction  
Storage Temperature Range  
Values of θJB are provided in Table 6 for package comparison  
and PCB design considerations.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
ESD CAUTION  
THERMAL PERFORMANCE  
Table 6.  
Parameter  
Symbol  
Description  
Value1  
Unit  
Junction-to-Ambient Thermal Resistance  
θJA  
Still Air  
0 m/sec Air Flow  
Moving Air  
Per JEDEC JESD51-2  
Per JEDEC JESD51-6  
49.8  
°C/W  
θJMA  
1 m/sec Air Flow  
2.5 m/sec Air Flow  
43.5  
39.0  
°C/W  
°C/W  
Junction-to-Board Thermal Resistance  
Moving Air  
θJB  
Per JEDEC JESD51-8  
1 m/sec Air Flow  
Junction-to-Case Thermal Resistance  
Moving Air  
Die-to-Heatsink  
Junction-to-Top-of-Package Characterization Parameter  
Still Air  
30.ꢀ  
8.8  
°C/W  
°C/W  
°C/W  
θJC  
Per MIL-STD 883, Method 1012.1  
Per JEDEC JESD51-2  
ΨJT  
0 m/sec Air Flow  
0.ꢀ  
1 Results are from simulations. The PCB is a JEDEC multilayer type. Thermal performance for actual applications requires careful inspection of the conditions in the  
application to determine if they are similar to those assumed in these calculations.  
Rev. 0 | Page 5 of 12  
 
 
 
ADCLK948  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
CLK0  
CLK0  
1
2
3
4
5
6
7
8
24 Q2  
23 Q2  
22 Q3  
21 Q3  
20 Q4  
19 Q4  
18 Q5  
17 Q5  
PIN 1  
INDICATOR  
V
0
REF  
V 0  
ADCLK948  
T
CLK1  
CLK1  
TOP VIEW  
(Not to Scale)  
V 1  
T
V
1
REF  
NOTES  
1. NC = NO CONNECT.  
2. EPAD MUST BE SOLDERED TO V POWER PLANE.  
EE  
Figure 2. Pin Configuration  
Table 7. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
CLK0  
Differential Input (Positive) 0.  
2
CLK0  
Differential Input (Negative) 0.  
3
VREF  
VT0  
0
Reference Voltage. Reference voltage for biasing ac-coupled CLK0 and CLK0 inputs.  
Center Tap. Center tap of a 100 Ω input resistor for CLK0 and CLK0 inputs.  
Differential Input (Positive) 1.  
4
5
6
CLK1  
CLK1  
VT1  
Differential Input (Negative) 1.  
Center Tap. Center tap of a 100 Ω input resistor for CLK1 and CLK1 inputs.  
Reference Voltage. Reference voltage for biasing ac-coupled CLK1 and CLK1 inputs.  
No Connection.  
Positive Supply Pin.  
Differential LVPECL Outputs.  
8
VREF  
NC  
VCC  
1
9
10, 15, 16, 25, 26, 31  
11, 12  
Qꢀ, Qꢀ  
Q6, Q6  
Q5, Q5  
Q4, Q4  
Q3, Q3  
Q2, Q2  
Q1, Q1  
Q0, Q0  
IN_SEL  
EPAD  
13, 14  
Differential LVPECL Outputs.  
1ꢀ, 18  
Differential LVPECL Outputs.  
19, 20  
Differential LVPECL Outputs.  
21, 22  
Differential LVPECL Outputs.  
23, 24  
Differential LVPECL Outputs.  
2ꢀ, 28  
Differential LVPECL Outputs.  
29, 30  
Differential LVPECL Outputs.  
32  
Input Select. Logic 0 selects CLK0 and CLK0 inputs. Logic 1 selects CLK1 and CLK1 inputs.  
EPAD must be connected to VEE.  
(33)  
Rev. 0 | Page 6 of 12  
 
