ADF4106 [ADI]

PLL Frequency Synthesizer; PLL频率合成器
ADF4106
型号: ADF4106
厂家: ADI    ADI
描述:

PLL Frequency Synthesizer
PLL频率合成器

文件: 总20页 (文件大小:227K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
a
PLL Frequency Synthesizer  
ADF4106  
GENERAL DESCRIPTION  
FEATURES  
The ADF4106 frequency synthesizer can be used to implement  
local oscillators in the up-conversion and down-conversion  
sections of wireless receivers and transmitters. It consists of a  
low-noise digital PFD (Phase Frequency Detector), a precision  
charge pump, a programmable reference divider, programmable  
A and B counters and a dual-modulus prescaler (P/P + 1). The  
A (6-bit) and B (13-bit) counters, in conjunction with the dual  
modulus prescaler (P/P + 1), implement an N divider (N = BP + A).  
In addition, the 14-bit reference counter (R Counter), allows  
selectable REFIN frequencies at the PFD input. A complete  
PLL (Phase-Locked Loop) can be implemented if the synthe-  
sizer is used with an external loop filter and VCO (Voltage  
Controlled Oscillator). Its very high bandwidth means that  
frequency doublers can be eliminated in many high-frequency  
systems, simplifying system architecture and lowering cost.  
6.0 GHz Bandwidth  
2.7 V to 3.3 V Power Supply  
Separate Charge Pump Supply (VP) Allows Extended  
Tuning Voltage in 3 V Systems  
Programmable Dual Modulus Prescaler  
8/9, 16/17, 32/33, 64/65  
Programmable Charge Pump Currents  
Programmable Anti-Backlash Pulsewidth  
3-Wire Serial Interface  
Analog and Digital Lock Detect  
Hardware and Software Power-Down Mode  
APPLICATIONS  
Broadband Wireless Access  
Instrumentation  
Wireless LANS  
Base Stations For Wireless Radio  
FUNCTIONAL BLOCK DIAGRAM  
AV  
V
P
DV  
CPGND  
R
SET  
DD  
DD  
REFERENCE  
14-BIT  
R COUNTER  
REF  
PHASE  
FREQUENCY  
DETECTOR  
IN  
CHARGE  
PUMP  
CP  
14  
R COUNTER  
LATCH  
LOCK  
DETECT  
CURRENT  
SETTING 1  
CURRENT  
SETTING 2  
CLK  
DATA  
LE  
24-BIT INPUT  
REGISTER  
FUNCTION  
LATCH  
CPI3 CPI2 CPI1  
CPI6 CPI5 CPI4  
HIGH Z  
22  
AB COUNTER  
LATCH  
FROM  
FUNCTION  
LATCH  
19  
AV  
DD  
MUXOUT  
MUX  
13  
SD  
OUT  
N = BP + A  
13-BIT  
B COUNTER  
LOAD  
M3 M2 M1  
RF  
A
B
IN  
PRESCALER  
P/P + 1  
RF  
IN  
LOAD  
6-BIT  
A COUNTER  
ADF4106  
6
CE  
AGND DGND  
REV. 0  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, norforanyinfringementsofpatentsorotherrightsofthirdpartiesthat  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
www.analog.com  
© Analog Devices, Inc., 2001  
(AVDD = DVDD = 3 V 10%; AVDD VP 5.5 V; AGND = DGND = CPGND = 0 V;  
RSET = 5.1 k; dBm referred to 50 ; TA = TMIN to TMAX unless otherwise noted.)  
ADF4106–SPECIFICATIONS1  
BChips2  
Parameter  
B Version1  
(typ)  
Unit  
Test Conditions/Comments  
RF CHARACTERISTICS  
RF Input Frequency (RFIN)3  
RF Input Sensitivity  
See Figure 3 for Input Circuit  
0.5/6.0  
10/0  
0.5/6.0  
10/0  
GHz min/max  
dBm min/max  
Maximum Allowable  
Prescaler Output Frequency4  
300  
300  
MHz max  
REFIN CHARACTERISTICS  
REFIN Input Frequency  
20/250  
20/250  
MHz min/max  
For f < 20 MHz, Use DC-Coupled  
Square Wave, (0 to VDD  
0.8/AVDD V p-p min/max AC-Coupled; When DC-Coupled,  
)
REFIN Input Sensitivity5  
0.8/AVDD  
0 to VDD max (CMOS Compatible)  
REFIN Input Capacitance  
REFIN Input Current  
10  
100  
10  
100  
pF max  
µA max  
PHASE DETECTOR  
Phase Detector Frequency6  
56  
56  
MHz max  
CHARGE PUMP  
I
CP Sink/Source  
High Value  
Low Value  
Absolute Accuracy  
RSET Range  
CP Three-State Leakage Current  
Programmable, See Table V  
With RSET = 5.1 kΩ  
5
5
mA typ  
µA typ  
% typ  
ktyp  
nA typ  
% typ  
% typ  
% typ  
625  
2.5  
2.7/10  
1
2
1.5  
2
625  
2.5  
2.7/10  
1
2
1.5  
2
With RSET = 5.1 kΩ  
See Table V  
I
Sink and Source Current Matching  
ICP vs. VCP  
ICP vs. Temperature  
0.5 V Յ VCP Յ VP 0.5 V  
0.5 V Յ VCP Յ VP 0.5 V  
VCP = VP/2  
LOGIC INPUTS  
VINH, Input High Voltage  
VINL, Input Low Voltage  
1.4  
0.6  
1
1.4  
0.6  
1
V min  
V max  
µA max  
pF max  
I
INH/IINL, Input Current  
CIN, Input Capacitance  
10  
10  
LOGIC OUTPUTS  
V
OH, Output High Voltage  
1.4  
1.4  
V min  
Open Drain Output Chosen 1 kΩ  
Pull-up to 1.8 V  
VOH, Output High Voltage  
IOH  
VOL, Output Low Voltage  
1.4  
100  
0.4  
1.4  
100  
0.4  
V min  
µA max  
V max  
CMOS Output Chosen  
IOL = 500 µA  
POWER SUPPLIES  
AVDD  
DVDD  
2.7/3.3  
AVDD  
AVDD/5.5  
15  
0.4  
10  
2.7/3.3  
AVDD  
AVDD/5.5 V min/V max  
13  
0.4  
10  
V min/V max  
VP  
AVDD Յ VP Յ 5.5 V  
13 mA typ  
TA = 25°C  
7
IDD (AIDD + DIDD  
IP  
)
mA max  
mA max  
µA typ  
Power-Down Mode8 (AIDD + DIDD  
)
–2–  
REV. 0  
ADF4106  
BChips2  
(typ)  
Parameter  
B Version1  
Unit  
Test Conditions/Comments  
NOISE CHARACTERISTICS  
ADF4106 Phase Noise Floor9  
174  
166  
159  
174  
166  
159  
dBc/Hz typ  
dBc/Hz typ  
dBc/Hz typ  
@ 25 kHz PFD Frequency  
@ 200 kHz PFD Frequency  
@ 1 MHz PFD Frequency  
@ VCO Output  
@ 1 kHz Offset and 200 kHz PFD Frequency  
@ 1 kHz Offset and 200 kHz PFD Frequency  
@ 1 kHz Offset and 1 MHz PFD Frequency  
Phase Noise Performance10  
900 MHz Output11  
5800 MHz Output12  
5800 MHz Output13  
Spurious Signals  
93  
74  
84  
93  
74  
84  
dBc/Hz typ  
dBc/Hz typ  
dBc/Hz typ  
900 MHz Output11  
5800 MHz Output12  
5800 MHz Output13  
90/92  
65/70  
70/75  
90/92  
65/70  
70/75  
dBc typ  
dBc typ  
dBc typ  
@ 200 kHz/400 kHz and 200 kHz PFD Frequency  
@ 200 kHz/400 kHz and 200 kHz PFD Frequency  
@ 1 MHz/2 MHz and 1 MHz PFD Frequency  
NOTES  
1Operating temperature range (B Version) is 40°C to +85°C.  
2The BChip specifications are given as typical values.  
3Use a square wave for lower frequencies, below the mimimum stated.  
4This is the maximum operating frequency of the CMOS counters. The prescaler value should be chosen to ensure that the RF input is divided down to a frequency  
that is less than this value.  
5AVDD = DVDD = 3 V  
6Guaranteed by design. Sample tested to ensure compliance.  
7TA = 25°C; AVDD = DVDD = 3 V; P = 16; RFIN = 6.0 GHz  
8TA = 25°C; AVDD = DVDD = 3.3 V; R = 16383; A = 63; B = 891; P = 32; RFIN = 6.0 GHz  
9The synthesizer phase noise floor is estimated by measuring the in-band phase noise at the output of the VCO and subtracting 20logN (where N is the N divider value).  
10The phase noise is measured with the EVAL-ADF4106EB1 Evaluation Board and the HP8562E Spectrum Analyzer. The spectrum analyzer provides the REFIN for  
the synthesizer (fREFOUT = 10 MHz @ 0 dBm).  
11  
f
f
f
= 10 MHz; fPFD = 200 kHz; Offset Frequency = 1 kHz; fRF = 900 MHz; N = 4500; Loop B/W = 20 kHz  
