ADCMXL-BRKOUT [ADI]

Wide Bandwidth, Low Noise, Vibration Sensor;
ADCMXL-BRKOUT
型号: ADCMXL-BRKOUT
厂家: ADI    ADI
描述:

Wide Bandwidth, Low Noise, Vibration Sensor

文件: 总42页 (文件大小:776K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Wide Bandwidth, Low Noise,  
Vibration Sensor  
Data Sheet  
ADcmXL1021-1  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
VDD  
GND  
Single axis, digital output MEMS vibration sensing module  
±±0 g measurement range  
OUT_VDDM  
POWER MANAGEMENT  
Ultralow output noise density, 26 μg/√Hz (MTC mode)  
Wide bandwidth: dc to 10 kHz within 3 dB flatness (RTS mode)  
Embedded fast data conversion rate: 220 kSPS  
6 digital FIR filters, 32 taps (coefficients), default options  
High-pass filter cutoff frequencies: 1 kHz, ± kHz, 10 kHz  
Low-pass filter cutoff frequencies: 1 kHz, ± kHz, 10 kHz  
User configurable digital filter option (32 coefficients)  
Spectral analysis through internal FFT  
RST  
CS  
SCLK  
DIN  
MEMS  
ACCELEROMETER  
ADC  
DOUT  
SYNC/RTS  
BUSY  
ALM1  
ALM2  
Extended record length: 2048 bins with user configurable  
bin sizes from 0.42 Hz to ±3.7 Hz  
ADcmXL1021-1  
Manual or timer-based (automatic) triggering  
Windowing options: rectangular, Hanning, flat top  
FFT record averaging, configurable up to 2±± records  
Spectral defined alarm monitoring, 6 alarms  
Time domain capture with statistical metrics  
Extended record length: 4096 samples  
Mean, standard deviation, peak, crest factor, skewness,  
and Kurtosis  
Configurable alarm monitoring  
Figure 1.  
GENERAL DESCRIPTION  
The ADcmXL1021-1 is a complete vibration sensing system that  
combines high performance vibration sensing (using a micro-  
electromechanical systems (MEMS) accelerometer) with a variety  
of signal processing functions to simplify the development of  
smart sensor nodes in condition-based monitoring (CBM)  
systems. The typical ultralow noise density (26 μg/√Hz) in the  
MEMS accelerometers supports excellent resolution. The wide  
bandwidth (dc to 10 kHz within 3 dB flatness) enables tracking  
of key vibration signatures on many machine platforms.  
Real-time data streaming at 220 kSPS  
Burst mode communication with CRC-16 error checking  
Storage: 10 data records  
On demand self test with status flags  
The signal processing includes high speed data sampling  
(220 kSPS), 4096 time sample record lengths, filtering,  
windowing, fast Fourier transform (FFT), user configurable  
spectral or time statistic alarms, and error flags. The serial  
peripheral interface (SPI) provides access to a register structure  
that contains the vibration data and a wide range of user  
configurable functions.  
Sleep mode with external and timer driven wakeup  
Digital temperature and power supply measurements  
SPI-compatible serial interface  
Identification registers: factory preprogrammed serial  
number, device ID, user programmable ID  
Single-supply operation: 3.0 V to 3.6 V  
Operating temperature range: −40°C to +10±°C  
Automatic shutdown at 12±°C (junction temperature)  
23.7 mm × 27.0 mm × 12.4 mm aluminum package  
36 mm flexible, 14-lead module with integrated flexible  
connector  
The ADcmXL1021-1 is available in a 23.7 mm × 27.0 mm ×  
12.4 mm aluminum package with four mounting flanges to  
support installation with standard machine screws. This light  
weight package (13 g) provides consistent mechanical coupling  
to the core sensors over a broad frequency range. The electrical  
interface is through a 14-lead connector on a 36 mm flexible  
cable, which enables a wide range of location and orientation  
options for system mating connectors.  
Mass: 13 g  
APPLICATIONS  
Vibration analysis  
Condition-based monitoring (CbM) systems  
Machine health  
The ADcmXL1021-1 requires only a single, 3.3 V power supply  
and supports an operating temperature range of −40°C to +105°C.  
Instrumentation and diagnostics  
Safety shutoff sensing  
Multifunction pin names may be referenced by their relevant  
function only.  
Rev. 0  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
©2019 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
ADcmXL1021-1  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
REC_CTRL, Recording Control .............................................. 31  
REC_PRD, Record Period......................................................... 32  
ALM_F_LOW, Alarm Frequency Band .................................. 33  
ALM_F_HIGH, Alarm Frequency Band ................................ 33  
ALM_MAG1, Alarm Level 1 .................................................... 33  
ALM_MAG2, Alarm Level 2 .................................................... 33  
ALM_PNTR, Alarm Pointer..................................................... 34  
ALM_S_MAG Alarm Level...................................................... 34  
ALM_CTRL, Alarm Conrol ..................................................... 34  
FILT_CTRL, Filter Control....................................................... 34  
AVG_CNT, Decimation Control.............................................. 35  
DIAG_STAT, Status, and Error Flags....................................... 35  
GLOB_CMD, Global Commands............................................ 36  
ALM_STAT, Alarm Status......................................................... 36  
ALM_PEAK, Alarm Peak Level............................................... 36  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Timing Specifications .................................................................. 4  
Absolute Maximum Ratings............................................................ 6  
Thermal Resistance ...................................................................... 6  
ESD Caution.................................................................................. 6  
Pin Configuration and Function Descriptions............................. 7  
Typical Performance Characteristics ............................................. 8  
Theory of Operation ...................................................................... 11  
Core Sensors................................................................................ 11  
Signal Processsing....................................................................... 11  
Modes of Operation ................................................................... 12  
Data Recording Options............................................................ 13  
User Interface.............................................................................. 16  
Basic Operation............................................................................... 19  
Device Configuration ................................................................ 19  
Dual Memory Structure ............................................................ 19  
Power-Up Sequence ................................................................... 19  
Trigger .......................................................................................... 19  
Sample Rate ................................................................................. 20  
Datapath Processing................................................................... 20  
Spectral Alarms........................................................................... 22  
Mechanical Mounting Recommendations.............................. 22  
User Register Memory Map .......................................................... 23  
User Register Details ...................................................................... 28  
PAGE_ID, Page Number ........................................................... 28  
TEMP_OUT, Internal Temperature......................................... 28  
SUPPLY_OUT, Power Supply Voltage..................................... 28  
FFT_AVG1, Spectral Averaging ............................................... 28  
FFT_AVG2, Spectral Averaging ............................................... 29  
BUF_PNTR, Buffer Pointer ...................................................... 29  
REC_PNTR, Record Pointer..................................................... 30  
OUT_BUF, Buffer Access Register........................................... 30  
ANULL, Bias Calibration Register........................................... 31  
TIME_STAMP_L and TIME_STAMP_H, Data Record  
Timestamp................................................................................... 36  
DAY_REV, Day and Revision ................................................... 37  
YEAR_MON, Year and Month................................................. 37  
PROD_ID, Product Identification ........................................... 37  
SERIAL_NUM, Serial Number ................................................ 37  
USER_SCRATCH ...................................................................... 37  
REC_FLASH_CNT, Record Flash Endurance ....................... 37  
MISC_CTRL, Miscellaneous Control ..................................... 37  
REC_INFO1, Record Information........................................... 38  
REC_INFO2, Record Information,.......................................... 38  
REC_CNTR, Record Counter .................................................. 38  
ALM_FREQ, Severe Alarm Frequency ................................... 38  
STAT_PNTR, Statistic Result Pointer...................................... 38  
STATISTIC, Statistic Result ...................................................... 39  
FUND_FREQ, Fundamental Frequency................................. 39  
FLASH_CNT_L, Flash Memory Endurance ......................... 39  
FLASH_CNT_U, Flash Memory Endurance ......................... 39  
FIR Filter Registers..................................................................... 40  
Applications Information .............................................................. 41  
Mechanical Interface.................................................................. 41  
Outline Dimensions....................................................................... 42  
Ordering Guide .......................................................................... 42  
REVISION HISTORY  
11/2019—Revision 0: Initial Version  
Rev. 0 | Page 2 of 42  
 
 
Data Sheet  
ADcmXL1021-1  
SPECIFICATIONS  
TA = 25°C and VDD = 3.3 V, unless otherwise noted.  
Table 1.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
ACCELEROMETERS  
Measurement Range1  
Sensitivity  
50  
g
FFT  
Time Domain  
Error over Temperature  
Nonlinearity  
Cross Axis Sensitivity  
Alignment Error  
Offset Error Over Temperature  
Offset Temperature Coefficient  
Output Noise  
0.9535  
1.907  
5
0.2  
2
2
5
34  
mg/LSB  
mg/LSB  
%
%
%
Best fit, straight line, full scale (FS) = 50 g  
1.25  
With respect to package  
TA = −40°C to +105°C  
TA = −40°C to +105°C  
Real-time streaming (RTS) mode  
100 Hz to 10 kHz, AVG_CNT = 0, MTC mode  
1 Hz to 10 kHz, no filtering, RTS mode  
Degrees  
g
mg/°C  
mg rms  
µg/√Hz  
µg/√Hz  
Hz  
3.2  
26  
32  
Output Noise Density  
3 dB Bandwidth  
10,000  
Sensor Resonant Frequency  
CONVERSION RATE  
Clock Accuracy  
21  
3
kHz  
220  
kSPS  
%
FUNCTIONAL TIMING  
Factory Reset Time Recovery  
Start-Up Time  
126  
205  
ms  
ms  
Time from supply voltage reaching 3.0 V from  
power-down until ready for command  
Self Test Time  
LOGIC INPUTS  
92  
ms  
Input High Voltage, VIH  
Input Low Voltage, VIL  
Logic 1 Input Current, IIH  
Logic 0 Input Current, IIL  
All Except RST  
2.5  
V
V
µA  
0.45  
0.2  
VIH = 3.3 V  
VIL = 0 V  
0.01  
100  
µA  
mA  
pF  
1
RST  
Input Capacitance, CIN  
DIGITAL OUTPUTS  
Output Voltage  
High, VOH  
10  
IOH = −1 mA  
IOL = 1 mA  
1.4  
V
V
Low, VOL  
0.4  
Output Current  
High, IOH  
Low, IOL  
IOH = −1 mA  
IOL = 1 mA  
2
2
mA  
mA  
FLASH MEMORY  
Endurance2  
Data Retention3  
THERMAL SHUTDOWN  
Threshold  
10,000  
Cycles  
Years  
TJ = 85°C, see Figure 44  
10  
TJ rising  
125  
15  
°C  
°C  
Hysteresis  
OUT_VDDM MONITOR OUTPUT  
Output Resistance  
Logic output, logic high indicates good condition  
Logic low when internal temperature exceeds  
allowed range  
90  
100  
110  
kΩ  
Rev. 0 | Page 3 of 42  
ADcmXL1021-1  
Data Sheet  
Parameter  
Test Conditions/Comments  
Operating voltage range, VDD  
Operating mode, VDD = 3.0 V  
Operating mode, VDD = 3.3 V  
Operating mode, VDD = 3.6 V  
Sleep mode, VDD = 3.0 V  
Min  
Typ  
3.3  
22.9  
23.2  
23.9  
0.1  
Max  
Unit  
V
POWER SUPPLY VOLTAGE  
Power Supply Current  
3.0  
3.6  
mA  
mA  
mA  
mA  
mA  
mA  
Sleep mode, VDD = 3.3 V  
Sleep mode, VDD = 3.6 V  
0.6  
1.5  
1 The maximum range depends on the frequency of the vibration.  
2 Endurance is qualified as per JEDEC Standard 22, Method A117 and measured at −40°C, +25°C, +85°C, and +125°C.  
3 Retention lifetime equivalent at junction temperature (TJ) = 85°C as per JEDEC Standard 22, Method A117. Retention lifetime depends on TJ.  
TIMING SPECIFICATIONS  
TC = 25°C and VDD = 3.3 V, unless otherwise noted.  
Table 2.  
Normal Mode  
Typ  
RTS Mode  
Typ  
Parameter  
fSCLK  
tSTALL  
tCLS  
tCHS  
tCS  
Description  
Min1  
0.01  
16  
35.7  
35.7  
35.7  
Max1 Min  
Max1 Unit  
SCLK frequency  
Stall period between data bytes  
SCLK low period  
14  
8
14  
MHz  
µs  
N/A2  
35.7  
35.7  
35.7  
ns  
ns  
ns  
SCLK high period  
CS  
to SCLK edge  
tDAV  
tDSU  
tDHD  
tDSOE  
tHD  
DOUT valid after SCLK edge  
DIN setup time before SCLK rising edge  
DIN hold time after SCLK rising edge  
20  
20  
ns  
ns  
ns  
ns  
ns  
ns  
6
8
6
8
0
assertion to DOUT active  
20  
20  
20  
20  
CS  
SCLK edge to DOUT invalid  
tSFS  
Last SCLK edge to deassertion  
35.7  
35.7  
12  
CS  
tRTS_BUSY  
RTS mode only, data out valid burst  
readout period ends before BUSY rising  
edge for next burst  
N/A2  
µs  
1 Guaranteed by design and characterization, but not tested in production.  
2 N/A means not applicable. When using real-time streaming (RTS), the stall period is not applicable.  
Timing Diagrams  
CS  
tCHS  
tCLS  
tCS  
tSFS  
1
2
3
4
5
6
15  
16  
SCLK  
DOUT  
tDSOE  
tDAV  
tHD  
MSB  
DB14  
tDSU  
DB13  
DB12  
DB11  
DB10  
DB2  
DB1  
LSB  
LSB  
tDHD  
DIN  
R/W  
A6  
A5  
A4  
A3  
A2  
D2  
D1  
Figure 2. SPI Timing and Sequence  
Rev. 0 | Page 4 of 42  
 
 
 
Data Sheet  
ADcmXL1021-1  
tSTALL  
CS  
SCLK  
Figure 3. Stall Time (Does Not Apply to RTS Mode)  
12ms  
DELAY  
TRIGGER CAPTURE START  
BY WRITING 0x0800 TO GLOB_CMD  
REAL-TIME STREAMING FRAME (16 x 44 BITS)  
HEADER 8 0x0000 WORDS, XL1:XL32, TEMP, STATUS, CRC  
CS  
SCLK  
DIN  
DON’T CARE  
8 0x0000 WORDS  
DON’T CARE  
0x00, 0xAD  
XL1[LSB, MSB]  
DOUT  
BUSY  
NOTES  
1. XLx IS ACCELEROMETER DATA; TEMP IS TEMPERATURE DATA.  
Figure 4. RTS Mode Timing Diagram, Assumes REC_CTRL, Bits[1:0] = 0b11 (See Table 17)  
NOT SHOWN ARE  
31 16-BIT WORDS:  
XL3 TO XL32  
TEMPERATURE  
CS  
SCLK  
DOUT  
BUSY  
tRTS_BUSY  
NOTES  
1. XLx IS ACCELEROMETER DATA.  
Figure 5. RTS Read Function Sequence Diagram, First Five Segments (See Table 17)  
Rev. 0 | Page 5 of 42  
 
 
ADcmXL1021-1  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Table 3.  
Thermal performance is directly linked to printed circuit board  
(PCB) design and operating environment. Pay careful attention  
to PCB thermal design.  
Parameter  
Rating  
Acceleration  
Unpowered  
2000 g  
Powered  
VDD to GND  
2000 g  
θ
JA is the natural convection, junction to ambient thermal  
resistance measured in a one cubic foot sealed enclosure.  
JC is the junction to case thermal resistance.  
−0.3 V to +3.6 V  
−0.3 V to +3.6 V  
−0.3 V to +3.6 V  
Digital Input Voltage to GND  
Digital Output Voltage to GND  
Temperature Range  
Operating Temperature  
Storage Temperature  
θ
The ADcmXL1021-1 is a multichip module that includes many  
active components. The values in Table 4 identify the thermal  
response of the hottest component inside of the ADcmXL1021-1  
with respect to the overall power dissipation of the module.  
This approach enables a simple method for predicting the  
temperature of the hottest junction based on either ambient or case  
temperature.  
−40°C to +105°C  
−65°C to +150°C  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond the  
maximum operating conditions for extended periods may affect  
product reliability.  
For example, when TA = 70°C, under normal operation mode  
with a typical 23.2 mA current and 3.3 V supply voltage, the  
hottest junction temperature in the ADcmXL1021-1 is 75.0°C.  
TJ = θJA × VDD × IDD + 70°C  
TJ = 65.1°C/W × 3.3 V × 0.0232 A + 70°C  
TJ ≈ 75.0°C  
where IDD is the current consumption of the device.  
Table 4. Thermal Resistance  
Package Type  
ML-14-71  
θJA  
θJC  
65.1°C/W  
33.2°C/W  
1 Thermal impedance simulated values come from a case with four machine  
screws at a size of M2.5 × 0.4 mm (torque = 25 inch pounds). Secure the  
ADcmXL1021-1 to the PCB.  
ESD CAUTION  
Rev. 0 | Page 6 of 42  
 
 
 
 
Data Sheet  
ADcmXL1021-1  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
1
2
13  
14  
Z
X
Y
PIN 1  
PIN 14  
PIN 13  
Figure 6. Pin Configuration  
Table 5. Pin Function Descriptions  
Pin No. Mnemonic Type Description  
Supply Ground.  
1
2
GND  
ALM1  
Output Digital Output Only, Alarm 1 Output. This pin is configured by the ALM_CTRL register and is not used in  
RTS mode.  
3
SYNC/RTS  
Input  
Sync Function (SYNC)/RTS Burst Start/Stop (RTS). This pin is a digital input only and is edge (not level)  
sensitive. This pin must be enabled in the MISC_CTRL register (Bit 12) before being used as an external  
trigger. The SYNC pulse width must be at least 50 ns.  
In MTC and MFFT modes, the SYNC pin acts as a manual trigger, this pin initiates a record capture event  
when a low to high transition is detected, equivalent to SPI Command 0x0800 to the GLOB_CMD  
register. In RTS and AFFT mode, when the logic level on this pin is high, conversion is active. When the  
logic level on this pin is low, conversion is stopped after the current data record is completed.  
4
5
ALM2  
BUSY  
Output Digital Output Only, Alarm 2 Output. This pin is configured by the ALM_CTRL register and is not used in  
RTS mode.  
Output Busy or Data Ready Indicator, Digital Output Only. In RTS mode, this pin is a logical output to indicate that  
data is ready and available for download. The logical state resets to logic low when data is loading to the  
output buffers. The pin is set high when data is ready for download. In other capture modes, the busy  
indicator identifies the state of the module processor and if it is available for external commands. When  
a command is executing, SPI access is not allowed, and the device is in a busy state. After this process  
completes, whether a command or a record, the SPI is released, and the BUSY pin is set to logic high state.  
Note that there is one exception to SPI port access while in the busy state, a capture can be terminated  
by writing the unique 16-bit escape code, 0x00E8, to the GLOB_CMD register.  
6
7
OUT_VDDM Output Power Supply Monitor (Digital Output). This pin is logic low when temperature exceeds threshold and  
automatic shutdown occurs.  
Input  
Hardware Reset, Digital Input Only, Active Low. This pin enters the device in a known state by resetting  
the microcontroller. This pin also loads the user configurable parameters from flash memory.  
RST  
8
9
10  
11  
12  
VDD  
GND  
GND  
DIN  
Supply Power Supply.  
Supply Ground.  
Supply Ground.  
Input  
SPI, Data Input Line.  
DOUT  
Output SPI, Data Output. DOUT is an output when CS is low. When CS is high, DOUT is in a three-state, high  
impedance mode.  
13  
14  
SCLK  
CS  
Input  
Input  
SPI, Serial Clock.  
SPI, Chip Select.  
Rev. 0 | Page 7 of 42  
 
 
ADcmXL1021-1  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
1000  
100  
10  
1000  
100  
10  
1
1
100  
1k  
10k  
100k  
1M  
1
10  
100  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 7. Noise Density, Wideband, MTC, AVG_CNT = 0  
Figure 10. Noise Density, Low Frequency, RTS Mode  
25  
20  
15  
10  
5
3
2
1
0
–1  
–2  
–3  
0
–5  
–10  
100  
1k  
10k  
FREQUENCY (Hz)  
AMBIENT TEMPERATURE (°C)  
Figure 11. Sensitivity Error vs. Ambient Temperature, Normalized at 25°C  
Figure 8. Relative Response, RTS Mode at 25°C  
1000  
100  
10  
14  
12  
10  
8
6
4
2
0
–2  
–4  
–6  
–8  
–10  
–12  
–14  
1
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
AMBIENT TEMPERATURE (°C)  
Figure 9. Noise Density, Wideband, RTS Mode  
Figure 12. Normalized Offset vs. Ambient Temperature, Normalized at 25°C  
Rev. 0 | Page 8 of 42  
 
