ADF4106BCP-REEL7 [ADI]

IC PLL FREQUENCY SYNTHESIZER, 6000 MHz, QCC20, 4 X 4 MM, MO-220VGGD-1, LFCSP-20, PLL or Frequency Synthesis Circuit;
ADF4106BCP-REEL7
型号: ADF4106BCP-REEL7
厂家: ADI    ADI
描述:

IC PLL FREQUENCY SYNTHESIZER, 6000 MHz, QCC20, 4 X 4 MM, MO-220VGGD-1, LFCSP-20, PLL or Frequency Synthesis Circuit

文件: 总24页 (文件大小:264K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PLL Frequency Synthesizer  
ADF4106  
GENERAL DESCRIPTION  
FEATURES  
6.0 GHz bandwidth  
2.7 V to 3.3 V power supply  
Separate charge pump supply (VP) allows extended  
tuning voltage in 3 V systems  
Programmable dual-modulus prescaler  
8/9, 16/17, 32/33, 64/65  
Programmable charge pump currents  
Programmable antibacklash pulse width  
3-wire serial interface  
Analog and digital lock detect  
Hardware and software power-down mode  
The ADF4106 frequency synthesizer can be used to implement  
local oscillators in the up-conversion and down-conversion  
sections of wireless receivers and transmitters. It consists of a  
low noise, digital phase frequency detector (PFD), a precision  
charge pump, a programmable reference divider, programmable  
A counter and B counter, and a dual-modulus prescaler (P/P +  
1). The A (6-bit) counter and B (13-bit) counter, in conjunction  
with the dual-modulus prescaler (P/P + 1), implement an N  
divider (N = BP + A). In addition, the 14-bit reference counter  
(R Counter) allows selectable REFIN frequencies at the PFD  
input. A complete phase-locked loop (PLL) can be implemented  
if the synthesizer is used with an external loop filter and voltage  
controlled oscillator (VCO). Its very high bandwidth means  
that frequency doublers can be eliminated in many high  
frequency systems, simplifying system architecture and  
reducing cost.  
APPLICATIONS  
Broadband wireless access  
Satellite systems  
Instrumentation  
Wireless LANS  
Base stations for wireless radios  
FUNCTIONAL BLOCK DIAGRAM  
AV  
DV  
R
SET  
V
CPGND  
DD  
DD  
P
REFERENCE  
14-BIT  
R COUNTER  
PHASE  
FREQUENCY  
DETECTOR  
REF  
CHARGE  
PUMP  
IN  
CP  
14  
R COUNTER  
LATCH  
LOCK  
DETECT  
CURRENT  
SETTING 2  
CURRENT  
SETTING 1  
CLK  
DATA  
LE  
24-BIT INPUT  
REGISTER  
FUNCTION  
LATCH  
CPI6 CPI5 CPI4  
HIGH Z  
CPI3 CPI2 CPI1  
22  
A, B COUNTER  
LATCH  
FROM  
SD  
19  
OUT  
AV  
FUNCTION  
LATCH  
DD  
MUXOUT  
MUX  
13  
13-BIT  
N = BP + A  
SD  
OUT  
B COUNTER  
LOAD  
RF  
RF  
A
B
PRESCALER  
P/P + 1  
IN  
IN  
LOAD  
M3 M2 M1  
6-BIT  
A COUNTER  
ADF4106  
6
CE  
AGND  
DGND  
Figure 1.  
Rev. C  
Information furnished by Analog Devices is believed to be accurate and reliable.  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its use.  
Specifications subject to change without notice. No license is granted by implication  
or otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2001–2010 Analog Devices, Inc. All rights reserved.  
ADF4106  
TABLE OF CONTENTS  
Specifications..................................................................................... 3  
Phase Frequency Detector (PFD) and Charge Pump............ 10  
MUXOUT and Lock Detect...................................................... 10  
Input Shift Register .................................................................... 10  
The Function Latch.................................................................... 16  
The Initialization Latch ............................................................. 17  
Applications..................................................................................... 18  
Local Oscillator for LMDS Base Station Transmitter............ 18  
Interfacing ................................................................................... 19  
PCB Design Guidelines for Chip Scale Package .................... 19  
Outline Dimensions....................................................................... 20  
Ordering Guide .......................................................................... 21  
Timing Characterisitics ............................................................... 4  
Absolute Maximum Ratings............................................................ 5  
ESD Caution.................................................................................. 5  
Pin Configurations and Function Descriptions ........................... 6  
Typical Performance Characteristics ............................................. 7  
General Description......................................................................... 9  
Reference Input Section............................................................... 9  
RF Input Stage............................................................................... 9  
Prescaler (P/P +1)......................................................................... 9  
A Counter and B Counter ........................................................... 9  
R Counter ...................................................................................... 9  
REVISION HISTORY  
Changes to Figure 6...........................................................................7  
Changes to Figure 10.........................................................................7  
Deleted TPC 13 and TPC 14............................................................8  
Changes to Figure 15.........................................................................8  
Changes to Figure 20 Caption ...................................................... 10  
Updated Outline Dimensions....................................................... 20  
Changes to Ordering Guide.......................................................... 21  
2/10—Rev B to Rev. C  
Changes to Figure 4 and Table 4..................................................... 6  
Changes to Figure 12........................................................................ 8  
Updated Outline Dimensions....................................................... 20  
Changes to Ordering Guide .......................................................... 21  
6/05—Rev A to Rev. B  
Updated Format..................................................................Universal  
Changes to Figure 1.......................................................................... 1  
Changes to Table 1............................................................................ 3  
Changes to Table 2............................................................................ 4  
Changes to Table 3............................................................................ 5  
Changes to Figure 3 and Figure 4................................................... 6  
5/03—Rev 0 to Rev. A  
Edits to Specifications.......................................................................2  
Edits to TPC 11..................................................................................7  
Updated Outline Dimensions....................................................... 19  
10/01—Revision 0: Initial Revision  
Rev. C | Page 2 of 24  
ADF4106  
SPECIFICATIONS  
AVDD = DVDD = 3 V 10ꢀ, AVDD ≤ VP ≤ 5.5 V, AGND = DGND = CPGND = 0 V, RSET = 5.1 kΩ, dBm referred to 50 Ω, TA = TMAX to TMIN  
,
unless otherwise noted.  
Table 1.  
Parameter  
B Version1 B Chips2 (typ) Unit  
Test Conditions/Comments  
RF CHARACTERISTICS  
RF Input Frequency (RFIN)  
See Figure 18 for input circuit  
For lower frequencies, ensure  
slew rate (SR) > 320 V/μs  
0.5/6.0  
0.5/6.0  
GHz min/max  
RF Input Sensitivity  
Maximum Allowable Prescaler  
Output Frequency3  
–10/0  
300  
–10/0  
300  
dBm min/max  
MHz max  
P = 8  
325  
325  
MHz  
P = 16  
REFIN CHARACTERISTICS  
REFIN Input Frequency  
REFIN Input Sensitivity4  
REFIN Input Capacitance  
REFIN Input Current  
PHASE DETECTOR  
Phase Detector Frequency6  
CHARGE PUMP  
20/300  
0.8/VDD  
10  
20/300  
0.8/VDD  
10  
MHz min/max  
For f < 20 MHz, ensure SR > 50 V/μs  
V p-p min/max Biased at AVDD/2 (see Note 55)  
pF max  
μA max  
100  
100  
104  
104  
MHz max  
ABP = 0, 0 (2.9 ns antibacklash pulse width)  
Programmable, see Table 9  
ICP Sink/Source  
High Value  
Low Value  
Absolute Accuracy  
RSET Range  
ICP Three-State Leakage  
Sink and Source Current Matching  
5
5
mA typ  
μA typ  
% typ  
kΩ typ  
nA max  
% typ  
With RSET = 5.1 kΩ  
625  
2.5  
3.0/11  
2
625  
2.5  
3.0/11  
2
With RSET = 5.1 kΩ  
See Table 9  
1 nA typical; TA = 25°C  
0.5 V ≤ VCP ≤ VP − 0.5 V  
2
2
ICP vs. VCP  
ICP vs. Temperature  
LOGIC INPUTS  
1.5  
2
1.5  
2
% typ  
% typ  
0.5 V ≤ VCP ≤ VP − 0.5 V  
VCP = VP/2  
VIH, Input High Voltage  
VIL, Input Low Voltage  
IINH, IINL, Input Current  
CIN, Input Capacitance  
LOGIC OUTPUTS  
1.4  
0.6  
1
1.4  
0.6  
1
V min  
V max  
μA max  
pF max  
10  
10  
VOH, Output High Voltage  
1.4  
1.4  
V min  
Open-drain output chosen, 1 kΩ pull-up  
resistor to 1.8 V  
VOH, Output High Voltage  
IOH  
VOL, Output Low Voltage  
VDD − 0.4  
100  
0.4  
VDD − 0.4  
100  
0.4  
V min  
μA max  
V max  
CMOS output chosen  
IOL = 500 μA  
POWER SUPPLIES  
AVDD  
DVDD  
VP  
2.7/3.3  
AVDD  
AVDD/5.5  
11  
11.5  
13  
2.7/3.3  
AVDD  
AVDD/5.5  
9.0  
9.5  
10.5  
0.4  
V min/V max  
V min/V max  
mA max  
mA max  
mA max  
mA max  
μA typ  
AVDD ≤ VP ≤ 5.5V  
9.0 mA typ  
9.5 mA typ  
10.5 mA typ  
TA = 25°C  
7
IDD (AIDD + DIDD)  
8
IDD (AIDD + DIDD)  
9
IDD (AIDD + DIDD)  
IP  
0.4  
10  
Power-Down Mode10  
(AIDD + DIDD)  
10  
Rev. C | Page 3 of 24  
 