= 10 MHz; fPFD = 200 kHz; Offset Frequency = 1 kHz; fRF = 5800 MHz; N = 29000; Loop B/W = 20 kHz  
= 10 MHz; fPFD = 1 MHz; Offset Frequency = 1 kHz; fRF = 5800 MHz; N = 5800; Loop B/W = 100 kHz  
REFIN  
REFIN  
REFIN  
12  
13  
Specifications subject to change without notice.  
(AVDD = DVDD = 3 V 10%; AVDD VP 5.5 V; AGND = DGND = CPGND = 0 V; RSET = 5.1 k;  
TIMING CHARACTERISTICS TA = TMIN to TMAX unless otherwise noted.)  
Limit at  
TMIN to TMAX  
(B Version)  
Parameter  
Unit  
Test Conditions/Comments  
t1  
t2  
t3  
t4  
t5  
t6  
10  
10  
25  
25  
10  
20  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
DATA to CLOCK Setup Time  
DATA to CLOCK Hold Time  
CLOCK High Duration  
CLOCK Low Duration  
CLOCK to LE Setup Time  
LE Pulsewidth  
Guaranteed by design but not production tested.  
t3  
t4  
CLOCK  
t1  
t2  
DB1 (CONTROL  
BIT C2)  
DB0 (LSB)  
(CONTROL BIT C1)  
DB2  
DB23 (MSB)  
DB22  
DATA  
t6  
LE  
LE  
t5  
Figure 1. Timing Diagram  
–3–  
REV. 0  
ADF4106  
ABSOLUTE MAXIMUM RATINGS1, 2  
ORDERING GUIDE  
(TA = 25°C unless otherwise noted.)  
AVDD to GND3 . . . . . . . . . . . . . . . . . . . . . . 0.3 V to +3.6 V  
Model  
Temperature Range Package Option*  
AVDD to DVDD . . . . . . . . . . . . . . . . . . . . . . 0.3 V to +0.3 V  
VP to GND . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to +5.3 V  
VP to AVDD . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to +5.5 V  
Digital I/O Voltage to GND . . . . . . . . 0.3 V to VDD + 0.3 V  
Analog I/O Voltage to GND . . . . . . . . . 0.3 V to VP + 0.3 V  
REFIN, RFINA, RFINB to GND . . . . . . 0.3 V to VDD + 0.3 V  
Operating Temperature Range  
ADF4106BRU  
ADF4106BCP  
40°C to +85°C  
40°C to +85°C  
RU-16  
CP-20  
*RU = Thin Shrink Small Outline Package (TSSOP)  
CP = Chip Scale Package  
Contact the factory for chip availability.  
Note that aluminum bond wire should not be used with the ADF4106 die.  
Industrial (B Version) . . . . . . . . . . . . . . . 40°C to +85°C  
Storage Temperature Range . . . . . . . . . . . . 65°C to +150°C  
Maximum Junction Temperature . . . . . . . . . . . . . . . . 150°C  
TSSOP JA Thermal Impedance . . . . . . . . . . . . . 150.4°C/W  
CSP JA Thermal Impedance . . . . . . . . . . . . . . . . . . 122°C/W  
Lead Temperature, Soldering  
Vapor Phase (60 sec) . . . . . . . . . . . . . . . . . . . . . . . . 215°C  
Infrared (15 sec) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220°C  
NOTES  
1Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions above those listed in the operational  
sections of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device reliability.  
2This device is a high-performance RF integrated circuit with an ESD rating of  
<2 kV and it is ESD sensitive. Proper precautions should be taken for handling and  
assembly.  
3GND = AGND = DGND = 0 V  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although the  
ADF4106 features proprietary ESD protection circuitry, permanent damage may occur on devices  
subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are recommended  
to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
–4–  
REV. 0  
ADF4106  
PIN CONFIGURATIONS  
TSSOP  
Chip Scale Package  
1
2
3
4
5
6
7
8
16  
V
R
P
SET  
15 DV  
CP  
CPGND  
AGND  
DD  
14  
13  
12  
11  
10  
9
MUXOUT  
PIN 1  
15 MUXOUT  
14 LE  
13 DATA  
12 CLK  
11 CE  
CPGND 1  
AGND 2  
AGND 3  
INDICATOR  
ADF4106  
LE  
TOP VIEW  
ADF4106  
TOP VIEW  
DATA  
CLK  
CE  
RF  
B
(Not to Scale)  
IN  
IN  
RF B 4  
IN  
RF A 5  
IN  
RF  
A
AV  
DD  
DGND  
REF  
IN  
NOTE: TRANSISTOR COUNT 6425 (CMOS), 303 (BIPOLAR)  
PIN FUNCTION DESCRIPTIONS  
Mnemonic  
Function  
RSET  
Connecting a resistor between this pin and CPGND sets the maximum charge pump output current. The nominal  
voltage potential at the RSET pin is 0.6 V. The relationship between ICP and RSET is  
25.5  
RSET  
ICP MAX  
So, with RSET = 5.1 k, ICPMAX = 5 mA.  
=
CP  
Charge Pump Output. When enabled this provides  
external VCO.  
ICP to the external loop filter, which in turn drives the  
CPGND  
AGND  
RFINB  
Charge Pump Ground. This is the ground return path for the charge pump.  
Analog Ground. This is the ground return path of the prescaler.  
Complementary Input to the RF Prescaler. This point must be decoupled to the ground plane with a small bypass  
capacitor, typically 100 pF. See Figure 3.  
RFINA  
AVDD  
Input to the RF Prescaler. This small signal input is ac coupled to the external VCO.  
Analog Power Supply. This may range from 2.7 V to 3.3 V. Decoupling capacitors to the analog ground plane  
should be placed as close as possible to this pin. AVDD must be the same value as DVDD  
.
REFIN  
Reference Input. This is a CMOS input with a nominal threshold of VDD/2 and a dc equivalent input resistance of  
100 kΩ. See Figure 2. This input can be driven from a TTL or CMOS crystal oscillator or it can be ac coupled.  
DGND  
CE  
Digital Ground  
Chip Enable. A logic low on this pin powers down the device and puts the charge pump output into three-state  
mode. Taking the pin high will power up the device depending on the status of the power-down bit F2.  
CLK  
Serial Clock Input. This serial clock is used to clock in the serial data to the registers. The data is latched into the  
24-bit shift register on the CLK rising edge. This input is a high impedance CMOS input.  
DATA  
LE  
Serial Data Input. The serial data is loaded MSB first with the two LSBs being the control bits. This input is a  
high impedance CMOS input.  
Load Enable, CMOS Input. When LE goes high, the data stored in the shift registers is loaded into one of the four  
latches, the latch being selected using the control bits.  
MUXOUT  
DVDD  
VP  
This multiplexer output allows either the Lock Detect, the scaled RF or the scaled Reference Frequency to be  
accessed externally.  
Digital Power Supply. This may range from 2.7 V to 3.3 V. Decoupling capacitors to the digital ground plane  
should be placed as close as possible to this pin. DVDD must be the same value as AVDD  
.
Charge Pump Power Supply. This should be greater than or equal to VDD. In systems where VDD is 3 V, it can be  
set to 5 V and used to drive a VCO with a tuning range of up to 5 V.  
REV. 0  
–5–  
ADF4106Typical Performance Characteristics  
40  
50  
KEYWORD –  
R
FREQ UNIT – GHz  
PARAM TYPE –  
IMPEDANCE – 50  
S
10dB/DIV  
= 40dBc/Hz  
RMS NOISE = 0.36  
DATA FORMAT – MA  
R
L
FREQ MAGS11  
0.500 0.89148  
0.600 0.88133  
0.700 0.87152  
0.800 0.85855  
0.900 0.84911  
1.000 0.83512  
1.100 0.82374  
1.200 0.80871  
1.300 0.79176  
1.400 0.77205  
1.500 0.75696  
1.600 0.74234  
1.700 0.72239  
1.800 0.69419  
1.900 0.67288  
2.000 0.66227  