Data Sheet  
ADcmXL1021-1  
35  
30  
25  
20  
15  
10  
5
35  
30  
25  
20  
15  
10  
5
0
0
CURRENT (mA)  
CURRENT (mA)  
Figure 13. Operating Mode Current Distribution at 3.0 V Supply  
Figure 16. Sleep Mode Current Distribution at 3.0 V Supply  
60  
50  
40  
30  
20  
10  
0
25  
20  
15  
10  
5
0
CURRENT (mA)  
CURRENT (mA)  
Figure 14. Operating Mode Current Distribution at 3.3 V Supply  
Figure 17. Sleep Mode Current Distribution at 3.3 V Supply  
30  
25  
20  
15  
10  
5
35  
30  
25  
20  
15  
10  
5
0
0
CURRENT (mA)  
CURRENT (mA)  
Figure 15. Operating Mode Current Distribution at 3.6 V Supply  
Figure 18. Sleep Mode Current Distribution at 3.6 V Supply  
Rev. 0 | Page 9 of 42  
ADcmXL1021-1  
Data Sheet  
0
0
–10  
–20  
–30  
–40  
–50  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100 110  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100 110  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
Figure 19. Digital Filter Frequency Response of the 1 kHz Low-Pass Filter  
Figure 22. Digital Filter Frequency Response of the 1 kHz High-Pass Filter  
0
0
–10  
–20  
–30  
–40  
–50  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100 110  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100 110  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
Figure 20. Digital Filter Frequency Response of the 5 kHz Low-Pass Filter  
Figure 23. Digital Filter Frequency Response of the 5 kHz High-Pass Filter  
0
0
–10  
–20  
–30  
–40  
–50  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100 110  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100 110  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
Figure 21. Digital Filter Frequency Response of the 10 kHz Low-Pass Filter  
Figure 24. Digital Filter Frequency Response of the 10 kHz High-Pass Filter  
Rev. 0 | Page 10 of 42  
Data Sheet  
ADcmXL1021-1  
THEORY OF OPERATION  
The ADcmXL1021-1 is a single axis, vibration monitoring  
subsystem that includes a wide bandwidth, low noise MEMS  
accelerometer, an analog-to-digital converter (ADC), high  
performance signal processing, data buffers, record storage,  
and a user interface that easily interfaces with most embedded  
processors. See Figure 25 for a basic signal chain. The subsystem is  
housed in an aluminum module that is mounted using four screws  
(accepts screw size M2.5) and is designed to be mechanically stable  
beyond 40 kHz. The combination of this mechanical mounting  
and oversampling ensures that aliasing artifacts are minimized.  
The moving component of the sensor is a polysilicon surface-  
micromachined structure built on top of a silicon wafer. Poly-  
silicon springs suspend the structure over the surface of the  
wafer and provide a resistance against acceleration forces.  
Deflection of the structure is measured using differential  
capacitors that consist of independent fixed plates and plates  
attached to the moving mass. Acceleration deflects the structure  
and unbalances the differential capacitor, resulting in a sensor  
output with an amplitude proportional to acceleration. Phase  
sensitive demodulation determines the magnitude and polarity  
of the acceleration.  
MEMS  
SIGNAL  
USER  
INTERFACE  
ADC  
SENSOR  
PROCESSING  
ANCHOR  
MOVABLE  
FRAME  
PLATE  
CAPACITORS  
BUFFER/RECORDS  
Figure 25. Basic Signal Chain  
FIXED  
PLATES  
The ADcmXL1021-1 has a high operating input range of 50 g  
and is suitable for vibration measurements in high bandwidth  
applications, such as vibration analysis systems that monitor  
and diagnose machine or system health. User configurable internal  
processing supports both time domain and frequency domain  
calculations.  
UNIT SENSING  
CELL  
UNIT  
FORCING  
CELL  
MOVING  
PLATE  
The low noise and high frequency bandwidth enable the  
measurement of both repetitive vibration patterns and single  
shock events caused by small moving parts, such as internal  
bearings. The high g range provides the dynamic range used in  
high vibration environments, such as heating, ventilation, and air  
conditioning systems (HVAC), and heavy machine equipment. To  
achieve best performance, be aware of system noise, mounting, and  
signal conditioning for the particular application.  
ANCHOR  
Figure 26. MEMS Sensor Diagram  
SIGNAL PROCESSSING  
The signal chain of the ADcmXL1021-1 includes a wideband  
accelerometer, a low-pass analog filter with a 13.5 kHz cutoff  
frequency, an oversampling ADC (sampling at 220 kSPS), a  
microcontroller, and discrete components to provide a flexible  
vibration monitor subsystem that supports multiple processed  
output modes. There are four modes of operation. One mode  
of operation is the full rate RTS output. The three other modes  
include system level signal processing: manual FFT mode (MFFT),  
automatic FFT mode (AFFT), and manual time capture (MTC)  
mode  
Proper mounting is required to ensure full mechanical transfer  
of vibration to accurately measure the desired vibration. A  
common technique for high frequency mechanical coupling is  
to use a combination of a threaded screw mount system and  
adhesive where possible. For lower frequencies (below the full  
capable bandwidth of the sensor), it is possible to use magnetic or  
adhesive mounting. Proper mounting techniques ensure accurate  
and repeatable results that are not influenced by measurement  
system mechanical resonances and/or damping at the desired  
frequencies and represents an efficient and proper mechanical  
transfer to the system being monitored.  
MTC mode supports 4096 consecutive time domain samples to  
which averaging, finite impulse response (FIR), and windowing  
signal processing can be enabled, along with the calculation of  
statistics, alarm configuring, and monitoring. In MTC mode, the  
raw time domain data is made available in register buffers for the  
user to access and externally process.  
CORE SENSORS  
The ADcmXL1021-1 uses one ADXL1002 MEMS accelerometer,  
with the sensing axis aligned with the axis of interest. Figure 26  
is a simple mechanical diagram that shows how MEMS  
accelerometers translate linear acceleration to representative  
output signals.  
In both FFT modes, MFFT and AFFT modes support the process  
of calculating an FFT of the current time domain record.  
A continuous RTS mode bypasses all device digital  
computations and alarm monitoring, outputting real-time data  
over the SPI in burst data output format (see Figure 5).  
Rev. 0 | Page 11 of 42  
 
 
 
 
 
ADcmXL1021-1  
Data Sheet  
digital processing is complete, the 4096 time domain sample  
data record of vibration data is stored into the user data buffers,  
using the signal flow diagram shown in Figure 28.  
MODES OF OPERATION  
The ADcmXL1021-1 supports four different modes of  
operation: RTS, MTC, MFFT, and AFFT. Users can select the  
mode of operation by writing the corresponding code to the  
REC_CTRL register, Bits[1:0] (see Table 47).  
Capturing is triggered by either a SPI write to the GLOB_CMD  
register or by an external trigger. The ADcmXL1021-1 toggles  
the output  
when the data record is stored and the alarms  
BUSY  
are checked.  
In three of these modes (MFFT, AFFT, and MTC), the  
ADcmXL1021-1 captures, analyzes, and stores vibration data  
in discrete events, known as capture events, and generates a record.  
Each capture event concludes with storing the data as configured  
in REC_CTRL register in the user data buffers, which are  
accessible through the BUF_PNTR register (see Table 35).  
The decimation filter reduces the effective rate of stored data  
capture in the time record by averaging the sequential samples  
together and filtering out of band signal and noise. This filter  
has eight decimation rate settings (1, 2, 4, 8, 16, 32, 64, and 128)  
and can support up to four different settings. These time data  
records are time continuous captures with the decimation filter  
acting on real-time data from the ADC to produce 4096 samples  
(producing the 4096 time domain samples requires 2N samples to  
be processed internally, where N is the average count value, AVG_  
CNT). When more than one user configured sample record setting  
is in use, the ADcmXL1021-1 applies a single filter for each data  
record and cycles through all desired options, one for each data  
capture. Time statistic alarms can be configured for three levels  
of reporting: normal, critical, and warning. A record mode option  
allows all enabled time domain statistics to be stored, depending  
on user preference, and is configured by setting the record  
mode in Register REC_CTRL, Bits[3:2] (Register 0x1A and  
Register 0x1B) = 0b10.  
The two different FFT modes that produce vibration data in  
spectral terms are MFFT and AFFT. The difference between  
these two modes is the manner in which data capture and analysis  
starts. In MFFT mode, users trigger a capture event by an external  
digital signal or through a software command using the GLOB_  
CMD register, Bit 11 (see Table 73). In AFFT mode, an internal  
timer automatically triggers additional spectral record captures  
without the need for an external trigger. Up to four different  
sample rate profiles can be selected for the modes to cycle  
through. The REC_PRD register (see Table 49) contains the  
user configuration settings for the time that elapses between  
each capture event when operating in the AFFT mode.  
MTC Mode  
When operating in MTC mode, the ADcmXL1021-1 captures  
4096 consecutive time domain samples. An offset null signal  
can be calculated and applied to the data using the command  
register option. Signal processing functions such as low-pass  
and high-pass FIR filtering and averaging can be applied. After  
TIME  
RECORD  
N = 4096  
CALCULATE STATUS/  
CHECK ALARMS  
DECIMATION  
FILTER  
DATA  
BUFFER  
Figure 27. Signal Processing Diagram for Manual Time Capture (MTC) Mode  
USER  
DECIMATION  
FILTER  
FIR  
FILTER  
32 TAPS  
MEMS  
SENSOR  
DATA  
STAT  
HEADER  
STATISTICAL ANALYSIS/  
STATS ALARM CHECK  
ADC  
BUFFER  
N = 4096  
fS ÷ D  
REGISTERS:  
FILT_CTRL  
FIR_COEFF_xxx  
fS = 220kSPS  
REGISTER:  
AVG_CNT  
REGISTERS:  
OUT_BUF  
REGISTERS:  
STAT  
STAT_PNTR  
NULL  
REGISTERS:  
ANULL  
GLOB_CMD  
Figure 28. MTC Signal Flow Diagram  
Rev. 0 | Page 12 of 42  
 
 
Data Sheet  
ADcmXL1021-1  
MFFT Mode  
RTS Mode  
MFFT mode can manually trigger a capture to create a single FFT  
record with 2048 bins and allows various configuration options.  
The ADcmXL1021-1 has configurable high-pass and low-pass  
filters, decimation filtering, FFT averaging, and spectral alarms.  
The ADcmXL1021-1 also has options to calculate velocity, apply  
windowing, and apply offset compensation. MFFT mode is  
configured by setting the record mode in Register REC_CTRL,  
Bits[1:0] (Register 0x1A and Register 0x1B) = 0b00.  
RTS mode is configured by setting the record mode in  
Register REC_CTRL, Bits[1:0] (Register 0x1A and Register 0x1B) =  
0b11.  
When operating in RTS mode, the ADcmXL1021-1 samples the  
accelerometer at a rate of 220 kSPS and makes this data  
available through a burst pattern via the SPI.  
DATA RECORDING OPTIONS  
The ADcmXL1021-1 creates data records in FFT and MTC  
modes and supports three methods of data storage for each data  
record: immediate only, alarm triggered, and all mode. In MTC  
mode, the time domain statistics are stored and are not the time  
records.  
Processing steps collect 4096 consecutive time domain samples and  
filters the data similar to the MTC case. Additional windowing and  
FFT averaging can be enabled and configured using the  
4096 sample burst captures. The ADcmXL1021-1 provides  
three different mathematical filtering options to processes the  
time record data, prior to performing an FFT, the filter options  
are rectangular, Hanning, or flat top. See the REC_CTRL  
register in Table 47 for more information on selecting the window  
option.  
When immediate only mode is selected, only the most recent  
capture data record is retained and accessible.  
In alarm triggered mode, only data that triggered an alarm is  
stored. When an alarm event is triggered, the ADcmXL1021-1  
stores the header registers and the FFT data to flash memory.  
Alarm triggered mode is helpful for continuous operation while  
minimally impacting the limited endurance of the flash memory.  
When a capture event is triggered by the user, the event follows  
the process flow diagram shown in Figure 29. The FIR filter has  
32 coefficients and processes at the full internal ADC sample  
rate of 220 kSPS. Users can select from one of six FIR filter bank  
options. Three of these filter banks have preset coefficients that  
provide low-pass responses to support half power bandwidths of  
1 kHz, 5 kHz, and 10 kHz, respectively. The other three filter  
banks have preset coefficients that provide high-pass responses to  
support half power bandwidths of 1 kHz, 5 kHz, and 10 kHz filter.  
All six filter banks can be overwritten through user programming  
and stored to flash memory.  
In all mode, each data record is stored. The data stored includes  
FFT header information and FFT data. Up to 10 FFT records  
can be stored and retrieved.  
The ADcmXL1021-1 samples, processes, and stores vibration  
data to the FFT or the MTC data. In MTC mode, the record  
contains 4096 samples. In MFFT mode and AFFT mode, each  
record contains the 2048 bin FFT results. Table 6 describes the  
registers that provide access to processed sensor data.  
After the FIR filter is applied to the time domain data, if enabled,  
the data is decimated according to the AVG_CNT setting until a  
full 4096 time sample capture fills the data buffer. This decimation  
produces a time record that is converted to a spectral record and  
averaged, depending on the FFT_AVG1 or the FFT_AVG2 setting,  
as appropriate (see Figure 41 for the FFT capture datapath and  
appropriate registers).  
Table 6. Output Data Registers  
Register  
Address  
Description  
TEMP_OUT  
SUPPLY_OUT  
BUF_PNTR  
REC_PNTR  
OUT_BUF  
0x02  
0x04  
0x0A  
0x0C  
0x12  
Internal temperature measurement  
Internal power supply measurement  
Data buffer index pointer  
FFT record index pointer  
Accelerometer data buffer  
TIME  
RECORD  
N = 4096  
DECIMATION  
FILTER  
FFT AND  
AVERAGING  
DATA  
BUFFER  
FIR  
GLOB_CMD  
TIME_STAMP_L 0x4C  
TIME_STAMP_H 0x4E  
0x3E  
Global command register  
Timestamp, lower word  
Timestamp, upper word  
Figure 29. Signal Processing Diagram for FFT Modes  
AFFT Mode  
REC_INFO1  
REC_INFO2  
0x66  
0x68  
FFT record header information  
FFT record header information  
AFFT mode is configured by setting the record mode in Register  
REC_CTRL, Bits[1:0] (Register 0x1A and Register 0x1B) = 0b01.  
AFFT mode supports the same functionality as MFFT mode,  
except AFFT mode automatically advances and independently  
controls new capture events. New capture events are triggered  
periodically and are configured in the register map using  
REC_PRD.  
To save power for long off time durations, the device can be  
configured to sleep between auto captures using Bit 7 in the  
REC_CTRL register.  
Rev. 0 | Page 13 of 42  
 
 
 
ADcmXL1021-1  
Data Sheet  
Reading Data from the Data Buffer  
Accessing FFT Record Data  
After completing a spectral record and updating each data buffer,  
the ADcmXL1021-1 loads the first data sample from each data  
buffer to the OUT_BUF registers (see Table 11) and sets the buffer  
index pointer in the BUF_PNTR register to 0x0000 (see Table 7).  
The index pointer determines which data samples load to the  
OUT_BUF registers. For example, writing 0x009F to the  
BUF_PNTR register (DIN = 0x8A9F, DIN = 0x8B00) causes the  
160th sample in each data buffer location to load to the OUT_BUF  
registers. The index pointer automatically increments with each  
OUT_BUF read command, which causes the next set of capture  
data to load to each capture buffer register. This automatic  
increment enables an efficient method for reading all 4096 time  
samples or 2048 FFT points in a record, using sequential read  
commands, without needing to manipulate the BUF_PNTR  
register.  
Up to 10 FFT records can be stored in flash memory. The REC_  
PNTR register (see Table 8) and GLOB_CMD bit (Bit 13, see  
Figure 31) provide access to the FFT records.  
The process when FFT averaging is enabled is as follows:  
1. A capture is initiated.  
2. Time domain samples are captured and filtered according  
to AVG_CNT setting until 4096 time samples fill the  
buffer.  
3. The FFT is calculated from the time samples in the buffer  
and the record is stored.  
4. After the number of FFT averages is reached, all FFT  
records in memory are averaged and stored.  
5. Alarms are checked, flags are set, and the data record is  
stored as per configuration  
6. In either manual or automatic mode, the next sample rate  
option is set.  
DATA IN BUFFERS LOAD INTO  
USER OUTPUT REGISTERS  
7. The  
signal is set.  
BUSY  
OUT_BUF  
An FFT record is an FFT stored in flash, and an FFT capture is  
an FFT stored in RAM.  
0
BUF_PNTR  
ACCELEROMETER  
Table 8. REC_PNTR (Base Address = 0x0C), Read/Write  
TIME/FFT  
BUFFER  
Bits  
Description (Default = 0x0000)  
Time statistic record pointer address  
FFT record number pointer address  
4096/2048  
[12:8]  
[3:0]  
TIME/FFT ANALYSIS  
FFT  
RECORD  
0
FFT  
RECORD  
1
FFT  
RECORD  
m
FFT  
RECORD  
9
SUPPLY_OUT  
TEMP_OUT  
m = REC_PNTR  
GLOB_CMD, BIT 13 = 1  
INTERNAL SAMPLING SYSTEM SAMPLES, PROCESSES, AND  
STORES DATA IN FFT BUFFERS  
Figure 30. Data Buffer Structure and Operation  
SPI  
REGISTERS  
Table 7. BUF_PNTR (Base Address = 0x0A), Read/Write  
FFT  
BUFFER  
Bits  
Description (Default = 0x0000)  
[15:12]  
[11:0]  
Not used  
Figure 31. FFT Record Access  
Data bits; range = 0 to 2047 (FFT), 0 to 4095 (time)  
MTC Data Format  
In MTC mode, the OUT_BUF register contains a single time  
domain sample. When reading OUT_BUF, BUF_PNTR  
automatically advances from 0 to 4095. The time domain data is  
16-bit, twos complement acceleration data by default with a  
resolution of 1 LSB = 1.907 mg. If velocity data is selected by  
setting REC_CTRL, Bit 5 = 1, velocity data is stored in the  
buffer registers instead. Velocity data has a resolution of 1 LSB =  
18.62 mm/sec and is calculated by integrating the acceleration data.  
Rev. 0 | Page 14 of 42  
 
 
 