ADF4106  
Parameter  
B Version1 B Chips2 (typ) Unit  
Test Conditions/Comments  
NOISE CHARACTERISTICS  
ADF4106 Normalized  
–219  
–219  
dBc/Hz typ  
Phase Noise Floor11  
Phase Noise Performance12  
900 MHz13  
@ VCO output  
–92.5  
−76.5  
−83.5  
−92.5  
−76.5  
−83.5  
dBc/Hz typ  
dBc/Hz typ  
dBc/Hz typ  
@ 1 kHz offset and 200 kHz PFD frequency  
@ 1 kHz offset and 200 kHz PFD frequency  
@ 1 kHz offset and 1 MHz PFD frequency  
5800 MHz14  
5800 MHz15  
Spurious Signals  
900 MHz13  
–90/–92  
–65/–70  
–70/–75  
–90/–92  
–65/–70  
–70/–75  
dBc typ  
dBc typ  
dBc typ  
@ 200 kHz/400 kHz and 200 kHz PFD frequency  
@ 200 kHz/400 kHz and 200 kHz PFD frequency  
@ 1 MHz/2 MHz and 1 MHz PFD frequency  
5800 MHz14  
5800 MHz15  
1 Operating temperature range (B Version) is –40°C to +85°C.  
2 The B chip specifications are given as typical values.  
3 This is the maximum operating frequency of the CMOS counters. The prescaler value should be chosen to ensure that the RF input is divided down to a frequency that  
is less than this value.  
4 AVDD = DVDD = 3 V.  
5 AC coupling ensures AVDD/2 bias.  
6 Guaranteed by design. Sample tested to ensure compliance.  
7 TA = 25°C; AVDD = DVDD = 3 V; P = 16; RFIN = 900 MHz.  
8 TA = 25°C; AVDD = DVDD = 3 V; P = 16; RFIN = 2.0 GHz.  
9 TA = 25°C; AVDD = DVDD = 3 V; P = 32; RFIN = 6.0 GHz.  
10 TA = 25°C; AVDD = DVDD = 3.3 V; R = 16383; A = 63; B = 891; P = 32; RFIN = 6.0 GHz.  
11 The synthesizer phase noise floor is estimated by measuring the in-band phase noise at the output of the VCO and subtracting 20 log N (where N is the N divider  
value) and 10 log FPFD. PNSYNTH = PNTOT − 10 log FPFD − 20 log N.  
12 The phase noise is measured with the EVAL-ADF4106EB1 evaluation board and the Agilent E4440A Spectrum Analyzer. The spectrum analyzer provides the REFIN for  
the synthesizer (fREFOUT = 10 MHz @ 0 dBm).  
13  
f
f
f
= 10 MHz; fPFD = 200 kHz; Offset Frequency = 1 kHz; fRF = 900 MHz; N = 4500; Loop B/W = 20 kHz.  
= 10 MHz; fPFD = 200 kHz; Offset Frequency = 1 kHz; fRF = 5800 MHz; N = 29000; Loop B/W = 20 kHz.  
= 10 MHz; fPFD = 1 MHz; Offset Frequency = 1 kHz; fRF = 5800 MHz; N = 5800; Loop B/W = 100 kHz.  
REFIN  
REFIN  
REFIN  
14  
15  
TIMING CHARACTERISITICS  
AVDD = DVDD = 3 V 10ꢀ, AVDD ≤ VP ≤ 5.5 V, AGND = DGND = CPGND = 0 V, RSET = 5.1 kΩ, dBm referred to 50 Ω, TA = TMAX to TMIN  
,
unless otherwise noted.  
Table 2.  
Parameter  
Limit1 (B Version)  
Unit  
Test Conditions/Comments  
DATA to CLOCK Setup Time  
DATA to CLOCK Hold Time  
CLOCK High Duration  
CLOCK Low Duration  
t1  
t2  
t3  
t4  
t5  
t6  
10  
10  
25  
25  
10  
20  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
CLOCK to LE Setup Time  
LE Pulse Width  
1 Operating temperature range (B Version) is –40°C to +85°C.  
t3  
t4  
CLOCK  
t1  
t2  
DB0 (LSB)  
(CONTROL BIT C1)  
DB1 (CONTROL  
BIT C2)  
DB2  
DB23 (MSB)  
DATA  
DB22  
t6  
LE  
LE  
t5  
Figure 2. Timing Diagram  
Rev. C | Page 4 of 24  
 
 
ADF4106  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
Table 3.  
Parameter  
Rating  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
AVDD to GND1  
–0.3 V to + 3.6 V  
–0.3 V to + 0.3 V  
–0.3 V to + 5.8 V  
–0.3 V to + 5.8 V  
–0.3 V to VDD + 0.3 V  
–0.3 V to VP + 0.3 V  
–0.3 V to VDD + 0.3 V  
AVDD to DVDD  
VP to GND  
VP to AVDD  
Digital I/O Voltage to GND  
Analog I/O Voltage to GND  
REFIN, RFINA, RFINB to GND  
Operating Temperature Range  
Industrial (B Version)  
Storage Temperature Range  
Maximum Junction Temperature  
TSSOP θJA Thermal Impedance  
This device is a high performance RF integrated circuit with an  
ESD rating of <2 kV, and it is ESD sensitive. Proper precautions  
should be taken for handling and assembly.  
–40°C to +85°C  
–65°C to +125°C  
150°C  
112°C/W  
LFCSP θJA Thermal Impedance  
(Paddle Soldered)  
30.4°C/W  
Reflow Soldering  
Peak Temperature  
Time at Peak Temperature  
Transistor Count  
CMOS  
260°C  
40 sec  
6425  
303  
Bipolar  
1GND = AGND = DGND = 0 V.  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on  
the human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. C | Page 5 of 24  
 