2.100 0.64758  
2.200 0.62454  
2.300 0.59466  
2.400 0.55932  
2.500 0.52256  
2.600 0.48754  
2.700 0.46411  
2.800 0.45776  
2.900 0.44859  
3.000 0.44588  
3.100 0.43810  
3.200 0.43269  
ANGS11  
17.2820  
20.6919  
24.5386  
27.3228  
31.0698  
34.8623  
38.5574  
41.9093  
45.6990  
49.4185  
52.8898  
56.2923  
60.2584  
63.1446  
65.6464  
68.0742  
71.3530  
75.5658  
79.6404  
82.8246  
85.2795  
85.6298  
86.1854  
86.4997  
88.8080  
91.9737  
95.4087  
99.1282  
FREQ MAGS11  
3.300 0.42777  
3.400 0.42859  
3.500 0.43365  
3.600 0.43849  
3.700 0.44475  
3.800 0.44800  
3.900 0.45223  
4.000 0.45555  
4.100 0.45313  
4.200 0.45622  
4.300 0.45555  
4.400 0.46108  
4.500 0.45325  
4.600 0.45054  
4.700 0.45200  
4.800 0.45043  
4.900 0.45282  
5.000 0.44287  
5.100 0.44909  
5.200 0.44294  
5.300 0.44558  
5.400 0.45417  
5.500 0.46038  
5.600 0.47128  
5.700 0.47439  
5.800 0.48604  
5.900 0.50637  
6.000 0.52172  
ANGS11  
102.748  
107.167  
111.883  
117.548  
123.856  
130.399  
136.744  
142.766  
149.269  
154.884  
159.680  
164.916  
168.452  
173.462  
176.697  
178.824  
174.947  
170.237  
166.617  
162.786  
158.766  
153.195  
147.721  
139.760  
60  
70  
80  
90  
100  
110  
120  
130  
140  
132.657  
125.782  
121.110  
115.400  
100Hz  
1MHz  
FREQUENCY OFFSET FROM 900MHz CARRIER  
TPC 1. S-Parameter Data for the RF Input  
TPC 4. Integrated Phase Noise (900 MHz,  
200 kHz, and 20 kHz)  
0
0
V
= 3V  
REF LEVEL = 14.0dBm  
DD  
V
= 3V, V = 5V  
P
DD  
V
= 3V  
10  
20  
30  
40  
50  
60  
70  
80  
P
I
= 5mA  
CP  
5  
10  
15  
20  
25  
30  
PFD FREQUENCY = 200kHz  
LOOP BANDWIDTH = 20kHz  
RES BANDWIDTH = 1kHz  
VIDEO BANDWIDTH = 1kHz  
SWEEP = 2.5 SECONDS  
AVERAGES = 30  
T
= +85C  
A
91.0dBc/Hz  
T
= +25C  
A
90  
T
= 40C  
A
100  
0
1
2
3
4
5
6
400kHz  
200kHz  
900MHz  
200kHz  
400kHz  
RF INPUT FREQUENCY GHz  
FREQUENCY  
TPC 5. Reference Spurs (900 MHz, 200 kHz, and 20 kHz)  
TPC 2. Input Sensitivity  
0
10  
20  
30  
40  
50  
60  
70  
80  
0
REF LEVEL = 14.3dBm  
REF LEVEL = 10dBm  
V
= 3V, V = 5V  
P
= 5mA  
V
= 3V, V = 5V  
DD  
DD P  
10  
20  
30  
40  
50  
60  
70  
80  
I
I
= 5mA  
CP  
CP  
PFD FREQUENCY = 200kHz  
LOOP BANDWIDTH = 20kHz  
RES BANDWIDTH = 10Hz  
VIDEO BANDWIDTH = 10Hz  
SWEEP = 1.9 SECONDS  
AVERAGES = 10  
PFD FREQUENCY = 1MHz  
LOOP BANDWIDTH = 100kHz  
RES BANDWIDTH = 10Hz  
VIDEO BANDWIDTH = 10Hz  
SWEEP = 1.9 SECONDS  
AVERAGES = 10  
93.0dBc/Hz  
84.0dBc/Hz  
90  
90  
100  
100  
2kHz  
1kHz  
900MHz  
1kHz  
2kHz  
2kHz  
1kHz  
5800MHz  
1kHz  
2kHz  
FREQUENCY  
FREQUENCY  
TPC 6. Phase Noise (5.8 GHz, 1 MHz, and 100 kHz)  
TPC 3. Phase Noise (900 MHz, 200 kHz, and 20 kHz)  
–6–  
REV. 0  
ADF4106  
40  
50  
5  
15  
25  
35  
45  
55  
65  
75  
85  
95  
105  
10dB/DIV  
= 40dBc/Hz  
RMS NOISE = 1.8  
V
= 3V  
DD  
R
L
V
= 5V  
P
60  
70  
80  
90  
100  
110  
120  
130  
140  
100Hz  
1MHz  
0
1
2
3
4
5
TUNINGVOLTAGE V  
FREQUENCY OFFSET FROM 5800MHz CARRIER  
TPC 7. Integrated Phase Noise (5.8 GHz, 1 MHz, and  
100 kHz)  
TPC 10. Reference Spurs vs. VTUNE (5.8 GHz, 1 MHz, and  
100 kHz)  
0
120  
V
= 3V,V = 5V  
P
V
= 3V  
REF LEVEL = 10.0dBm  
DD  
DD  
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
I
= 5mA  
V = 5V  
P
CP  
PDF FREQUENCY = 1MHz  
LOOP BANDWIDTH = 100kHz  
RES BANDWIDTH = 1kHz  
VIDEO BANDWIDTH = 1kHz  
SWEEP = 13 SECONDS  
AVERAGES = 1  
130  
140  
150  
160  
170  
180  
66.0dBc  
65.0dBc  
10  
100  
1k  
10k  
100k  
2MHz  
1MHz  
5800MHz  
1MHz  
2MHz  
PHASE DETECTOR FREQUENCY Hz  
FREQUENCY  
TPC 11. Phase Noise (referred to CP output) vs.  
PFD Frequency  
TPC 8. Reference Spurs (5.8 GHz, 1 MHz, and 100 kHz)  
10  
9
8
7
6
5
4
3
2
1
0
60  
V
= 3V  
DD  
= 5V  
V
P
70  
80  
90  
100  
8/9  
16/17  
32/33  
64/65  
40  
20  
0
20  
40  
60  
80  
100  
PRESCALERVALUE  
TEMPERATURE –  
C
TPC 12. AIDD vs. Prescaler Value  
TPC 9. Phase Noise (5.8 GHz, 1 MHz, and 100 kHz) vs.  
Temperature  
–7–  
REV. 0  
ADF4106  
3.5  
6
4
V
= 3V  
DD  
= 3V  
V
P
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
= 5V  
P
I
= 5mA  
CP  
2
0
2  
4  
6  
50  
100  
150  
200  
250  
300  
0
0.5  
1.0  
1.5  
2.0  
2.5  
V  
3.0  
3.5  
4.0  
4.5  
5.0  
PRESCALER OUTPUT FREQUENCY  
V
CP  
TPC 13. DIDD vs. Prescaler Output Frequency  
TPC 14. Charge Pump Output Characteristics  
CIRCUIT DESCRIPTION  
PRESCALER (P/P + 1)  
REFERENCE INPUT SECTION  
The dual modulus prescaler (P/P + 1), along with the A and  
B counters, enables the large division ratio, N, to be realized  
(N = BP + A). The dual-modulus prescaler, operating at CML  
levels, takes the clock from the RF input stage and divides it  
down to a manageable frequency for the CMOS A and B  
counters. The prescaler is programmable. It can be set in soft-  
ware to 8/9, 16/17, 32/33 or 64/65. It is based on a synchronous  
4/5 core. There is a minimum divide ratio possible for fully  
contiguous output frequencies. This minimum is determined by  
P, the prescaler value and is given by: (P2 P).  
The Reference Input stage is shown in Figure 2. SW1 and SW2  
are normally-closed switches. SW3 is normally-open. When  
Powerdown is initiated, SW3 is closed and SW1 and SW2 are  
opened. This ensures that there is no loading of the REFIN pin  
on power-down.  
POWER-DOWN  
CONTROL  
100kꢁ  
NC  
A AND B COUNTERS  
SW2  
The A and B CMOS counters combine with the dual modulus  
prescaler to allow a wide ranging division ratio in the PLL feed-  
back counter. The counters are specified to work when the  
prescaler output is 300 MHz or less. Thus, with an RF input  
frequency of 4.0 GHz, a prescaler value of 16/17 is valid but a  
value of 8/9 is not valid.  
TO R COUNTER  
REF  
IN  
NC  
SW1  
BUFFER  
SW3  
NO  
NC = NO CONNECT  
Pulse Swallow Function  
Figure 2. Reference Input Stage  
The A and B counters, in conjunction with the dual modulus  
prescaler make it possible to generate output frequencies which  
are spaced only by the Reference Frequency divided by R. The  
equation for the VCO frequency is as follows:  
RF INPUT STAGE  
The RF input stage is shown in Figure 3. It is followed by a 2-stage  
limiting amplifier to generate the CML clock levels needed for the  
prescaler.  
fREFIN  
R
fVCO = [(P × B)+ A]×  
BIAS  
1.6V  
fVCO  
P
Output Frequency of external voltage controlled  
oscillator (VCO).  
Preset modulus of dual modulus prescaler  
(8/9, 16/17, etc.,).  
GENERATOR  
AV  
DD  
500ꢁ  
500ꢁ  
B
Preset Divide Ratio of binary 13-bit counter  
(3 to 8191).  
Preset Divide Ratio of binary 6-bit swallow  
counter (0 to 63).  
External reference frequency oscillator.  
RF  
A
B
IN  
A
RF  
IN  
fREFIN  
AGND  