Data Sheet  
ADcmXL1021-1  
Table 11 lists the bit assignments for the OUT_BUF register. The  
acceleration data format depends on the record type setting in the  
REC_CTRL register. Table 41 and Table 42 shows data formatting  
examples for the 16-bit, twos complement format used in manual  
time mode.  
The magnitude (out) can be calculated from the value read by  
using the following equation:  
OUT _ BUF  
2048  
2  
Out =  
× 0.9535 mg  
Number of FFT Averages  
In MTC mode, time domain statistic can be calculated by enabling  
Bit 6 in the REC_CTRL register. The statistics value scales are  
calculated based on setting of accelerometer or velocity. The time  
domain statistics available are mean, standard deviation, peak,  
peak-to-peak, crest factor, Kurtosis, and skewness. The scale of  
all statistics are consistent with the data format selected (1 LSB  
= 1.907 mg or 18.62 mm/sec for acceleration or velocity,  
respectively), except crest factor, Kurtosis, and skew, which  
require fractional numbers.  
Table 12 and Table 43 show the data formatting examples for FFT  
mode conversions from the OUT_BUF value to acceleration.  
When reading the OUT_BUF register, BUF_PNTR automatically  
advances from 0 to 2047. The FFT data is unsigned 16-bit data.  
Table 12. FFT Magnitude Conversion from Register Value,  
Data Format Examples  
FFT  
FFT Buffer Read Value (Bits)  
0x0001  
0x0002  
0x00FF  
0x7D00  
0x0001  
0x0002  
0x00FF  
0x0005  
0x05FF  
0x7530  
0x00FF  
0x7D00  
Averages  
Magnitude  
0.953823 mg  
0.954146 mg  
1.039447 mg  
48.18528 g  
0.476911 mg  
0.477073 mg  
0.519724 mg  
0.238779 mg  
0.400762 mg  
6.121809 g  
Table 9. MTC Mode, 50 g Range, Data Format Examples  
Acceleration (mg)  
1
1
1
1
2
2
2
4
4
4
8
8
(1.907 mg/LSB)  
+62486.7  
+12498.5  
+3.9  
LSB  
Hex.  
Binary  
+32,767 0x7FFF  
+6554  
+2  
0111 1111 1111 1111  
0001 1001 10011010  
0000 0000 0000 0010  
0000 0000 0000 0001  
0000 0000 0000 0000  
1111 1111 1111 1111  
1111 1111 1111 1110  
1110 0110 0110 0110  
1000 0000 0000 0000  
0x199A  
0x0002  
0x0001  
0x0000  
0xFFFF  
0xFFFE  
0xE666  
+1.9  
+1  
0
0
−1.9  
−1  
−3.8  
−2  
−12498.5  
−62488.6  
−6554  
−32,768 0x8000  
0.129931 mg  
6.02316 g  
Table 10. MTC Mode, 50 g Range, Data Format Examples,  
Configured for Optional Velocity Output Mode  
Velocity (mm/sec),  
0x7D00  
0xAFCE  
16  
128  
3.01158 g  
30.65768 g  
LSB = 18.62 mm/sec  
+610,121.5  
+122,035.5  
+37.24  
+18.62  
0
−18.62  
−37.24  
−122,035.5  
−610,121.5  
LSB  
Hex.  
Binary  
RTS Data Format  
+32,767 0x7FFF  
+6554  
+2  
+1  
0
0111 1111 1111 1111  
In RTS mode, continuous data is burst out of the SPI. Each data  
frame consists of 16 samples of accelerometer data plus eight  
words of zeros and a frame header, temperature reading, status  
bits, and a 16-bit cyclical redundancy check (CRC) code. Each  
data sample is 16-bit, twos complement acceleration data by  
default with a resolution of 1 LSB = 1.907 mg. It is important that  
the external host device is able to retrieve the burst data in a  
sufficient time allotment, which is approximately 135 µs per data  
frame. No internal corrections are applied to this data. Therefore,  
the data may deviate from the results of other capture modes. Data  
is unsigned and must be offset (subtract) by 0x8000 to obtain g  
(signed data).  
0x199A 0001 1001 10011010  
0x0002  
0x0001  
0x0000  
0xFFFF  
0xFFFE  
0xE666  
0000 0000 0000 0010  
0000 0000 0000 0001  
0000 0000 0000 0000  
1111 1111 1111 1111  
1111 1111 1111 1110  
1110 0110 0110 0110  
1000 0000 0000 0000  
−1  
−2  
−6554  
−32,768 0x8000  
Table 11. OUT_BUF (Base Address = 0x12), Read Only  
Bits  
Description (Default = 0x8000)  
[15:0]  
Output acceleration data buffer register. Format = twos  
complement (time), unsigned integer (FFT).  
When first entering RTS mode capture, the first eight samples are  
all 0s and the CRC for the first frame is invalid. It is recommended  
that the first data frame be ignored, and data for the second frame  
and all subsequent frames be used.  
FFT Data Format for AFFT and MFFT Modes  
In both AFFT and MFFT modes, the OUT_BUF contains a  
calculated FFT bin magnitude. The values contained in buffer  
locations from 0 to 2047 represent the magnitude of frequency  
bins of size, depending on the AVG_CNT value as shown in  
Table 18.  
Rev. 0 | Page 15 of 42  
 
 
ADcmXL1021-1  
Data Sheet  
I/O LINES ARE COMPATIBLE WITH  
3.3V LOGIC LEVEL  
Table 13 shows several examples of how to translate RTS data  
values, assuming nominal sensitivity and zero bias error.  
VDD  
3.3V  
8
Table 13. RTS Mode Data Format Examples  
SYSTEM  
PROCESSOR  
SPI MASTER  
ADcmXL1021-1  
Acceleration (g)  
+62.532  
+50  
LSB  
Hex.  
Binary  
14  
13  
11  
12  
2
SS  
SCLK  
MOSI  
MISO  
IRQ2  
IRQ1  
CS  
65,535  
58,967  
32,770  
32,769  
32,768  
32,767  
32,766  
6567  
0xFFFF  
1111 1111 1111 1111  
SCLK  
DIN  
0xE657 1110 0110 0101 0111  
0x8002 1000 0000 0000 0010  
0x8001 1000 0000 0000 0001  
0x8000 1000 0000 0000 0000  
0x7FFF 0111 1111 1111 1111  
0x7FFE 0111 1111 1111 1110  
0x19A7 0001 1001 1010 0111  
0x0000 0000 0000 0000 0000  
+0.003816  
+0.001908  
0
DOUT  
ALM1  
ALM2  
SYNC/RTS  
BUSY  
RST  
4
−0.001908  
−0.003816  
−50  
3
5
7
−62.534  
0
GND GND GND  
1
9
10  
USER INTERFACE  
Figure 32. Electrical Hookup Diagram  
The user interface includes several important functions: a data  
communications port, a trigger input, a busy indicator, and two  
alarm indicator signals.  
The register structure uses a paged addressing scheme that  
contains seven pages, with each page containing 64 register  
locations. Each register is 16 bits wide, with each 2-byte word  
having its own unique address within the memory map of that  
page. The SPI port has access to one page at a time. Select the  
page to activate for SPI access by writing the corresponding  
code to the PAGE_ID register. Read the PAGE_ID register to  
determine which page is currently active. Table 14 displays the  
PAGE_ID contents for each page and the basic functions. The  
PAGE_ID register is located at Address 0x00 on each page.  
Data communication between an embedded processor (master)  
and the ADcmXL1021-1 takes place through the SPI, which  
includes the , SCLK, DIN, and DOUT pins (see Table 5).  
CS  
The SYNC/RTS (see Table 5) pin provides user triggering options  
in manual triggering modes. The alarm pins, ALM1 and ALM2,  
are configurable to alert the user of an event that exceeds a user  
defined threshold of a parameter.  
The SYNC/RTS pin is used in RTS mode to support start and  
Table 14. User Register Page Assignments  
stop control over data capture and analysis operations. The  
BUSY  
Page No.  
PAGE_ID  
Function  
pin (see Table 5) provides an indication of internal operation when  
the ADcmXL1021-1 is executing a command. This signal helps  
the master processor avoid SPI communication when the  
ADcmXL1021-1 cannot support a response and can trigger an  
external data acquisition after data capture and analysis events  
are complete.  
0
1
2
3
4
5
6
0x00  
0x01  
0x02  
0x03  
0x04  
0X05  
0x06  
Configuration, data acquisition  
FIR Filter Bank A  
FIR Filter Bank B  
FIR Filter Bank C  
FIR Filter Bank D  
FIR Filter Bank E  
FIR Filter Bank F  
The ADcmXL1021-1 uses an SPI for communication, which  
enables simple connection with most embedded processor  
platforms, as shown in Figure 32.  
The factory default configuration for the  
pin provides a busy  
BUSY  
indicator signal that transitions high when an event completes and  
data is available for user access and remains low during processing.  
Table 15. Generic Master Processor Pin Mnemonics and  
Functions  
Pin Mnemonic  
Function  
Slave select  
SS  
SCLK  
Serial clock  
MOSI  
MISO  
IRQ1, IRQ2  
Master output, slave input  
Master input, slave output  
Interrupt request inputs (optional)  
The ADcmXL1021-1 SPI supports full duplex serial communication  
(simultaneous transmit and receive) and uses the bit sequence  
shown in Figure 36. Table 16 shows a list of the most common  
settings that control the operation of SPI-compatible ports in most  
embedded processor platforms.  
Rev. 0 | Page 16 of 42  
 
 
 
 
Data Sheet  
ADcmXL1021-1  
Embedded processors typically use control registers to configure  
serial ports for communicating with SPI slave devices, such as  
the ADcmXL1021-1. Table 16 lists settings that describe the SPI  
protocol of the ADcmXL1021-1. The initialization routine of the  
master processor typically establishes these settings using firmware  
commands to write them into the serial control registers.  
SPI Write Commands  
User control registers govern many internal operations. The  
DIN bit sequence in Figure 36 provides a description to write to  
these registers. Each configuration register contains 16 bits (two  
bytes). Bits[7:0] contain the low byte, and Bits[15:8] contain the  
high byte of each register. Each byte has a unique address in the  
user register map (see Table 19). Updating the contents of a  
register requires writing both bytes in the following sequence:  
low byte first, high byte second. There are three parts to coding  
a SPI command (see Figure 36) that write a new byte of data to  
Table 16. Generic Master Processor SPI Settings  
Processor Setting  
Description  
Master  
SCLK Rate ≤ 14 MHz  
SPI Mode 3  
ADcmXL1021-1 operates as slave  
Bit rate setting  
Clock polarity/phase (CPOL = 1, CPHA = 1)  
Bit sequence  
R
a register: the write bit ( /W = 1), the address of the byte [A6:A0],  
followed by the new data for that register address [DC7:DC0].  
MSB First  
Figure 34 provides a coding example for writing 0x2345 to  
the FFT_AVG1 register, the 0x8623 command writes 0x23 to  
Address 0x06 (lower byte) and the 0x8745 command writes  
0x45 to Address 0x07 (upper byte).  
16-Bit Mode  
Readout Formatting  
Shift register/data length  
Little Endian  
Table 19 lists user registers with lower byte addresses. Each  
register consists of two bytes. Each byte has a unique 7-bit  
address. Figure 33 relates the bits of each register to the upper  
and lower addresses.  
CS  
SCLK  
15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
DIN  
0x8623  
0x8745  
UPPER BYTE  
LOWER BYTE  
Figure 34. Single SPI Write Command  
Figure 33. Generic Register Bit Definitions  
SPI Read Commands  
Register Structure  
A single register read requires two 16-bit SPI cycles that use the  
bit assignments shown in Figure 36. The beginning sequence  
All communication with the ADcmXL1021-1 involves accessing  
the user registers. The register structure contains both output data  
and control registers. The output data registers include the latest  
sensor data, alarm information, error flags, and identification data.  
The control register contained in Page 0 includes configurable  
options, such as time domain averaging, FFT averaging,  
filtering, alarm parameters, diagnostics, and data collection  
mode settings. Each user accessible register has two bytes  
(upper and lower), and each byte has a unique address. See  
Table 19 for a detailed list of all user registers, along with the  
corresponding addresses.  
R
sets /W = 0 and communicates the target address (Bits[A6:A0]).  
Bits[DC7:DC0] are don’t care bits for a read DIN sequence.  
DOUT clocks out the requested register contents during the  
second sequence. The second sequence can also use DIN to set  
up the next read.  
Figure 35 provides an example that includes two register reads in  
succession. This example starts with DIN = 0x0C00 to request the  
contents of the REC_PNTR register, and follows with 0x0E00, to  
request the contents of the OUT_BUF register. The sequence in  
Figure 35 also shows the full duplex mode of operation, which  
means that the ADcmXL1021-1 can receive requests on DIN  
while also transmitting data out on DOUT within the same  
16-bit SPI cycle.  
All communication between the ADcmXL1021-1 and an  
external processor involves either reading or writing these  
16-bit user registers.  
NEXT  
ADDRESS  
DIN  
0x0C00  
0x0E00  
DOUT  
REC_PNTR  
OUT_BUF  
Figure 35. SPI Mulitbyte Read Command Example  
CS  
SCLK  
DIN  
R/W A6  
A5  
R/W A6  
A5  
A4  
A3  
A2  
A1  
D9  
A0 DC7 DC6 DC5 DC4 DC3 DC2 DC1 DC0  
DOUT  
D15 D14 D13 D12 D11 D10  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D15 D14 D13  
NOTES  
1. DOUT BITS ARE PRODUCED ONLY WHEN THE PREVIOUS 16-BIT DIN SEQUENCE STARTS WITH R/W = 0.  
2. WHEN CS IS HIGH, DOUT IS IN A THREE-STATE, HIGH IMPEDANCE MODE, WHICH ALLOWS MULTIFUNCTIONAL USE OF THE LINE  
FOR OTHER DEVICES.  
Figure 36. SPI Communication, Multibyte Sequence  
Rev. 0 | Page 17 of 42  
 
 
 
ADcmXL1021-1  
Data Sheet  
Busy Signal  
The RTS burst contains 44 16-bit words (8 zero words, a header,  
including an incrementing counter, 32 accelerometer data  
words, temperature, status, and CRC). The external SCLK rate  
must be between 8 MHz to 14 MHz to ensure that the complete  
burst is read out before current data in the register buffer is  
overwritten. The maximum SCLK for RTS burst outputs is  
14 MHz 1%. The minimum SCLK required to support the  
transfer is 8 MHz. The RTS burst response uses the sequencing  
diagrams shown in Figure 4 and Figure 5 and the data format  
shown in Table 17.  
The factory default configuration provides the user with a busy  
signal (  
) that pulses low when the output data registers are  
BUSY  
updating (see signal orientation of busy signal in Figure 37). In  
this configuration, connect to an interrupt service pin on  
BUSY  
the embedded processor, which triggers data collection, when  
this signal pulses high.  
SPI  
COMMAND  
BUSY  
When first entering RTS mode capture, the first eight samples are  
all 0s, and the CRC for the first frame is invalid. It is recommended  
that the first frame be ignored, and that the data for the second  
frame and all subsequent frames be used.  
AVAILABLE  
NOT AVAILABLE  
BUSY  
Figure 37. Busy Signal (  
) Orientation After SPI Command  
During the start-up and reset recovery processes, the  
BUSY  
signal can exhibit some transient behavior before data production  
begins. Figure 37 provides an example of the behavior  
Table 17. RTS Data Format  
Byte Location in  
BUSY  
during command processing. A low signal indicates SPI access  
is not available with the exception of the escape code that can  
terminate a capture. Figure 38 shows the  
Output Dataset  
2-Byte Value Represents  
0
0x0000  
0x0000  
signal during  
BUSY  
14  
16  
start up.  
Fixed header: 0xccAD; where cc is an  
incrementing counter value from 0x00 to  
0xFF, which returns to 0x00 after 0xFF  
TIME THAT VDD > 3V  
VDD  
MICROCONTROLLER IS BUSY  
WHEN BUSY IS LOW  
18  
20  
22  
80  
82  
84  
86  
XL1 (oldest data from accelerometer)  
XL2  
XL3  
BUSY  
XL32  
START-UP TIME  
~200ms  
Temperature  
Status  
CRC-16  
BUSY  
Figure 38.  
Response During Start Up  
RTS  
The RTS function provides a method for reading data (time  
domain acceleration data, temperature, status, and CRC code) that  
does not require a stall time between each 16-bit segment and  
only requires one command on the DIN line to initiate. System  
processors can execute this mode by reading each segment of data  
in the response, while holding the  
line in a low state until  
CS  
after reading the last 16-bit segment of data. If the  
line goes high  
CS  
before the completion of all data acquisition, the data from that  
read request is lost.  
Rev. 0 | Page 18 of 42  
 
 
 
Data Sheet  
ADcmXL1021-1  
BASIC OPERATION  
DEVICE CONFIGURATION  
TRIGGER  
Each register contains 16 bits (two bytes). Bits[7:0] contain the  
low byte, and Bits[15:8] contain the high byte. Each byte has a  
unique address in the user register map (see Table 19). Updating  
the contents of a register requires writing to the low byte first  
and the high byte second. There are three parts to coding a SPI  
command, which writes a new byte of data to a register: the  
All modes, including RTS mode, require a trigger to start. AFFT  
mode and RTS mode also require a trigger to stop recording.  
Start triggers arise either from using the SYNC/RTS digital input  
pin or by setting Bit 11 in the GLOB_CMD register (see Table 73).  
If using the SYNC/RTS pin as a trigger, the user must set Bit 12  
in the MISC_CTRL register = 1 to enable this feature. While in  
RTS mode, during a valid capture period, normal SPI access is  
disabled until a valid stop is received.  
R
write bit ( /W = 1), the 7-bit address code for the byte that this  
command is updating, and the 16 bits of new data for that  
location.  
The user can stop a capture in RTS mode in two ways: via a  
hardware pin or using software. The hardware pin method  
uses the RTS pin, which is enabled in Bit 12 of the MISC_CTRL  
register. The software method requires the user to set Bit 15 in  
the REC_CTRL register to 1, which enables timeout mode which  
must be configured prior to initiating a capture. In this case,  
RTS mode stops after 30 ms with no user supplied external  
DUAL MEMORY STRUCTURE  
The ADcmXL1021-1 uses a dual memory structure (see Figure 39)  
with static random access memory (SRAM), supporting real-time  
operation and flash memory storing operational code and user  
configurable register settings. The manual flash update command  
(Bit 6 in the GLOB_CMD register) provides a single command  
method for storing user configuration settings to flash memory for  
automatic recall during the next power-on or reset recovery  
process. During power-on or reset recovery, the ADcmXL1021-1  
performs a CRC on the SRAM and compares this result to a CRC  
computation from the same memory locations in flash memory.  
If this memory test fails, the ADcmXL1021-1 resets and boots up  
from the other flash memory location. The ADcmXL1021-1  
provides an error flag for detecting when the backup flash  
memory supported the last power-on or reset recovery. Table 19  
shows a memory map for the user registers in the ADcmXL1021-  
1, which includes flash backup support (indicated by yes or no  
in the flash column).  
readback clocks with  
low. To restart RTS mode, use the  
CS  
normal start trigger options described in this section.  
To stop a capture in AFFT mode, the user must issue a stop  
command during a period when  
is high (  
is low  
BUSY  
BUSY  
when the device is configured for power saving mode and  
sleeps between captures) or by write an escape code to the  
device at any time. All other SPI writes are ignored. When  
the ADcmXL1021-1 is in between active collecting periods (as  
configured in the REC_PRD register), setting Bit 11 in the  
GLOB_CMD register (see Table 73) to 1 (DIN = 0xBF08)  
interrupts the operation and the ADcmXL1021-1 returns to  
operating in the idle state. The REC_PRD counter starts at the  
beginning of the capture and must be set to a period greater  
than the longest capture time if multiple rate options (Sample  
Rate 0 to Sample Rate 3) are enabled.  
MANUAL  
FLASH  
BACKUP  
NONVOLATILE  
FLASH MEMORY  
VOLATILE  
SRAM  
When operating in MFFT or MTC mode, the ADcmXL1021-1  
operates in an idle state until it receives a command to start  
collecting data. When the ADcmXL1021-1 is in this idle state,  
setting Bit 11 in the GLOB_CMD register (see Table 73) to 1 starts  
a data collection and processing event. An interruption of data  
collection and processing causes a loss of all data from the  
interrupted process. A positive pulse on the SYNC/RTS pin  
provides the same start function as raising Bit 11 in the  
GLOB_CMD register when operating in MFFT mode.  
SPI ACCESS  
(NO SPI ACCESS)  
START-UP  
RESET  
Figure 39. SRAM and Flash Memory Diagram  
POWER-UP SEQUENCE  
The ADcmXL1021-1 requires only a single 3.3 V supply voltage  
and supports communication with most 3 V compliant embedded  
processor platforms using an SPI protocol. Avoid applying  
voltage to the SYNC/RTS, , SCLK, and DIN input pins until  
the proper supply voltage is applied to the module.  
In cases with many averages, a capture event can last an extended  
period with access to the SPI port (for example, when a device  
stays in a busy state). In this case, an escape code is used to  
terminate the active capture. The escape code is 0x00E8 and  
is written to the GLOB_CMD register, using the two 16-bit  
CS  
The power ramp from 0 V to 3.0 V must be monotonic. The  
module performs internal initialization, tests flash memory, and  
performs a sensor self test after powering on. No SPI access is  
allowed during this time. The module signals a completed  
sequence 0xBEE8, followed by 0xBF00 and repeat until  
BUSY  
returns to a high logic state. A valid escape is also indicated in  
Bit 4 of the DIAG_STAT register. After an escape is issued, any  
data collected during the last capture is no longer valid. To  
continue capturing data, refer to the normal start trigger options.  
initialization by setting the  
pin logic high.  
BUSY  
Rev. 0 | Page 19 of 42  
 
 
 
 
 