ADF4106  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
1
2
3
4
5
6
7
8
16  
15  
14  
V
R
P
SET  
DV  
CP  
DD  
PIN 1  
15 MUXOUT  
14 LE  
13 DATA  
12 CLK  
11 CE  
CPGND 1  
AGND 2  
AGND 3  
MUXOUT  
LE  
CPGND  
AGND  
INDICATOR  
ADF4106  
ADF4106  
TOP VIEW  
TOP VIEW 13  
(Not to Scale)  
12  
RF B 4  
IN  
RF A 5  
IN  
DATA  
CLK  
RF  
RF  
B
IN  
IN  
11  
10  
9
A
CE  
AV  
DD  
DGND  
REF  
IN  
NOTES  
1. TRANSISTOR COUNT 6425 (CMOS),  
303 (BIPOLAR).  
2. THE EXPOSED PAD MUST BE  
CONNECTED TO AGND.  
NOTE: TRANSISTOR COUNT 6425 (CMOS),  
303 (BIPOLAR).  
Figure 3. 16-Lead TSSOP Pin Configuration  
Figure 4. 20-Lead LFCSP_VQ Pin Configuration  
Table 4. Pin Function Descriptions  
Pin No. Pin No.  
TSSOP  
LFCSP  
Mnemonic Function  
1
19  
RSET  
Connecting a resistor between this pin and CPGND sets the maximum charge pump output current.  
The nominal voltage potential at the RSET pin is 0.66 V. The relationship between ICP and RSET is  
25.5  
RSET  
ICP MAX  
=
So, with RSET = 5.1 kΩ, ICP MAX = 5 mA.  
2
20  
CP  
Charge Pump Output. When enabled, this provides ICP to the external loop filter, which in turn  
drives the external VCO.  
3
4
5
1
2, 3  
4
CPGND  
AGND  
RFINB  
Charge Pump Ground. This is the ground return path for the charge pump.  
Analog Ground. This is the ground return path of the prescaler.  
Complementary Input to the RF Prescaler. This point must be decoupled to the ground plane with  
a small bypass capacitor, typically 100 pF. See Figure 18.  
6
7
5
6, 7  
RFINA  
AVDD  
Input to the RF Prescaler. This small signal input is ac-coupled to the external VCO.  
Analog Power Supply. This may range from 2.7 V to 3.3 V. Decoupling capacitors to the analog ground  
plane should be placed as close as possible to this pin. AVDD must be the same value as DVDD.  
8
8
REFIN  
Reference Input. This is a CMOS input with a nominal threshold of VDD/2 and a dc equivalent input  
resistance of 100 kΩ. See Figure 18. This input can be driven from a TTL or CMOS crystal oscillator or  
it can be ac-coupled.  
9
10  
9, 10  
11  
DGND  
CE  
Digital Ground.  
Chip Enable. A logic low on this pin powers down the device and puts the charge pump output  
into three-state mode. Taking the pin high powers up the device, depending on the status of the  
power-down bit, F2.  
11  
12  
13  
14  
15  
16  
12  
CLK  
Serial Clock Input. This serial clock is used to clock in the serial data to the registers. The data is latched  
into the 24-bit shift register on the CLK rising edge. This input is a high impedance CMOS input.  
Serial Data Input. The serial data is loaded MSB first with the two LSBs being the control bits.  
This input is a high impedance CMOS input.  
Load Enable, CMOS Input. When LE goes high, the data stored in the shift registers is loaded into one  
of the four latches with the latch being selected using the control bits.  
This multiplexer output allows either the lock detect, the scaled RF, or the scaled reference frequency  
to be accessed externally.  
Digital Power Supply. This may range from 2.7 V to 3.3 V. Decoupling capacitors to the digital ground  
plane should be placed as close as possible to this pin. DVDD must be the same value as AVDD.  
Charge Pump Power Supply. This should be greater than or equal to VDD. In systems where VDD is 3 V,  
it can be set to 5.5 V and used to drive a VCO with a tuning range of up to 5 V.  
13  
DATA  
LE  
14  
15  
MUXOUT  
DVDD  
VP  
16, 17  
18  
EP  
Exposed Pad. The exposed pad must be connected to AGND.  
Rev. C | Page 6 of 24  
 
ADF4106  
TYPICAL PERFORMANCE CHARACTERISTICS  
–40  
–50  
FREQ UNIT  
GHz KEYWORD  
R
10dB/DIV  
= –40dBc/Hz  
PARAM TYPE  
S IMPEDANCE 50Ω  
R
DATA FORMAT MA  
L
RMS NOISE = 0.36°  
FREQ  
0.500  
0.600  
0.700  
0.800  
0.900  
1.000  
1.100  
1.200  
1.300  
1.400  
1.500  
1.600  
1.700  
1.800  
1.900  
2.000  
2.100  
2.200  
2.300  
2.400  
2.500  
2.600  
2.700  
2.800  
2.900  
3.000  
3.100  
3.200  
MAGS11  
0.89148  
0.88133  
0.87152  
0.85855  
0.84911  
0.83512  
0.82374  
0.80871  
0.79176  
0.77205  
0.75696  
0.74234  
0.72239  
0.69419  
0.67288  
0.66227  
0.64758  
0.62454  
0.59466  
0.55932  
0.52256  
0.48754  
0.46411  
0.45776  
0.44859  
0.44588  
0.43810  
0.43269  
ANGS11  
FREQ MAGS11 ANGS11  
–60  
–17.2820  
– 20.6919  
– 24.5386  
–27.3228  
–31.0698  
– 34.8623  
–38.5574  
–41.9093  
– 45.6990  
–49.4185  
–52.8898  
–56.2923  
–60.2584  
–63.1446  
–65.6464  
–68.0742  
–71.3530  
–75.5658  
–79.6404  
–82.8246  
–85.2795  
–85.6298  
–86.1854  
–86.4997  
–88.8080  
–91.9737  
–95.4087  
–99.1282  
3.300  
3.400  
3.500  
3.600  
3.700  
3.800  
3.900  
4.000  
4.100  
4.200  
4.300  
4.400  
4.500  
4.600  
4.700  
4.800  
4.900  
5.000  
5.100  
5.200  
5.300  
5.400  
5.500  
5.600  
5.700  
5.800  
5.900  
6.000  
0.42777  
0.42859  
0.43365  
0.43849  
0.44475  
0.44800  
0.45223  
0.45555  
0.45313  
0.45622  
0.45555  
0.46108  
0.45325  
0.45054  
0.45200  
0.45043  
0.45282  
0.44287  
0.44909  
0.44294  
0.44558  
0.45417  
0.46038  
0.47128  
0.47439  
0.48604  
0.50637  
0.52172  
–102.748  
–107.167  
–111.883  
–117.548  
–123.856  
–130.399  
–136.744  
–142.766  
–149.269  
–154.884  
–159.680  
–164.916  
–168.452  
–173.462  
–176.697  
178.824  
174.947  
170.237  
166.617  
162.786  
158.766  
153.195  
147.721  
139.760  
132.657  
125.782  
121.110  
115.400  
–70  
–80  
–90  
–100  
–110  
–120  
–130  
–140  
100Hz  
1MHz  
FREQUENCY OFFSET FROM 900MHz CARRIER  
Figure 8. Integrated Phase Noise (900 MHz, 200 kHz, and 20 kHz)  
Figure 5. S-Parameter Data for the RF Input  
0
0
–5  
REF LEVEL = –14.0dBm  
V
= 3V  
DD  
= 3V  
V
= 3V, V = 5V  
P
DD  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
V
P
I
= 5mA  
CP  
PFD FREQUENCY = 200kHz  
LOOP BANDWIDTH = 20kHz  
RES BANDWIDTH = 1kHz  
VIDEO BANDWIDTH = 1kHz  
SWEEP = 2.5 SECONDS  
AVERAGES = 30  
–10  
–15  
–20  
–25  
T
= +85°C  
A
–91.0dBc/Hz  
T
= +25°C  
A
T
= –40°C  
A
–30  
0
–400kHz  
–200kHz  
900MHz  
200kHz  
400kHz  
1
2
3
4
5
6
FREQUENCY  
RF INPUT FREQUENCY (GHz)  
Figure 9. Reference Spurs (900 MHz, 200 kHz, and 20 kHz)  
Figure 6. Input Sensitivity  
0
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
REF LEVEL = –10dBm  
V
I
= 3V, V = 5V  
P
= 5mA  
REF LEVEL = –14.3dBm  
DD  
V
= 3V, V = 5V  
P
= 5mA  
DD  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
CP  
I
CP  
PFD FREQUENCY = 1MHz  
LOOP BANDWIDTH = 100kHz  
RES BANDWIDTH = 10Hz  
VIDEO BANDWIDTH = 10Hz  
SWEEP = 1.9 SECONDS  
AVERAGES = 10  
PFD FREQUENCY = 200kHz  
LOOP BANDWIDTH = 20kHz  
RES BANDWIDTH = 10Hz  
VIDEO BANDWIDTH = 10Hz  
SWEEP = 1.9 SECONDS  
AVERAGES = 10  
–93.0dBc/Hz  
–83.5dBc/Hz  
–2kHz  
–1kHz  
5800MHz  
1kHz  
2kHz  
–2kHz  
–1kHz  
900MHz  
1kHz  
2kHz  
FREQUENCY  
FREQUENCY  
Figure 10. Phase Noise (5.8 GHz,1 MHz, and 100 kHz)  
Figure 7. Phase Noise (900 MHz, 200 kHz, and 20 kHz)  
Rev. C | Page 7 of 24  
 