Figure 3. RF Input Stage  
–8–  
REV. 0  
ADF4106  
MUXOUT AND LOCK DETECT  
N = BP + A  
The output multiplexer on the ADF4110 family allows the user  
to access various internal points on the chip. The state of  
MUXOUT is controlled by M3, M2, and M1 in the Function  
Latch. Table V shows the full truth table. Figure 6 shows the  
MUXOUT section in block diagram form.  
TO PFD  
13-BIT B  
COUNTER  
LOAD  
LOAD  
6-BIT A  
COUNTER  
FROM RF  
INPUT STAGE  
PRESCALER  
P/P + 1  
Lock Detect  
MODULUS  
CONTROL  
MUXOUT can be programmed for two types of lock detect:  
digital lock detect and analog lock detect.  
N DIVIDER  
Digital lock detect is active high. When LDP in the R counter  
latch is set to 0, digital lock detect is set high when the phase  
error on three consecutive Phase Detector cycles is less than  
15 ns. With LDP set to 1,five consecutive cycles of less than  
15 ns are required to set the lock detect. It will stay set high  
until a phase error of greater than 25 ns is detected on any sub-  
sequent PD cycle.  
Figure 4. A and B Counters  
R COUNTER  
The 14-bit R counter allows the input reference frequency to  
be divided down to produce the reference clock to the phase  
frequency detector (PFD). Division ratios from 1 to 16,383  
are allowed.  
The N-channel open-drain analog lock detect should be oper-  
ated with an external pull-up resistor of 10 knominal. When  
lock has been detected this output will be high with narrow low-  
going pulses.  
PHASE FREQUENCY DETECTOR (PFD) AND  
CHARGE PUMP  
The PFD takes inputs from the R counter and N counter (N =  
BP + A) and produces an output proportional to the phase and  
frequency difference between them. Figure 5 is a simplified  
schematic. The PFD includes a programmable delay element  
which controls the width of the anti-backlash pulse. This pulse  
ensures that there is no deadzone in the PFD transfer function  
and minimizes phase noise and reference spurs. Two bits in the  
Reference Counter Latch, ABP2 and ABP1 control the width of  
the pulse. See Table III.  
DV  
DD  
ANALOG LOCK DETECT  
DIGITAL LOCK DETECT  
R COUNTER OUTPUT  
N COUNTER OUTPUT  
SDOUT  
MUX  
CONTROL  
MUXOUT  
V
P
CHARGE  
PUMP  
UP  
Q1  
U1  
HI  
D1  
DGND  
R DIVIDER  
Figure 6. MUXOUT Circuit  
INPUT SHIFT REGISTER  
CLR1  
PROGRAMMABLE  
DELAY  
U3  
The ADF4110 family digital section includes a 24-bit input shift  
register, a 14-bit R counter and a 19-bit N counter, comprising a  
6-bit A counter and a 13-bit B counter. Data is clocked into the  
24-bit shift register on each rising edge of CLK. The data is  
clocked in MSB first. Data is transferred from the shift register  
to one of four latches on the rising edge of LE. The destina-  
tion latch is determined by the state of the two control bits  
(C2, C1) in the shift register. These are the two LSBs, DB1 and  
DB0, as shown in the timing diagram of Figure 1. The truth table  
for these bits is shown in Table VI. Table I shows a summary  
of how the latches are programmed.  
CP  
ABP2  
ABP1  
CLR2  
D2 Q2  
DOWN  
HI  
U2  
N DIVIDER  
CPGND  
R DIVIDER  
N DIVIDER  
Table I. C2, C1 Truth Table  
Control Bits  
C2  
C1  
Data Latch  
CP OUTPUT  
0
0
1
1
0
1
0
1
R Counter  
N Counter (A and B)  
Function Latch (Including Prescaler)  
Initialization Latch  
Figure 5. PFD Simplified Schematic and Timing (In Lock)  
REV. 0  
–9–  
ADF4106  
Table II. Latch Summary  
REFERENCE COUNTER LATCH  
ANTI-  
BACKLASH  
WIDTH  
TEST  
CONTROL  
BITS  
14-BIT REFERENCE COUNTER  
RESERVED  
MODE BITS  
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6  
DB5 DB4 DB3 DB2  
R4 R3 R2 R1  
DB1  
DB0  
X
0
0
LDP  
T2  
T1 ABP2 ABP1  
R13 R12  
R11 R10  
R9  
R8  
R7  
R6  
R5  
C2 (0) C1 (0)  
R14  
N COUNTER LATCH  
CONTROL  
BITS  
RESERVED  
13-BIT B COUNTER  
6-BIT A COUNTER  
DB7 DB6 DB5 DB4 DB3 DB2  
DB1  
DB0  
DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8  
DB20  
B13  
DB23 DB22 DB21  
G1  
B12  
B11 B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
A6  
A5  
A4  
A3  
A2  
A1 C2 (0) C1 (1)  
FUNCTION LATCH  
CURRENT  
SETTING  
2
CURRENT  
SETTING  
1
CONTROL  
BITS  
TIMER COUNTER  
CONTROL  
PRESCALER  
VALUE  
MUXOUT  
CONTROL  
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4  
DB3 DB2  
PD1 F1  
DB1  
DB0  
P2  
P1  
PD2 CPI6 CPI5 CPI4 CPI3 CPI2 CPI1 TC4 TC3  
TC2 TC1  
F5  
F4  
F3  
F2  
M3  
M2  
M1  
C2 (1) C1 (0)  
INITIALIZATION LATCH  
CURRENT  
SETTING  
2
CONTROL  
BITS  
CURRENT  
SETTING  
1
MUXOUT  
PRESCALER  
VALUE  
TIMER COUNTER  
CONTROL  
CONTROL  
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4  
DB3 DB2  
PD1 F1  
DB1  
DB0  
C2 (1) C1 (1)  
CPI5  
F3  
F2  
P2  
P1  
PD2  
CPI3 CPI2 CPI1 TC4 TC3  
TC2 TC1  
F4  
M3  
M2  
CPI4  
F5  
CPI6  
M1  
–10–  
REV. 0  
ADF4106  
Table III. Reference Counter Latch Map  
ANTI-  
CONTROL  
BITS  
TEST  
BACKLASH  
WIDTH  
14-BIT REFERENCE COUNTER  
RESERVED  
MODE BITS  
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2  
DB1  
DB0  
ABP1  
0
LDP  
T2  
T1 ABP2  
R14 R13  
R12 R11  
R10  
R9  
R8  
R7  
R6  
R5  
R4  
R3  
R2  
R1  
C2 (0) C1 (0)  
0
X
X
= DONT CARE  
R14  
R13  
R12  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
R3  
0
0
0
1
.
.
.
1
R2  
R1  
DIVIDE RATIO  
1
2
3
4
.
.
.
0
0
0
0
.
.
.
1
0
0
0
0
.
.
.
1
0
0
0
0
.
.
.
1
0
1
1
0
.
.
.
0
1
0
1
0
.
.
.
0
16380  
1
1
1
1
1
1
1
1
1
..........  
..........  
..........  
1
1
1
0
1
1
1
0
1
16381  
16382  
16383  
ABP2  
ABP1  
ANTIBACKLASH PULSEWIDTH  
0
0
1
1
0
1
0
1
2.9ns  
1.3ns  
6.0ns  
2.9ns  
TEST MODE BITS  
SHOULD BE SET  
TO 00 FOR NORMAL  
OPERATION  
LDP  
OPERATION  
0
THREE CONSECUTIVE CYCLES OF PHASE DELAY LESS THAN  
15ns MUST OCCUR BEFORE LOCK DETECT IS SET.  
FIVE CONSECUTIVE CYCLES OF PHASE DELAY LESS THAN  
15ns MUST OCCUR BEFORE LOCK DETECT IS SET.  
1
BOTH OF THESE BITS  
MUST BE SET TO 0 FOR  
NORMAL OPERATION  
REV. 0  
–11–  
ADF4106  
Table IV. AB Counter Latch Map  
CONTROL  
BITS  
13-BIT B COUNTER  
RESERVED  
6-BIT A COUNTER  
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8  
DB7 DB6 DB5 DB4 DB3 DB2  
DB1 DB0  
X
X
G1  
B13  
B12  
B11 B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
A6  
A5  
A4  
A3  
A2  
A1 C2 (0) C1 (1)  
X = DONT CARE  
A COUNTER  
A6  
A5  
..........  
A2  
0
0
1
1
.
.
.
0
0
1
1
A1  
0
1
0
1
.
.
.
0
1
0
1
DIVIDE RATIO  
0
1
2
3
.
.
.
60  
61  
62  
63  
0
0
0
0
.
.
.
1
1
1
1
0
0
0
0
.
.
.
1
1
1
1
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
B13  
B12  
B11  
B3  
0
0
0
1
.
.
.
1
1
1
1
B2  
0
0
1
1
.
.
.
0
0
1
1
B1  
B COUNTER DIVIDE RATIO  
NOT ALLOWED  
NOT ALLOWED  
NOT ALLOWED  
3
.
.
.
8188  
8189  
8190  
8191  