 
ADcmXL1021-1  
Data Sheet  
data is stored in user accessible buffer, in place of the time  
domain values, and spectral alarms are checked.  
SAMPLE RATE  
RTS mode has a fixed sample rate of 220 kSPS. The output is  
streamed out in a burst data packet over the SPI communications  
port. After the device is configured for RTS mode, conversion  
starts and stops are controlled by the SYNC/RTS pin or by  
stopping SPI activity for a period of time (see Bit 15 of the  
REC_CTRL register). RTS mode is unique in that, when  
configured, no additional processing is preformed and samples  
are output directly from the ADC without null, filter, or digital  
signal processing and alarms are not checked. A low-pass analog  
filter with a 13.5 kHz cutoff frequency is always in the datapath  
and, along with the high ADC sample rate, prevents aliasing.  
An important note is that the execution of the retrieve record with  
many FFT averages and a low sample rate may take minutes to  
hours to complete. Because the device turns off SPI interrupts  
during a recording, the user cannot send a stop command. Instead,  
the device monitors the SPI receive buffer for the escape code, a SPI  
write of 0x00E8 to the GLOB_CMD register, during the data  
capture portion of the recording. Therefore, the user can escape  
from a recording by writing 0x00E8 to the GLOB_CMD register.  
It is recommended to write only 0x00E8 to the device, provide a  
small delay, and then monitor the busy indicator or poll the status  
register. Repeatedly send the 0x00E8 code and check the status  
register until the status register shows the escape flag and busy  
indicator/data ready flag.  
For MTC mode, the sampling rate is always 220 kSPS and  
captures 4096 samples. The module can be configured to perform  
internal digital averaging.  
DATAPATH PROCESSING  
For the null function (see Figure 28), the user can write offset  
correction values into the ANULL register (see Table 45). The  
user can also initiate the autonull command via Bit 0 in the  
GLOB_CMD register (see Table 73), which automatically  
estimates the offset error and writes correction values to the  
ANULL register. The autonull feature uses settings of SR3 to  
capture and calculate a correction value and requires time to  
complete.  
For RTS mode, there is no digital processing of data internal to  
the ADcmXL1021-1. Data is buffered internally to 32 sample  
packets that are burst output over the SPI interface.  
For MTC mode, AFFT mode, and MFFT mode, the initial  
capture and processing procedure is the same and is as follows:  
1. Capture 4096 consecutive time domain samples at 220 kSPS.  
2. If AVG_CNT is enabled, apply the appropriate decimation  
filter. Continue to collect data until 4096 time sample  
buffer is filled.  
3. Null data, if enabled.  
4. Apply the FIR filter, if enabled.  
The AVG_CNT register allows the selection of the number  
of averages used in each capture for up to four sample rate  
options. The REC_CTRL register selects which sample rate  
options are enabled. The number of averages determines the  
sample rate for each sample rate option by the following  
equation:  
If MTC mode is enabled, the remaining steps are required:  
Sample Rate = 220 kHz/2AVG_CNT[3:0]  
5. Calculate the statistic values enabled.  
6. Check the statistics against alarm settings.  
7. Write the statistic values to the data buffer.  
8. Calculate time domain statistics.  
9. Check time domain alarms and set the alarm bit if  
appropriate.  
Table 18. FFT Bin Sizes, Frequency Limits (Hz)  
Effective  
AVG_CNT  
Setting  
(Averages)  
Effective  
Sample Rate, Bin Size,  
Effective FFT  
Maximum FFT  
Frequency,  
f_MAX (Hz)  
fS (SPS)  
220000  
110000  
55000  
27500  
13750  
6875  
f_MIN (Hz)  
53.71094  
26.85547  
13.42773  
6.713867  
3.356934  
1.678467  
0.839233  
0.419617  
10. Record statistic data according to the storage option  
selected.  
0 (1)  
1 (2)  
2 (4)  
3 (8)  
110000  
55000  
27500  
13750  
6875  
3437.5  
1718.75  
859.375  
11. Perform signal completion by setting the  
pin.  
BUSY  
If AFFT or MFFT mode is enabled, the remaining steps occur  
after the initial capture and processing:  
4 (16)  
5 (32)  
6 (64)  
7 (128)  
5. Calculate the FFT based on the AVG_CNT setting.  
6. Record data according to the storage option selected.  
7. Check frequency domain alarms, set the alarm bit if  
appropriate.  
3437.5  
1718.75  
In MFFT mode and AFFT mode, each FFT data record starts  
with a capture of 4096 time domain samples (after decimation,  
if enabled), as with MTC mode. The data is processed with the  
null function and FIR filter after the decimation filter, as with  
MTC mode. An FFT calculation is performed on the data. This  
8. Signal completion by setting the  
pin.  
BUSY  
Rev. 0 | Page 20 of 42  
 
 
Data Sheet  
ADcmXL1021-1  
USER  
DATA  
DECIMATION  
FILTER  
FIR  
FILTER  
32 TAPS  
STATISTICAL  
ANALYSIS/  
ALARM CHECK  
MEMS  
SENSOR  
STAT  
HEADER  
ADC  
1
BUFFER  
fS ÷ D  
N = 4096  
REGISTERS:  
FILT_CTRL  
FIR_COEFF_xxx  
fS = 220kSPS  
REGISTER:  
AVG_CNT  
REGISTERS:  
OUT_BUF  
REGISTERS:  
STAT  
STAT_PNTR  
NULL  
REGISTERS:  
ANNUL  
GLOB_CMD  
1
OPTIONAL VELOCITY CALCULATIONS APPLIED PRIOR TO USER BUFFER.  
Figure 40. MTC Mode Datapath Processing  
TIME  
FAST  
DECIMATION  
FILTER  
FIR  
USER  
DATA  
BUFFERS  
MEMS  
SENSOR  
WINDOW  
FUNCTION  
SPECTRAL  
ALARMS  
RECORD  
CAPTURE  
N = 4096  
FOURIER  
ADC  
FILTER  
TRANSFORM  
32 TAPS  
fS ÷ D  
REGISTERS:  
FILT_CTRL  
FIR_COEFF_xxx  
REGISTER:  
REC_CTRL  
fS = 220kSPS  
REGISTERS:  
AVG_CNT  
REGISTERS:  
FFT_AVG1  
FFT_AVG2  
REC_INFO1  
REC_INFO2  
REGISTERS: REGISTERS:  
OUT_BUF  
ALM_CTRL  
ALM_PNTR  
FUND_FREQ  
ALM_STAT  
NULL  
ALM_F_LOW ALM_PEAK  
ALM_F_HIGH ALM_FREQ  
ALM_MAG1  
ALM_MAG2  
ALM_S_MAG  
REGISTERS:  
ANNUL  
GLOB_CMD  
Figure 41. AFFT Mode and MFFT Mode Datapath Processing  
After null corrections are applied, the data of the inertial sensor  
passes through an FIR filter (using the FILT_CTRL register),  
decimation filter (using the AVG_CNT register), and  
windowing filter (using the REC_CTRL register), all of which  
have user configurable attributes.  
Decimation  
Averaging options are available within the ADcmXL1021-1 and  
reduce the amount of data required to be transferred for a given  
bandwidth while also reducing random noise impact on the  
signal to noise ratio. Decimation is set using the AVG_CNT  
register and enabled in REC_CTRL register. The decimation  
filter can be used when the module is configured for MTC,  
MFFT, or AFFT operation but is not available in RTS mode.  
Table 69 shows selectable sample rates and resulting FFT bin  
width options.  
The FIR filter includes six banks of coefficients with 32 taps  
each. The FILT_CTRL register (see Table 65) provides the  
configuration options for the use of the FIR filters of each  
inertial sensor. Each FIR filter bank includes a preconfigured  
filter, but the user can design filters and write over these values  
using the register of each coefficient. Default filter configuration  
options are either low-pass or high-pass filters with cutoff  
frequencies of either 1 kHz, 5 kHz, or 10 kHz. Page 1 through  
Page 6 define the six sets of FIR filter coefficients. Each page is  
dedicated to a single filter. For example, Page 1 in the register  
map provides the details for the 1 kHz low-pass FIR filter. These  
filters represent typical cutoff frequencies for machine vibration  
monitoring applications.  
MTC mode, AFFT mode, and MFFT mode can be configured to  
cycle automatically through up to four different AVG_CNT settings  
(enabled in the REC_CTRL register): SR0, SR1, SR2, and SR3.  
When more than one sample rate option is enabled (REC_  
CTRL register, Bit 8 through Bit 11, see Table 47), the device  
cycles through each one.  
Windowing  
There are three windowing options that can be applied to the  
time domain recording before the FFT is computed. The typical  
window for vibration monitoring is the Hanning window. This  
window is provided as a default. A Hanning window is optimal  
because it offers good amplitude resolution of the peaks between  
frequency bins and minimal broadening of the peak. The  
rectangular and flat top windows are also available because they  
are common windowing options for vibration monitoring. The  
rectangular window is a window of magnitude 1 providing a  
flat time domain response. The flat top window is advantageous  
because it can provide very accurate amplitudes with the  
disadvantage of significant broadening of the peaks. This window is  
useful when the magnitude accuracy of the peak is important.  
FIR Filter  
Six FIR filters are preprogrammed by default in memory and  
available for use. The coefficients for these filters are stored in  
Page 1 to Page 6 and provide selectable filter options for the  
1 kHz, 5 kHz, or 10 kHz low-pass filter, and the 1 kHz, 5 kHz,  
or 10 kHz high-pass filter. Users can write and store custom  
filter setting by overwriting existing filter coefficients and  
saving these values to flash memory.  
Rev. 0 | Page 21 of 42  
 
ADcmXL1021-1  
Data Sheet  
ALM_F_HIGH  
ALM_MAG1  
SPECTRAL ALARMS  
ALM_F_LOW  
When using MFFT mode or AFFT mode, six flexible alarms  
can be configured with settings. There are 48 possible alarm  
configurations considering there are six alarm bands (×4  
sample rate options × 2 magnitude alarm levels).  
ALM_MAG2  
The ALM_PNTR register cycles through up to six alarm band  
configurations per capture. A lower frequency register (ALM_  
F_LOW) and an upper frequency register (ALM_F_HIGH) are  
set to define a bandwidth of interest. ALM_MAG1 and  
ALM_MAG2 define two levels of magnitude within the band  
set on which to base two triggers. These levels allow two warning  
levels for a trigger. Setting ALM_CTRL allows the setting of  
enabling and disabling individual axes, two warning levels, the  
number of events required to trigger an alarm, and the clearing  
options for the trigger alerts.  
1
2
3
4
5
6
FREQUENCY  
Figure 42. Spectral Alarm Band Registers  
MECHANICAL MOUNTING RECOMMENDATIONS  
The alarm status is reported in the ALM_STAT register. These  
registers show which alarm caused the last alarm event. If the  
alarm is serviced immediately, REC_INFO1 and REC_INFO2  
contain the last capture settings for additional information  
about the event. Based on the record mode (REC_CTRL,  
Bits[3:2]) setting, up to 10 FFT capture records can be stored in  
memory.  
Mechanical mounting is critical to ensure the best transfer of  
vibration and avoiding resonances that may affect performance.  
The ADcmXL1021-1 module has four mounting holes  
integrated in the aluminum housing.  
The mounting holes accept M2.5 screws to hold the module in  
place. Stainless steel screws torqued to about 25 inch-pounds  
are used for many of the characterization curves shown in the  
Typical Performance Characteristics section.  
When an alarm is triggered, the values in the ALM_PEAK register  
represent the peak value. Only the values that triggered the alarm  
are stored when the measured value for the given conditions  
exceed the ALM_MAG1 and ALM_MAG2 threshold settings.  
The magnitude is in the resolution as configured by the  
FFT_AVG1 or FFT_AVG2 setting for the specific capture.  
In some cases, when permanent mounting is an option,  
industrial epoxies or adhesives, such as cyanoacrylate adhesive,  
in addition to the mounting screws can enhance mechanical  
coupling.  
The alarm frequency bin of the peak deviation point is reported  
in ALM_FREQ. The result is in units of resolution (Hz),  
configured through the AVG_CNT setting for the specific  
capture.  
Rev. 0 | Page 22 of 42  
 
Data Sheet  
ADcmXL1021-1  
USER REGISTER MEMORY MAP  
Table 19. User Register Memory Map1  
Register Name  
PAGE_ID2  
R/W Flash Backup PAGE_ID  
Address  
Default Register Description  
R/W No  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00, 0x01  
0x02, 0x03  
0x04, 0x05  
0x06, 0x07  
0x08, 0x09  
0x0A, 0x0B  
0x0C, 0x0D  
0x12, 0x13  
0x18, 0x19  
0x1A, 0x1B  
0x1C, 0x1D  
0x1E, 0x1F  
0x20, 0x21  
0x22, 0x23  
0x28, 0x29  
0x2E, 0x2F  
0x30, 0x31  
0x32, 0x33  
0x34, 0x35  
0x36, 0x37  
0x38, 0x39  
0x3A, 0x3B  
0x3C, 0x3D  
0x3E, 0x3F  
0x44, 0x45  
0x4A, 0x4B  
0x4C, 0x4D  
0x4E, 0x4F  
0x50, 0x51  
0x52, 0x53  
0x54, 0x55  
0x56, 0x57  
0x0000  
Page identifier  
TEMP_OUT  
SUPPLY_OUT  
FFT_AVG1  
FFT_AVG2  
BUF_PNTR  
REC_PNTR  
OUT_BUF  
ANULL  
REC_CTRL  
Reserved  
R
R
No  
No  
0x80003 Internal temperature  
0x80003 Power supply voltage (VDD)  
R/W Yes  
R/W Yes  
R/W No  
R/W No  
0x0108  
0x0101  
0x0000  
0x0000  
0x8000  
0x0000  
0x1102  
0x00FF  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0080  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
N/A  
FFT average settings (SR0 and SR1)  
FFT average settings (SR2 and SR3)  
Buffer address pointer  
Data record pointer  
Output buffer data  
Bias correction value (from auto null)  
Record control register (mode of operation)  
Reserved  
R
No  
R/W Yes  
R/W Yes  
N/A N/A  
R/W Yes  
R/W Yes4  
R/W Yes4  
R/W Yes4  
R/W Yes4  
R/W No  
R/W No  
R/W Yes  
N/A N/A  
R/W Yes  
R/W Yes  
REC_PRD  
Record period setting  
ALM_F_LOW  
ALM_F_HIGH  
ALM_MAG1  
ALM_MAG2  
ALM_PNTR  
ALM_S_MAG  
ALM_CTRL  
Reserved  
Spectral alarm band, low frequency setting  
Spectral alarm band, high frequency setting  
Spectral alarm band, Alarm Magnitude 1  
Spectral alarm band, Alarm Magnitude 2  
Spectral alarm pointer  
System alarm threshold setting  
Alarm control settings  
Reserved  
FILT_CTRL  
AVG_CNT  
Filter control settings  
Sample rate settings (SR0, SR1, SR2, and SR3)  
Diagnostic and status flags  
Global command triggers  
Alarm status  
Alarm peak value  
Time stamp, lower word  
DIAG_STAT  
GLOB_CMD  
ALM_STAT  
ALM_PEAK  
TIME_STAMP_L  
TIME_STAMP_H  
Reserved  
DAY_REV  
YEAR_MON  
PROD_ID  
R
W
R
R
R
R
No  
No  
Yes5  
Yes5  
Yes5  
Yes5  
Time stamp, upper word  
Reserved  
N/A N/A  
R
R
R
N/A  
N/A  
N/A  
N/A  
N/A  
Firmware revision and firmware day code  
Firmware date (month, year)  
0x03FD Product identification for ADcmXL1021-1 models, equals  
decimal 1021  
SERIAL_NUM  
USER_SCRATCH  
REC_FLASH_CNT  
Reserved  
MISC_CTRL  
REC_INFO1  
REC_INFO2  
REC_CNTR  
ALM_FREQ  
STAT_PNTR  
Statistic  
FUND_FREQ  
FLASH_CNT_L  
FLASH_CNT_U  
PAGE_ID  
FIR_COEF_A00  
FIR_COEF_A01  
R
N/A  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x01  
0x01  
0x01  
0x58, 0x59  
0x5A, 0x5B  
0x5C, 0x5D  
0x5E to 0x63  
0x64, 0x65  
0x66, 0x67  
0x68, 0x69  
0x6A, 0x6B  
0x70, 0x71  
0x72, 0x73  
0x78, 0x79  
0x7A, 0x7B  
0x7C, 0x7D  
0x7E, 0X7F  
0x00, 0x01  
0x02, 0x03  
0x04, 0x05  
N/A  
N/A  
N/A  
N/A  
Serial number, lot-specific , unique per device  
Scratch register for user ID option  
Write counter for data record portion of flash memory  
Reserved  
Miscellaneous control  
Record Information 1  
R/W Yes  
N/A  
R
N/A N/A  
R/W No  
R
R
R
R
R/W No  
R
R/W Yes  
R
R
N/A  
Yes5  
Yes5  
N/A  
Yes5  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
N/A  
0x0000  
0x0001  
0x0006  
0x0015  
Record Information 2  
Record counter  
Frequency bin of most severe alarm  
Pointer for time domain statistics  
Selected statistical value  
Fundamental frequency setting  
Flash access counter, lower 16 bits  
Flash access counter, upper 16 bits  
Page identifier  
Yes5  
N/A  
N/A  
R/W No  
R/W Yes  
R/W Yes  
FIR Filter Bank A, Coefficient 0  
FIR Filter Bank A, Coefficient 1  
Rev. 0 | Page 23 of 42  
 