ADF4106  
–40  
–50  
–5  
–15  
–25  
–35  
–45  
–55  
–65  
–75  
–85  
–95  
–105  
10dB/DIV  
= –40dBc/Hz  
RMS NOISE = 1.8°  
V
V
= 3V  
DD  
= 5V  
R
L
P
–60  
–70  
–80  
–90  
–100  
–110  
–120  
–130  
–140  
100Hz  
0
1
2
3
4
5
1MHz  
TUNNING VOLTAGE (V)  
FREQUENCY OFFSET FROM 5800MHz CARRIER  
Figure 14. Reference Spurs vs. VTUNE (5.8 GHz,1 MHz, and 100 kHz)  
Figure 11. Integrated Phase Noise (5.8 GHz,1 MHz, and 100 kHz)  
–120  
0
V
I
= 3V, V = 5V  
P
DD  
= 5mA  
REF LEVEL = –10dBm  
V
V
= 3V  
= 5V  
DD  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
CP  
P
PFD FREQUENCY = 1MHz  
LOOP BANDWIDTH = 100kHz  
RES BANDWIDTH = 1kHz  
VIDEO BANDWIDTH = 1kHz  
SWEEP = 13 SECONDS  
AVERAGES = 1  
–130  
–140  
–150  
–160  
–170  
–180  
–65.0dBc  
–66.0dBc  
–2M  
–1M  
5800  
1M  
2M  
10k  
100k  
1M  
10M  
100M  
PHASE ETECTOR FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 12. Reference Spurs (5.8 GHz,1 MHz, and 100 kHz)  
Figure 15. Phase Noise (Referred to CP Output) vs. PFD Frequency  
–60  
–70  
–6  
–5  
–4  
V
V
= 3V  
DD  
= 3V  
P
V
= 5V  
SETTLING = 5mA  
PP  
I
CP  
–3  
–2  
–1  
0
–80  
1
2
–90  
3
4
5
–100  
6
–40  
–20  
0
20  
40  
60  
80  
100  
0
0.5  
1.0  
1.5  
2.0  
2.5  
(V)  
3.0  
3.5  
4.0  
4.5  
5.0  
TEMPERATURE (°C)  
V
CP  
Figure 13. Phase Noise (5.8 GHz,1 MHz, and 100 kHz) vs. Temperature  
Figure 16. Charge Pump Output Characteristics  
Rev. C | Page 8 of 24  
ADF4106  
GENERAL DESCRIPTION  
REFERENCE INPUT SECTION  
A COUNTER AND B COUNTER  
The reference input stage is shown in Figure 17. SW1 and SW2  
are normally closed switches. SW3 is a normally open switch.  
When power-down is initiated, SW3 is closed and SW1 and  
SW2 are opened. This ensures that there is no loading of the  
REFIN pin on power-down.  
The A counter and B CMOS counter combine with the dual  
modulus prescaler to allow a wide ranging division ratio in the  
PLL feedback counter. The counters are specified to work when  
the prescaler output is 325 MHz or less. Thus, with an RF input  
frequency of 4.0 GHz, a prescaler value of 16/17 is valid, but a  
value of 8/9 is not valid.  
POWER-DOWN  
CONTROL  
Pulse Swallow Function  
The A counter and B counter, in conjunction with the dual-  
modulus prescaler, make it possible to generate output  
frequencies that are spaced only by the reference frequency  
divided by R. The equation for the VCO frequency is  
100kΩ  
NC  
SW2  
TO R COUNTER  
REF  
IN  
NC  
BUFFER  
SW1  
f
REFIN  
R
f
=
[(  
P × B  
)
+ A  
]
×
VCO  
SW3  
NO  
where:  
Figure 17. Reference Input Stage  
f
VCO is the output frequency of the external voltage controlled  
oscillator (VCO).  
RF INPUT STAGE  
The RF input stage is shown in Figure 18. It is followed by a  
2-stage limiting amplifier to generate the CML clock levels  
needed for the prescaler.  
P is the preset modulus of the dual-modulus prescaler  
(8/9, 16/17, etc.).  
B is the preset divide ratio of the binary 13-bit counter  
(3 to 8191).  
1.6V  
BIAS  
GENERATOR  
AV  
DD  
A is the preset divide ratio of the binary 6-bit swallow  
counter (0 to 63).  
500Ω  
500Ω  
f
REFIN is the external reference frequency oscillator.  
RF  
RF  
A
B
IN  
N = BP + A  
IN  
TO PFD  
13-BIT B  
COUNTER  
LOAD  
FROM RF  
INPUT STAGE  
PRESCALER  
P/P + 1  
LOAD  
6-BIT A  
COUNTER  
MODULUS  
CONTROL  
AGND  
Figure 18. RF Input Stage  
N DIVIDER  
PRESCALER (P/P +1)  
The dual-modulus prescaler (P/P + 1), along with the A counter  
and B counter, enables the large division ratio, N, to be realized  
(N = BP + A). The dual-modulus prescaler, operating at CML  
levels, takes the clock from the RF input stage and divides it  
down to a manageable frequency for the CMOS A counter and  
B counter. The prescaler is programmable. It can be set in soft-  
ware to 8/9, 16/17, 32/33, or 64/65. It is based on a synchronous  
4/5 core. There is a minimum divide ratio possible for fully  
contiguous output frequencies. This minimum is determined by  
P, the prescaler value, and is given by (P2 − P).  
Figure 19. A and B Counters  
R COUNTER  
The 14-bit R counter allows the input reference frequency to  
be divided down to produce the reference clock to the phase  
frequency detector (PFD). Division ratios from 1 to 16,383  
are allowed.  
Rev. C | Page 9 of 24  
 
 
 
ADF4106  
PHASE FREQUENCY DETECTOR (PFD) AND  
CHARGE PUMP  
The N-channel, open-drain, analog lock detect should be  
operated with an external pull-up resistor of 10 kΩ nominal.  
When lock is detected, this output is high with narrow, low-  
going pulses.  
The PFD takes inputs from the R counter and N counter  
(N = BP + A) and produces an output proportional to the  
phase and frequency difference between them. Figure 20 is a  
simplified schematic. The PFD includes a programmable delay  
element that controls the width of the antibacklash pulse. This  
pulse ensures that there is no dead zone in the PFD transfer  
function and minimizes phase noise and reference spurs. Two  
bits in the reference counter latch, ABP2 and ABP1, control the  
width of the pulse. See Table 7.  
DV  
DD  
ANALOG LOCK DETECT  
DIGITAL LOCK DETECT  
R COUNTER OUTPUT  
N COUNTER OUTPUT  
SDOUT  
MUX  
CONTROL  
MUXOUT  
V
P
CHARGE  
PUMP  
UP  
Q1  
U1  
D1  
HI  
DGND  
R DIVIDER  
CLR1  
Figure 21. MUXOUT Circuit  
PROGRAMMABLE  
DELAY  
U3  
INPUT SHIFT REGISTER  
CP  
The ADF4106 digital section includes a 24-bit input shift  
ABP2  
ABP1  
register, a 14-bit R counter, and a 19-bit N counter, comprising a  
6-bit A counter and a 13-bit B counter. Data is clocked into the  
24-bit shift register on each rising edge of CLK. The data is  
clocked in MSB first. Data is transferred from the shift register  
to one of four latches on the rising edge of LE. The destination  
latch is determined by the state of the two control bits (C2, C1)  
in the shift register. These are the two LSBs, DB1 and DB0, as  
shown in the timing diagram of Figure 2. The truth table for  
these bits is shown in Table 5. Table 6 shows a summary of how  
the latches are programmed.  
CLR2  
D2 Q2  
DOWN  
HI  
U2  
N DIVIDER  
CPGND  
Figure 20. PFD Simplified Schematic  
MUXOUT AND LOCK DETECT  
The output multiplexer on the ADF4106 allows the user  
to access various internal points on the chip. The state of  
MUXOUT is controlled by M3, M2, and M1 in the function  
latch. Table 9 shows the full truth table. Figure 21 shows the  
MUXOUT section in block diagram form.  
Table 5. C1, C2 Truth Table  
Control Bits  
C2  
0
C1  
0
Data Latch  
R Counter  
0
1
1
1
0
1
N Counter (A and B)  
Function Latch (Including Prescaler)  
Initialization Latch  
Lock Detect  
MUXOUT can be programmed for two types of lock detect:  
digital lock detect and analog lock detect.  
Digital lock detect is active high. When LDP in the R counter  
latch is set to 0, digital lock detect is set high when the phase  
error on three consecutive phase detector cycles is less than  
15 ns. With LDP set to 1, five consecutive cycles of less than  
15 ns are required to set the lock detect. It stays set high until a  
phase error of greater than 25 ns is detected on any subsequent  
PD cycle.  
Rev. C | Page 10 of 24  
 