0
0
0
0
.
.
.
1
1
1
1
0
0
0
0
.
.
.
1
1
1
1
0
0
0
0
.
.
.
1
1
1
1
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
0
1
0
1
.
.
.
0
1
0
1
F4 (FUNCTION LATCH)  
FASTLOCK ENABLE  
0
CP GAIN  
OPERATION  
CHARGE PUMP CURRENT SETTING  
IS PERMANENTLY USED  
CHARGE PUMP CURRENT SETTING  
IS PERMANENTLY USED  
CHARGE PUMP CURRENT SETTING  
IS USED  
CHARGE PUMP CURRENT IS  
SWITCHED TO SETTING 2. THE  
TIME SPENT IN SETTING 2 IS  
DEPENDENT ON WHICH FASTLOCK  
MODE IS USED. SEE FUNCTION  
LATCH DESCRIPTION  
0
1
1
2
0
1
1
0
1
1
N = BP + A, P IS PRESCALER VALUE SET IN THE FUNCTION LATCH.  
B MUST BE GREATER THAN OR EQUAL TO A. FOR CONTINUOUSLY  
ADJACENT VALUES OF (N F  
), AT THE OUTPUT,  
N
IS (P2 - P)  
REF  
MIN  
THESE BITS ARE NOT USED  
BY THE DEVICE AND ARE  
DON'T CARE BITS.  
–12–  
REV. 0  
ADF4106  
Table V. Function Latch Map  
CURRENT  
SETTING  
2
CURRENT  
SETTING  
1
CONTROL  
BITS  
PRESCALER  
VALUE  
MUXOUT  
TIMER COUNTER  
CONTROL  
CONTROL  
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4  
DB3 DB2 DB1  
DB0  
C2 (1) C1 (0)  
CPI5  
F3  
F2  
P2  
P1  
PD2  
CPI3 CPI2 CPI1 TC4 TC3  
TC2 TC1  
F4  
M3  
M2  
CPI4  
F5  
CPI6  
M1  
PD1 F1  
PHASE DETECTOR  
POLARITY  
NEGATIVE  
COUNTER  
OPERATION  
NORMAL  
R, A, B COUNTERS  
HELD IN RESET  
F2  
0
1
F1  
0
1
POSITIVE  
F3  
CHARGE PUMP  
OUTPUT  
0
1
NORMAL  
THREE-STATE  
F4  
FASTLOCK MODE  
F5  
0
1
1
FASTLOCK DISABLED  
FASTLOCK MODE 1  
FASTLOCK MODE 2  
X
0
1
M3  
0
0
M2  
0
0
M1  
0
1
OUTPUT  
TIMEOUT  
(PFD CYCLES)  
3
7
THREE-STATE OUTPUT  
DIGITAL LOCK DETECT  
(ACTIVE HIGH)  
TC4  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
TC3  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
TC2  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
TC1  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0
1
1
0
1
N DIVIDER OUTPUT  
11  
15  
19  
23  
27  
31  
35  
39  
43  
47  
51  
55  
59  
63  
DV  
DV  
DD  
DD  
R DIVIDER OUTPUT  
N-CHANNEL OPEN-DRAIN  
LOCK DETECT  
SERIAL DATA OUTPUT  
DGND  
1
1
0
0
0
1
1
1
1
1
0
1
CPI6  
CPI5  
CP14  
I
(mA)  
CP  
CPI3  
CPI2  
CPI1  
3kꢁ  
5.1kꢁ  
11kꢁ  
0.289  
0.580  
0.870  
1.160  
1.450  
1.730  
2.020  
2.320  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1.06  
2.12  
3.18  
4.24  
5.30  
6.36  
7.42  
8.50  
0.625  
1.25  
1.875  
2.5  
3.125  
3.75  
4.375  
5.0  
CE PIN  
PD2  
PD1  
MODE  
0
1
1
1
X
X
0
1
X
0
1
1
ASYNCHRONOUS POWER-DOWN  
NORMAL OPERATION  
ASYNCHRONOUS POWER-DOWN  
SYNCHRONOUS POWER-DOWN  
P2  
P1  
PRESCALER VALUE  
0
0
1
1
0
1
0
1
8/9  
16/17  
32/33  
64/65  
REV. 0  
–13–  
ADF4106  
Table VI. Initialization Latch Map  
CURRENT  
SETTING  
2
CURRENT  
SETTING  
1
CONTROL  
BITS  
PRESCALER  
VALUE  
MUXOUT  
TIMER COUNTER  
CONTROL  
CONTROL  
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4  
DB3 DB2 DB1  
DB0  
C2 (1) C1 (1)  
CPI5  
F3  
F2  
P2  
P1  
PD2  
CPI3 CPI2 CPI1 TC4 TC3  
TC2 TC1  
F4  
M3  
M2  
CPI4  
F5  
CPI6  
M1  
PD1 F1  
PHASE DETECTOR  
POLARITY  
NEGATIVE  
COUNTER  
OPERATION  
NORMAL  
R, A, B COUNTERS  
HELD IN RESET  
F2  
0
1
F1  
0
1
POSITIVE  
F3  
CHARGE PUMP  
OUTPUT  
0
1
NORMAL  
THREE-STATE  
F4  
FASTLOCK MODE  
F5  
0
1
1
FASTLOCK DISABLED  
FASTLOCK MODE 1  
FASTLOCK MODE 2  
X
0
1
M3  
0
0
M2  
0
0
M1  
0
1
OUTPUT  
TIMEOUT  
(PFD CYCLES)  
3
7
THREE-STATE OUTPUT  
DIGITAL LOCK DETECT  
(ACTIVE HIGH)  
TC4  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
TC3  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
TC2  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
TC1  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0
1
1
0
1
N DIVIDER OUTPUT  
11  
15  
19  
23  
27  
31  
35  
39  
43  
47  
51  
55  
59  
63  
DV  
DV  
DD  
DD  
R DIVIDER OUTPUT  
N-CHANNEL OPEN-DRAIN  
LOCK DETECT  
SERIAL DATA OUTPUT  
DGND  
1
1
0
0
0
1
1
1
1
1
0
1
CPI6  
CPI5  
CP14  
I
(mA)  
CP  
CPI3  
CPI2  
CPI1  
3kꢁ  
5.1kꢁ  
11kꢁ  
0.289  
0.580  
0.870  
1.160  
1.450  
1.730  
2.020  
2.320  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1.06  
2.12  
3.18  
4.24  
5.30  
6.36  
7.42  
8.50  
0.625  
1.25  
1.875  
2.5  
3.125  
3.75  
4.375  
5.0  
CE PIN  
PD2  
PD1  
MODE  
0
1
1
1
X
X
0
1
X
0
1
1
ASYNCHRONOUS POWER-DOWN  
NORMAL OPERATION  
ASYNCHRONOUS POWER-DOWN  
SYNCHRONOUS POWER-DOWN  
P2  
P1  
PRESCALER VALUE  
0
0
1
1
0
1
0
1
8/9  
16/17  
32/33  
64/65  
–14–  
REV. 0  
ADF4106  
THE FUNCTION LATCH  
Fastlock Mode 2  
With C2, C1 set to 1,0, the on-chip function latch will be  
programmed. Table V shows the input data format for program-  
ming the Function Latch.  
The charge pump current is switched to the contents of Current  
Setting 2. The device enters Fastlock by having a 1written to  
the CP Gain bit in the AB counter latch. The device exits  
Fastlock under the control of the Timer Counter. After the  
timeout period determined by the value in TC4TC1, the CP  
Gain bit in the AB counter latch is automatically reset to 0”  
and the device reverts to normal mode instead of Fastlock. See  
Table V for the timeout periods.  
Counter Reset  
DB2 (F1) is the counter reset bit. When this is 1,the R counter  
and the A,B counters are reset. For normal operation this bit  
should be 0.Upon powering up, the F1 bit needs to be disabled  
(set to “0”). The N counter then resumes counting in “close” align-  
ment with the R counter. (The maximum error is one prescaler cycle).  
Timer Counter Control  
The user has the option of programming two charge pump cur-  
rents. The intent is that the Current Setting 1 is used when the  
RF output is stable and the system is in a static state. Current  
Setting 2 is meant to be used when the system is dynamic and in a  
state of change (i.e., when a new output frequency is programmed).  
The normal sequence of events is as follows:  
Power-Down  
DB3 (PD1) and DB21 (PD2) on the ADF4110 Family, provide  
programmable power-down modes. They are enabled by the CE  
pin. When the CE pin is low, the device is immediately disabled  
regardless of the states of PD2, PD1. In the programmed asyn-  
chronous power-down, the device powers down immediately  
after latching a 1into bit PD1, with the condition that PD2  
has been loaded with a 0.In the programmed synchronous  
power-down, the device power down is gated by the charge  
pump to prevent unwanted frequency jumps. Once the power-  
down is enabled by writing a 1into bit PD1 (on condition  
that a 1has also been loaded to PD2), then the device will go  
into power-down on the occurrence of the next charge pump  
event. When a power down is activated (either synchronous or  
asynchronous mode including CE-pin-activated power down),  
the following events occur:  
Users initially decide what the preferred charge pump currents  
are will be. For example, they may choose 2.5 mA as Current  
Setting 1 and 5 mA as the Current Setting 2. At the same time  
they must also decide how long they want the secondary cur-  
rent to stay active before reverting to the primary current. This  
is controlled by the Timer Counter Control Bits DB14 to  
DB11 (TC4TC1) in the Function Latch. The truth table is  
given in Table V.  
Now, when users wish to program a new output frequency, they  
can simply program the AB counter latch with new values for A  
and B. At the same time they can set the CP Gain bit to a 1,”  
which sets the charge pump with the value in CPI6CPI4 for a  
period of time determined by TC4TC1. When this time is up,  
the charge pump current reverts to the value set by CPI3CPI1.  
At the same time the CP Gain bit in the A, B Counter latch is  
reset to 0 and is now ready for the next time that the user wishes  
to change the frequency again.  
All active dc current paths are removed.  
The R, N, and timeout counters are forced to their load state  
conditions.  
The charge pump is forced into three-state mode.  
The digital clock detect circuitry is reset.  
The RFIN input is debiased.  
The reference input buffer circuitry is disabled.  
The input register remains active and capable of loading and  
latching data.  
Note that there is an enable feature on the Timer Counter. It is  
enabled when Fastlock Mode 2 is chosen by setting the Fastlock  
Mode bit (DB10) in the Function Latch to 1.”  
MUXOUT Control  
The on-chip multiplexer is controlled by M3, M2, M1 on the  
ADF4110 Family. Table V shows the truth table.  
Charge Pump Currents  
CPI3, CPI2, CPI1 program Current Setting 1 for the charge  
pump. CPI6, CPI5, CPI4 program Current Setting 2 for the  
charge pump. The truth table is given in Table V.  
Fastlock Enable Bit  
DB9 of the Function Latch is the Fastlock Enable Bit. Only  
when this is 1is Fastlock enabled.  
Prescaler Value  
Fastlock Mode Bit  
P2 and P1 in the Function Latch set the prescaler values. The  
prescaler value should be chosen so that the prescaler output  
frequency is always less than or equal to 300 MHz. Thus, with  
an RF frequency of 4 GHz, a prescaler value of 16/17 is valid  
but a value of 8/9 is not valid.  
DB10 of the Function Latch is the Fastlock Mode bit. When  
Fastlock is enabled, this bit determines which Fastlock Mode is  
used. If the Fastlock Mode bit is 0,Fastlock Mode 1 is  
selected and if the Fastlock Mode bit is 1,Fastlock Mode 2 is  
selected.  
PD Polarity  
Fastlock Mode 1  
This bit sets the Phase Detector Polarity Bit. See Table V.  
The charge pump current is switched to the contents of Current  
Setting 2. The device enters Fastlock by having a 1written to  
the CP Gain bit in the AB counter latch. The device exits  
Fastlock by having a 0written to the CP Gain bit in the AB  
counter latch.  
CP Three-State  
This bit controls the CP output pin. With the bit set high, the  
CP output is put into three-state. With the bit set low, the CP  
output is enabled.  
REV. 0  
–15–  
ADF4106  
THE INITIALIZATION LATCH  
Counter Reset Method  
Apply VDD  
Do a Function Latch Load (10in two LSBs). As part of  
this, load 1to the F1 bit. This enables the counter reset.  
Do an R Counter Load (00in two LSBs).  
Do an AB Counter Load (01in two LSBs).  
Do a Function Latch Load (10in two LSBs). As part of  
this, load 0to the F1 bit. This disables the counter reset.  
When C2, C1 = 1, 1, the Initialization Latch is programmed. This is  
essentially the same as the Function Latch (programmed when  
C2, C1 = 1, 0).  
.
However, when the Initialization Latch is programmed there is  
an additional internal reset pulse applied to the R and AB  
counters. This pulse ensures that the AB counter is at load point  
when the AB counter data is latched and the device will begin  
counting in close phase alignment.  
This sequence provides the same close alignment as the initial-  
ization method. It offers direct control over the internal reset.  
Note that counter reset holds the counters at load point and  
three-states the charge pump, but does not trigger synchronous  
power-down.  
If the Latch is programmed for synchronous power-down (CE  
pin is High; PD1 bit is High; PD2 bit is Low), the internal pulse  
also triggers this powerdown. The prescaler reference and the  
oscillator input buffer are unaffected by the internal reset pulse  
and so close phase alignment is maintained when counting resumes.  
APPLICATION SECTION  
When the first AB counter data is latched after initialization, the  
internal reset pulse is again activated. However, successive AB  
counter loads after this will not trigger the internal reset pulse.  
Local Oscillator for LMDS Base Station Transmitter  
Figure 7 shows the ADF4106 being used with a VCO to pro-  
duce the LO for an LMDS base station operation in the  
5.4 GHz to 5.8 GHz band.  
DEVICE PROGRAMMING AFTER INITIAL POWER-UP  
After initially powering up the device, there are three ways to  
program the device.  
The reference input signal is applied to the circuit at FREFIN  
and, in this case, is terminated in 50 . A typical base station  
system would have either a TCXO or an OCXO driving the  
Reference Input without any 50 termination.  
Initialization Latch Method  
Apply VDD  
.
In order to have a channel spacing of 1 MHz at the output, the  
10 MHz reference input must be divided by 10, using the on-chip  
reference divider of the ADF4106.  
Program the Initialization Latch (11in two LSBs of input  
word). Make sure that F1 bit is programmed to 0.”  
Do a Function Latch load (10in two LSBs of the control  
word), making sure that the F1 bit is programmed to a 0.”  
Do an R load (00in two LSBs).  
The charge pump output of the ADF4106 (Pin 2) drives the  
loop filter. In calculating the loop filter component values, a  
number of items need to be considered. In this example, the  
loop filter was designed so that the overall phase margin for the  
system would be 45 degrees. Other PLL system specifications  
are given below:  
Do an AB load (01in two LSBs).  
When the Initialization Latch is loaded, the following occurs:  
1. The function latch contents are loaded.  
2. An internal pulse resets the R, A, B and timeout counters to  
load state conditions and also three-states the charge pump.  
Note that the prescaler bandgap reference and the oscillator  
input buffer are unaffected by the internal reset pulse, allow-  
ing close phase alignment when counting resumes.  
3. Latching the first AB counter data after the initialization  
word will activate the same internal reset pulse. Successive  
AB loads will not trigger the internal reset pulse unless there  
is another initialization.  
KD = 2.5 mA  
KV = 80 MHz/V  
Loop Bandwidth = 50 kHz  
FREF = 1 MHz  
N = 5800  
Extra Reference Spur Attenuation = 10 dB  
All of these specifications are needed and used to come up with  
the loop filter component values shown in Figure 7.  
CE Pin Method  
Figure 7 gives a typical phase noise performance of 83 dBc/Hz  
at 1 kHz offset from the carrier. Spurs are better than 62 dBc.  
Apply VDD  
.
Bring CE low to put the device into power-down. This is an  
asynchronous power-down in that it happens immediately.  
Program the Function Latch (10).  
The loop filter output drives the VCO, which, in turn, is fed  
back to the RF input of the PLL synthesizer and also drives the  
RF Output terminal. A T-circuit configuration provides 50 Ω  
matching between the VCO output, the RF output and the  
RFIN terminal of the synthesizer. Note that the ADF4106 RF  
input looks like 50 at 5.8 GHz and so no terminating resistor  
is needed. When operating at lower frequencies however, this is  
not the case.  
Program the R Counter Latch (00).  
Program the AB Counter Latch (01).  
Bring CE high to take the device out of power-down.  
The R and AB counters will now resume counting in close  
alignment. Note that after CE goes high, a duration of 1 µs may  
be required for the prescaler bandgap voltage and oscillator  
input buffer bias to reach steady state.  
In a PLL system, it is important to know when the system is in  
lock. In Figure 7, this is accomplished by using the MUXOUT  
signal from the synthesizer. The MUXOUT pin can be pro-  
grammed to monitor various internal signals in the synthesizer.  
One of these is the LD or lock-detect signal.  
CE can be used to power the device up and down in order to  
check for channel activity. The input register does not need to  
be reprogrammed each time the device is disabled and enabled  
as long as it has been programmed at least once after VDD was  
initially applied.  
–16–  
REV. 0  
ADF4106  
V
V
P
DD  
RF  
OUT  
100pF  
18ꢁ  
18ꢁ  
100pF  
18ꢁ  
V
CP  
DV  
AV  
6.2kꢁ  
P
DD  
DD  
V
1000pF  
1000pF  
CC  
FREF  
REFIN  
IN  
20pF  
100pF  
4.3kꢁ  
V940ME03  
51ꢁ  
ADF4106  
1, 3, 4, 5, 7, 8,  
9, 11, 12, 13  
1.5nF  
CE  
LOCK  
DETECT  
MUXOUT  
CLK  
DATA  
LE  
100pF  
RF  
RF  
A
IN  
R
SET  
B
IN  
5.1kꢁ  
100pF  
NOTE  
DECOUPLING CAPACITORS (0.1  
OF THE ADF4106 AND ON V OF THE V940ME03 HAVE  
F/10pF) ON AV , DV  
,
DD  
DD  
V
P
CC  
BEEN OMITTED FROM THE DIAGRAM TO AID CLARITY.  
Figure 7. Local Oscillator for LMDS Base Station  
INTERFACING  
ADuC812 Interface  
The ADF4106 has a simple SPI-compatible serial interface for  
writing to the device. SCLK, SDATA and LE control the data  
transfer. When LE (Latch Enable) goes high, the 24 bits which  
have been clocked into the input register on each rising edge of  
SCLK will get transferred to the appropriate latch. See Figure 1  
for the Timing Diagram and Table I for the Latch Truth Table.  
Figure 8 shows the interface between the ADF4106 and the  
ADuC812 microconverter. Since the ADuC812 is based on an  
8051 core, this interface can be used with any 8051-based  
microcontroller. The microconverter is set up for SPI Master  
Mode with CPHA = 0. To initiate the operation, the I/O port  
driving LE is brought low. Each latch of the ADF4106 needs a  
24-bit word. This is accomplished by writing three 8-bit bytes  
from the microconverter to the device. When the third byte has  
been written the LE input should be brought high to complete  
the transfer.  
The maximum allowable serial clock rate is 20 MHz. This means  
that the maximum update rate possible for the device is 833 kHz  
or one update every 1.2 µs. This is certainly more than adequate  
for systems which will have typical lock times in hundreds of  
microseconds.  
REV. 0  
–17–  
ADF4106  
On first applying power to the ADF4106, it needs at three writes  
(one each to the R counter latch, the N counter latch and the  
function latch) for the output to become active.  
ADSP-2181 Interface  
Figure 9 shows the interface between the ADF4106 and the  
ADSP-21xx Digital Signal Processor. The ADF4106 needs a  
24-bit serial word for each latch write. The easiest way to  
accomplish this using the ADSP-21xx family is to use the  
Autobuffered Transmit Mode of operation with Alternate Framing.  
This provides a means for transmitting an entire block of serial  
data before an interrupt is generated. Set up the word length for  
8 bits and use three memory locations for each 24-bit word. To  
program each 24-bit latch, store the three 8-bit bytes, enable the  
Autobuffered mode and then write to the transmit register of the  
DSP. This last operation initiates the autobuffer transfer.  
I/O port lines on the ADuC812 are also used to control  
power-down (CE input) and to detect lock (MUXOUT config-  
ured as lock detect and polled by the port input).  
When operating in the mode described, the maximum SCLOCK  
rate of the ADuC812 is 4 MHz. This means that the maximum  
rate at which the output frequency can be changed will be 166 kHz.  
SCLOCK  
MOSI  
SCLK  
SDATA  
SCLOCK  
MOSI  
SCLK  
LE  
ADuC812  
ADF4106  
SDATA  
I/O PORTS  
CE  
TFS  
LE  
CE  
ADSP-21xx  
ADF4106  
MUXOUT  
(LOCK DETECT)  
I/O FLAGS  
MUXOUT  
(LOCK DETECT)  
Figure 8. ADuC812 to ADF4106 Interface  
Figure 9. ADSP-21xx to ADF4106 Interface  
–18–  
REV. 0  
ADF4106  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
16-Lead Thin Shrink SO Package (TSSOP)  
(RU-16)  
0.201 (5.10)  
0.193 (4.90)  
16  
9
0.177 (4.50)  
0.169 (4.30)  
0.256 (6.50)  
0.246 (6.25)  
1
8
PIN 1  
0.0433 (1.10)  
MAX  
0.006 (0.15)  
0.002 (0.05)  
8ꢃ  
0ꢃ  
0.028 (0.70)  
0.020 (0.50)  
0.0256 (0.65) 0.0118 (0.30)  
0.0079 (0.20)  
0.0035 (0.090)  
SEATING  
PLANE  
BSC  
0.0075 (0.19)  
20-Leadless Frame Chip Scale Package (LFCSP)  
(CP-20)  
0.024 (0.60)  
0.017 (0.42)  
0.009 (0.24)  
0.024 (0.60)  
0.010 (0.25)  
0.157 (4.0)  
BSC SQ  
MIN  
0.017 (0.42)  
0.009 (0.24)  
16  
15  
20  
1
PIN 1  
0.012 (0.30)  
0.009 (0.23)  
0.007 (0.18)  
0.030 (0.75)  
0.022 (0.60)  
0.014 (0.50)  
0.080 (2.25)  
0.083 (2.10) SQ  
0.077 (1.95)  
INDICATOR  
0.148 (3.75)  
BSC SQ  
TOP  
VIEW  
BOTTOM  
VIEW  
11  
10  
5
6
0.031 (0.80) MAX  
0.026 (0.65) NOM  
0.080 (2.00)  
REF  
12MAX  
0.035 (0.90) MAX  
0.033 (0.85) NOM  
0.002 (0.05)  
0.0004 (0.01)  
0.0 (0.0)  
SEATING  
PLANE  
0.020 (0.50)  
BSC  
0.008 (0.20)  
REF  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS  
REV. 0  
–19–  
–20–  

相关型号:

ADF4106-SCPZ-EP

PLL FREQUENCY SYNTHESIZER, 6000MHz, QCC16, 4 X 4 MM, ROHS COMPLIANT, MO-220VGGD1, LFCSP-16
ADI

ADF4106-SCPZ-EP-R7

PLL FREQUENCY SYNTHESIZER, 6000MHz, QCC16, 4 X 4 MM, ROHS COMPLIANT, MO-220VGGD1, LFCSP-16
ADI

ADF4106BCP

PLL Frequency Synthesizer
ADI

ADF4106BCP

PLL FREQUENCY SYNTHESIZER, 6000 MHz, QCC20, 4 X 4 MM, MO-220VGGD-1, LFCSP-20
ROCHESTER

ADF4106BCP-REEL

IC PLL FREQUENCY SYNTHESIZER, 6000 MHz, QCC20, 4 X 4 MM, MO-220VGGD-1, LFCSP-20, PLL or Frequency Synthesis Circuit
ADI

ADF4106BCP-REEL

PLL FREQUENCY SYNTHESIZER, 6000 MHz, QCC20, 4 X 4 MM, MO-220VGGD-1, LFCSP-20
ROCHESTER

ADF4106BCP-REEL7

IC PLL FREQUENCY SYNTHESIZER, 6000 MHz, QCC20, 4 X 4 MM, MO-220VGGD-1, LFCSP-20, PLL or Frequency Synthesis Circuit
ADI

ADF4106BCP-REEL7

PLL FREQUENCY SYNTHESIZER, 6000 MHz, QCC20, 4 X 4 MM, MO-220VGGD-1, LFCSP-20
ROCHESTER

ADF4106BCPZ

PLL Frequency Synthesizer
ADI

ADF4106BCPZ-R7

PLL Frequency Synthesizer
ADI

ADF4106BCPZ-RL

PLL Frequency Synthesizer
ADI

ADF4106BRU

PLL Frequency Synthesizer
ADI