 
ADcmXL1021-1  
Data Sheet  
Register Name  
FIR_COEF_A02  
FIR_COEF_A03  
FIR_COEF_A04  
FIR_COEF_A05  
FIR_COEF_A06  
FIR_COEF_A07  
FIR_COEF_A08  
FIR_COEF_A09  
FIR_COEF_A10  
FIR_COEF_A11  
FIR_COEF_A12  
FIR_COEF_A13  
FIR_COEF_A14  
FIR_COEF_A15  
FIR_COEF_A16  
FIR_COEF_A17  
FIR_COEF_A18  
FIR_COEF_A19  
FIR_COEF_A20  
FIR_COEF_A21  
FIR_COEF_A22  
FIR_COEF_A23  
FIR_COEF_A24  
FIR_COEF_A25  
FIR_COEF_A26  
FIR_COEF_A27  
FIR_COEF_A28  
FIR_COEF_A29  
FIR_COEF_A30  
FIR_COEF_A31  
Reserved  
R/W Flash Backup PAGE_ID  
Address  
Default Register Description  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
N/A N/A  
R/W No  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
0x01  
0x01  
0x01  
0x01  
0x01  
0x01  
0x01  
0x01  
0x01  
0x01  
0x01  
0x01  
0x01  
0x01  
0x01  
0x01  
0x01  
0x01  
0x01  
0x01  
0x01  
0x01  
0x01  
0x01  
0x01  
0x01  
0x01  
0x01  
0x01  
0x01  
0x01  
0x02  
0x02  
0x02  
0x02  
0x02  
0x02  
0x02  
0x02  
0x02  
0x02  
0x02  
0x02  
0x02  
0x02  
0x02  
0x02  
0x02  
0x02  
0x02  
0x02  
0x02  
0x02  
0x06, 0x07  
0x08, 0x09  
0x0A, 0x0B  
0x0C, 0x0D  
0x0E, 0x0F  
0x10, 0x11  
0x12, 0x13  
0x14, 0x15  
0x16, 0x17  
0x18, 0x19  
0x1A, 0x1B  
0x1C, 0x1D  
0x1E, 0x1F  
0x20, 0x21  
0x22, 0x23  
0x24, 0x25  
0x26, 0x27  
0x28, 0x29  
0x2A, 0x2B  
0x2C, 0x2D  
0x2E, 0x2F  
0x30, 0x31  
0x32, 0x33  
0x34, 0x35  
0x36, 0x37  
0x38, 0x39  
0x3A, 0x3B  
0x3C, 0x3D  
0x3E, 0x3F  
0x40, 0x41  
0x42 to 0x7F  
0x00, 0x01  
0x02, 0x03  
0x04, 0x05  
0x06, 0x07  
0x08, 0x09  
0x0A, 0x0B  
0x0C, 0x0D  
0x0E, 0x0F  
0x10, 0x11  
0x12, 0x13  
0x14, 0x15  
0x16, 0x17  
0x18, 0x19  
0x1A, 0x1B  
0x1C, 0x1D  
0x1E, 0x1F  
0x20, 0x21  
0x22, 0x23  
0x24, 0x25  
0x26, 0x27  
0x28, 0x29  
0x2A, 0x2B  
0x0035  
0x006B  
FIR Filter Bank A, Coefficient 2  
FIR Filter Bank A, Coefficient 3  
0x00C1 FIR Filter Bank A, Coefficient 4  
0x013C FIR Filter Bank A, Coefficient 5  
0x01E0  
FIR Filter Bank A, Coefficient 6  
0x02AE FIR Filter Bank A, Coefficient 7  
0x03A2 FIR Filter Bank A, Coefficient 8  
0x04B3  
FIR Filter Bank A, Coefficient 9  
0x05D2 FIR Filter Bank A, Coefficient 10  
0x06EE  
0x07F2  
FIR Filter Bank A, Coefficient 11  
FIR Filter Bank A, Coefficient 12  
0x08CB FIR Filter Bank A, Coefficient 13  
0x0967  
0x09B9  
0x09B9  
0x0967  
FIR Filter Bank A, Coefficient 14  
FIR Filter Bank A, Coefficient 15  
FIR Filter Bank A, Coefficient 16  
FIR Filter Bank A, Coefficient 17  
0x08CB FIR Filter Bank A, Coefficient 18  
0x07F2  
0x06EE  
FIR Filter Bank A, Coefficient 19  
FIR Filter Bank A, Coefficient 20  
0x05D2 FIR Filter Bank A, Coefficient 21  
0x04B3 FIR Filter Bank A, Coefficient 22  
0x03A2 FIR Filter Bank A, Coefficient 23  
0x02AE FIR Filter Bank A, Coefficient 24  
0x01E0  
FIR Filter Bank A, Coefficient 25  
0x013C FIR Filter Bank A, Coefficient 26  
0x00C1 FIR Filter Bank A, Coefficient 27  
0x006B  
0x0035  
0x0015  
0x0006  
N/A  
FIR Filter Bank A, Coefficient 28  
FIR Filter Bank A, Coefficient 29  
FIR Filter Bank A, Coefficient 30  
FIR Filter Bank A, Coefficient 31  
Reserved  
PAGE_ID  
0x0002  
0x0004  
0x0001  
0xFFEC  
0xFFB9  
0xFF62  
0xFEF1  
0xFE8C  
0xFE76  
0xFEFE  
0x006B  
0x02E1  
0x0645  
Page identifier  
FIR_COEF_B00  
FIR_COEF_B01  
FIR_COEF_B02  
FIR_COEF_B03  
FIR_COEF_B04  
FIR_COEF_B05  
FIR_COEF_B06  
FIR_COEF_B07  
FIR_COEF_B08  
FIR_COEF_B09  
FIR_COEF_B10  
FIR_COEF_B11  
FIR_COEF_B12  
FIR_COEF_B13  
FIR_COEF_B14  
FIR_COEF_B15  
FIR_COEF_B16  
FIR_COEF_B17  
FIR_COEF_B18  
FIR_COEF_B19  
FIR_COEF_B20  
FIR Filter Bank B, Coefficient 0  
FIR Filter Bank B, Coefficient 1  
FIR Filter Bank B, Coefficient 2  
FIR Filter Bank B, Coefficient 3  
FIR Filter Bank B, Coefficient 4  
FIR Filter Bank B, Coefficient 5  
FIR Filter Bank B, Coefficient 6  
FIR Filter Bank B, Coefficient 7  
FIR Filter Bank B, Coefficient 8  
FIR Filter Bank B, Coefficient 9  
FIR Filter Bank B, Coefficient 10  
FIR Filter Bank B, Coefficient 11  
0x0A34 FIR Filter Bank B, Coefficient 12  
0x0E13  
0x1130  
0x12EC  
0x12EC  
0x1130  
0x0E13  
FIR Filter Bank B, Coefficient 13  
FIR Filter Bank B, Coefficient 14  
FIR Filter Bank B, Coefficient 15  
FIR Filter Bank B, Coefficient 16  
FIR Filter Bank B, Coefficient 17  
FIR Filter Bank B, Coefficient 18  
0x0A34 FIR Filter Bank B, Coefficient 19  
0x0645 FIR Filter Bank B, Coefficient 20  
Rev. 0 | Page 24 of 42  
Data Sheet  
ADcmXL1021-1  
Register Name  
FIR_COEF_B21  
FIR_COEF_B22  
FIR_COEF_B23  
FIR_COEF_B24  
FIR_COEF_B25  
FIR_COEF_B26  
FIR_COEF_B27  
FIR_COEF_B28  
FIR_COEF_B29  
FIR_COEF_B30  
FIR_COEF_B31  
Reserved  
R/W Flash Backup PAGE_ID  
Address  
Default Register Description  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
N/A N/A  
R/W No  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
N/A N/A  
R/W No  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
0x02  
0x02  
0x02  
0x02  
0x02  
0x02  
0x02  
0x02  
0x02  
0x02  
0x02  
0x02  
0x03  
0x03  
0x03  
0x03  
0x03  
0x03  
0x03  
0x03  
0x03  
0x03  
0x03  
0x03  
0x03  
0x03  
0x03  
0x03  
0x03  
0x03  
0x03  
0x03  
0x03  
0x03  
0x03  
0x03  
0x03  
0x03  
0x03  
0x03  
0x03  
0x03  
0x03  
0x03  
0x03  
0x03  
0x04  
0x04  
0x04  
0x04  
0x04  
0x04  
0x04  
0x2C, 0x2D  
0x2E, 0x2F  
0x30, 0x31  
0x32, 0x33  
0x34, 0x35  
0x36, 0x37  
0x38, 0x39  
0x3A, 0x3B  
0x3C, 0x3D  
0x3E, 0x3F  
0x40, 0x41  
0x42 to 0x7F  
0x00, 0x01  
0x02, 0x03  
0x04, 0x05  
0x06, 0x07  
0x08, 0x09  
0x0A, 0x0B  
0x0C, 0x0D  
0x0E, 0x0F  
0x10, 0x11  
0x12, 0x13  
0x14, 0x15  
0x16, 0x17  
0x18, 0x19  
0x1A, 0x1B  
0x1C, 0x1D  
0x1E, 0x1F  
0x20, 0x21  
0x22, 0x23  
0x24, 0x25  
0x26, 0x27  
0x28, 0x29  
0x2A, 0x2B  
0x2C, 0x2D  
0x2E, 0x2F  
0x30, 0x31  
0x32, 0x33  
0x34, 0x35  
0x36, 0x37  
0x38, 0x39  
0x3A, 0x3B  
0x3C, 0x3D  
0x3E, 0x3F  
0x40, 0x41  
0x42 to 0x7F  
0x00, 0x01  
0x02, 0x03  
0x04, 0x05  
0x06, 0x07  
0x08, 0x09  
0x0A, 0x0B  
0x0C, 0x0D  
0x02E1  
0x006B  
0XFEFE  
0xFE76  
FIR Filter Bank B, Coefficient 21  
FIR Filter Bank B, Coefficient 22  
FIR Filter Bank B, Coefficient 23  
FIR Filter Bank B, Coefficient 24  
0XFE8C FIR Filter Bank B, Coefficient 25  
0xFEF1  
0xFF62  
0xFFB9  
0xFFEC  
0x0001  
0x0004  
N/A  
FIR Filter Bank B, Coefficient 26  
FIR Filter Bank B, Coefficient 27  
FIR Filter Bank B, Coefficient 28  
FIR Filter Bank B, Coefficient 29  
FIR Filter Bank B, Coefficient 30  
FIR Filter Bank B, Coefficient 31  
Reserved  
PAGE_ID  
0x0003  
0x0025  
Page identifier  
FIR Filter Bank C, Coefficient 0  
FIR_COEF_C00  
FIR_COEF_C01  
FIR_COEF_C02  
FIR_COEF_C03  
FIR_COEF_C04  
FIR_COEF_C05  
FIR_COEF_C06  
FIR_COEF_C07  
FIR_COEF_C08  
FIR_COEF_C09  
FIR_COEF_C10  
FIR_COEF_C11  
FIR_COEF_C12  
FIR_COEF_C13  
FIR_COEF_C14  
FIR_COEF_C15  
FIR_COEF_C16  
FIR_COEF_C17  
FIR_COEF_C18  
FIR_COEF_C19  
FIR_COEF_C20  
FIR_COEF_C21  
FIR_COEF_C22  
FIR_COEF_C23  
FIR_COEF_C24  
FIR_COEF_C25  
FIR_COEF_C26  
FIR_COEF_C27  
FIR_COEF_C28  
FIR_COEF_C29  
FIR_COEF_C30  
FIR_COEF_C31  
Reserved  
0x005A FIR Filter Bank C, Coefficient 1  
0x008F FIR Filter Bank C, Coefficient 2  
0x009A FIR Filter Bank C, Coefficient 3  
0x004D FIR Filter Bank C, Coefficient 4  
0xFF8D FIR Filter Bank C, Coefficient 5  
0xFE74  
FIR Filter Bank C, Coefficient 6  
0xFD5D FIR Filter Bank C, Coefficient 7  
0xFCDD FIR Filter Bank C, Coefficient 8  
0xFD97 FIR Filter Bank C, Coefficient 9  
0x0003  
0x0430  
FIR Filter Bank C, Coefficient 10  
FIR Filter Bank C, Coefficient 11  
0x09A2 FIR Filter Bank C, Coefficient 12  
0x0F5F FIR Filter Bank C, Coefficient 13  
0x142C FIR Filter Bank C, Coefficient 14  
0x16E8  
0x16E8  
FIR Filter Bank C, Coefficient 15  
FIR Filter Bank C, Coefficient 16  
0x142C FIR Filter Bank C, Coefficient 17  
0x0F5F FIR Filter Bank C, Coefficient 18  
0x09A2 FIR Filter Bank C, Coefficient 19  
0x0430  
0x0003  
FIR Filter Bank C, Coefficient 20  
FIR Filter Bank C, Coefficient 21  
0xFD97 FIR Filter Bank C, Coefficient 22  
0xFCDD FIR Filter Bank C, Coefficient 23  
0xFD5D FIR Filter Bank C, Coefficient 24  
0xFE74  
FIR Filter Bank C, Coefficient 25  
0xFF8D FIR Filter Bank C, Coefficient 26  
0x004D FIR Filter Bank C, Coefficient 27  
0x009A FIR Filter Bank C, Coefficient 28  
0x008F  
FIR Filter Bank C, Coefficient 29  
0x005A FIR Filter Bank C, Coefficient 30  
0x0025  
N/A  
FIR Filter Bank C, Coefficient 31  
Reserved  
PAGE_ID  
0x0004  
Page identifier  
FIR_COEF_D00  
FIR_COEF_D01  
FIR_COEF_D02  
FIR_COEF_D03  
FIR_COEF_D04  
FIR_COEF_D05  
0xFD94 FIR Filter Bank D, Coefficient 0  
0xFD62 FIR Filter Bank D, Coefficient 1  
0xFD2A FIR Filter Bank D, Coefficient 2  
0xFCE8  
0xFC9C FIR Filter Bank D, Coefficient 4  
0xFC43 FIR Filter Bank D, Coefficient 5  
FIR Filter Bank D, Coefficient 3  
Rev. 0 | Page 25 of 42  
ADcmXL1021-1  
Data Sheet  
Register Name  
FIR_COEF_D06  
FIR_COEF_D07  
FIR_COEF_D08  
FIR_COEF_D09  
FIR_COEF_D10  
FIR_COEF_D11  
FIR_COEF_D12  
FIR_COEF_D13  
FIR_COEF_D14  
FIR_COEF_D15  
FIR_COEF_D16  
FIR_COEF_D17  
FIR_COEF_D18  
FIR_COEF_D19  
FIR_COEF_D20  
FIR_COEF_D21  
FIR_COEF_D22  
FIR_COEF_D23  
FIR_COEF_D24  
FIR_COEF_D25  
FIR_COEF_D26  
FIR_COEF_D27  
FIR_COEF_D28  
FIR_COEF_D29  
FIR_COEF_D30  
FIR_COEF_D31  
Reserved  
R/W Flash Backup PAGE_ID  
Address  
Default Register Description  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
N/A N/A  
R/W No  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
0x04  
0x04  
0x04  
0x04  
0x04  
0x04  
0x04  
0x04  
0x04  
0x04  
0x04  
0x04  
0x04  
0x04  
0x04  
0x04  
0x04  
0x04  
0x04  
0x04  
0x04  
0x04  
0x04  
0x04  
0x04  
0x04  
0x04  
0x05  
0x05  
0x05  
0x05  
0x05  
0x05  
0x05  
0x05  
0x05  
0x05  
0x05  
0x05  
0x05  
0x05  
0x05  
0x05  
0x05  
0x05  
0x05  
0x05  
0x05  
0x05  
0x05  
0x05  
0x05  
0x05  
0x0E, 0x0F  
0x10, 0x11  
0x12, 0x13  
0x14, 0x15  
0x16, 0x17  
0x18, 0x19  
0x1A, 0x1B  
0x1C, 0x1D  
0x1E, 0x1F  
0x20, 0x21  
0x22, 0x23  
0x24, 0x25  
0x26, 0x27  
0x28, 0x29  
0x2A, 0x2B  
0x2C, 0x2D  
0x2E, 0x2F  
0x30, 0x31  
0x32, 0x33  
0x34, 0x35  
0x36, 0x37  
0x38, 0x39  
0x3A, 0x3B  
0x3C, 0x3D  
0x3E, 0x3F  
0x40, 0x41  
0x42 to 0x7F  
0x00, 0x01  
0x02, 0x03  
0x04, 0x05  
0x06, 0x07  
0x08, 0x09  
0x0A, 0x0B  
0x0C, 0x0D  
0x0E, 0x0F  
0x10, 0x11  
0x12, 0x13  
0x14, 0x15  
0x16, 0x17  
0x18, 0x19  
0x1A, 0x1B  
0x1C, 0x1D  
0x1E, 0x1F  
0x20, 0x21  
0x22, 0x23  
0x24, 0x25  
0x26, 0x27  
0x28, 0x29  
0x2A, 0x2B  
0x2C, 0x2D  
0x2E, 0x2F  
0x30, 0x31  
0x32, 0x33  
0xFBD7 FIR Filter Bank D, Coefficient 6  
0xFB52  
FIR Filter Bank D, Coefficient 7  
0xFAAB FIR Filter Bank D, Coefficient 8  
0xF9D2 FIR Filter Bank D, Coefficient 9  
0xF8AB FIR Filter Bank D, Coefficient 10  
0xF702  
0xF468  
FIR Filter Bank D, Coefficient 11  
FIR Filter Bank D, Coefficient 12  
0xEFBC FIR Filter Bank D, Coefficient 13  
0xE4DC FIR Filter Bank D, Coefficient 14  
0xAE85 FIR Filter Bank D, Coefficient 15  
0x517B  
0x1B24  
0x1044  
0x0B98  
0x08FE  
0x0755  
0x062E  
0x0555  
FIR Filter Bank D, Coefficient 16  
FIR Filter Bank D, Coefficient 17  
FIR Filter Bank D, Coefficient 18  
FIR Filter Bank D, Coefficient 19  
FIR Filter Bank D, Coefficient 20  
FIR Filter Bank D, Coefficient 21  
FIR Filter Bank D, Coefficient 22  
FIR Filter Bank D, Coefficient 23  
0x04AE FIR Filter Bank D, Coefficient 24  
0x0429 FIR Filter Bank D, Coefficient 25  
0x03BD FIR Filter Bank D, Coefficient 26  
0x0364  
0x0318  
FIR Filter Bank D, Coefficient 27  
FIR Filter Bank D, Coefficient 28  
0x02D6 FIR Filter Bank D, Coefficient 29  
0x029E FIR Filter Bank D, Coefficient 30  
0x026C FIR Filter Bank D, Coefficient 31  
N/A  
Reserved  
PAGE_ID  
0x0005  
0xFF2B  
0xFEF0  
Page identifier  
FIR Filter Bank E, Coefficient 0  
FIR Filter Bank E, Coefficient 1  
FIR_COEF_E00  
FIR_COEF_E01  
FIR_COEF_E02  
FIR_COEF_E03  
FIR_COEF_E04  
FIR_COEF_E05  
FIR_COEF_E06  
FIR_COEF_E07  
FIR_COEF_E08  
FIR_COEF_E09  
FIR_COEF_E10  
FIR_COEF_E11  
FIR_COEF_E12  
FIR_COEF_E13  
FIR_COEF_E14  
FIR_COEF_E15  
FIR_COEF_E16  
FIR_COEF_E17  
FIR_COEF_E18  
FIR_COEF_E19  
FIR_COEF_E20  
FIR_COEF_E21  
FIR_COEF_E22  
FIR_COEF_E23  
FIR_COEF_E24  
0xFEAA FIR Filter Bank E, Coefficient 2  
0xFE59 FIR Filter Bank E, Coefficient 3  
0xFDFB FIR Filter Bank E, Coefficient 4  
0xFD8C FIR Filter Bank E, Coefficient 5  
0xFD09 FIR Filter Bank E, Coefficient 6  
0xFC6B FIR Filter Bank E, Coefficient 7  
0xFBA8 FIR Filter Bank E, Coefficient 8  
0xFAB1  
0xF96B  
FIR Filter Bank E, Coefficient 9  
FIR Filter Bank E, Coefficient 10  
0xF7A1 FIR Filter Bank E, Coefficient 11  
0xF4E5  
0xF017  
0xE512  
FIR Filter Bank E, Coefficient 12  
FIR Filter Bank E, Coefficient 13  
FIR Filter Bank E, Coefficient 14  
0xAE97 FIR Filter Bank E, Coefficient 15  
0x5169 FIR Filter Bank E, Coefficient 16  
0x1AEE FIR Filter Bank E, Coefficient 17  
0x0FE9 FIR Filter Bank E, Coefficient 18  
0x0B1B FIR Filter Bank E, Coefficient 19  
0x085F  
0x0695  
0x054F  
0x0458  
0x0395  
FIR Filter Bank E, Coefficient 20  
FIR Filter Bank E, Coefficient 21  
FIR Filter Bank E, Coefficient 22  
FIR Filter Bank E, Coefficient 23  
FIR Filter Bank E, Coefficient 24  
Rev. 0 | Page 26 of 42  
Data Sheet  
ADcmXL1021-1  
Register Name  
FIR_COEF_E25  
FIR_COEF_E26  
FIR_COEF_E27  
FIR_COEF_E28  
FIR_COEF_E29  
FIR_COEF_E30  
FIR_COEF_E31  
Reserved  
R/W Flash Backup PAGE_ID  
Address  
Default Register Description  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
N/A N/A  
R/W No  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
N/A N/A  
0x05  
0x05  
0x05  
0x05  
0x05  
0x05  
0x05  
0x05  
0x06  
0x06  
0x06  
0x06  
0x06  
0x06  
0x06  
0x06  
0x06  
0x06  
0x06  
0x06  
0x06  
0x06  
0x06  
0x06  
0x06  
0x06  
0x06  
0x06  
0x06  
0x06  
0x06  
0x06  
0x06  
0x06  
0x06  
0x06  
0x06  
0x06  
0x06  
0x06  
0x06  
0x06  
0x34, 0x35  
0x36, 0x37  
0x38, 0x39  
0x3A, 0x3B  
0x3C, 0x3D  
0x3E, 0x3F  
0x40, 0x41  
0x42 to 0x7F  
0x00, 0x01  
0x02, 0x03  
0x04, 0x05  
0x06, 0x07  
0x08, 0x09  
0x0A, 0x0B  
0x0C, 0x0D  
0x0E, 0x0F  
0x10, 0x11  
0x12, 0x13  
0x14, 0x15  
0x16, 0x17  
0x18, 0x19  
0x1A, 0x1B  
0x1C, 0x1D  
0x1E, 0x1F  
0x20, 0x21  
0x22, 0x23  
0x24, 0x25  
0x26, 0x27  
0x28, 0x29  
0x2A, 0x2B  
0x2C, 0x2D  
0x2E, 0x2F  
0x30, 0x31  
0x32, 0x33  
0x34, 0x35  
0x36, 0x37  
0x38, 0x39  
0x3A, 0x3B  
0x3C, 0x3D  
0x3E, 0x3F  
0x40, 0x41  
0x42 to 0x7F  
0x02F7  
0x0274  
0x0205  
FIR Filter Bank E, Coefficient 25  
FIR Filter Bank E, Coefficient 26  
FIR Filter Bank E, Coefficient 27  
0x01A7 FIR Filter Bank E, Coefficient 28  
0x0156  
0x0110  
FIR Filter Bank E, Coefficient 29  
FIR Filter Bank E, Coefficient 30  
0x00D5 FIR Filter Bank E, Coefficient 31  
N/A  
Reserved  
PAGE_ID  
0x0006  
Page identifier  
FIR_COEF_F00  
FIR_COEF_F01  
FIR_COEF_F02  
FIR_COEF_F03  
FIR_COEF_F04  
FIR_COEF_F05  
FIR_COEF_F06  
FIR_COEF_F07  
FIR_COEF_F08  
FIR_COEF_F09  
FIR_COEF_F10  
FIR_COEF_F11  
FIR_COEF_F12  
FIR_COEF_F13  
FIR_COEF_F14  
FIR_COEF_F15  
FIR_COEF_F16  
FIR_COEF_F17  
FIR_COEF_F18  
FIR_COEF_F19  
FIR_COEF_F20  
FIR_COEF_F21  
FIR_COEF_F22  
FIR_COEF_F23  
FIR_COEF_F24  
FIR_COEF_F25  
FIR_COEF_F26  
FIR_COEF_F27  
FIR_COEF_F28  
FIR_COEF_F29  
FIR_COEF_F30  
FIR_COEF_F31  
Reserved  
0xFFD9 FIR Filter Bank F, Coefficient 0  
0xFFB9  
0xFF8C  
0xFF50  
0xFF02  
0xFE9E  
0xFE1F  
FIR Filter Bank F, Coefficient 1  
FIR Filter Bank F, Coefficient 2  
FIR Filter Bank F, Coefficient 3  
FIR Filter Bank F, Coefficient 4  
FIR Filter Bank F, Coefficient 5  
FIR Filter Bank F, Coefficient 6  
0xFD7D FIR Filter Bank F, Coefficient 7  
0xFCB0 FIR Filter Bank F, Coefficient 8  
0xFBA8 FIR Filter Bank F, Coefficient 9  
0xFA49  
0xF861  
0xF581  
0xF089  
0xE558  
FIR Filter Bank F, Coefficient 10  
FIR Filter Bank F, Coefficient 11  
FIR Filter Bank F, Coefficient 12  
FIR Filter Bank F, Coefficient 13  
FIR Filter Bank F, Coefficient 14  
0xAEAF FIR Filter Bank F, Coefficient 15  
0x5151 FIR Filter Bank F, Coefficient 16  
0x1AA8 FIR Filter Bank F, Coefficient 17  
0x0F77 FIR Filter Bank F, Coefficient 18  
0x0A7F FIR Filter Bank F, Coefficient 19  
0x079F  
0x05B7  
0x0458  
0x0350  
0x0283  
0x01E1  
0x0162  
0x00FE  
0x00B0  
0x0074  
0x0047  
0x0027  
N/A  
FIR Filter Bank F, Coefficient 20  
FIR Filter Bank F, Coefficient 21  
FIR Filter Bank F, Coefficient 22  
FIR Filter Bank F, Coefficient 23  
FIR Filter Bank F, Coefficient 24  
FIR Filter Bank F, Coefficient 25  
FIR Filter Bank F, Coefficient 26  
FIR Filter Bank F, Coefficient 27  
FIR Filter Bank F, Coefficient 28  
FIR Filter Bank F, Coefficient 29  
FIR Filter Bank F, Coefficient 30  
FIR Filter Bank F, Coefficient 31  
Reserved  
1 N/A means not applicable.  
2 The PAGE_ID register can be written to change the target register location but does not change values on the defined page in the PAGE_ID register.  
3 The default value is valid until the first capture event, when the measurement data replaces the default value.  
4 For these registers, values can be stored in flash but are not available for readback until ALM_PNTR is set.  
5 Register values can be retrieved from records stored in flash using record retrieve commands.  
Rev. 0 | Page 27 of 42  
ADcmXL1021-1  
Data Sheet  
USER REGISTER DETAILS  
PAGE_ID, PAGE NUMBER  
SUPPLY_OUT, POWER SUPPLY VOLTAGE  
The contents in the PAGE_ID register (see Table 20 and Table 21)  
contain the current page setting. The ADcmXL1021-1 has  
output and control registers split over seven pages, numbered  
from zero to six. Page 1 to Page 6 are the configurable filter  
coefficients. Page 0 contains user registers for various  
configuration options and outputs.  
The SUPPLY_OUT register (see Table 25 and Table 26) provides a  
measurement (uncalibrated) of the voltage between the VDD  
and GND pins at the start of a data capture event, when the  
ADcmXL1021-1 is operating in the MFFT, AFFT, or MTC mode  
of operation (see Table 47). Table 27 shows several examples of the  
data format for the SUPPLY_OUT register.  
As an example, write 0x8002 to select Page 2 for SPI-based user  
access. After the register map is pointed to Page 2, any register  
writes are used to configure the Filter Bank B coefficients. The  
ADcmXL1021-1 user register map (see Table 19) provides a  
functional summary of each page and the page assignments  
associated with each user accessible register.  
Table 25. SUPPLY_OUT Register Definition  
Page Addresses Default  
0x00 0x04, 0x05 0x80001  
Access Flash Backup  
R
No  
1 Default value is valid until the first capture event, when the measurement  
data replaces the default value  
Table 26. SUPPLY_OUT Bit Descriptions  
Table 20. PAGE_ID Register Definition  
Bits  
Description  
Page1  
Addresses Default Access Flash Backup  
[15:12]  
[11:0]  
Do not use  
0x0000 0x00, 0x01 0x0000 R/W No  
Voltage between VDD and GND pins. 0x0000 = 0 V,  
1 LSB = 3.22 mV.  
1 This register is located at Address 0x00 and Address 0x01 of each page.  
Table 21. PAGE_ID Bit Descriptions  
Table 27. Power Supply Data Format Examples  
Bits  
Description  
Supply Level (V)  
LSB  
Hexadecimal  
Binary  
[15:0]  
Page number, binary numerical format  
3.6  
1117 0x45D  
1025 0x401  
1024 0x400  
1023 0x3FF  
0100 0101 1101  
0100 0000 0001  
0100 0000 0000  
0011 1111 1111  
0011 1010 0010  
3.3 + 0.003226  
3.3  
3.3 − 0.003226  
3.0  
TEMP_OUT, INTERNAL TEMPERATURE  
The TEMP_OUT register (see Table 22 and Table 23) provides a  
measurement (uncalibrated) of the temperature inside of the unit  
at the conclusion of a data capture or analysis event, when the  
ADcmXL1021-1 is operating in the MFFT, AFFT, or MTC mode of  
operation (see Table 47). Table 24 shows several examples of the  
data format for the TEMP_OUT register. The TEMP_OUT value is  
related to the sensed temperature by the following relationship:  
930  
0x3A2  
FFT_AVG1, SPECTRAL AVERAGING  
The FFT_AVG1 register (see Table 28 and Table 29) contains  
the user-configurable, spectral averaging settings for the SR0  
and SR1 sample rate settings (see the AVG_CNT register in  
Table 68). These settings determine the number of FFT records  
that the ADcmXL1021-1 averages when generating the final  
FFT result. When using the factory default value for the  
FFT_AVG1 register, the FFT result for the sample rate, SR0,  
contains an average of eight separate FFT records. The FFT result  
for the SR1 sample rate contains a single FFT record (no spectral  
averaging).  
TEMP_OUT = (Temperature − 460°C)/(−0.46°C/LSB)  
Table 22. TEMP_OUT Register Definition  
Page Addresses Default  
0x00 0x02, 0x03 0x80001  
Access Flash Backup  
R No  
1 The default value is valid until the first capture event, when the  
measurement data replaces the default value.  
Increasing the number of FFT averages increases the overall  
time for a record to be generated. The FFT averaging sequence  
is as follows: 4096 samples are measured, FFT on 4096 samples,  
accumulate FFT result, repeat until the number of FFTs specified in  
FFT_AVG1 or FFT_AVG2 is reached. Then, compute the  
average FFT, average power supply, and average temperature.  
The power supply and temperature are measured after the  
4096 samples are captured each time and accumulated.  
Table 23. TEMP_OUT Bit Definitions  
Bits  
Description  
[15:0]  
Internal temperature data. Offset binary format is twos  
complement, 1 LSB = −0.46°C, and there is an offset of  
+460°C, except in RTC mode.  
Table 24. TEMP_OUT Data Format Examples  
Temperature  
+105°C  
+60°C  
Decimal  
Hexadecimal  
Binary  
772  
870  
0x0303  
0x0365  
0000 0011 0000 0011  
0000 0011 0110 0101  
0000 0011 1011 1100  
0000 0011 1110 1000  
0000 0100 0011 1111  
Table 28. FFT_AVG1 Register Definition  
+20°C  
957  
0x03BC  
Addresses  
Default  
Access  
Flash Backup  
+0°C  
−40°C  
1000  
1087  
0x03E8  
0x043F  
0x06, 0x07  
0x0108  
R/W  
Yes  
Rev. 0 | Page 28 of 42  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Data Sheet  
ADcmXL1021-1  
Table 29. FFT_AVG1 Bit Descriptions  
BUF_PNTR, BUFFER POINTER  
Bits  
Description  
The BUF_PNTR (see Table 34 and Table 35) controls the data  
sample that loads to the OUT_BUF register (see Table 39) from the  
user data buffers. The BUF_PNTR register contains 0x0000 at the  
conclusion of each capture event and increments with each read of  
the OUT_BUF register. When BUF_PNTR contains the maximum  
value (2047 or 4095, see Table 35), the next increment (caused by a  
read request OUT_BUF) causes the value in the BUF_PNTR  
register to wrap around to 0x0000. The depth of the user data  
buffer and, therefore, the range of numbers that BUF_PNTR  
supports, depends on the mode of operation, according to the  
setting in the REC_CTRL register, Bit 0 and Bit 1 (see Table 47).  
[15:8] Number of records, SR1, 8 bit unsigned format, range: 1  
to 255  
[7:0]  
Number of records, SR0, 8 bit unsigned format, range: 1  
to 255  
To eliminate averaging on both SR0 and SR1 settings, set  
FFT_AVG1 = 0x0101 by using the following codes (in order) for  
the DIN serial string: 0x8601 and 0x8701. Table 30 shows three  
more examples of FFT_AVG1 settings, the number of records that  
each setting corresponds to that produces each FFT_AVG1  
value.  
Table 30. FFT_AVG1 Formatting Examples  
Table 34. BUF_PNTR Register Definition  
Number of FFT Records  
Addresses  
Default  
Access  
Flash Backup  
FFT_AVG1 Value  
0x040C  
0x0E1A  
SR0  
12  
26  
SR1  
4
14  
0x0A, 0x0B  
0x0000  
R/W  
No  
Table 35. BUF_PNTR Bit Descriptions  
Bits Description  
[15:12] Set these bits to 0, when writing to this register.  
0xFF42  
66  
255  
[11:0]  
Buffer pointer value. Range = 0 to 2047 (in MFFT mode or  
AFFT mode). Range = 0 to 4095 (in MTC mode).  
FFT_AVG2, SPECTRAL AVERAGING  
The FFT_AVG2 register (see Table 31 and Table 32) contains  
the user-configurable, spectral averaging settings for the SR2  
and SR3 sample rate settings (see the AVG_CNT register in  
Table 68). These settings determine the number of FFT records  
that the ADcmXL1021-1 averages when generating the final  
FFT result. When using the factory default value for the  
FFT_AVG2 register, the FFT result for the SR2 and SR3 sample  
rates contains a single FFT record (no spectral averaging).  
Writing a number to the BUF_PNTR register causes that sample  
number for user data buffer to load to the OUT_BUF register. For  
example, using the following code sequence on DIN writes 0x031C  
to the BUF_PNTR register: 0x8A1C and 0x8B03. This write causes  
the sample pointer to output (796) from the user data buffer to load  
to OUT_BUF (see Figure 43).  
XL DATA  
0
Table 31. FFT_AVG2 Register Definition  
Addresses  
Default  
Access  
Flash Backup  
0x08, 0x09  
0x0101  
R/W  
Yes  
796  
OUT_BUF  
Table 32. FFT_AVG2 Bit Descriptions  
Bits Description  
[15:8] Number of records, SR3, 8 bit unsigned format, range: 1  
to 255  
2047  
[7:0]  
Number of records, SR2, 8 bit unsigned format, range: 1  
to 255  
To configure the ADcmXL1021-1 to average two FFT records  
for both SR2 and SR3 settings, set FFT_AVG2 = 0x0202 by using  
the following codes (in order) for the DIN serial string: 0x8802 and  
0x8702. Table 33 shows three more examples of FFT_AVG2  
settings, the number of records that each setting corresponds to,  
and the DIN code sequence that produces each FFT_AVG2 value.  
USER DATA BUFFERS  
Figure 43. Register Activity, BUF_PNTR = 0x031C (MFFT Mode or AFFT Mode)  
Table 33. FFT_AVG2 Formatting Examples  
Number of FFT Records  
FFT_AVG2 Value  
0x0407  
SR2  
7
SR3  
4
0x0D50  
0x2FFA  
80  
250  
13  
47  
Rev. 0 | Page 29 of 42  
 