ADCLK948  
TYPICAL PERFORMANCE CHARACTERISTICS  
VCC = 3.3 V, VEE = 0 V, VICM = VREFx, TA = 25°C, clock outputs terminated at 50 Ω to VCC − 2 V, unless otherwise noted.  
C4  
C3  
C4  
C3  
C4  
C3  
100mV/DIV  
500ps/DIV  
100mV/DIV  
100ps/DIV  
Figure 3. LVPECL Output Waveform @ 200 MHz  
Figure 6. LVPECL Output Waveform @ 1000 MHz  
1.8  
214  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
213  
212  
211  
210  
209  
208  
207  
0
1000  
2000  
3000  
4000  
5000  
–40  
–20  
0
20  
40  
60  
80  
FREQUENCY (MHz)  
TEMPERATURE (°C)  
Figure 4. Differential Output Voltage vs. Frequency, VID > 1.1 V p-p  
Figure 7. Propagation Delay vs. Temperature, VID = 1.6 V p-p  
225  
220  
215  
210  
205  
200  
195  
190  
185  
180  
230  
220  
210  
200  
190  
+85°C  
+25°C  
–40°C  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5 2.7 2.9 3.1  
DIFFERENTIAL INPUT VOLTAGE SWING (V)  
DC COMMON-MODE VOLTAGE (V)  
Figure 5. Propagation Delay vs. Differential Input Voltage  
Figure 8. Propagation Delay vs. DC Common-Mode Voltage vs. Temperature,  
Input Slew Rate > 25 V/ns  
Rev. 0 | Page ꢀ of 12  
 
 
ADCLK948  
1.56  
1.54  
1.52  
1.50  
1.48  
1.46  
1.44  
1.42  
–90  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
ABSOLUTE PHASE NOISE MEASURED @ 1GHz WITH AGILENT  
E5052 USING WENZEL CLOCK SOURCE CONSISTING OF A  
WENZEL 100MHz CRYSTAL OSCILLATOR (P/N 500-06672),  
WENZEL 5× MULTIPLIER (P/N LNOM-100-5-13-14-F-A), AND A  
WENZEL 2× MULTIPLIER (P/N LNDD-500-14-14-1-D).  
–40°C  
+25°C  
+85°C  
ADCLK948  
CLOCK SOURCE  
2.75 2.85 2.95 3.05 3.15 3.25 3.35 3.45 3.55 3.65 3.75  
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
POWER SUPPLY (V)  
FREQUENCY OFFSET (Hz)  
Figure 9. Differential Output Voltage Swing vs. Power Supply Voltage vs.  
Temperature, VID = 1.6 V p-p  
Figure 11. Absolute Phase Noise Measured @1 GHz  
300  
250  
200  
150  
100  
50  
350  
ICC  
300  
250  
200  
+85°C  
+25°C  
–40°C  
150  
100  
IEE  
50  
0
0
0
5
10  
15  
20  
25  
2.75  
3.00  
3.25  
3.50  
3.75  
INPUT SLEW RATE (V/ns)  
SUPPLY VOLTAGE (V)  
Figure 12. RMS Random Jitter vs. Input Slew Rate, VID Method  
Figure 10. Power Supply Current vs. Power Supply Voltage vs. Temperature,  
All Outputs Loaded (50 Ω to VCC − 2 V).  
Rev. 0 | Page 8 of 12  
 
 
ADCLK948  
FUNCTIONAL DESCRIPTION  
Thevenin-equivalent termination uses a resistor network to  
CLOCK INPUTS  
provide 50 Ω termination to a dc voltage that is below VOL of  
the LVPECL driver. In this case, VS_DRV on the ADCLK948  
should equal VS of the receiving buffer. Although the resistor  
combination shown (in Figure 15) results in a dc bias point of  
VS_DRV − 2 V, the actual common-mode voltage is VS_DRV −  
1.3 V because there is additional current flowing from the  
ADCLK948 LVPECL driver through the pull-down resistor.  
The ADCLK948 accepts a differential clock input from one of  
two inputs and distributes the selected clock to all eight LVPECL  
outputs. The maximum specified frequency is the point at which  
the output voltage swing is 50ꢀ of the standard LVPECL swing  
(see Figure 4). See the functional block diagram (Figure 1) and  
the General Description section for more clock input details.  
See Figure 19 through Figure 23 for various clock input  
termination schemes.  
LVPECL Y-termination is an elegant termination scheme that  
uses the fewest components and offers both odd- and even-mode  
impedance matching. Even-mode impedance matching is an  
important consideration for closely coupled transmission lines  
at high frequencies. Its main drawback is that it offers limited  
flexibility for varying the drive strength of the emitter follower  
LVPECL driver. This can be an important consideration when  
driving long trace lengths but is usually not an issue.  
Output jitter performance is degraded by an input slew rate  
below 4 V/ns, as shown in Figure 12. The ADCLK948 is  
specifically designed to minimize added random jitter over a  
wide input slew rate range. Whenever possible, clamp excessively  
large input signals with fast Schottky diodes because attenuators  
reduce the slew rate. Input signal runs of more than a few  
centimeters should be over low loss dielectrics or cables with  
good high frequency characteristics.  
VS_DRV  
V
= VS_DRV  
ADCLK948  
S
Z
= 50  
= 50Ω  
0
CLOCK OUTPUTS  
50Ω  
50Ω  
V
– 2V  
LVPECL  
CC  
The specified performance necessitates using proper transmission  
line terminations. The LVPECL outputs of the ADCLK948 are  
designed to directly drive 800 mV into a 50 Ω cable or into  
microstrip/stripline transmission lines terminated with 50 ꢁ  
referenced to VCC − 2 V, as shown in Figure 14. The LVPECL  
output stage is shown in Figure 13. The outputs are designed for  
best transmission line matching. If high speed signals must be  
routed more than a centimeter, either the microstrip or the  
stripline technique is required to ensure proper transition times  
and to prevent excessive output ringing and pulse width depen-  
dent propagation delay dispersion.  
Z
0
Figure 14. DC-Coupled, 3.3 V LVPECL  
VS_DRV  
ADCLK948  
VS_DRV  
V
S
127Ω  
127Ω  
50Ω  
SINGLE-ENDED  
(NOT COUPLED)  
LVPECL  
50Ω  
83Ω  
83Ω  
V
CC  
Figure 15. DC-Coupled, 3.3 V LVPECL Far-End Thevenin Termination  
VS_DRV  
V
= VS_DRV  
ADCLK948  
S
Z
= 50Ω  
0
50Ω  
50Ω  
50Ω  
Qx  
Qx  
LVPECL  
Z
= 50Ω  
0
Figure 16. DC-Coupled, 3.3 V LVPECL Y-Termination  
VS_DRV  
V
ADCLK948  
S
V
EE  
0.1nF  
Figure 13. Simplified Schematic Diagram of the LVPECL Output Stage  
100DIFFERENTIAL  
(COUPLED)  
100Ω  
LVPECL  
Figure 14 through Figure 17 depict various LVPECL output  
termination schemes. When dc-coupled, VS of the receiving buffer  
should match VS_DRV.  
0.1nF  
TRANSMISSION LINE  
200Ω  
200Ω  
Figure 17. AC-Coupled, LVPECL with Parallel Transmission Line  
Rev. 0 | Page 9 of 12  
 
 
 
 
 
ADCLK948  
return path. If the inputs are dc-coupled to a source, take care to  
ensure that the pins are within the rated input differential and  
common-mode ranges.  
CLOCK INPUT SELECT (IN_SEL) SETTINGS  
A Logic 0 on the IN_SEL pin selects the Input CLK0 and  
Input  
. A Logic 1 on the IN_SEL pin selects Input CLK1  
CLK0  
If the return is floated, the device exhibits a 100 ꢁ cross termi-  
nation, but the source must then control the common-mode  
voltage and supply the input bias currents.  
and Input  
.
CLK1  
PCB LAYOUT CONSIDERATIONS  
The ADCLK948 buffer is designed for very high speed applica-  
tions. Consequently, high speed design techniques must be used  
to achieve the specified performance. It is critically important  
to use low impedance supply planes for both the negative supply  
(VEE) and the positive supply (VCC) planes as part of a multilayer  
board. Providing the lowest inductance return path for switching  
currents ensures the best possible performance in the target  
application.  
There are ESD/clamp diodes between the input pins to prevent  
the application from developing excessive offsets to the input  
transistors. ESD diodes are not optimized for best ac perfor-  
mance. When a clamp is required, it is recommended that  
appropriate external diodes be used.  
Exposed Metal Paddle  
The exposed metal paddle on the ADCLK948 package is both  
an electrical connection and a thermal enhancement. For the  
device to function properly, the paddle must be properly  
attached to the VEE power plane.  
The following references to the GND plane assume that the VEE  
power plane is grounded for LVPECL operation. Note that, for  
ECL operation, the VCC power plane becomes the ground plane.  
When properly mounted, the ADCLK948 also dissipates heat  
through its exposed paddle. The PCB acts as a heat sink for the  
ADCLK948. The PCB attachment must provide a good thermal  
path to a larger heat dissipation area. This requires a grid of vias  
from the top layer down to the VEE power plane (see Figure 18).  
The ADCLK948 evaluation board (ADCLK948/PCBZ) pro-  
vides an example of how to attach the part to the PCB.  
It is also important to adequately bypass the input and output  
supplies. Place a 1 μF electrolytic bypass capacitor within several  
inches of each VCC power supply pin to the GND plane. In  
addition, place multiple high quality 0.001 μF bypass capacitors  
as close as possible to each of the VCC supply pins, and connect  
the capacitors to the GND plane with redundant vias. Carefully  
select high frequency bypass capacitors for minimum induc-  
tance and ESR. To improve the effectiveness of the bypass at  
high frequencies, minimize parasitic layout inductance. Also,  
avoid discontinuities along input and output transmission lines  
that can affect jitter performance.  
VIAS TO V POWER  
EE  
In a 50 ꢁ environment, input and output matching have a  
significant impact on performance. The buffer provides internal  
PLANE  
CLKx  
50 Ω termination resistors for both CLKx and  
inputs.  
Normally, the return side is connected to the reference pin that is  
provided. Carefully bypass the termination potential using  
ceramic capacitors to prevent undesired aberrations on the  
input signal due to parasitic inductance in the termination  
Figure 18. PCB Land for Attaching Exposed Paddle  
Rev. 0 | Page 10 of 12  
 
 
ADCLK948  
INPUT TERMINATION OPTIONS  
V
CC  
V
x
V
x
REF  
REF  
V x  
T
V x  
T
50  
50Ω  
50  
50Ω  
CLKx  
CLKx  
CLKx  
CLKx  
ADCLK948  
ADCLK948  
CONNECT V x TO V  
.
CONNECT V x TO V  
x.  
REF  
T
CC  
T
Figure 19. DC-Coupled CML Input Termination  
Figure 21. AC-Coupled Input Termination, Such as LVDS and LEVPECL  
V
x
REF  
V x  
T
V
CC  
50  
50Ω  
CLKx  
V
x
REF  
0.01µF  
(OPTIONAL)  
V x  
CLKx  
T
50  
50Ω  
50Ω  
ADCLK948  
CLKx  
CONNECT V x, V  
x, AND CLKx. PLACE A  
CLKx  
T
REF  
BYPASS CAPACITOR FROM V x TO GROUND.  
T
ALTERNATIVELY, V x, V  
x, AND CLKx CAN BE  
T
REF  
CONNECTED, GIVING A CLEANER LAYOUT AND  
A 180º PHASE SHIFT.  
ADCLK948  
Figure 20. DC-Coupled LVPECL Input Termination  
Figure 22. AC-Coupled Single-Ended Input Termination  
V
x
REF  
V x  
T
50Ω  
50Ω  
CLKx  
CLKx  
ADCLK948  
Figure 23. DC-Coupled 3.3 V CMOS Input Termination  
Rev. 0 | Page 11 of 12  
 
 
 
ADCLK948  
OUTLINE DIMENSIONS  
5.00  
BSC SQ  
0.60 MAX  
0.60 MAX  
PIN 1  
INDICATOR  
25  
32  
1
24  
0.50  
BSC  
PIN 1  
INDICATOR  
TOP  
VIEW  
2.85  
2.70 SQ  
2.55  
EXPOSED  
PAD  
(BOTTOM VIEW)  
4.75  
BSC SQ  
0.50  
0.40  
0.30  
17  
16  
8
9
0.20 MIN  
3.50 REF  
0.80 MAX  
1.00  
0.85  
0.80  
12° MAX  
0.65 TYP  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
0.30  
0.25  
0.18  
SEATING  
PLANE  
SECTION OF THIS DATA SHEET.  
COPLANARITY  
0.08  
0.20 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-VHHD-2  
Figure 24. 32-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
5 mm × 5 mm Body, Very Thin Quad  
(CP-32-8)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
ADCLK948BCPZ1  
ADCLK948BCPZ-REELꢀ1  
ADCLK948/PCBZ1  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
Package Description  
32-Lead LFCSP_VQ  
32-Lead LFCSP_VQ  
Evaluation Board  
Package Option  
CP-32-8  
CP-32-8  
1 Z = RoHS Compliant Part.  
©2009 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D08280-0-7/09(0)  
Rev. 0 | Page 12 of 12  
 
 
 
 
 
 
 
 
 
 

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY