ADCMP393ARZ-RL7 [ADI]

Comparators;
ADCMP393ARZ-RL7
型号: ADCMP393ARZ-RL7
厂家: ADI    ADI
描述:

Comparators

文件: 总17页 (文件大小:375K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Single/Dual/Quad Comparators  
With Known Power-Up State  
Data Sheet  
ADCMP391/ADCMP392/ADCMP393  
FEATURES  
FUNCTIONAL BLOCK DIAGRAMS  
VCC  
Single-supply voltage operation: 2.3 V to 5.5 V  
Rail-to-rail common-mode input voltage range  
Low input offset voltage across VCMR: 1 mV typical  
Guarantees comparator output logic low from VCC = 0.9 V to  
undervoltage lockout (UVLO)  
ADCMP391  
IN+  
OUT  
IN–  
GND  
Operating temperature range: −40°C to +125°C  
Package types:  
8-lead, narrow body SOIC (ADCMP391/ADCMP392)  
14-lead, narrow body SOIC (ADCMP393)  
14-lead TSSOP (ADCMP393)  
Figure 1.  
VCC  
ADCMP392  
INA+  
OUTA  
INA–  
APPLICATIONS  
INB+  
OUTB  
INB–  
Battery management/monitoring  
Power supply detection  
GND  
Window comparators  
Figure 2.  
Threshold detectors/discriminators  
Microprocessor systems  
VCC  
GENERAL DESCRIPTION  
ADCMP393  
INA+  
OUTA  
INA–  
The ADCMP391/ADCMP392/ADCMP393 are  
single/dual/quad rail-to-rail input, low power comparators ideal  
for use in general-purpose applications. These comparators  
operate from a single supply voltage of 2.3 V to 5.5 V and draw  
a minimal amount of current. The single ADCMP391  
consumes only 18.6 µA of supply current. The dual ADCMP392  
and the quad ADCMP393 consumes 22.1 µA and 26.8 µA of  
supply current, respectively. The low voltage and low current  
operation of these devices makes it ideal for battery-powered  
systems.  
INB+  
OUTB  
INB–  
INC+  
OUTC  
INC–  
IND+  
OUTD  
IND–  
GND  
Figure 3.  
The comparators features a common-mode input voltage range  
of 200 mV beyond rails, an offset voltage of 1 mV typical across  
the full common-mode range, and a UVLO monitor. In addition,  
the design of the comparators allows a defined output state  
upon power-up, a logic low output while the supply voltage is  
less than the UVLO threshold.  
The ADCMP391 and ADCMP392 are available in 8-lead,  
narrow body SOIC package while the ADCMP393 is available  
in a 14-lead, narrow body SOIC package and a 14-lead TSSOP  
package. The comparators are specified to operate over the  
−40°C to +125°C extended temperature range.  
Rev. D  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2014–2016 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
ADCMP391/ADCMP392/ADCMP393  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Open-Drain Output................................................................... 10  
Power-Up Behavior.................................................................... 10  
Crossover Bias Point .................................................................. 10  
Comparator Hysteresis .............................................................. 10  
Typical Applications....................................................................... 11  
Adding Hysteresis....................................................................... 11  
Window Comparator for Positive Voltage Monitoring......... 11  
Window Comparator for Negative Voltage Monitoring .......... 12  
Programmable Sequencing Control Circuit............................... 12  
Mirrored Voltage Sequencer Example..................................... 14  
Threshold and Timeout Programmable Voltage Supervisor .... 15  
Outline Dimensions....................................................................... 16  
Ordering Guide .......................................................................... 17  
Applications....................................................................................... 1  
General Description ......................................................................... 1  
Functional Block Diagrams............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 4  
Thermal Resistance ...................................................................... 4  
ESD Caution.................................................................................. 4  
Pin Configurations and Function Descriptions ........................... 5  
Typical Performance Characteristics ............................................. 7  
Theory of Operation ...................................................................... 10  
Basic Comparator....................................................................... 10  
Rail-to-Rail Input (RRI) ............................................................ 10  
REVISION HISTORY  
4/16—Rev. C to Rev. D  
Changes to Adding Hysteresis Section ........................................ 11  
Changes to Figure 34...................................................................... 13  
Changes to Programming Sequencing Control Circuit Section;  
Added Figure 25; Changes to Figure 26........................................ 11  
Changes to Figure 27 and Figure 28 ............................................ 12  
Changes to Figure 29...................................................................... 13  
Changes to Mirrored Voltage Sequencer Example Section ...... 13  
Changes to Figure 30, and Figure 31 ........................................... 14  
Added Figure 32, Outline Dimensions........................................ 15  
Changes to Ordering Guide.......................................................... 15  
3/15—Rev. B to Rev. C  
Added ADCMP391/ADCMP392 (Throughout) ......................... 1  
Changes to Equation 4..............................................................................12  
Changes to Equation 13 and 15..............................................................13  
Changes to Ordering Guide .......................................................... 18  
6/14—Rev. 0 to Rev. A  
10/14—Rev. A to Rev. B  
Changes to Product Title..................................................................1  
Changes to Mirrored Voltage Sequencer Example Section ...... 14  
Changes to Threshold and Timeout Programmable Voltage  
Supervisor Section.......................................................................... 14  
Added TSSOP Package (Throughout)........................................... 1  
Changes to Data Sheet Title ...................................................................... 1  
Added Figure 3; Renumbered Sequentially .................................. 5  
Changes to Open-Drain Output Section ......................................... 9  
5/14—Revision 0: Initial Version  
Rev. D | Page 2 of 17  
 
Data Sheet  
ADCMP391/ADCMP392/ADCMP393  
SPECIFICATIONS  
VCC = 2.3 V to 5.5 V, TA = −40°C to +125°C, VCMR = −200 mV to VCC + 200 mV, unless otherwise noted. Typical values are at TA = 25°C.  
Table 1.  
Parameter  
Symbol  
VCC  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments1  
POWER SUPPLY  
Supply Voltage  
2.3  
0.9  
5.5  
UVLORISE  
V
V
Guarantees comparator output low  
VCC Quiescent Current  
ADCMP391  
ICC  
18.6  
18.5  
22.1  
20.7  
26.8  
26.6  
24.7  
23.8  
29.3  
26.5  
36.8  
34.3  
µA  
µA  
µA  
µA  
µA  
µA  
All outputs in high-Z state, VOD = 0.1 V  
All outputs low, VOD = 0.1 V  
All outputs in high-Z state, VOD = 0.1 V  
All outputs low, VOD = 0.1 V  
All outputs in high-Z state, VOD = 0.1 V  
All outputs low, VOD = 0.1 V  
ADCMP392  
ADCMP393  
UNDERVOLTAGE LOCKOUT  
VCC Rising  
UVLORISE  
UVLOHYS  
2.062  
5
2.162  
25  
2.262  
50  
V
Hysteresis  
mV  
COMPARATOR INPUT  
Common-Mode Input Range  
Input Offset Voltage  
VCMR  
VOS  
−200  
VCC + 200  
mV  
mV  
mV  
mV  
mV  
nA  
nA  
nA  
nA  
mV  
mV  
0.5  
0.5  
1
2.5  
2.5  
5
INx+ = INx− = 1 V  
INx+ = INx− = 1 V, TA = −40°C to +85°C  
1
5
TA = −40°C to +85°C  
VCMR = −50 mV to VCC + 50 mV  
INx+ = INx− = 1 V  
VCMR = −50 mV to VCC + 50 mV  
VCMR = −50 mV to VCC + 50 mV, TA = −40°C to +85°C  
VCM = 1 V  
Input Offset Current  
Input Bias Current  
IOS  
IBIAS  
10  
30  
80  
10  
4
Input Hysteresis  
VHYS  
3
6
8
COMPARATOR OUTPUT  
Output Low Voltage  
VOL  
0.1  
0.01  
0.3  
0.15  
150  
V
V
nA  
VCC = 2.3 V, ISINK = 2.5 mA  
VCC = 0.9 V, ISINK = 100 µA  
VOUT = 0 V to 5.5 V  
Output Leakage Current  
COMPARATOR CHARACTERISTICS  
Power Supply Rejection Ratio  
Common-Mode Rejection Ratio  
Voltage Gain  
Rise Time2  
Fall Time2  
ILEAK  
PSRR  
CMRR  
AV  
60  
50  
80  
74  
132  
1.1  
0.15  
dB  
dB  
dB  
µs  
tR  
VOUT = 10% to 90% of VCC  
VOUT = 90% to 10% of VCC  
tF  
µs  
Propagation Delay  
Input Rising2  
tPROP_R  
4.7  
4.9  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
VCM = 1 V, VCC = 2.3 V, VOD = 10 mV  
VCM = 1 V, VCC = 5 V, VOD = 10 mV  
VCM = 1 V, VCC = 2.3 V, VOD = 100 mV  
VCM = 1 V, VCC = 5 V, VOD = 100 mV  
VCM = 1 V, VCC = 2.3 V, VOD = 10 mV  
VCM = 1 V, VCC = 5 V, VOD= 10 mV  
VCM = 1 V, VCC = 2.3 V, VOD = 10 mV  
VCM = 1 V, VCC = 5 V, VOD = 10 mV  
VCM = 1 V, VCC = 2.3 V, VOD = 100 mV  
VCM = 1 V, VCC = 5 V, VOD = 100 mV  
VCM = 1 V, VCC = 2.3 V, VOD = 10 mV  
VCM = 1 V, VCC = 5 V, VOD = 10 mV  
2.8  
3.2  
ADCMP392 Channel B  
Input Falling2  
4.9  
9.7  
4.5  
9.5  
tPROP_F  
2
4.2  
ADCMP392 Channel B  
4.7  
5
1 VOD = overdrive voltage.  
2 RPULLUP = 10 kΩ, and CL = 50 pF.  
Rev. D | Page 3 of 17  
 
ADCMP391/ADCMP392/ADCMP393  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Table 2.  
Parameter  
Rating  
Table 3. Thermal Resistance  
Package Type  
VCC Pin  
All INx+ and INx− Pins  
All OUTx Pins  
−0.3 V to +6 V  
−0.3 V to +6 V  
−0.3 V to +6 V  
10 mA  
−65°C to +150°C  
−40°C to +125°C  
300°C  
θJA  
Unit  
°C/W  
°C/W  
°C/W  
8-Lead Narrow-Body SOIC  
14-Lead Narrow-Body SOIC  
14-Lead TSSOP  
121  
80  
125  
OUTx Pins Sink Current (ISINK  
)
Storage Temperature Range  
Operating Temperature Range  
Lead Temperature (10 sec)  
Junction Temperature  
ESD CAUTION  
150°C  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Rev. D | Page 4 of 17  
 
 
 
Data Sheet  
ADCMP391/ADCMP392/ADCMP393  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
NIC  
IN–  
1
2
3
4
8
7
6
5
NIC  
ADCMP391  
TOP VIEW  
(Not to Scale)  
VCC  
OUT  
NIC  
IN+  
GND  
NOTES  
1. NIC = NOT INTERNALLY CONNECTED.  
Figure 4. ADCMP391 Pin Configuration  
Table 4. ADCMP391 Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1, 5, 8  
NIC  
IN−  
IN+  
GND  
OUT  
Not Internally Connected  
Comparator Inverting Input  
Comparator Noninverting Input  
Device Ground  
Comparator Output, Open-Drain  
Device Supply Input  
2
3
4
6
7
VCC  
OUTA  
INA–  
INA+  
GND  
1
2
3
4
8
7
6
5
VCC  
ADCMP392  
TOP VIEW  
(Not to Scale)  
OUTB  
INB–  
INB+  
Figure 5. ADCMP392 Pin Configuration  
Table 5. ADCMP392 Pin Function Descriptions  
Pin No.  
Mnemonic  
OUTA  
INA−  
INA+  
GND  
INB+  
INB−  
OUTB  
VCC  
Description  
1
2
3
4
5
6
7
8
Comparator A Output, Open-Drain  
Comparator A Inverting Input  
Comparator A Noninverting Input  
Device Ground  
Comparator B Noninverting Input  
Comparator B Inverting Input  
Comparator B Output, Open-Drain  
Device Supply Input  
Rev. D | Page 5 of 17  
 
ADCMP391/ADCMP392/ADCMP393  
Data Sheet  
OUTB  
OUTA  
VCC  
1
2
3
4
5
6
7
14 OUTC  
13 OUTD  
12 GND  
11 IND+  
10 IND–  
1
2
3
4
5
6
7
14 OUTC  
OUTB  
OUTA  
VCC  
13 OUTD  
12 GND  
11 IND+  
10 IND–  
ADCMP393  
TOP VIEW  
(Not to Scale)  
ADCMP393  
TOP VIEW  
(Not to Scale)  
INA–  
INA+  
INB–  
INB+  
INA–  
INA+  
INB–  
INB+  
9
8
INC+  
INC–  
9
8
INC+  
INC–  
Figure 6. ADCMP393 SOIC Pin Configuration  
Figure 7. ADCMP393 TSSOP Pin Configuration  
Table 6. ADCMP393 Pin Function Descriptions  
Pin No.  
Mnemonic  
OUTB  
OUTA  
VCC  
Description  
1
2
3
Comparator B Output, Open Drain  
Comparator A Output, Open Drain  
Device Supply Input  
4
5
6
7
8
9
10  
11  
12  
13  
14  
INA−  
INA+  
INB−  
INB+  
INC−  
INC+  
IND−  
IND+  
GND  
OUTD  
OUTC  
Comparator A Inverting Input  
Comparator A Noninverting Input  
Comparator B Inverting Input  
Comparator B Noninverting Input  
Comparator C Inverting Input  
Comparator C Noninverting Input  
Comparator D Inverting Input  
Comparator D Noninverting Input  
Device Ground  
Comparator D Output, Open Drain  
Comparator C Output, Open Drain  
Rev. D | Page 6 of 17  
Data Sheet  
ADCMP391/ADCMP392/ADCMP393  
TYPICAL PERFORMANCE CHARACTERISTICS  
2.5  
2.5  
2.0  
T
T
T
T
= +25°C  
= +85°C  
= +125°C  
= –40°C  
SAMPLE 1  
A
A
A
A
SAMPLE 2  
SAMPLE 3  
2.0  
1.5  
1.5  
1.0  
1.0  
0.5  
0.5  
0
0
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–0.5  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
2.3  
2.7  
3.1  
3.5  
3.9  
4.3  
4.7  
5.1  
5.5  
COMMON-MODE VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
Figure 8. Input Offset Voltage (VOS) vs. Common-Mode Voltage (VCM),  
CC = 3.3 V  
Figure 11. Input Offset Voltage (VOS) vs. Supply Voltage (VCC), VCM = 1 V  
for Various Temperatures  
V
2.5  
2.0  
2.4  
V
V
V
= 2.3V  
= 3.3V  
= 5.5V  
CC  
CC  
CC  
IN+ = IN– + 10mV  
2.2  
V
= IN– = 1V  
CM  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.5  
1.0  
0.5  
0
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
Figure 9. Input Offset Voltage (VOS) vs. Temperature for  
Various Supply Voltages (VCC), VCM = 1 V  
Figure 12. Output Voltage (VOUT) vs. Supply Voltage (VCC), RPULLUP = 10 kΩ  
55  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
ADCMP391  
ADCMP392  
ADCMP391  
ADCMP392  
ADCMP393  
50  
ADCMP393  
45  
40  
35  
30  
25  
20  
15  
10  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
Figure 10. Supply Current vs. Supply Voltage (VCC) at Output Low Voltage  
for Various Temperatures  
Figure 13. Supply Current vs. Supply Voltage (VCC) at Output High Voltage  
for Various Temperatures  
Rev. D | Page 7 of 17  
 
ADCMP391/ADCMP392/ADCMP393  
Data Sheet  
50  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
ADCMP391  
ADCMP392  
ADCMP393  
ADCMP391  
ADCMP392  
ADCMP393  
45  
40  
35  
30  
25  
20  
15  
10  
5
–50  
0
50  
100  
–50  
0
50  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 14. Supply Current vs. Temperature at Output High Voltage  
Figure 17. Supply Current vs. Temperature at Output Low Voltage  
for Various Supply Voltages (VCC  
)
for Various Supply Voltages (VCC  
)
3.8  
3.6  
3.4  
3.2  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
3.9  
3.7  
3.5  
3.3  
3.1  
2.9  
2.7  
2.5  
2.3  
2.1  
1.9  
1.7  
V
V
V
= 2.3V  
= 3.3V  
= 5.5V  
CC  
CC  
CC  
T
T
T
T
= +25°C  
A
A
A
A
= +85°C  
= +125°C  
= –40°C  
–50  
–25  
0
25  
50  
75  
100  
125  
2.3  
2.7  
3.1  
3.5  
3.9  
4.3  
4.7  
5.1  
5.5  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
Figure 15. Input Hysteresis vs. Temperature for  
Various Supply Voltages (VCC), VCM = 1 V  
Figure 18. Input Hysteresis vs. Supply Voltage (VCC) for  
Various Temperatures, VCM = 1 V  
8
7
6
5
4
3
2
14  
12  
10  
8
V
V
V
= 2.3V  
= 3.3V  
= 5.5V  
R
V
C
= 10kΩ  
PULLUP  
V
V
V
= 2.3V  
= 3.3V  
= 5.5V  
R
= 10kΩ  
PULLUP  
= 10mV  
= 50pF  
= 1V  
CC  
CC  
CC  
CC  
CC  
CC  
= 10mV  
V
OD  
OD  
= 50pF  
C
L
L
V
= 1V  
V
CM  
CM  
6
4
2
0
–50  
–25  
0
25  
50  
75  
100  
125  
–50  
–25  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 16. Propagation Delay vs. Temperature, Low to High, VOD = 10 mV  
Figure 19. Propagation Delay vs. Temperature, High to Low, VOD = 10 mV  
Rev. D | Page 8 of 17  
Data Sheet  
ADCMP391/ADCMP392/ADCMP393  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
10  
9
8
7
6
5
4
3
2
1
V
V
V
= 2.3V  
= 3.3V  
= 5.5V  
R
C
V
= 10kΩ  
= 50pF  
V
V
V
= 2.3V  
= 3.3V  
= 5.5V  
R
C
V
= 10kΩ  
= 50pF  
= 1V  
CC  
CC  
CC  
PULLUP  
CC  
CC  
CC  
PULLUP  
L
L
= 1V  
CM  
CM  
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
INPUT OVERDRIVE VOLTAGE (mV)  
INPUT OVERDRIVE VOLTAGE (mV)  
Figure 20. Propagation Delay vs. Input Overdrive Voltage, Low to High  
Figure 23. Propagation Delay vs. Input Overdrive Voltage, High to Low  
12  
5.0  
R
C
V
= 10kΩ  
= 50pF  
V
V
V
= 2.3V  
= 3.3V  
= 5.5V  
R
C
V
= 10kΩ  
= 50pF  
V
V
V
= 2.3V  
= 3.3V  
= 5.5V  
PULLUP  
CC  
CC  
CC  
PULLUP  
CC  
CC  
CC  
L
L
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
= 1V  
= 1V  
CM  
CM  
10  
8
6
4
2
0
10  
30  
50  
70  
90  
10  
30  
50  
70  
90  
INPUT OVERDRIVE VOLTAGE (mV)  
INPUT OVERDRIVE VOLTAGE (mV)  
Figure 21. Propagation Delay vs. Input Overdrive Voltage, Low to High,  
ADCMP392 Channel B  
Figure 24. Propagation Delay vs. Input Overdrive Voltage, High to Low,  
ADCMP392 Channel B  
200  
18  
V
C
= 3.3V  
= 50pF  
V
C
= 3.3V  
= 50pF  
CC  
CC  
L
L
190  
180  
170  
160  
150  
140  
130  
120  
110  
100  
16  
14  
12  
10  
8
6
4
2
0
1
10  
100  
1
10  
100  
PULL-UP RESISTANCE (kΩ)  
PULL-UP RESISTANCE (kΩ)  
Figure 22. Output Voltage Rise Time (tR) vs. Pull-Up Resistance (RPULLUP  
)
Figure 25. Output Voltage Fall Time (tF) vs. Pull-Up Resistance (RPULLUP)  
Rev. D | Page 9 of 17  
ADCMP391/ADCMP392/ADCMP393  
Data Sheet  
THEORY OF OPERATION  
BASIC COMPARATOR  
POWER-UP BEHAVIOR  
In its most basic configuration, a comparator can be used to  
convert an analog input signal to a digital output signal (see  
Figure 26). The analog signal on INx+ is compared to the  
voltage on INx−, and the voltage at OUTx is either high or low,  
depending on whether INx+ is at a higher or lower potential  
than INx−, respectively.  
On power-up, when VCC reaches 0.9 V, the ADCMP391/  
ADCMP392/ADCMP393 is guaranteed to assert an output low  
logic. When the voltage on the VCC pin exceeds UVLO, the  
comparator inputs take control.  
CROSSOVER BIAS POINT  
Rail-to-rail inputs of this type of architecture, in both op amps  
and comparators, have a dual front-end design. PMOS devices  
are inactive near the VCC rail, and NMOS devices are inactive near  
GND. At some predetermined point in the common-mode range, a  
crossover occurs. At this point, normally 0.8 V and VCC − 0.8 V, the  
measured offset voltages change.  
V
CC  
V+  
INx+  
INx–  
V
IN  
OUTx  
V
REF  
COMPARATOR HYSTERESIS  
In noisy environments, or when the differential input amplitudes  
are relatively small or slow moving, adding hysteresis (VHYS) to  
the comparator is often desirable. The transfer function for a  
comparator with hysteresis is shown in Figure 27. As the input  
voltage approaches the threshold (0 V in Figure 27) from below  
the threshold region in a positive direction, the comparator  
switches from low to high when the input crosses +VHYS/2. The  
new switch threshold becomes −VHYS/2. The comparator remains  
in the high state until the −VHYS/2 threshold is crossed from  
below the threshold region in a negative direction. In this  
manner, noise or feedback output signals centered on the 0 V  
input cannot cause the comparator to switch states unless it  
V
OUT  
V+  
V
REF  
0V  
t
V
IN  
Figure 26. Basic Comparator and Input and Output Signals  
RAIL-TO-RAIL INPUT (RRI)  
Using a CMOS nonRRI stage (that is, a single differential pair)  
limits the input voltage to approximately one gate-to-source  
voltage (VGS) away from one of the supply lines. Because VGS for  
normal operation is commonly more than 1 V, a single differential  
pair input stage comparator greatly restricts the allowable input  
voltage. This restriction can be quite limiting with low voltage  
supplies. To resolve this issue, RRI stages allow the input signal  
range to extend up to the supply voltage range. In the case of the  
ADCMP391/ADCMP392/ADCMP393, the inputs continue to  
operate 200 mV beyond the supply rails.  
exceeds the region bounded by  
VHYS/2.  
OUTPUT  
V
OH  
OPEN-DRAIN OUTPUT  
V
OL  
The ADCMP391/ADCMP392/ADCMP393 have an open-drain  
output stage that requires an external resistor to pull up to the  
logic high voltage level when the output transistor is switched  
off. The pull-up resistor must be large enough to avoid excessive  
power dissipation, but small enough to switch logic levels  
reasonably quickly when the comparator output is connected to  
other digital circuitry. The rise time of the open-drain output  
depends on the pull-up resistor (RPULLUP) and load capacitor (CL)  
used.  
INPUT  
0V  
–V  
+V  
HYST  
2
HYST  
2
Figure 27. Comparator Hysteresis Transfer Function  
The rise time can be calculated by  
tR = 2.2 RPULLUP CL  
(1)  
Rev. D | Page 10 of 17  
 
 
 
 
 
 
 
 
 
Data Sheet  
ADCMP391/ADCMP392/ADCMP393  
TYPICAL APPLICATIONS  
ADDING HYSTERESIS  
WINDOW COMPARATOR FOR POSITIVE VOLTAGE  
MONITORING  
To add hysteresis, see Figure 28; two resistors are used to create  
different switching thresholds, depending on whether the input  
signal is increasing or decreasing in magnitude. When the input  
voltage increases, the threshold is above VREF, and when the  
When monitoring a positive supply, the desired nominal  
operating voltage for monitoring is denoted by VM, IM is the  
nominal current through the resistor divider, VOV is the  
overvoltage trip point, and VUV is the undervoltage trip point.  
input voltage decreases, the threshold is below VREF  
.
V
= 5V  
V
M
CC  
R
X
R
PULL-UP  
INA+  
INA–  
V
PH  
OUTx  
INx–  
INx+  
OUTA  
OUTB  
V
= 2.5V  
IN  
REF  
V
R
LOAD  
R
V
Y
REF  
R1  
INB+  
INB–  
R2  
V
PL  
R
Z
V
OUT  
Figure 29. Positive Undervoltage/Overvoltage Monitoring Configuration  
Figure 29 illustrates the positive voltage monitoring input  
connection. Three external resistors, RX, RY, and RZ, divide the  
positive voltage for monitoring, VM, into the high-side voltage,  
V
IN  
V
PH, and the low-side voltage, VPL. The high-side voltage is  
V
V
IN_HIGH  
IN_LOW  
connected to the INA+ pin and the low-side voltage is  
connected to the INB− pin.  
Figure 28. Noninverting Comparator Configuration with Hysteresis  
The upper input threshold level is given by  
To trigger an overvoltage condition, the low-side voltage (in this  
case, VPL) must exceed the VREF threshold on the INB+ pin.  
Calculate the low-side voltage, VPL, by the following:  
V
REF (R1+ R2)  
VIN_HI  
=
(2)  
R2  
Assuming RLOAD >> R2, RPULLUP  
The lower input threshold level is given by  
VREF R1+ R2 + RPULLUP VCCR1  
R2 + RPULLUP  
.
RZ  
(5)  
VPL =VREF =VOV  
RX + RY + RZ  
(
)
In addition,  
RX + RY + RZ = VM/IM  
VIN _ LO  
=
(3)  
(4)  
(6)  
The hysteresis is the difference between these voltages levels.  
Therefore, RZ, which sets the desired trip point for the  
overvoltage monitor, is calculated as  
VREF R1RPULL UP +VCCR1R2  
VHYS  
=
R2(R2 + RPULL  
)
UP  
(
VREF  
)
(
VM  
)
)
(7)  
(8)  
RZ =  
(
VOV  
)
(IM  
To trigger the undervoltage condition, the high-side voltage,  
PH, must be less than the VREF threshold on the INA− pin. The  
high-side voltage, VPH, is calculated by  
V
RY + RZ  
VPH =VREF =VUV  
RX + RY + RZ  
Because RZ is already known, RY can be expressed as  
VREF VM  
(
)
(
)
RZ  
(9)  
RY =  
(
VUV  
)
(IM  
)
When RY and RZ are known, RX can be calculated by  
RX = (VM/IM) – RY RZ  
(10)  
If VM, IM, VOV, or VUV changes, each step must be recalculated.  
Rev. D | Page 11 of 17  
 
 
 
 
 
ADCMP391/ADCMP392/ADCMP393  
Data Sheet  
Because RZ is already known, RY can be expressed as follows:  
WINDOW COMPARATOR FOR NEGATIVE VOLTAGE  
MONITORING  
VREF  
(
VM VREF  
)
RZ  
RY =  
(15)  
(16)  
Figure 30 shows the circuit configuration for negative supply  
voltage monitoring. To monitor a negative voltage, a reference  
voltage is required to connect to the end node of the voltage  
IM  
When RY and RZ are known, RX is then calculated by  
VM VREF  
(
VREF VUV  
)
(
)
RY RZ  
divider circuit, in this case, VREF  
.
RX =  
IM  
V
REF  
PROGRAMMABLE SEQUENCING CONTROL CIRCUIT  
R
Z
INA+  
INA–  
V
NH  
The circuit shown in Figure 31 is used to control the power  
supply sequencing. The delay is set by the combination of the  
pull-up resistor (RPULLUP), the load capacitor (CL), and the  
resistor divider network.  
OUTA  
OUTB  
R
V
Y
REF  
INB+  
INB–  
V
NL  
V
/V  
REF CC  
R
X
R
V
PULLUP  
M
R5  
R4  
R3  
R2  
R1  
U1  
INA+  
INA–  
SEQ  
Figure 30. Negative Undervoltage/Overvoltage Monitoring Configuration  
OUTA  
OUTB  
OUTC  
OUTD  
C
L
V4  
V3  
V2  
V1  
Equation 7, Equation 9, and Equation 10 need some minor  
modifications for use with negative voltage monitoring. The  
reference voltage, VREF, is added to the overall voltage drop;  
therefore, it must be subtracted from VM, VUV, and VOV before  
using each of them in Equation 7, Equation 9, and Equation 10.  
INB+  
INB–  
INC+  
INC–  
To monitor a negative voltage level, the resistor divider circuit  
divides the voltage differential level between VREF and the  
negative supply voltage into the high-side voltage, VNH, and the  
low-side voltage, VNL. The high-side voltage, VNH, is connected  
to INC+, and the low-side voltage, VNL, is connected to IND−.  
IND+  
IND–  
Figure 31. Programmable Sequencing Control Circuit  
To trigger an overvoltage condition, the monitored voltage must  
exceed the nominal voltage in terms of magnitude, and the  
high-side voltage (in this case, VNH) on the INC+ pin must be  
more negative than ground. Calculate the high-side voltage,  
Figure 32 shows a simplified block diagram for the  
programmable sequencing control circuit. The application  
delays the enable signal, EN, of the external regulators (LDO x)  
in a linear order when the open-drain signal (SEQ) changes  
from low to high impedance.  
V
NH, by the following:  
RX + RY  
RX + RY + RZ  
(11)  
(12)  
The ADCMP391/ADCMP392/ADCMP393 have a defined  
output state during startup, which prevents any regulator from  
turning on if VCC is still below the UVLO threshold.  
VNH = GND =  
(
V
VOV  
)
+V  
OV  
REF  
In addition,  
RX + RY + RZ =  
3.3V  
IN  
OUT  
LDO 1  
3.0V  
1.8V  
2.5V  
1.2V  
(
VM VREF  
)
EN  
IM  
GND  
Therefore, RZ, which sets the desired trip point for the  
overvoltage monitor, is calculated by  
IN  
OUT  
LDO 2  
V
/V  
REF CC  
EN  
GND  
VREF  
(
VM VREF  
VREF VOV  
To trigger an undervoltage condition, the monitored voltage  
)
t1  
(13)  
RZ =  
t2  
t3  
t4  
IM  
(
)
SEQ  
IN  
OUT  
LDO 3  
GND  
EN  
must be less than the nominal voltage in terms of magnitude,  
and the low-side voltage (in this case, VNL) on the IND− pin  
must be more positive than ground. Calculate the low-side  
voltage, VNL, by the following:  
GND  
IN  
OUT  
LDO 4  
EN  
GND  
RX  
(14)  
VNL = GND =  
(
V
VUV  
)
+V  
UV  
REF  
Figure 32. Simplified Block Diagram of a Programmable  
Sequencing Control Circuit  
RX + RY + RZ  
Rev. D | Page 12 of 17  
 
 
 
 
 
Data Sheet  
ADCMP391/ADCMP392/ADCMP393  
First, determine the allowable current, IDIV, flowing through the  
resistor divider. After the value for IDIV is determined, calculate  
R1, R2, R3, R4, and R5 using the following formulas:  
SEQ  
V4  
V3  
V2  
V1  
V
C
L
t4  
t3  
OUTA  
OUTB  
OUTC  
VREF  
(22)  
(23)  
(24)  
(25)  
RDIV  
R1 =  
R2 =  
R3 =  
R4 =  
=
= R1+ R2 + R3 + R4 + R5  
IDIV  
t2  
V1RDIV  
VREF  
t1  
OUTD  
Figure 33. Programmable Sequencing Control Circuit Timing Diagram  
V2RDIV  
VREF  
R1  
When the SEQ signal changes from low to high impedance, the  
load capacitor, CL, starts to charge. The time it takes to charge the  
load capacitor to the pull-up voltage (in this case, VREF or VCC) is the  
maximum delay programmable in the circuit. It is recommended  
to have the threshold within 10% to 90% of the pull-up voltage.  
Calculate the maximum allowable delay by  
V3RDIV  
VREF  
R1R2  
R1R2 R3  
V4RDIV  
VREF  
(26)  
(27)  
tMAX = tR = 2.2 RPULLUP CL  
(17)  
R5 = RDIV R1 R2 R3 R4  
The delay of each output is changed by changing the threshold  
voltage, V1 to V4, when the comparator changes its output state.  
To create a mirrored voltage sequence, add a resistor, RMIRROR  
between the pull-up resistor (RPULLUP) and the load capacitor  
(CL) as shown in Figure 34.  
,
To calculate the voltage thresholds for the comparator, use the  
following formulas:  
V
/V  
REF CC  
t  
1
R
R
R
R
R
C
PULLUP  
PULLUP  
L
V1=V  
V2 =V  
V3 =V  
V4 =V  
1e  
1e  
1e  
1e  
(18)  
(19)  
(20)  
(21)  
REF   
R5  
R4  
R3  
R2  
R1  
R
U1  
MIRROR  
INA+  
INA–  
SEQ  
OUTD  
OUTC  
OUTB  
OUTA  
C
L
V4  
V3  
V2  
V1  
t  
2
C
C
C
PULLUP  
L
L
L
INB+  
INB–  
REF   
t  
3
INC+  
INC–  
PULLUP  
REF   
IND+  
IND–  
t  
4
PULLUP  
REF   
The threshold voltages can come from a voltage reference or a  
voltage divider circuit, as shown in Figure 31.  
Figure 34. Circuit Configuration for a Mirrored Voltage Sequencer  
Figure 34 shows the circuit configuration for a mirrored voltage  
sequencer. When SEQ changes from low to high impedance, the  
response is similar to Figure 33. When SEQ changes from high  
impedance to low, the load capacitor (CL) starts to discharge at a  
rate set by RMIRROR. The delay of each comparator is dependent  
on the threshold voltage previously set for t1 to t4. The result is a  
mirrored power-down sequence.  
Rev. D | Page 13 of 17  
 
 
ADCMP391/ADCMP392/ADCMP393  
Data Sheet  
SEQ  
V4  
V3  
V2  
V1  
V1  
V
V4  
t5  
C
V3  
L
V2  
t4  
t3  
OUTA  
OUTB  
t6  
t2  
t7  
OUTC  
OUTD  
t1  
t8  
Figure 35. Mirrored Voltage Sequencer Timing Diagram  
The timing diagram for the mirrored voltage sequencer is  
shown in Figure 35.  
MIRRORED VOLTAGE SEQUENCER EXAMPLE  
To illustrate how the mirrored voltage sequencer works, see  
Figure 32 and then consider a system that uses a VREF of 1 V and  
requires a delay of 50 ms when SEQ changes from low to high  
impedance, and between each regulator when turning on. These  
considerations require a rise time of at least 200 ms for the pull-up  
resistor (RPULLUP) and the load capacitor (CL). The sum of the  
resistance of RMIRROR and RPULLUP must be large enough to charge the  
capacitor longer than the minimum required delay. For a  
symmetrical mirrored power-down sequence, the value of RMIRROR  
must be much larger than RPULLUP. A 10 kΩ RPULLUP value limits the  
pull-down current to 100 µA while giving a reasonable value for  
Equation 18 through Equation 21 must account for the  
additional resistance, RMIRROR, in the calculations of the voltage  
thresholds. To calculate these new thresholds, see Equation 28  
through Equation 31.  
t  
1
V1 =VREF 1e(  
(28)  
(29)  
(30)  
(31)  
R
+ R  
)
C
PULLUP  
MIRROR  
L
t  
2
V2 =VREF 1e(  
R
+ R  
)
C
PULLUP  
MIRROR  
L
RMIRROR. A typical 1 µF capacitor together with a 150 kΩ RMIRROR  
value gives a value of  
t  
3
t
MAX = 2.2((160 × 103) × (1 × 10−6)) = 351 ms  
(36)  
V3 =VREF 1e(  
R
+ R  
)
C
PULLUP  
PULLUP  
MIRROR  
L
L
The threshold voltage required by each comparator is set by  
Equation 28 to Equation 31. For example,  
t  
4
3  
V4 =VREF 1e(  
R
+ R  
)
C
MIRROR  
50×10  
V1 =VREF 1e 160 × 10  
3
6  
× 1 × 10  
RMIRROR provides the mirrored delay by prolonging the discharge  
time of the capacitor. The mirrored voltage sequencer uses the  
same threshold in Equation 28 to Equation 31 in a decreasing  
order. To calculate the exact value of the mirrored delay time,  
see Equation 32 through Equation 35.  
where V1 = 268.38 mV.  
Therefore, V2 = 464.74 mV, V3 = 608.39 mV, and V4 =  
713.5 mV.  
Next, consider 10 µA as the maximum current (IDIV) flowing  
through the resistor divider network. This current gives the total  
resistance of the divider network (RDIV) and the individual  
resistor values using Equation 22 to Equation 27, resulting in  
the following:  
V 4  
t5 = −RMIRRORCLln  
t6 = −RMIRRORCLln  
t7 = −RMIRRORCLln  
(32)  
(33)  
(34)  
(35)  
VREF  
V3  
RDIV = 100 kΩ  
VREF  
R1 = 26.84 kΩ ≈ 26.7 kΩ  
R2 = 19.64 kΩ ≈ 19.6 kΩ  
R3 = 14.37 kΩ ≈ 14.3 kΩ  
R4 = 10.51 kΩ ≈ 10.5 kΩ  
R5 = 28.65 kΩ ≈ 28.7 kΩ  
V2  
VREF  
V1  
t8 = −RMIRRORCLln  
VREF  
Rev. D | Page 14 of 17  
 
 
Data Sheet  
ADCMP391/ADCMP392/ADCMP393  
Resistor values from the calculation are nonindustry standard,  
using industry standard resistor values resulted in a new RDIV  
value of 99.8 kΩ. Due to the discrepancy of the calculated resistor  
value to the industry standard value, the threshold of each  
comparator also changed. Calculate the new threshold values  
by using a simple voltage divider formula:  
THRESHOLD AND TIMEOUT PROGRAMMABLE  
VOLTAGE SUPERVISOR  
Figure 36 shows a circuit configuration for a programmable  
threshold and timeout circuit. The timeout, tRESET, defines the  
duration that the input voltage (VIN) must be kept above the  
RESET  
threshold voltage to toggle the  
device from operating when VIN is not stable. If VIN falls below  
RESET  
signal, preventing the  
V1 = VREFR1/RDIV  
(37)  
the threshold voltage, the  
signal toggles quickly.  
1 V  
99.8 kꢀ  
26.7 kꢀ  
where V1 =  
= 267.54 mV.  
V
V
CC  
IN  
R1  
R
Therefore, V2 = 463.93 mV, V3 = 607.21 mV, and V4 = 712.42 mV.  
PULLUP  
OUTA  
U1  
Because the threshold of each comparator has changed, the time  
when each comparator changes its output has also changed.  
Calculate the new delay values for each comparator by using the  
following equation:  
R2  
OUTB  
U2  
C
RESET  
T
V
REF  
Figure 36. Programmable Threshold and Timeout Circuit  
V1  
t1  CL  
R
PULLUP RMIRROR  
ln 1  
(38)  
V
TH  
VREF  
V
IN  
267.54 mV  
1
tRESET  
tRESET  
1  
where t = −1 μF(10 kΩ + 150 kΩ)ln  
= 49.81 ms.  
1
RESET  
Therefore, t2 = 99.78 ms, t3 = 149.52 ms, and t4 = 199.4 ms.  
To calculate t5 through t8, use Equation 32 to Equation 35:  
Figure 37. Threshold and Timeout Programmable Voltage Supervisor  
Timing Diagram  
During startup, the ADCMP391/ADCMP392/ADCMP393  
guarantee a low output state when VCC is still below the UVLO  
threshold, preventing the voltage supervisor from toggling.  
V4  
VREF  
t5  RMIRROR CLln  
When VIN reaches the threshold set by the resistor divider (R1  
and R2) and VREF, OUT1 changes from low to high and starts to  
charge the timeout capacitor (CT). If VIN is kept above the threshold  
voltage and the voltage in CT reaches VREF, OUT2 toggles. If VIN  
falls below the threshold voltage while CT is charging, the timeout  
capacitor quickly discharges, preventing OUT2 from toggling  
while VIN is not stable.  
712.42 mV  
1
where t5 = −150 kΩ × 1 μF × ln  
= 50.86 ms.  
Therefore, t6 = 74.83 ms, t7 = 115.2 ms, and t8 = 197.78 ms.  
In the condition that VIN is tied to VCC, the circuit operates  
when VCC is more than the minimum operating voltage.  
The threshold voltage (VTH) is configured by changing the  
resistor divider or VREF. Calculate the threshold voltage by  
R1  
R2  
REF   
(39)  
VTH V  
1   
Timeout is adjusted by changing the values of the pull-up  
resistor or the timeout capacitor. To set the timeout value,  
determine the allowable current flowing through RPULLUP, IPULLUP  
.
When IPULLUP is known, calculate RPULLUP and CT by the following  
formulas:  
R
PULLUP = VCC/IPULLUP  
(40)  
(41)  
tRESET  
CT  
VREF   
PULLUP ln 1  
R
VCC  
Rev. D | Page 15 of 17  
 
 
ADCMP391/ADCMP392/ADCMP393  
OUTLINE DIMENSIONS  
Data Sheet  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2441)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0°  
0.51 (0.0201)  
0.31 (0.0122)  
COPLANARITY  
0.10  
1.27 (0.0500)  
0.40 (0.0157)  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 38. 8-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body  
(R-8)  
Dimensions shown in millimeters and (inches)  
8.75 (0.3445)  
8.55 (0.3366)  
8
7
14  
1
6.20 (0.2441)  
5.80 (0.2283)  
4.00 (0.1575)  
3.80 (0.1496)  
1.27 (0.0500)  
0.50 (0.0197)  
0.25 (0.0098)  
45°  
BSC  
1.75 (0.0689)  
1.35 (0.0531)  
0.25 (0.0098)  
0.10 (0.0039)  
8°  
0°  
COPLANARITY  
0.10  
SEATING  
PLANE  
1.27 (0.0500)  
0.40 (0.0157)  
0.51 (0.0201)  
0.31 (0.0122)  
0.25 (0.0098)  
0.17 (0.0067)  
COMPLIANT TO JEDEC STANDARDS MS-012-AB  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 39. 14-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body  
(R-14)  
Dimensions shown in millimeters and (inches)  
Rev. D | Page 16 of 17  
 
Data Sheet  
ADCMP391/ADCMP392/ADCMP393  
5.10  
5.00  
4.90  
14  
8
7
4.50  
4.40  
4.30  
6.40  
BSC  
1
PIN 1  
0.65 BSC  
1.05  
1.00  
0.80  
1.20  
MAX  
0.20  
0.09  
0.75  
0.60  
0.45  
8°  
0°  
0.15  
0.05  
COPLANARITY  
0.10  
SEATING  
PLANE  
0.30  
0.19  
COMPLIANT TO JEDEC STANDARDS MO-153-AB-1  
Figure 40. 14-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-14)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
Package Description  
Package Option  
ADCMP391ARZ  
ADCMP391ARZ-RL7  
ADCMP392ARZ  
ADCMP392ARZ-RL7  
ADCMP393ARZ  
ADCMP393ARZ-RL7  
ADCMP393ARUZ  
ADCMP393ARUZ-RL7  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
8-Lead Standard Small Outline Package [SOIC_N]  
8-Lead Standard Small Outline Package [SOIC_N]  
8-Lead Standard Small Outline Package [SOIC_N]  
8-Lead Standard Small Outline Package [SOIC_N]  
14-Lead Standard Small Outline Package [SOIC_N]  
14-Lead Standard Small Outline Package [SOIC_N]  
14-Lead Thin Shrink Small Outline Package [TSSOP]  
14-Lead Thin Shrink Small Outline Package [TSSOP]  
R-8  
R-8  
R-8  
R-8  
R-14  
R-14  
RU-14  
RU-14  
1 Z = RoHS Compliant Part.  
©2014–2016 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D12206-0-4/16(D)  
Rev. D | Page 17 of 17  
 

相关型号:

ADCMP394

Comparators
ADI

ADCMP394ARZ

Single Comparator with Accurate Reference Output
ADI

ADCMP394ARZ-RL7

Single Comparator with Accurate Reference Output
ADI

ADCMP395

Comparators
ADI

ADCMP395ARMZ

Dual Comparator with Accurate Reference Output
ADI

ADCMP395ARMZ-RL7

Dual Comparator with Accurate Reference Output
ADI

ADCMP396

Comparators
ADI

ADCMP396ARZ

Quad Comparator with Accurate Reference Output
ADI

ADCMP396ARZ-RL7

Comparators
ADI

ADCMP551

Single Supply High Speed PECL Comparators
ADI

ADCMP551BRQ

Single Supply High Speed PECL Comparators
ADI

ADCMP551BRQZ

Single Supply High Speed PECL/LVPECL Comparators
ADI