 
 
 
ADF4106  
Table 6. Latch Summary  
REFERENCE COUNTER LATCH  
ANTI-  
BACKLASH  
WIDTH  
TEST  
MODE BITS  
CONTROL  
BITS  
14-BIT REFERENCE COUNTER  
RESERVED  
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2  
R6  
DB1  
DB0  
X
0
0
LDP  
T2  
T1 ABP2 ABP1 R14  
R13 R12  
R11 R10  
R9  
R8  
R7  
R5  
R4  
R3  
R2  
R1  
C2(0) C1 (0)  
N COUNTER LATCH  
CONTROL  
BITS  
RESERVED  
13-BIT B COUNTER  
6-BIT A COUNTER  
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8  
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
X
X
G1  
B13 B12  
B11  
B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
A6  
A5  
A4  
A3  
A2  
A1 C2(0)  
C1(1)  
FUNCTION LATCH  
CURRENT  
SETTING  
2
CURRENT  
SETTING  
1
CONTROL  
BITS  
TIMER COUNTER  
CONTROL  
MUXOUT  
CONTROL  
PRESCALER  
VALUE  
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1  
DB0  
P2  
P1  
PD2 CPI6 CPI5 CPI4 CPI3 CPI2 CPI1 TC4 TC3 TC2  
TC1  
F5  
F4  
F3  
F2  
M3  
M2  
M1  
PD1  
F1  
C2(1) C1(0)  
INITIALIZATION LATCH  
CURRENT  
SETTING  
2
CURRENT  
SETTING  
1
CONTROL  
BITS  
MUXOUT  
CONTROL  
PRESCALER  
VALUE  
TIMER COUNTER  
CONTROL  
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2  
CPI5  
F2  
DB1  
DB0  
P2  
P1  
PD2 CPI6  
CPI4 CPI3 CPI2 CPI1 TC4 TC3  
TC2  
TC1  
F5  
F4  
F3  
M3  
M2  
M1  
PD1  
F1  
C2(1) C1(1)  
Rev. C | Page 11 of 24  
 
ADF4106  
Table 7. Reference Counter Latch Map  
ANTI-  
BACKLASH  
WIDTH  
CONTROL  
BITS  
TEST  
MODE BITS  
14-BIT REFERENCE COUNTER  
RESERVED  
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4  
DB3 DB2  
R2  
DB1  
DB0  
0
0
LDP  
T2  
T1 ABP2 ABP1 R14  
R13  
R12 R11  
R10  
R9  
R8  
R7  
R6  
R5  
R4  
R3  
R1 C2 (0) C1 (0)  
X
X
= DON’T CARE  
R14  
R13  
R12  
..........  
R3  
R2  
R1  
DIVIDE RATIO  
0
0
0
0
0
0
0
0
0
..........  
..........  
..........  
0
0
0
0
1
1
1
0
1
1
2
3
0
.
0
.
0
.
..........  
..........  
1
.
0
.
0
.
4
.
.
.
.
.
.
.
..........  
..........  
.
.
.
.
.
.
.
.
1
1
1
1
1
1
1
1
1
1
1
1
..........  
..........  
..........  
..........  
1
1
1
1
0
0
1
1
0
1
0
1
16380  
16381  
16382  
16383  
ABP2  
0
ABP1  
0
ANTIBACKLASH PULSE WIDTH  
2.9ns  
0
1
1
0
1.3ns  
6.0ns  
1
1
2.9ns  
TEST MODE BITS  
SHOULD BE SET  
TO 00 FOR NORMAL  
OPERATION.  
LDP  
OPERATION  
0
THREE CONSECUTIVE CYCLES OF PHASE DELAY LESS THAN  
15ns MUST OCCUR BEFORE LOCK DETECT IS SET.  
FIVE CONSECUTIVE CYCLES OF PHASE DELAY LESS THAN  
15ns MUST OCCUR BEFORE LOCK DETECT IS SET.  
1
BOTH OF THESE BITS  
MUST BE SET TO 0 FOR  
NORMAL OPERATION.  
Rev. C | Page 12 of 24  
 
ADF4106  
Table 8. N (A, B) Counter Latch Map  
CONTROL  
BITS  
RESERVED  
6-BIT A COUNTER  
13-BIT B COUNTER  
DB21  
G1  
DB19  
B12  
DB16 DB15 DB14  
DB10 DB9  
B3 B2  
DB6  
A5  
DB5  
A4  
DB4  
A3  
DB3  
A2  
DB0  
C2 (0) C1 (1)  
DB23 DB22  
DB20  
B13  
DB18 DB17  
B11 B10  
DB13 DB12 DB11  
B6 B5 B4  
DB8  
B1  
DB7  
A6  
DB2  
A1  
DB1  
X
X
B9  
B8  
B7  
X = DON’T CARE  
A COUNTER  
A6  
A5  
..........  
A2  
A1  
DIVIDE RATIO  
0
0
0
0
.
0
0
0
0
.
..........  
..........  
..........  
..........  
..........  
..........  
0
0
1
1
.
0
1
0
1
.
0
1
2
3
.
.
.
.
.
.
.
1
.
1
..........  
..........  
.
0
.
0
.
60  
1
1
1
1
1
1
..........  
..........  
..........  
0
1
1
1
0
1
61  
62  
63  
B13  
B12  
B11  
B3  
B2  
B1  
B COUNTER DIVIDE RATIO  
NOT ALLOWED  
NOT ALLOWED  
NOT ALLOWED  
0
0
0
0
.
.
0
0
0
0
.
.
0
0
0
0
.
.
..........  
..........  
..........  
..........  
..........  
..........  
0
0
0
0
.
.
0
0
1
1
.
.
0
1
0
1
.
.
3
.
.
.
.
.
.
..........  
..........  
..........  
..........  
..........  
.
.
.
8188  
8189  
8190  
8191  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
F4 (FUNCTION LATCH)  
FASTLOCK ENABLE  
CP GAIN OPERATION  
0
0
1
1
0
1
0
1
CHARGE PUMP CURRENT  
SETTING 1 IS PERMANENTLY USED.  
CHARGE PUMP CURRENT  
SETTING 2 IS PERMANENTLY USED.  
CHARGE PUMP CURRENT  
SETTING 1 IS USED.  
CHARGE PUMP CURRENT IS  
SWITCHED TO SETTING 2. THE  
TIME SPENT IN SETTING 2 IS  
DEPENDENT ON WHICH FASTLOCK  
MODE IS USED. SEE FUNCTION  
LATCH DESCRIPTION.  
N = BP + A, P IS PRESCALER VALUE SET IN THE FUNCTION  
LATCH. B MUST BE GREATER THAN OR EQUAL TO A. FOR  
CONTINUOUSLY ADJACENT VALUES OF (N × F  
), AT THE  
REF  
2
OUTPUT, N  
IS (P – P).  
MIN  
THESE BITS ARE NOT USED  
BY THE DEVICE AND ARE  
DON'T CARE BITS.  
Rev. C | Page 13 of 24  
ADF4106  
Table 9. Function Latch Map  
CURRENT  
SETTING  
2
CURRENT  
SETTING  
1
PRESCALER  
VALUE  
CONTROL  
BITS  
TIMER COUNTER  
CONTROL  
MUXOUT  
CONTROL  
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5  
DB4 DB3 DB2 DB1  
DB0  
P2  
P1  
PD2  
CPI5 CPI4 CPI3 CPI2 CPI1 TC4 TC3 TC2  
TC1  
F4  
F3  
F2  
M3  
M2  
M1  
F1  
C2 (1) C1 (0)  
CPI6  
F5  
PD1  
PHASE DETECTOR  
POLARITY  
COUNTER  
OPERATION  
F2  
F1  
0
1
NEGATIVE  
POSITIVE  
0
1
NORMAL  
R, A, B COUNTERS  
HELD IN RESET  
CHARGE PUMP  
OUTPUT  
F3  
0
1
NORMAL  
THREE-STATE  
F4  
F5  
FASTLOCK MODE  
0
1
1
X
0
1
FASTLOCK DISABLED  
FASTLOCK MODE 1  
FASTLOCK MODE 2  
M3  
M2  
M1  
OUTPUT  
TIMEOUT  
TC4  
TC3  
TC2  
TC1  
(PFD CYCLES)  
0
0
0
0
0
1
THREE-STATE OUTPUT  
DIGITAL LOCK DETECT  
(ACTIVE HIGH)  
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
3
7
11  
15  
19  
23  
27  
0
0
1
1
1
1
0
0
0
1
0
1
N DIVIDER OUTPUT  
DV  
DD  
R DIVIDER OUTPUT  
N-CHANNEL OPEN-DRAIN  
LOCK DETECT  
SERIAL DATA OUTPUT  
DGND  
1
1
1
1
0
1
0
1
1
0
1
0
1
0
31  
35  
1
0
0
1
39  
1
1
0
0
1
1
0
1
43  
47  
1
1
1
1
0
0
0
1
51  
55  
1
1
1
1
1
1
0
1
59  
63  
CPI6  
CPI5  
CPI4  
I
(mA)  
CP  
CPI3  
CPI2  
CPI1  
3kΩ  
1.06  
2.12  
3.18  
5.1kΩ  
0.625  
1.25  
11kΩ  
0
0
0
0
0
1
0
1
0
0.289  
0.580  
0.870  
1.875  
0
1
1
0
1
0
4.24  
5.30  
2.5  
3.125  
1.160  
1.450  
1
0
1
6.36  
3.75  
1.730  
1
1
1
1
0
1
7.42  
8.50  
4.375  
5.0  
2.020  
2.320  
CE PIN  
PD2  
PD1  
MODE  
X
X
0
1
ASYNCHRONOUS POWER-DOWN  
NORMAL OPERATION  
ASYNCHRONOUS POWER-DOWN  
SYNCHRONOUS POWER-DOWN  
0
1
1
1
X
0
1
1
PRESCALER VALUE  
P2  
P1  
0
0
1
1
0
1
0
1
8/9  
16/17  
32/33  
64/65  
Rev. C | Page 14 of 24  
 
ADF4106  
Table 10. Initialization Latch Map  
CURRENT  
SETTING  
2
CURRENT  
SETTING  
1
PRESCALER  
VALUE  
CONTROL  
BITS  
TIMER COUNTER  
CONTROL  
MUXOUT  
CONTROL  
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5  
DB4 DB3 DB2 DB1  
DB0  
P2  
P1  
PD2  
CPI5 CPI4 CPI3 CPI2 CPI1 TC4 TC3 TC2  
TC1  
F4  
F3  
F2  
M3  
M2  
M1  
F1  
C2 (1) C1(1)  
CPI6  
F5  
PD1  
PHASE DETECTOR  
POLARITY  
COUNTER  
OPERATION  
F2  
F1  
0
1
NEGATIVE  
POSITIVE  
0
1
NORMAL  
R, A, B COUNTERS  
HELD IN RESET  
CHARGE PUMP  
F3 OUTPUT  
NORMAL  
THREE-STATE  
0
1
F4  
F5  
FASTLOCK MODE  
0
1
1
X
0
1
FASTLOCK DISABLED  
FASTLOCK MODE 1  
FASTLOCK MODE 2  
M3  
M2  
M1  
OUTPUT  
TIMEOUT  
TC4  
TC3  
TC2  
TC1  
(PFD CYCLES)  
0
0
0
0
0
1
THREE-STATE OUTPUT  
DIGITAL LOCK DETECT  
(ACTIVE HIGH)  
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
3
7
11  
15  
19  
23  
27  
0
0
1
1
1
1
0
0
0
1
0
1
N DIVIDER OUTPUT  
DV  
DD  
R DIVIDER OUTPUT  
N-CHANNEL OPEN-DRAIN  
LOCK DETECT  
SERIAL DATA OUTPUT  
DGND  
1
1
1
1
0
1
0
1
1
0
1
0
1
0
31  
35  
1
0
0
1
39  
1
1
0
0
1
1
0
1
43  
47  
1
1
1
1
0
0
0
1
51  
55  
1
1
1
1
1
1
0
1
59  
63  
CPI6  
CPI5  
CPI4  
I
(mA)  
CP  
CPI3  
CPI2  
CPI1  
3kΩ  
1.06  
2.12  
3.18  
5.1kΩ  
0.625  
1.25  
11kΩ  
0
0
0
0
0
1
0
1
0
0.289  
0.580  
0.870  
1.875  
0
1
1
0
1
0
4.24  
5.30  
2.5  
3.125  
1.160  
1.450  
1
0
1
6.36  
3.75  
1.730  
1
1
1
1
0
1
7.42  
8.50  
4.375  
5.0  
2.020  
2.320  
CE PIN  
PD2  
PD1  
MODE  
X
X
0
1
ASYNCHRONOUS POWER-DOWN  
NORMAL OPERATION  
ASYNCHRONOUS POWER-DOWN  
SYNCHRONOUS POWER-DOWN  
0
1
1
1
X
0
1
1
PRESCALER VALUE  
P2  
P1  
0
0
1
1
0
1
0
1
8/9  
16/17  
32/33  
64/65  
Rev. C | Page 15 of 24  
ADF4106  
Fastlock Mode Bit  
THE FUNCTION LATCH  
DB10 of the function latch is the fastlock mode bit. When  
fastlock is enabled, this bit determines which fastlock mode is  
used. If the fastlock mode bit is 0, then Fastlock Mode 1 is  
selected; and if the fastlock mode bit is 1, then Fastlock Mode 2  
is selected.  
With C2 and C1 set to 1 and 0, respectively, the on-chip  
function latch is programmed. Table 9 shows the input data  
format for programming the function latch.  
Counter Reset  
DB2 (F1) is the counter reset bit. When this is 1, the R counter  
and the N (A, B) counter are reset. For normal operation, this  
bit should be 0. When powering up, disable the F1 bit (set to 0).  
The N counter will then resume counting in close alignment  
with the R counter. (The maximum error is one prescaler cycle).  
Fastlock Mode 1  
The charge pump current is switched to the contents of Current  
Setting 2. The device enters fastlock when 1 is written to the CP  
gain bit in the N (A, B) counter latch. The device exits fastlock  
when 0 is written to the CP gain bit in the N (A, B) counter  
latch.  
Power-Down  
DB3 (PD1) and DB21 (PD2) provide programmable power-  
down modes. They are enabled by the CE pin.  
Fastlock Mode 2  
The charge pump current is switched to the contents of Current  
Setting 2. The device enters fastlock when 1 is written to the CP  
gain bit in the N (A, B) counter latch. The device exits fastlock  
under the control of the timer counter. After the timeout  
period, which is determined by the value in TC4 to TC1, the CP  
gain bit in the N (A, B) counter latch is automatically reset to 0,  
and the device reverts to normal mode instead of fastlock. See  
Table 9 for the timeout periods.  
When the CE pin is low, the device is immediately disabled  
regardless of the states of PD2, PD1.  
In the programmed asynchronous power-down, the device  
powers down immediately after latching 1 into the PD1 bit,  
with the condition that PD2 is loaded with 0.  
In the programmed synchronous power-down, the device  
power-down is gated by the charge pump to prevent unwanted  
frequency jumps. Once the power-down is enabled by writing 1  
into the PD1 bit (provided that 1 has also been loaded to PD2),  
then the device goes into power-down during the next charge  
pump event.  
Timer Counter Control  
The user has the option of programming two charge pump  
currents. The intent is that Current Setting 1 is used when the  
RF output is stable and the system is in a static state. Current  
Setting 2 is used when the system is dynamic and in a state of  
change (that is, when a new output frequency is programmed).  
The normal sequence of events follows.  
When a power-down is activated (either synchronous or  
asynchronous mode, including CE pin activated power-down),  
the following events occur:  
All active dc current paths are removed.  
The user initially decides what the preferred charge pump  
currents are going to be. For example, the choice may be  
2.5 mA as Current Setting 1 and 5 mA as the Current Setting 2.  
The R, N, and timeout counters are forced to their load state  
conditions.  
Simultaneously, the decision must be made as to how long the  
secondary current stays active before reverting to the primary  
current. This is controlled by the timer counter control bits,  
DB14 to DB11 (TC4 to TC1), in the function latch. The truth  
table is given in Table 9.  
The charge pump is forced into three-state mode.  
The digital clock detect circuitry is reset.  
The RFIN input is debiased.  
The reference input buffer circuitry is disabled.  
To program a new output frequency, simply program the N (A,  
B) counter latch with new values for A and B. Simultaneously,  
the CP gain bit can be set to 1, which sets the charge pump with  
the value in CPI6 to CPI4 for a period of time determined by  
TC4 to TC1. When this time is up, the charge pump current  
reverts to the value set by CPI3 to CPI1. At the same time, the  
CP gain bit in the N (A, B) counter latch is reset to 0 and is now  
ready for the next time the user wishes to change the frequency.  
The input register remains active and capable of loading and  
latching data.  
MUXOUT Control  
The on-chip multiplexer is controlled by M3, M2, and M1 on  
the ADF4106 family. Table 9 shows the truth table.  
Fastlock Enable Bit  
Note that there is an enable feature on the timer counter. It is  
enabled when Fastlock Mode 2 is chosen by setting the fastlock  
mode bit (DB10) in the function latch to 1.  
DB9 of the function latch is the fastlock enable bit. When this  
bit is 1, fastlock is enabled.  
Rev. C | Page 16 of 24  
 
ADF4106  
Charge Pump Currents  
Do an N (A, B) load (01 in two LSBs).  
CPI3, CPI2, and CPI1 program Current Setting 1 for the charge  
pump. CPI6, CPI5, and CPI4 program Current Setting 2 for the  
charge pump. The truth table is given in Table 9.  
When the initialization latch is loaded, the following occurs:  
The function latch contents are loaded.  
An internal pulse resets the R, N (A, B), and timeout counters  
to load-state conditions and also three-states the charge  
pump. Note that the prescaler band gap reference and the  
oscillator input buffer are unaffected by the internal reset  
pulse, allowing close phase alignment when counting  
resumes.  
Prescaler Value  
P2 and P1 in the function latch set the prescaler values. The  
prescaler value should be chosen so that the prescaler output  
frequency is always less than or equal to 325 MHz. Therefore,  
with an RF frequency of 4 GHz, a prescaler value of 16/17 is  
valid, but a value of 8/9 is not valid.  
Latching the first N (A, B) counter data after the initialization  
word activates the same internal reset pulse. Successive N (A,  
B) loads will not trigger the internal reset pulse, unless there  
is another initialization.  
PD Polarity  
This bit sets the phase detector polarity bit. See Table 9.  
CP Three-State  
CE PIN METHOD  
This bit controls the CP output pin. With the bit set high, the  
CP output is put into three-state. With the bit set low, the CP  
output is enabled.  
Apply VDD  
.
Bring CE low to put the device into power-down. This is an  
asychronous power-down in that it happens immediately.  
THE INITIALIZATION LATCH  
Program the function latch (10).  
Program the R counter latch (00).  
Program the N (A, B) counter latch (01).  
When C2 and C1 = 1 and 1, respectively, the initialization latch  
is programmed. This is essentially the same as the function  
latch (programmed when C2 and C1 = 1 and 0, respectively).  
However, when the initialization latch is programmed, there is  
an additional internal reset pulse applied to the R and N (A, B)  
counters. This pulse ensures that the N (A, B) counter is at the  
load point when the N (A, B) counter data is latched and the  
device begins counting in close phase alignment.  
Bring CE high to take the device out of power-down. The R  
and N (A, B) counters now resume counting in close  
alignment.  
Note that after CE goes high, a 1 μs duration may be required  
for the prescaler band gap voltage and oscillator input buffer  
bias to reach steady state.  
If the latch is programmed for synchronous power-down (CE  
pin is high, PD1 bit is high, and PD2 bit is low), the internal  
pulse also triggers this power-down. The prescaler reference  
and the oscillator input buffer are unaffected by the internal  
reset pulse; therefore, close phase alignment is maintained when  
counting resumes.  
CE can be used to power the device up and down to check for  
channel activity. The input register does not need to be  
reprogrammed each time the device is disabled and enabled as  
long as it is programmed at least once after VDD is initially  
applied.  
When the first N (A, B) counter data is latched after  
initialization, the internal reset pulse is again activated.  
However, successive N (A, B) counter loads after this will not  
trigger the internal reset pulse.  
COUNTER RESET METHOD  
Apply VDD  
.
Do a function latch load (10 in two LSBs). As part of this,  
load 1 to the F1 bit. This enables the counter reset.  
Device Programming After Initial Power-Up  
After initial power up of the device, there are three methods for  
programming the device: initialization latch, CE pin, and  
counter reset.  
Do an R counter load (00 in two LSBs).  
Do an N (A, B) counter load (01 in two LSBs).  
Do a function latch load (10 in two LSBs). As part of this,  
load 0 to the F1 bit. This disables the counter reset.  
Initialization Latch Method  
Apply VDD  
.
This sequence provides the same close alignment as the  
initialization method. It offers direct control over the internal  
reset. Note that counter reset holds the counters at load point  
and three-states the charge pump but does not trigger  
synchronous power-down.  
Program the initialization latch (11 in two LSBs of input  
word). Make sure that the F1 bit is programmed to 0.  
Do a function latch load (10 in two LSBs of the control  
word), making sure that the F1 bit is programmed to a 0.  
Do an R load (00 in two LSBs).  
Rev. C | Page 17 of 24  
 
ADF4106  
APPLICATIONS  
LOCAL OSCILLATOR FOR LMDS BASE STATION  
TRANSMITTER  
Loop Bandwidth = 50 kHz  
PFD = 1 MHz  
F
Figure 22 shows the ADF4106 being used with a VCO to  
produce the LO for an LMDS base station.  
N = 5800  
Extra Reference Spur Attenuation = 10 dB  
The reference input signal is applied to the circuit at FREFIN  
and, in this case, is terminated in 50 Ω. A typical base station  
system would have either a TCXO or an OCXO driving the  
reference input without any 50 Ω termination.  
These specifications are needed and used to derive the loop  
filter component values shown in Figure 22.  
The circuit in Figure 22 shows a typical phase noise  
performance of −83.5 dBc/Hz at 1 kHz offset from the carrier.  
Spurs are better than −62 dBc.  
To achieve a channel spacing of 1 MHz at the output, the  
10 MHz reference input must be divided by 10, using the  
on-chip reference divider of the ADF4106.  
The loop filter output drives the VCO, which in turn is fed  
back to the RF input of the PLL synthesizer and also drives the  
RF output terminal. A T-circuit configuration provides 50 Ω  
matching between the VCO output, the RF output, and the RFIN  
terminal of the synthesizer.  
The charge pump output of the ADF4106 (Pin 2) drives the  
loop filter. In calculating the loop filter component values, a  
number of items need to be considered. In this example, the  
loop filter was designed so that the overall phase margin for  
the system would be 45°.  
In a PLL system, it is important to know when the system  
is in lock. In Figure 22, this is accomplished by using the  
MUXOUT signal from the synthesizer. The MUXOUT pin  
can be programmed to monitor various internal signals in the  
synthesizer. One of these is the LD or lock-detect signal.  
Other PLL system specifications include:  
KD = 2.5 mA  
KV = 80 MHz/V  
V
V
P
DD  
RF  
OUT  
100pF  
18Ω  
18Ω  
16  
7
15  
100pF  
14  
18Ω  
V
DD  
AV  
DV  
P
6.2kΩ  
DD  
10  
V
CC  
1000pF  
1000pF  
2
2
CP  
FREF  
8
IN  
REF  
IN  
20pF  
100pF  
4.3kΩ  
51Ω  
V956ME03  
ADF4106  
1, 3, 4, 5, 7, 8,  
9, 11, 12, 13  
1.5nF  
CE  
LOCK  
DETECT  
MUXOUT  
14  
CLK  
DATA  
LE  
100pF  
6
5
RF  
RF  
A
B
IN  
R
1
SET  
51Ω  
IN  
5.1kΩ  
100pF  
3
4
9
NOTE  
DECOUPLING CAPACITORS (0.1  
OF THE ADF4106 AND ON V OF THE V956ME03 HAVE  
μ
CC  
F/10pF) ON AV , DV , AND  
DD DD  
V
P
BEEN OMITTED FROM THE DIAGRAM TO AID CLARITY.  
Figure 22. Local Oscillator for LMDS Base Station  
Rev. C | Page 18 of 24  
 
 
ADF4106  
ADSP2181 Interface  
INTERFACING  
Figure 24 shows the interface between the ADF4106 and the  
ADSP21xx digital signal processor (DSP). The ADF4106  
needs a 24-bit serial word for each latch write. The easiest way  
to accomplish this using the ADSP21xx family is to use the  
autobuffered transmit mode of operation with alternate  
framing. This provides a means for transmitting an entire block  
of serial data before an interrupt is generated. Set up the word  
length for 8 bits and use three memory locations for each 24-bit  
word. To program each 24-bit latch, store the three 8-bit bytes,  
enable the autobuffered mode, and write to the transmit register  
of the DSP. This last operation initiates the autobuffer transfer.  
The ADF4106 has a simple SPI-compatible serial interface for  
writing to the device. CLK, DATA, and LE control the data  
transfer. When LE goes high, the 24 bits clocked into the input  
register on each rising edge of CLK are transferred to the  
appropriate latch. See Figure 2 for the timing diagram and  
Table 5 for the latch truth table.  
The maximum allowable serial clock rate is 20 MHz. This  
means that the maximum update rate for the device is 833 kHz,  
or one update every 1.2 μs. This is certainly more than adequate  
for systems that have typical lock times in hundreds of  
microseconds.  
SCLOCK  
MOSI  
CLK  
ADuC812 Interface  
DATA  
Figure 23 shows the interface between the ADF4106 and the  
ADuC812 MicroConverter®. Since the ADuC812 is based on an  
8051 core, this interface can be used with any 8051-based  
microcontroller. The MicroConverter is set up for SPI master  
mode with CPHA = 0. To initiate the operation, the I/O port  
driving LE is brought low. Each latch of the ADF4106 needs a  
24-bit word. This is accomplished by writing three 8-bit bytes  
from the MicroConverter to the device. When the third byte  
is written, the LE input should be brought high to complete  
the transfer.  
TFS  
LE  
CE  
ADSP-21xx  
ADF4106  
I/O FLAGS  
MUXOUT  
(LOCK DETECT)  
Figure 24. ADSP-21xx-to-ADF4106 Interface  
PCB DESIGN GUIDELINES FOR CHIP SCALE  
PACKAGE  
On first applying power to the ADF4106, it needs four writes  
(one each to the initialization latch, function latch, R counter  
latch, and N counter latch) for the output to become active.  
The lands on the LFCSP (CP-20) are rectangular. The printed  
circuit board (PCB) pad for these should be 0.1 mm longer than  
the package land length and 0.05 mm wider than the package  
land width. The land should be centered on the pad. This  
ensures that the solder joint size is maximized. The bottom of  
the LFCSP has a central thermal pad.  
I/O port lines on the ADuC812 are also used to control  
power-down (CE input) and to detect lock (MUXOUT  
configured as lock detect and polled by the port input).  
The thermal pad on the PCB should be at least as large as this  
exposed pad. On the PCB, there should be a clearance of at least  
0.25 mm between the thermal pad and the inner edges of the  
pad pattern. This ensures that shorting is avoided.  
When operating in the mode described, the maximum  
SCLOCK rate of the ADuC812 is 4 MHz. This means that  
the maximum rate at which the output frequency can be  
changed is 166 kHz.  
Thermal vias may be used on the PCB thermal pad to improve  
thermal performance of the package. If vias are used, they  
should be incorporated in the thermal pad at 1.2 mm pitch grid.  
The via diameter should be between 0.3 mm and 0.33 mm, and  
the via barrel should be plated with 1 oz. copper to plug the via.  
SCLOCK  
MOSI  
CLK  
DATA  
LE  
CE  
ADuC812  
ADF4106  
I/O PORTS  
The user should connect the PCB thermal pad to AGND.  
MUXOUT  
(LOCK DETECT)  
Figure 23. ADuC812-to-ADF4106 Interface  
Rev. C | Page 19 of 24  
 
 
 
ADF4106  
OUTLINE DIMENSIONS  
5.10  
5.00  
4.90  
16  
9
8
4.50  
4.40  
4.30  
6.40  
BSC  
1
PIN 1  
1.20  
MAX  
0.15  
0.05  
0.20  
0.09  
0.75  
0.60  
0.45  
8°  
0°  
0.30  
0.19  
0.65  
BSC  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-153-AB  
Figure 25. 16-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-16)  
Dimensions shown in millimeters  
0.60 MAX  
4.00  
BSC SQ  
0.60 MAX  
PIN 1  
INDICATOR  
15  
16  
20  
1
5
0.50  
BSC  
PIN 1  
INDICATOR  
2.25  
2.10 SQ  
1.95  
3.75  
BCS SQ  
EXPOSED  
PAD  
(BOTTOM VIEW)  
10  
6
11  
0.75  
0.60  
0.50  
0.25 MIN  
TOP VIEW  
0.80 MAX  
0.65 TYP  
12° MAX  
1.00  
0.85  
0.80  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
0.20 REF  
SECTION OF THIS DATA SHEET.  
0.30  
0.23  
0.18  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-220-VGGD-1  
Figure 26. 20-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
4 mm × 4 mm Body, Very Thin Quad  
(CP-20-1)  
Dimensions shown in millimeters  
Rev. C | Page 20 of 24  
 
ADF4106  
ORDERING GUIDE  
Model1  
ADF4106BRU  
ADF4106BRU-REEL  
ADF4106BRU-REEL7  
ADF4106BRUZ  
ADF4106BRUZ-RL  
ADF4106BRUZ-R7  
ADF4106BCP  
ADF4106BCP-REEL  
ADF4106BCP-REEL7  
ADF4106BCPZ  
ADF4106BCPZ-RL  
ADF4106BCPZ-R7  
EVAL-ADF4106EBZ1  
EVAL-ADF411XEBZ1  
Temperature Range  
–40°C to + 85°C  
–40°C to + 85°C  
–40°C to + 85°C  
–40°C to + 85°C  
–40°C to + 85°C  
–40°C to + 85°C  
–40°C to + 85°C  
–40°C to + 85°C  
–40°C to + 85°C  
–40°C to + 85°C  
–40°C to + 85°C  
–40°C to + 85°C  
Package Description  
Package Option  
RU-16  
RU-16  
RU-16  
RU-16  
16-Lead Thin Shrink Small Outline Package (TSSOP)  
16-Lead Thin Shrink Small Outline Package (TSSOP)  
16-Lead Thin Shrink Small Outline Package (TSSOP)  
16-Lead Thin Shrink Small Outline Package (TSSOP)  
16-Lead Thin Shrink Small Outline Package (TSSOP)  
16-Lead Thin Shrink Small Outline Package (TSSOP)  
20-Lead Lead Frame Chip Scale Package (LFCSP_VQ)  
20-Lead Lead Frame Chip Scale Package (LFCSP_VQ)  
20-Lead Lead Frame Chip Scale Package (LFCSP_VQ)  
20-Lead Lead Frame Chip Scale Package (LFCSP_VQ)  
20-Lead Lead Frame Chip Scale Package (LFCSP_VQ)  
20-Lead Lead Frame Chip Scale Package (LFCSP_VQ)  
Evaluation Board  
RU-16  
RU-16  
CP-20-1  
CP-20-1  
CP-20-1  
CP-20-1  
CP-20-1  
CP-20-1  
Evaluation Board  
1 Z = RoHS Compliant.  
Rev. C | Page 21 of 24  
 
ADF4106  
NOTES  
Rev. C | Page 22 of 24  
ADF4106  
NOTES  
Rev. C | Page 23 of 24  
ADF4106  
NOTES  
©2001–2010 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D02720-0-2/10(C)  
Rev. C | Page 24 of 24  

相关型号:

ADF4106BCPZ

PLL Frequency Synthesizer
ADI

ADF4106BCPZ-R7

PLL Frequency Synthesizer
ADI

ADF4106BCPZ-RL

PLL Frequency Synthesizer
ADI

ADF4106BRU

PLL Frequency Synthesizer
ADI

ADF4106BRU-REEL

PLL Frequency Synthesizer
ADI

ADF4106BRU-REEL7

PLL Frequency Synthesizer
ADI

ADF4106BRUZ

PLL Frequency Synthesizer
ADI

ADF4106BRUZ-R7

PLL Frequency Synthesizer
ADI

ADF4106BRUZ-REEL

PLL FREQUENCY SYNTHESIZER, 6000MHz, PDSO16, MO-153AB, TSSOP-16
ADI

ADF4106BRUZ-REEL7

PLL FREQUENCY SYNTHESIZER, 6000MHz, PDSO16, MO-153AB, TSSOP-16
ADI

ADF4106BRUZ-RL

PLL Frequency Synthesizer
ADI

ADF4106SRU-EP

PLL FREQUENCY SYNTHESIZER
ROCHESTER