 
 
 
 
 
 
 
 
ADcmXL1021-1  
Data Sheet  
REC_PNTR, RECORD POINTER  
OUT_BUF, BUFFER ACCESS REGISTER  
The REC_PNTR register (see Table 36 and Table 37) provides  
access to the statistical metrics from MTC capture events and  
spectral records from MFFT or AFFT capture events in the data  
storage bank. Each spectral analysis record in the data storage  
bank has a number from 0 to 9 that identifies the number to  
write to the REC_PNTR register, Bits[3:0]. This write loads that  
spectral record to the user data buffers. After the data from the  
spectral record is in the user data buffers, the BUF_PNTR register  
(see Table 35) and OUT_BUF register (see Table 39) provide  
access to the data in the specified data record through the SPI. For  
example, using the following DIN codes to set REC_PNTR =  
0x0007 causes Spectral Record 7 to load to the user data buffers.  
See Table 38 for additional examples.  
The OUT_BUF register (see Table 39 and Table 40) provides  
access to vibration data. When operating in MTC, MFFT, or  
AFFT mode, OUT_BUF contains the accelerometer data sample  
from the user data buffer, which the BUF_PNTR register (see  
Table 35) commands. In RTS mode, data is streamed out from the  
SPI interface, and data buffers of the registers are not used.  
In modes other than RTS when data is stored, after a read of the  
upper byte and lower byte, the buffer automatically updates  
with the next data sample in the internal buffer, the BUF_  
PNTR is auto-incremented. For MTC mode, the buffer can  
support 4096 time domain samples, and BUF_PNTR can advance  
from 0 to 4095. For AFFT and MFFT mode, the buffer supports  
2048 FFT bin values, and BUF_PNTR can advance from 0 to 2047.  
Each statistical record in the data storage bank has a number  
from 0 through 31 that identifies the number to write to the  
REC_PNTR register, Bits[12:8]. This write loads that statistical  
record to the user statistical buffers. After the data from a  
statistical record is in the user statistical buffers, the STAT_PNTR  
register (see Table 105), statistic register (see Table 107) provide  
access to this data through the SPI. For example, using the  
following DIN codes to set REC_PNTR = 0x0B00 causes  
Statistical Record 11 to load to the user statistical buffers:  
0x8C00 and 0x8D0B. See Table 38 for additional examples.  
Table 39. OUT_BUF Register Definition  
Addresses  
Default1  
Access  
Flash Backup  
0x12, 0x13  
0x8000  
R/W  
No  
1 The default value changes to 0x8000 when entering the first capture event  
and is only valid until completion of the first capture event or  
commencement of RTS mode.  
Table 40. OUT_BUF Bit Descriptions  
Bits  
Description  
[15:0]  
Output data  
Table 36. REC_PNTR Register Definition  
The numerical format of the data in OUT_BUF depends on the  
mode of operation (see the REC_CTRL register, Bits[1:0] in  
Table 47). When operating in MTC mode (REC_CTRL, Bits[1:0]  
= 10), the data in the OUT_BUF register uses a 16-bit, offset  
binary format, where 1 LSB represents ~0.001907 g. This format  
provides enough numerical range to support the measurement  
range ( 50 g) and the maximum bias/offset from the core  
sensor. Table 41 shows several examples of how to translate  
these codes to the acceleration magnitude that the examples  
represent for MTC mode, assuming nominal sensitivity and zero  
bias error.  
Addresses  
Default  
Access  
Flash Backup  
0x0C, 0x0D  
0x0000  
R/W  
No  
Table 37. REC_PNTR Bit Descriptions  
Bits Description  
[15:12] Set these bits to 0 when writing to this register  
[12:8]  
Record number, statistics (from MTC mode only), range =  
0 to 31  
[7:4]  
[3:0]  
Set these bits to 0 when writing to this register  
Record number, spectral records, range = 0 to 9  
(from MFFT mode and AFFT mode only)  
MTC mode data in the OUT_BUF register uses a 16-bit,  
twos complement format, where 1 LSB represents ~0.001907 g.  
This format provides enough numerical range to support the  
measurement range ( 50 g) and the maximum bias and offset  
from the core sensor. Table 41 shows several examples of how to  
translate these codes into the acceleration magnitude that the  
codes represent, assuming nominal sensitivity and zero bias error.  
Table 38. REC_PNTR Example Use Cases  
REC_PNTR  
DIN Codes  
Value  
Description  
0x8C05  
0x0005  
Spectral Record 5 loads to  
the user data buffer.  
0x8D0C  
0x0C00  
0x1503  
Statistical Record 12 loads to  
the user statistics buffer.  
Spectral Record 3 loads to  
the user data buffer and  
Statistical Record 21 loads to  
the user statistics buffer.  
If velocity calculations are enabled using Bit 5 in the REC_CTRL  
register, calculated velocity data is stored in place of default  
acceleration value. Data format examples are shown in Table 42.  
0x8C03, 0x8D15  
Rev. 0 | Page 30 of 42  
 
 
 
 
 
 
 
 
Data Sheet  
ADcmXL1021-1  
Table 41. MTC Mode Data Format Examples  
ANULL, BIAS CALIBRATION REGISTER  
Acceleration (g)  
+62.4867  
+50  
LSB  
Hexadecimal  
Binary  
The ANULL register (see Table 44 and Table 45) contains the  
bias correction value for the accelerometer, which the auto-null  
command (see the GLOB_CMD register, Bit 0, in Table 73)  
generates. The ANULL register also supports write access, which  
enables users to write their own correction factors to the output  
signal chain. The numerical format examples from Table 41 also  
apply to the ANULL register. For example, writing the following  
codes to DIN sets ANULL = 0xFDDE, which adjusts the offset  
of the output signal chain by −546 LSB (~1.042 g = 1 g ÷ 524 LSBs  
× 546 LSBs): 0x98DE and 0x99FD.  
+32,767 0x7FFF  
+26,219 0x666B  
0111 1111 1111 1111  
0110 0110 0110 1011  
0000 0000 0000 0010  
0000 0000 0000 0001  
0000 0000 0000 0000  
1111 1111 1111 1111  
1111 1111 1111 1110  
1001 1001 1001 0101  
1000 0000 0000 0000  
+0.003814  
+0.001907  
0
−0.001907  
−0.003814  
−50  
+2  
+1  
0
−1  
−2  
0x0002  
0x0001  
0x0000  
0xFFFF  
0xFFFE  
−26,220 0x9995  
−32,768 0x8000  
−62.4886  
Table 42. MTC Mode Data Format Examples, Velocity  
Calculations Enabled  
Velocity  
Table 44. ANULL Register Definition  
Addresses  
Default  
Access  
Flash Backup  
0x18, 0x19  
0x0000  
R/W  
Yes  
(mm/sec)  
+610,121.5  
+487,844  
+37.24  
+18.62  
0
−18.62  
−37.24  
−487,844  
−610,121.5  
LSB  
Hexadecimal Binary  
+32,767 0x7FFF  
+26,200 0x6658  
+2  
+1  
0
0111 1111 1111 1111  
0110 0110 0101 1000  
0000 0000 0000 0010  
0000 0000 0000 0001  
0000 0000 0000 0000  
1111 1111 1111 1111  
1111 1111 1111 1110  
1001 1001 1010 0111  
1000 0000 0000 0000  
Table 45. ANULL Bit Descriptions  
Bits  
Description  
0x0002  
0x0001  
0x0000  
0xFFFF  
0xFFFE  
[15:0]  
Bias correction factor. Twos complement,  
1 LSB = 0.001907 g.  
−1  
−2  
REC_CTRL, RECORDING CONTROL  
The REC_CTRL register (see Table 46 and Table 47) contains  
the configuration bits for a number of operational settings in  
the ADcmXL1021-1: mode of operation, record storage, power  
management, sample rates, and windowing.  
−26,200 0x99A8  
−32,768 0x8000  
When operating in the FFT modes, either MFFT mode (REC_  
CTRL1, Bits[1:0] = 00) or AFFT mode (REC_CTRL, Bits[1:0] =  
01), the OUT_BUF register uses a 16-bit, unsigned binary format.  
Due to the increased resolution capability of FFT values because of  
averaging, converting the OUT_BUF value to acceleration is  
accomplished by using the following equation:  
Table 46. REC_CTRL Register Definitions  
Addresses  
Default  
Access  
Flash Backup  
0x1A, 0x1B  
0x1102  
R/W  
Yes  
Table 47. REC_CTRL Bit Descriptions  
OUT _ BUF  
2048  
2  
Bits  
Description  
Output (mg) =  
× 0.9535 mg  
15  
Real-time streaming timeout enable.  
Not used.  
Number of FFT Averages  
14  
[13:12] Window setting (MFFT mode and AFFT modes only).  
00 = rectangular.  
Table 43 shows the conversion from OUT_BUF value to  
acceleration.  
01 = Hanning (default).  
10 = flat top.  
11 = not applicable.  
Table 43. Spectral Analysis Data Format Examples  
Number of FFT  
11  
10  
9
SR3, Sample Rate Option 3, enable = 1, disable = 0.  
Sample rate = 220 kSPS ÷ 2AVG_CNT[15:12] (see Table 68).  
Acceleration (mg)  
62467.43  
6766.87  
1.02  
OUT_BUF Value  
Averages  
32767  
26200  
200  
1
1
1
1
8
8
8
2
1
SR2, Sample Rate Option 2, enable = 1, disable = 0.  
Sample rate = 220 kSPS ÷ 2AVG_CNT[11:8] (see Table 68).  
SR1, Sample Rate Option 1, enable = 1, disable = 0.  
Sample rate = 220 kSPS ÷ 2AVG_CNT[7:4] (see Table 68).  
0.95  
1
64377.71  
3060.90  
0.12  
0.95  
1.91  
39000  
30000  
8
2048  
2048  
8
SR0, Sample Rate Option 0, enable = 1, disable = 0.  
Sample rate = 220 kSPS ÷ 2AVG_CNT[3:0] (see Table 68).  
7
Automatic power-down between recordings (MFFT,  
AFFT, and MTC mode only). Requires a CS toggle to  
wake up.  
0 = no power-down.  
1 = power-down after data collection/processing.  
Rev. 0 | Page 31 of 42  
 
 
 
 
 
 
 
 
ADcmXL1021-1  
Data Sheet  
Automatic Power-Down  
Bits  
6
Description  
Enable compute statistics in MTC mode.  
Enable velocity calculations.  
0 = acceleration.  
1 = calculated velocity.  
Reserved.  
Bit 7 in the REC_CTRL register (see Table 47) contains the  
setting for the automated power-down function when the  
ADcmXL1021-1 is operating in MFFT, AFFT, or MTC mode.  
When this bit is set to 1, the ADcmXL1021-1 automatically  
powers down after completing data collection and processing.  
When this bit is set to 0, the ADcmXL1021-1 does not power  
down after completing data collection and processing functions.  
5
4
[3:2]  
Flash memory record storage method (MFFT, AFFT,  
and MTC modes only).  
00 = none. No record storage to flash memory, current  
data is available in SRAM until the next recording  
event is stored.  
01 = alarm triggered. Record storage occurs when the  
vibration exceeds one of the configurable alarm  
settings.  
10 = all. Record storage happens at the conclusion of  
each data collection and processing event.  
After the device is in sleep mode, a  
toggle is required to  
CS  
wake up before the next measurement can be used. If the device  
is powered down between records in AFFT mode, wake up  
occurs automatically before the next capture.  
Calculate MTC Statistics  
Bit 6 in the REC_CTRL register (see Table 47) contains the  
setting to enable statistic calculation on MTC records  
11 = reserved.  
Calculate Velocity  
[1:0]  
Recording mode.  
00 = MFFT mode.  
01 = AFFT mode.  
10 = MTC mode.  
11 = RTS mode.  
Bit 5 in the REC_CTRL register (see Table 47) contains the  
setting to convert accelerometer data values to velocity values.  
When this bit is set to 0, the user data buffers contain linear  
acceleration data. When this bit is set to 1, the user data buffers  
contain linear velocity data, which comes from integrating the  
acceleration data with respect to time.  
Real-Time Burst Mode Timeout Enabled  
Bit 15 in the REC_CTRL register (see Table 47) contains the  
settings that independently disable RTS mode if the available data  
is not read. By default, RTS mode is enabled and disabled via  
the digital pin, RTS. If this bit is enabled, RTS mode is halted  
after failure to receive SCLK on five consecutive data ready  
active periods.  
Record Storage  
Bits[3:2] in the REC_CTRL register (see Table 47) contain the  
settings that determine when the ADcmXL1021-1 stores the  
result of an FFT capture event to a record location. The MISC_  
CTRL register is used for storing time domain statistics.  
Recording Mode  
Windowing  
Bits[1:0] in the REC_CTRL register (see Table 47) establish  
the mode of operation. When operating in MTC mode, the  
ADcmXL1021-1 uses the signal processing diagram and user-  
accessible registers shown in Figure 27. When operating in  
AFFT and MFFT mode, the ADcmXL1021-1 uses the signal  
processing diagram and user-accessible registers shown in  
Figure 29.  
Bits[13:12] in the REC_CTRL register (see Table 47) contain the  
settings for the window function that the ADcmXL1021-1 uses  
on the time domain data, prior to performing the FFT. The  
factory default setting for these bits (01) selects the Hanning  
window function. The other window options available are  
rectangular (setting 0b00), or flat top (setting 0b10).  
Spectral Record Selection  
REC_PRD, RECORD PERIOD  
Bits[11:8] in the REC_CTRL register (see Table 47) contain on  
and off settings for the four different sample rate options that  
are set using the AVG_CNT register.  
The REC_PRD register (see Table 48 and Table 49) contains the  
settings for the timer function that the ADcmXL1021-1 uses  
when operating in AFFT mode.  
The sample rate selector bits (SR0, SR1, SR2, and SR3) are used  
when operating in MFFT, AFFT, or MTC mode. When only one  
of these bits is set to 1, every data capture event uses that sample  
rate setting. When two of the bits are set to 1, the  
Table 48. REC_PRD Register Definition  
Addresses  
Default  
Access  
Flash Backup  
0x1E, 0x1F  
0x0000  
R/W  
Yes  
ADcmXL1021-1 uses one of the sample rates for one data  
capture event, and then switches to the other for the next  
capture event. When all four bits are set to 1, the ADcmXL1021-1  
uses the sample rates in the following order when switching to a  
new sample rate for each new capture events: SR0, SR1, SR2, SR3,  
SR0, SR1, and so on.  
Table 49. REC_PRD Bit Descriptions  
Bits Description  
[15:10] Don’t care  
[9:8]  
Scale for data bits:  
00 = 1 second/LSB, 01 = 1 minute/LSB, 10 = 1 hour/LSB  
Data bits, binary format; range = 0 to 255  
[7:0]  
Rev. 0 | Page 32 of 42  
 
 
 
Data Sheet  
ADcmXL1021-1  
Setting REC_PRD to 0x0005 establishes a 5 sec setting for the time  
that elapses between the completion of one capture event and the  
beginning of the next capture event. Table 50 shows several more  
examples of configuration codes for the REC_PRD register.  
The value of ALM_F_LOW applies to the FFT spectral record. The  
exact frequency depends on the AVG_CNT register because this  
setting reduces the full FFT bandwidth.  
For example, when setting ALM_F_LOW = 0x0064, the lower  
frequency of the alarm band starts at Bin 200. For example, if  
AVG_CNT = 8, the lower frequency is set to 1200 Hz (1200 Hz =  
(200 LSB × 220 kHz/8)/4096).  
Table 50. REC_PRD Example Use Cases  
REC_PRD Value  
Timer Value  
0x0022  
34 sec  
If AVG_CNT = 2, the lower frequency is 4800 Hz if ALM_F_LOW  
= 0x0064.  
0x010F  
0x0218  
15 minutes  
24 hours  
ALM_MAG1, ALARM LEVEL 1  
ALM_F_LOW, ALARM FREQUENCY BAND  
The ALM_MAG1 register sets a magnitude limit for the  
output in which to trigger an alarm warning. A second, higher  
trigger magnitude can be set in the ALM_MAG2 register and  
can distinguish between a warning condition vs. a more critical  
condition. When the ADcmXL1021-1 is operating in MFFT or  
AFFT mode, the ALM_MAG1 register (see Table 55 and  
Table 56) contains the magnitude of the vibration, which triggers  
Alarm 1 for the spectral alarm setting contained in the ALM_  
PNTR register (see Table 60). In this mode, the FFT band that is  
compared to the trigger magnitude limit is between ALM_L_  
LOW and ALM_F_HIGH.  
Up to six individual spectral alarm bands can be specified with  
two magnitude alarm levels. The ALM_PNTR register setting  
identifies which alarm is currently addressed and being configured.  
Spectral alarms apply when the ADcmXL1021-1 is operating in  
MFFT or AFFT mode and when the ALM_F_LOW register (see  
Table 51 and Table 52) contains the number of the lowest FFT  
bin, which is included in the spectral alarm setting that the ALM_  
PNTR register (see Table 60) contains.  
The value of ALM_F_LOW applies to the FFT spectral record.  
The exact frequency depends on AVG_CNT register because  
this register setting reduces the full FFT bandwidth.  
When in MTC mode, this limit applies to the statistics of the  
time domain capture.  
Table 51. ALM_F_LOW Register Definition  
ALM_MAG1 can be used as a warning indicator and ALM_  
MAG2 as a critical alarm indicator. Set ALM_MAG2 to a greater  
or equal value as ALM_MAG1.  
Addresses  
Default  
Access  
Flash Backup  
0x20, 0x21  
0x0000  
R/W  
Yes  
Table 52. ALM_F_LOW Bit Descriptions  
Bits Description  
[15:12] Don’t care  
[11:0] Lower frequency, bin number; range = 0 to 2047  
Table 55. ALM_MAG1 Register Definition  
Addresses  
Default  
Access  
Flash Backup  
0x28, 0x29  
0x0000  
R/W  
Yes  
For example, when setting ALR_F_LOW = 0x0064, the lower  
frequency of the alarm band starts at Bin 100. For example, if  
AVG_CNT = 8, the lower frequency is set to 600 Hz (600 Hz =  
(100 LSB × 220 kHz/8)/4096).  
Table 56. ALM_MAG1 Bit Descriptions  
Bits  
Description  
[15:0]  
Alarm Trigger Level 1  
The data format in the ALM_MAG1 register is the same as the  
data format in the OUT_BUF register. See Table 43 for several  
examples of this data format.  
If AVG_CNT = 2, the lower frequency is 2400 Hz if ALM_F_LOW  
= 0x0064.  
ALM_F_HIGH, ALARM FREQUENCY BAND  
ALM_MAG2, ALARM LEVEL 2  
When the ADcmXL1021-1 is operating in MFFT or AFFT mode,  
the ALM_F_HIGH register (see Table 53 and Table 54) contains  
the number of the highest FFT bin included in the spectral alarm  
setting. The ALM_PNTR register (see Table 60) contains the  
information regarding which of the six alarms is being set.  
When the ADcmXL1021-1 is operating in MFFT or AFFT  
mode, the ALM_MAG2 register (see Table 57 and Table 58)  
contains the magnitude of the vibration, which triggers Alarm 2  
for the spectral alarm setting that the ALM_PNTR register (see  
Table 60) contains. When in MTC mode, this limit applies to  
the statistics of the time domain capture.  
Table 53. ALM_F_HIGH Register Definition  
Addresses  
Default  
Access  
Flash Backup  
Table 57. ALM_MAG2 Register Definition  
0x22, 0x23  
0x0000  
R/W  
Yes  
Addresses  
Default  
Access  
Flash Backup  
0x2E, 0x2F  
0x0000  
R/W  
Yes  
Table 54. ALM_F_HIGH Bit Descriptions  
Bits Description  
[15:12] Don’t care  
[11:0] Upper frequency, bin number; range = 0 to 2047  
Table 58. ALM_MAG2 Bit Descriptions  
Bits  
Description  
[15:0]  
Alarm Trigger Level 2  
Rev. 0 | Page 33 of 42  
 
 
 
 
 
 
 
 
 
 
 
ADcmXL1021-1  
Data Sheet  
The data format in the ALM_MAG2 register is the same as the  
data format in the OUT_BUF register. See Table 43 for several  
examples of this data format.  
When Bit 4 in the ALM_CTRL register is equal to 0, the ALM_  
S_MAG register uses the same data format as the SUPPLY_  
OUT register (see Table 26 and Table 27). When Bit 4 in the  
ALM_CTRL register is equal to 1, the ALM_S_MAG register  
uses the same data format as the TEMP_OUT register (see  
Table 23 and Table 24).  
The Alarm 2 magnitudes must be greater than or equal to Alarm 1.  
ALM_PNTR, ALARM POINTER  
When the ADcmXL1021-1 is operating in MFFT or AFFT mode,  
the ALM_PNTR register (see Table 59 and Table 60) contains an  
alarm pointer that identifies a specific spectral alarm by sample rate  
(Bits[9:8]) and spectral band number (Bits[2:0]). Up to six alarms  
can be configured per sample rate setting.  
ALM_CTRL, ALARM CONROL  
The ALM_CTRL register (see Table 63 and Table 64) contains a  
number of configuration settings for the alarm function.  
Table 63. ALM_CTRL Register Definition  
Addresses  
Default  
Access  
Flash Backup  
Table 59. ALM_PNTR Register Definition  
0x34, 0x35  
0x0080  
R/W  
Yes  
Addresses  
Default  
Access  
Flash Backup  
0x30, 0x31  
0x0000  
R/W  
No  
Table 64. ALM_CTRL Bit Descriptions  
Bits Description  
[15:13] Don’t care.  
Table 60. ALM_PNTR Bit Descriptions  
Bits Description  
[15:10] Don’t care  
[12]  
Disables automatic clearing of spectral alarm status  
bits upon a read of the status register.  
[9:8]  
Indicates the sample rate setting for which Alarm x is  
defined  
[11:8]  
Response delay, range = 0 to 15.  
Represents the number of spectral records for each  
spectral alarm before a spectral alarm flag is set high.  
00 = SR0  
01 = SR1  
02 = SR2  
03 = SR3  
7
Latch DIAG_STAT error flags. Requires a clear status  
command (GLOB_CMD, Bit 4) to reset the flags to 0.  
1 = enabled,  
0 = disabled.  
[7:3]  
[2:0]  
Don’t care  
Spectral band number (1, 2, 3, 4, 5, or 6)  
6
5
Enable Alarm 1 and Alarm 2 on ALM1 and ALM2,  
respectively.  
Setting ALM_PNTR = 0x0203 provides access to the settings for  
the spectral alarm, which is associated with Sample Rate SR2  
and Spectral Band 3. The current attributes from this spectral  
alarm load to the ALM_F_LOW, ALM_F_HIGH, ALM_MAG1  
and ALM_MAG2 registers. Writing to these registers changes  
each setting for the spectral alarm, which is associated with  
Sample Rate SR2 and Spectral Band 3 as well.  
System alarm polarity.  
1 = trigger when less than ALM_S_MAG.  
0 = trigger when greater than ALM_S_MAG.  
4
System alarm selection. 1 = temperature, 0 = power  
supply.  
3
2
1
0
System alarm: 1 = enabled, 0 = disabled.  
Output alarm: 1 = enabled, 0 = disabled.  
Reserved.  
ALM_S_MAG ALARM LEVEL  
The ALM_S_MAG register (see Table 61 and Table 62) contains  
the magnitude of the system alarm, which can monitor the  
temperature or power supply level according to Bits[5:4] in the  
ALM_CTRL register (see Table 64).  
Reserved.  
FILT_CTRL, FILTER CONTROL  
The FILT_CTRL register (see Table 65 and Table 66) provides  
configuration settings for the 32-tap, FIR filters. When the FILT_  
CTRL pin contains the factory default value, the ADcmXL1021-1  
does not use any of the FIR filters on the output. For example,  
set DIN = 0xB871, then set DIN = 0xB901 to write 0x0171 to  
the FILT_CTRL register. This code (0x0171) selects Filter Bank 5  
for the accelerometer output.  
Table 61. ALM_S_MAG Register Definition  
Addresses  
0x32, 0x33  
Default  
Access  
Flash Backup  
0x0000  
R/W  
No  
Table 62. ALM_S_MAG Bit Descriptions  
Bits  
Description  
[15:0]  
System alarm setting  
Table 65. FILT_CTRL Register Definition  
Addresses  
Default  
Access  
Flash Backup  
0x38, 0x39  
0x0000  
R/W  
Yes  
Rev. 0 | Page 34 of 42  
 
 
 
 
 
 
 
 
 
 
Data Sheet  
ADcmXL1021-1  
Table 66. FILT_CTRL Bit Descriptions  
with the bin widths and noise predictions that come with those  
settings. The information in Table 69 also applies to the SR1  
(AVG_CNT register, Bits[7:4]), SR2 (AVG_CNT register, Bits[11:8]),  
and SR3 (AVG_CNT register, Bits[15:12]) settings as well.  
Bits  
[15:11] Don’t care.  
[10:8] Output FIR filter selection.  
Description  
110: FIR Filter Bank F (high-pass filter, 10 kHz).  
101: FIR Filter Bank E (high-pass filter, 5 kHz).  
100: FIR Filter Bank D (high-pass filter, 1 kHz).  
011: FIR Filter Bank C (low-pass filter, 10 kHz).  
010: FIR Filter Bank B (low-pass filter, 5 kHz).  
001: FIR Filter Bank A (low-pass filter, 1 kHz).  
000: no FIR selection.  
Table 69. SR0 Sample Rate Settings and Bin Widths  
AVG_CNT, Bits[3:0]  
Sample Rate (SPS) Bin Width (Hz)  
0
Not applicable  
220000  
110000  
55000  
27500  
13750  
Not applicable  
53.8  
26.9  
13.4  
6.71  
3.35  
1.68  
0.839  
1 (Default)  
2
3
4
5
6
7
[7:0]  
Reserved.  
6875  
3438.5  
AVG_CNT, DECIMATION CONTROL  
The AVG_CNT register (see Table 67 and Table 68) provides  
four different sample rate settings (SR0, SR1, SR2, and SR3) that  
users can enable using Bits[11:8] in the REC_CTRL register (see  
Table 47). These sample rate settings only apply to MFFT, AFFT,  
and MTC mode.  
DIAG_STAT, STATUS, AND ERROR FLAGS  
The DIAG_STAT (see Table 70 and Table 71) register contains a  
number of status flags.  
Table 70. DIAG_STAT Register Definition  
Table 67. AVG_CNT Register Definition  
Addresses  
Default  
Access  
Flash Backup  
Addresses  
Default  
Access  
Flash Backup  
0x3C, 0x3D  
0x0000  
R
No  
0x3A, 0x3B  
0x7421  
R/W  
Yes  
Table 71. DIAG_STAT Bit Descriptions  
Table 68. AVG_CNT Bit Descriptions  
Bits Description  
[15:12] SR3 sample rate scale factor (1 to 7), SR3 sample rate =  
220,000 ÷ 2AVG_CNT[15:12]  
Bits  
Description  
15  
Not used (don’t care).  
14  
System alarm flag. The temperature or power supply  
exceeded the user configured alarm.  
[11:8]  
[7:4]  
[3:0]  
SR2 sample rate scale factor (1 to 7), SR2 sample rate =  
220,000 ÷ 2AVG_CNT[11:8]  
13  
12  
11  
10  
9
Spectral Alarm 2 flag.  
Reserved.  
SR1 sample rate scale factor (1 to 7), SR1 sample rate =  
220,000 ÷ 2AVG_CNT[7:4]  
Reserved.  
Spectral Alarm 1 flag.  
SR0 sample rate scale factor (1 to 7), SR0 sample rate =  
220,000 ÷ 2AVG_CNT[3:0]  
Reserved.  
8
Reserved.  
Each nibble in the AVG_CNT register offers a setting for each  
sample rate setting: SR0, SR1, SR2, and SR3. The following  
formula demonstrates one of the sample rates (SR1) derived  
from the factory default value (0x7421) in the AVG_CNT  
register:  
7
Data ready/busy indicator (0 = busy, 1 = data ready).  
Flash test result, checksum flag (0 = no error, 1 = error).  
Self test diagnostic error flag.  
6
5
4
Recording escape flag. Indicates use of the SPI driven  
interruption command, 0x00E8. This flag is reset  
automatically after the first successful recording.  
SR1 = 220,000 ÷ 22 = 55,000 SPS  
To change one of the sample rate values, write the control value  
to the specific nibble in the AVG_CNT register. For example, set  
DIN = 0xBB35 to set the upper byte of the AVG_CNT register  
to 0x35, which causes the SR2 sample rate to be 27,500 SPS and  
the SR3 sample rate to be 6,875 SPS.  
3
2
1
0
SPI communication failure (SCLKs ≠ even multiple of 16).  
Flash update failure.  
Power supply > 3.625 V.  
Power supply < 2.975 V.  
In MFFT and AFFT mode, the sample rate settings in the  
AVG_CNT register influence the bin widths of each FFT result,  
which has an impact on the noise in each bin. Table 69 lists the SR0  
sample rate settings (see the AVG_CNT register, Bits[3:0]), along  
Rev. 0 | Page 35 of 42  
 
 
 
 
 
 
 
 
ADcmXL1021-1  
Data Sheet  
Table 75. ALM_STAT Bit Descriptions  
GLOB_CMD, GLOBAL COMMANDS  
Bits  
15  
14  
13  
12  
11  
10  
9
Description  
The GLOB_CMD (see Table 72 and Table 73) register contains a  
number of global commands. To start any of these processes, set  
the corresponding bit to 1. For example, set Bit 0 to logic high to  
execute the autonull function and the bit self clears.  
Alarm 2 on Band 6; 1 = alarm set, 0 = no alarm  
Alarm 1 on Band 6; 1 = alarm set, 0 = no alarm  
Alarm 2 on Band 5; 1 = alarm set, 0 = no alarm  
Alarm 1 on Band 5; 1 = alarm set, 0 = no alarm  
Alarm 2 on Band 4; 1 = alarm set, 0 = no alarm  
Alarm 1 on Band 4; 1 = alarm set, 0 = no alarm  
Alarm 2 on Band 3; 1 = alarm set, 0 = no alarm  
Alarm 1 on Band 3; 1 = alarm set, 0 = no alarm  
Alarm 2 on Band 2; 1 = alarm set, 0 = no alarm  
Alarm 1 on Band 2; 1 = alarm set, 0 = no alarm  
Alarm 2 on Band 1; 1 = alarm set, 0 = no alarm  
Alarm 1 on Band 1; 1 = alarm set, 0 = no alarm  
Not used  
Table 72. GLOB_CMD Register Definition  
Addresses  
Default  
Access  
Flash Backup  
0x3E, 0x3F  
Not applicable  
W
No  
8
Table 73. GLOB_CMD Bit Descriptions  
Bits Description  
7
6
15  
14  
Clear autonull correction.  
5
Retrieve spectral alarm band information from the  
ALM_PNTR setting.  
4
3
13  
12  
11  
10  
9
Retrieve record data from flash memory.  
Save spectral alarm band registers to flash memory.  
Record start or stop.  
[2:0]  
Most critical alarm condition, spectral band; range = 1 to 6  
ALM_PEAK, ALARM PEAK LEVEL  
Set BUF_PNTR = 0x0000.  
The ALM_PEAK (see Table 76 and Table 77) register contains the  
magnitude of the FFT bin, which contains the peak alarm value.  
Clear spectral alarm band registers from flash memory.  
Clear all records.  
8
7
Software reset.  
Table 76. ALM_PEAK Register Definition  
6
Save registers to flash memory.  
Addresses  
Default  
Access  
Flash Backup  
Yes  
5
Flash test, compare sum of flash memory with factory value.  
Clear DIAG_STAT register once.  
0x4A, 0x4B  
0x0000  
R
4
Table 77. ALM_PEAK Bit Descriptions  
3
Restore factory register settings and clear the capture buffers.  
Bits  
Description  
2
Self test. Executes the automatic self test method. If test  
does not pass, then the self test diagnostic flag is set in  
the status register (Bit 5).  
[15:0]  
Alarm peak, accelerometer data format  
1
Power-down (wake with CS toggle). Powers down sensor  
and puts embedded microcontroller in sleep mode. The  
device wakes up with a toggle of CS or if the automatic  
timer triggers a new capture (automatic mode).  
TIME_STAMP_L AND TIME_STAMP_H, DATA  
RECORD TIMESTAMP  
The TIME_STAMP_L (see Table 78 and Table 79) and  
TIME_STAMP_H (see Table 80 and Table 81) registers contain a  
relative timestamp for the most recent data capture event.  
0
Autonull.  
ALM_STAT, ALARM STATUS  
Table 78. TIME_STAMP_L Register Definition  
The ALM_STAT (see Table 74 and Table 75) register contains  
status flags for alarm.  
Addresses  
Default  
Access  
Flash Backup  
0x4C, 0x4D  
0x0000  
R
Yes  
Table 74. ALM_STAT Register Definition  
Addresses  
Default  
Access  
Flash Backup  
Table 79. TIME_STAMP_L Bit Descriptions  
0x44, 0x45  
0x0000  
R
Yes  
Bits  
Description  
[15:0]  
Timestamp, seconds, lower word  
Table 80. TIME_STAMP_H Register Definition  
Addresses  
Default  
Access  
Flash Backup  
0x4E, 0x4F  
0x0000  
R
Yes  
Table 81. TIME_STAMP_H Bit Descriptions  
Bits  
Description  
[15:0]  
Timestamp, seconds, upper word  
Rev. 0 | Page 36 of 42  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Data Sheet  
ADcmXL1021-1  
DAY_REV, DAY AND REVISION  
USER_SCRATCH  
The DAY_REV (see Table 82 and Table 83) contains part of the  
factory programming date (day) and the revision of the firmware.  
The USER_SCRATCH register allows end users to store a device  
number to identify the sensor. The register is readable and writable.  
Last written value is nonvolatile allowing for data recovery upon  
reset.  
Table 82. DAY_REV Register Definition  
Addresses  
Default  
Access  
Flash Backup  
Table 90. USER_SCRATCH Register Definition  
0x52, 0x53  
0x0000  
R
N/A  
Addresses  
Default  
Access  
Flash Backup  
Table 83. DAY_REV Bit Descriptions  
Bits Description  
[15:12] Day of the month, most significant digit  
0x5A, 0x5B  
N/A  
R/W  
Yes  
Table 91. USER_SCRATCH Bit Descriptions  
Bits  
Description  
[11:8]  
[7:4]  
[3:0]  
Day of the month, least significant digit  
Firmware revision, most significant digit  
Firmware revision, least significant digit  
[15:0]  
Optional user ID  
REC_FLASH_CNT, RECORD FLASH ENDURANCE  
YEAR_MON, YEAR AND MONTH  
The REC_FLASH_CNT (see Table 92 and Table 93) provides a  
tool for tracking the endurance of the flash memory bank, which  
support the 10 record storage locations. The value in the REC_  
FLASH_CNT register increments after clearing the user record  
(GLOB_CMD) and each time the record storage fills up (tenth  
location contains event data)  
The YEAR_MON (see Table 84 and Table 85) contains the factory  
programming date (month and year).  
Table 84. YEAR_MON Register Definition  
Addresses  
Default  
Access  
Flash Backup  
0x54, 0x55  
Not applicable  
R
N/A  
Table 92. REC_FLASH_CNT Register Definition  
Table 85. YEAR_MON Bit Descriptions  
Bits Description  
[15:12] Year, most significant digit  
Addresses  
Default  
Access  
Flash Backup  
0x5C, 0x5D  
0x0000  
R
N/A  
Table 93. REC_FLASH_CNT Bit Descriptions  
[118]  
[7:4]  
[3:0]  
Year, least significant digit  
Bits  
Description  
Month of the year, most significant digit  
Month of the year, least significant digit  
[15:0]  
Endurance counter for the record flash memory  
MISC_CTRL, MISCELLANEOUS CONTROL  
PROD_ID, PRODUCT IDENTIFICATION  
The MISC_CTRL register (see Table 94 and Table 95) enables the  
saving of MTC mode statistic values to memory, enable sensor self  
test, and enable SYNC pin to external control.  
The PROD_ID (see Table 86 and Table 87) register contains the  
numerical portion of the model number.  
Table 86. PROD_ID Register Definition  
Table 94. MISC_CTRL Register Definition  
Addresses  
Default  
Access  
Flash Backup  
Addresses  
Default  
Access  
Flash Backup  
0x56, 0x57  
0x03FD  
R
N/A  
0x64, 0x65  
0x0000  
W/R  
No  
Table 87. PROD_ID Bit Descriptions  
Table 95. MISC_CTRL Bit Descriptions  
Bits Description  
[15:13] Unused.  
Bits  
Description  
[15:0]  
Binary representation of the numerical portion of the  
model number: 0x03FD = 1,021  
12  
Enable sensitivity to SYNC pin to start a capture. Must be  
enabled for external trigger for manual capture modes.  
SERIAL_NUM, SERIAL NUMBER  
The SERIAL_NUM (see Table 88 and Table 89) contains the serial  
number of the unit, within a particular manufacturing lot.  
11  
10  
Unused.  
Transfer statistics record from flash memory to SRAM.  
REC_PNTR must point to the appropriate time domain  
statistic record.  
Table 88. SERIAL_NUM Register Definition  
Addresses  
Default  
Access  
Flash Backup  
9
Transfers statistics from SRAM to flash record.  
0x58, 0x59  
0x0000  
R
N/A  
8
Clear time domain statistics.  
Unused.  
[7:4]  
3
Table 89. SERIAL_NUM Bit Descriptions  
Set self test on.  
Clear self test.  
Unused.  
Bits  
Description  
2
[15:0]  
Lot specific serial number  
[1:0]  
Rev. 0 | Page 37 of 42  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ADcmXL1021-1  
Data Sheet  
REC_INFO1, RECORD INFORMATION  
REC_CNTR, RECORD COUNTER  
The REC_INFO1 register (see Table 96 and Table 97) contains the  
sample rate (SRx), window function, and FFT average settings  
associated with the spectral record in the user data buffer. The  
contents of this register are only relevant for results that come from  
MFFT and AFFT mode (see the REC_CTRL register in Table 47).  
The REC_CNTR (see Table 100 and Table 101) register contains  
the record counter, which contains the number of records currently  
in use.  
Table 100. REC_CNTR Register Definition  
Addresses  
Default  
Access  
Flash Backup  
Table 96. REC_INFO1 Register Definition  
0x6A, 0x6B  
0x0000  
R
N/A  
Addresses  
Default  
Access  
Flash Backup  
Table 101. REC_CNTR Bit Descriptions  
0x66, 0x67  
0x0000  
R
Yes  
Bits  
Description  
Table 97. REC_INFO1 Bit Descriptions  
Bits Description  
[15:4]  
[3:0]  
Not used  
Record counter range: 0 through 9  
[15:14] Sample rate option  
00 = SR0  
ALM_FREQ, SEVERE ALARM FREQUENCY  
The ALM_FREQ register (see Table 102 and Table 103) contains  
the frequency bin that is associated with the value in the ALM_  
PEAK (see Table 77) register.  
01 = SR1  
10 = SR2  
11 = SR3  
[13:12] Window setting  
00 = rectangular  
01 = Hanning  
Table 102. ALM_FREQ Register Definition  
Addresses  
Default  
Access  
Flash Backup  
0x70, 0x71  
0x0000  
R
Yes  
10 = flat top  
11 = not applicable  
Table 103. ALM_FREQ Bit Descriptions  
Bits Description  
[15:12] Not used  
[11:8]  
[7:0]  
Not used (don’t care)  
FFT averages; range = 1 to 2047  
[11:0]  
Alarm frequency for peak alarm level, FFT bin number;  
range = 0 to 2047  
REC_INFO2, RECORD INFORMATION,  
The REC_INFO2 (see Table 98 and Table 99) register contains the  
contents of the AVG_CNT register, which relate to the sample rate  
(SRx) in use for the spectral record in the user data buffer. The  
contents of this register are only relevant for results that come from  
MFFT and AFFT mode (see the REC_CTRL register in Table 47).  
STAT_PNTR, STATISTIC RESULT POINTER  
The STAT_PNTR register (see Table 104 and Table 105) controls  
which statistic loads to the statistic register (see Table 107). For  
example, set DIN = 0xF202 to write 0x02 to the lower byte of the  
STAT_PNTR, which causes the Kurtosis results to load to the  
statistic register.  
Table 98. REC_INFO2 Register Definition  
Addresses  
Default  
Access  
Flash Backup  
Table 104. STAT_PNTR Register Definition  
0x68, 0x69  
0x0000  
R
Yes  
Addresses  
Default  
Access  
Flash Backup  
Table 99. REC_INFO2 Bit Descriptions  
0x72, 0x73  
0x0000  
R/W  
No  
Bits  
Description  
Table 105. STAT_PNTR Bit Descriptions  
[15:4]  
[3:0]  
Not used (don’t care)  
AVG_CNT setting  
Bits  
Description  
[15:3]  
[2:0]  
Don’t care  
110 = skewness  
101 = Kurtosis  
100 = crest factor  
011 = peak-to-peak  
010 = peak  
001 = standard deviation  
000 = mean value  
Rev. 0 | Page 38 of 42  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Data Sheet  
ADcmXL1021-1  
Table 110. FUND_FREQ Bit Descriptions  
STATISTIC, STATISTIC RESULT  
Bits  
Description  
The statistic register (see Table 106 and Table 107) contains the  
statistical metric that represents the settings in the STAT_  
PNTR register (see Table 105). The data format for this register  
depends on the metric that it contains. When the lower byte of the  
STAT_PNTR register is equal to 0x00, 0x04, 0x05, or 0x06, the data  
format is the same as the OUT_BUF register (MTC mode). See  
Table 40 and Table 41 for a definition and some examples of this  
data format. When the lower byte of the STAT_PNTR register is  
equal to 0x01, 0x02, or 0x03, the statistic register uses the binary  
coded decimal (BCD) format shown in Table 107. Table 108  
provides some numerical examples of this format.  
[15:0]  
Fundamental frequency setting, fF. Offset binary format,  
1 LSB = 1 Hz. 0x0000 = no influence on alarm settings.  
Table 111. Statistic Data Format Examples  
Alarm  
Band  
Start  
Frequency  
Stop  
Frequency  
Alarm 1  
Level  
Alarm 2  
Level  
1
2
3
4
5
6
0.2 × fF  
0.8 × fF  
1.8 × fF  
2.8 × fF  
3.8 × fF  
10.2 × fF  
0.8 × fF  
1.8 × fF  
2.8 × fF  
3.8 × fF  
10.2 × fF  
fMAX  
20% × 0.5 g  
90% × 0.5 g  
30% × 0.5 g  
25% × 0.5 g  
20% × 0.5 g  
15% × 0.5 g  
0.5 g  
0.5 g  
0.5 g  
0.5 g  
0.5 g  
0.5 g  
Table 106. Statistic Register Definition  
Addresses  
Default  
Access  
Flash Backup  
FLASH_CNT_L, FLASH MEMORY ENDURANCE  
0x78, 0x79  
0x0000  
R
Yes  
FLASH_CNT_L (see Table 112 and Table 113) contains the lower  
16 bits of a 32-bit counter. This counter tracks the total number of  
update cycles that the flash memory bank experiences.  
Table 107. Statistic Bit Descriptions for Crest Factor,  
Kurtosis and Skewness results  
Bits  
Description  
Table 112. FLASH_CNT_L Register Definition  
[15:8]  
[7:0]  
Integer, offset binary format, 1 LSB = 1  
Decimal, 1 LSB = 1/256 = 0.00390625  
Addresses  
Default  
Access  
Flash Backup  
0x7C, 0x7D  
Not applicable  
R
N/A  
Table 108. Statistic Data Format Examples for Crest Factor,  
Kurtosis and Skewness results  
Table 113. FLASH_CNT_L Bit Descriptions  
Bits  
Description  
Hex.  
Integer  
Decimal  
Result  
[15:0]  
Flash update counter, lower word  
0x0000  
0x0001  
0x0002  
0x000A  
0x00FE  
0x00FF  
0x0100  
0x016A  
0x020A  
0x069A  
0
0
0
0
0
0
1
1
2
6
0
0
1/256 = 0.00390625  
2/256 = 0.0078125  
10/256 = 0.0390625  
254/256 = 0.9921875  
255/256 = 0.99609375  
0
106/256 = 0.4140625  
10/256 = 0.0390625  
154/256 = 0.6015625  
242/256 = 0.9453125  
255/256 = 0.99609375  
0.00390625  
0.0078125  
0.0390625  
0.9921875  
0.99609375  
1
1.4140625  
2.0390625  
6.6015625  
26. 9453125  
255.99609375  
FLASH_CNT_U, FLASH MEMORY ENDURANCE  
The FLASH_CNT_U register (see Table 114 and Table 115)  
contains the upper 16 bits of a 32-bit counter. This counter tracks  
the total number of update cycles that the flash memory bank  
experiences.  
Table 114. FLASH_CNT_U Register Definition  
Addresses  
Default  
Access  
Flash Backup  
0x7E, 0x7F  
0x0000  
R
N/A  
0x1AF2 26  
0xFFFF 255  
Table 115. FLASH_CNT_U Bit Descriptions  
Bits  
Description  
FUND_FREQ, FUNDAMENTAL FREQUENCY  
[15:0]  
Flash update counter, upper word  
The FUND_FREQ register (see Table 109 and Table 110) provides  
a simple way to configure the spectral alarms to monitor the  
fundamental vibration frequency on a platform, along with the  
subsequent harmonic frequencies. Table 111 provides the start  
and stop frequency settings for each alarm band, which  
600  
450  
300  
automatically loads after writing to the upper byte of the  
FUND_FREQ register, the units are Hz. Default is disabled.  
Table 109. FUND_FREQ Register Definition  
150  
0
Addresses  
Default  
Access  
Flash Backup  
0x7A, 0x7B  
0x0000  
R/W  
Yes  
30  
40  
55  
70  
85  
100  
125  
135  
150  
JUNCTION TEMPERATURE (°C)  
Figure 44. Flash/EE Memory Data Retention  
Rev. 0 | Page 39 of 42  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ADcmXL1021-1  
Data Sheet  
FIR Filter Design Guidelines  
FIR FILTER REGISTERS  
User defined, 32 tap digital filtering can be programmed and  
stored. This filter uses 16-bit coefficients. Register Page 1 through  
Register Page 6 contain filter bank coefficients for Filter A to  
Filter F, respectively. Each of the 32 coefficients has a 16-bit  
register. User filters (as well as other register settings) can be  
stored internally in the ADcmXL1021-1.  
The ADcmXL1021-1 signal chain includes a 32-tap, FIR filter.  
Register Page 1 through Register Page 6 provide user configuration  
access to the coefficients for six different FIR filter banks. The  
FILT_CTRL (see Table 66) register controls the enabling of the  
FIR filters and allows the selection of the FIR filter banks. Each  
FIR filter bank features factory default filter designs, and each  
filter bank provides write access to support application specific  
filter designs. To access one of the FIR filter banks, write the  
corresponding page number to the PAGE_ID register. For  
example, set DIN = 0x8003 to set PAGE_ID = 0x0003, which  
provides access to FIR Filer Bank C. See Table 19 for a complete  
listing of the FIR coefficient addresses and pages.  
The numerical format for each coefficient is a 16-bit, twos  
complement signed value. Signed values use the MSB to  
identify the sign of the value. If the MSB is 1, the values are  
negative. If the MSB is 0, the value is positive. The remaining  
15 bits are the magnitude of the coefficient.  
The 32 taps of the filter must sum to 0 to have unity gain. If  
values are summed as unsigned binary values, the summed  
value of 32,767 represents unity gain. By default, the FIR filters  
are designed to have a linear phase response up to 10 kHz.  
By default, the following filters are preconfigured in the  
respective filter bank registers:  
Filter Band A is a 32 tap, low-pass filter at 1 kHz.  
Filter Band B is a 32 tap, low-pass filter at 5 kHz.  
Filter Band C is a 32 tap, low-pass filter at 10 kHz.  
Filter Band D is a 32 tap, high-pass filter at 1 kHz.  
Filter Band E is a 32 tap, high-pass filter at 5 kHz.  
Filter Band F is a 32 tap, high-pass filter at 10 kHz.  
Rev. 0 | Page 40 of 42  
Data Sheet  
ADcmXL1021-1  
APPLICATIONS INFORMATION  
some cases, improve mechanical coupling and frequency response.  
Application of these additional adhesives are mechanical design  
and processes dependent. Therefore, the application of these  
additional adhesives must be evaluated thoroughly during  
product development.  
MECHANICAL INTERFACE  
For the best performance, follow the guidelines described in  
this section when installing the ADcmXL1021-1 in a system.  
Eliminate potential translational forces by aligning the module  
in a well defined orientation.  
A minimum bend radius of the flex tail of 1 mm is allowed. At  
a lower bend radius, delamination or conductor failure may occur.  
The connector at the end of the flex tail is the DF12(3.0)-14DS-  
0.5V(86) from Hirose Electric Co. Ltd. The mating connector that  
must be used is the DF12(3.0)–14DP–0.5V(86) from Hirose  
Electric Co. Ltd.  
Use uniform mounting force on all four corners of the module.  
Use all four mounting holes and M2.5 screws at a torque of  
5 inch-pounds.  
Additional mechanical adhesives (cyanoacrylate adhesive and  
epoxies such as Dymax 652A gel adhesive) can be used to, in  
Rev. 0 | Page 41 of 42  
 
 
ADcmXL1021-1  
Data Sheet  
OUTLINE DIMENSIONS  
27.10  
27.00  
26.90  
21.75  
21.70  
21.65  
BOTTOM VIEW  
TOP VIEW  
Ø 2.65  
(for M2.5  
SS316 screws)  
12.55  
12.50  
12.45  
23.80  
23.70  
23.60  
Hirose 14 Pin  
ctor)  
36.00  
35.80  
35.60  
(0.5 mm Pitch Conne  
86)  
DF12(3.0)-14DS-05V (  
3.80  
3.60  
3.40  
4.55 BSC  
3.50 BSC  
PIN 1  
9.20  
9.10  
8.90  
5.80  
5.60  
5.40  
FRONT VIEW  
12.50  
12.40  
12.30  
4.60  
4.50  
4.40  
Figure 45. 14-Lead Module with Integrated Flex Connector [MODULE]  
(ML-14-7)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
−40°C to +105°C  
g Range Package Description  
Package Option  
ADcmXL1021-1BMLZ  
EVAL-ADCM-1  
50 g  
14-Lead Module with Integrated Flex Connector [MODULE]  
ADcmXL1021-1 Evaluation Kit  
ML-14-7  
ADCMXL_BRKOUT/PCBZ  
ADcmXL1021-1 Breakout Interface Board  
1 Z = RoHS Compliant Part.  
©2019 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D21125-0-11/19(0)  
Rev. 0 | Page 42 of 42  
 
 

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY