ADF4110BCPZ [ADI]

RF PLL Frequency Synthesizers; 射频锁相环频率合成器
ADF4110BCPZ
型号: ADF4110BCPZ
厂家: ADI    ADI
描述:

RF PLL Frequency Synthesizers
射频锁相环频率合成器

射频
文件: 总28页 (文件大小:428K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
RF PLL Frequency Synthesizers  
Data Sheet  
ADF4110/ADF4111/ADF4112/ADF4113  
FEATURES  
GENERAL DESCRIPTION  
ADF4110: 550 MHz; ADF4111: 1.2 GHz; ADF4112: 3.0 GHz;  
ADF4113: 4.0 GHz  
2.7 V to 5.5 V power supply  
Separate charge pump supply (VP) allows extended tuning  
voltage in 3 V systems  
Programmable dual-modulus prescaler 8/9, 16/17, 32/33,  
64/65  
Programmable charge pump currents  
Programmable antibacklash pulse width  
3-wire serial interface  
Analog and digital lock detect  
Hardware and software power-down mode  
The ADF4110 family of frequency synthesizers can be used to  
implement local oscillators in the upconversion and downcon-  
version sections of wireless receivers and transmitters. They  
consist of a low noise digital PFD (phase frequency detector), a  
precision charge pump, a programmable reference divider,  
programmable A and B counters, and a dual-modulus prescaler  
(P/P + 1). The A (6-bit) and B (13-bit) counters, in conjunction  
with the dual-modulus prescaler (P/P + 1), implement an N  
divider (N = BP + A). In addition, the 14-bit reference counter  
(R counter) allows selectable REFIN frequencies at the PFD  
input. A complete phase-locked loop (PLL) can be implemented  
if the synthesizer is used with an external loop filter and voltage  
controlled oscillator (VCO).  
APPLICATIONS  
Base stations for wireless radio (GSM, PCS, DCS, CDMA,  
WCDMA)  
Wireless handsets (GSM, PCS, DCS, CDMA, WCDMA)  
Wireless LANS  
Communications test equipment  
CATV equipment  
Control of all the on-chip registers is via a simple 3-wire  
interface. The devices operate with a power supply ranging  
from 2.7 V to 5.5 V and can be powered down when not in use.  
FUNCTIONAL BLOCK DIAGRAM  
R
AV  
DV  
V
P
CPGND  
SET  
DD  
DD  
REFERENCE  
14-BIT  
R COUNTER  
REF  
IN  
PHASE  
FREQUENCY  
DETECTOR  
CHARGE  
PUMP  
CP  
14  
R COUNTER  
LATCH  
CLK  
DATA  
LE  
24-BIT  
INPUT REGISTER  
FUNCTION  
LATCH  
LOCK  
DETECT  
CURRENT  
SETTING 1  
CURRENT  
SETTING 2  
22  
A, B COUNTER  
LATCH  
SD  
OUT  
CPI3 CPI2 CPI1 CPI6 CPI5 CPI4  
19  
FROM  
FUNCTION  
LATCH  
HIGH Z  
AV  
DD  
13  
MUX  
MUXOUT  
N = BP + A  
13-BIT  
B COUNTER  
SD  
OUT  
RF  
RF  
A
B
LOAD  
IN  
PRESCALER  
P/P +1  
LOAD  
IN  
6-BIT  
A COUNTER  
M3 M2 M1  
ADF4110/ADF4111  
ADF4112/ADF4113  
6
CE  
AGND  
DGND  
Figure 1. Functional Block Diagram  
Rev. F  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2013 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
 
ADF4110/ADF4111/ADF4112/ADF4113  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Phase Frequency Detector (PFD) and Charge Pump............ 13  
Muxout and Lock Detect........................................................... 13  
Input Shift Register .................................................................... 13  
Function Latch............................................................................ 19  
Initialization Latch ..................................................................... 20  
Device Programming after Initial Power-Up ......................... 20  
Resynchronizing the Prescaler Output.................................... 21  
Applications..................................................................................... 22  
Local Oscillator for GSM Base Station Transmitter .............. 22  
Using a D/A Converter to Drive the RSET Pin......................... 23  
Shutdown Circuit ....................................................................... 23  
Wideband PLL............................................................................ 23  
Direct Conversion Modulator .................................................. 25  
Interfacing ................................................................................... 26  
PCB Design Guidelines for Chip Scale Package .................... 26  
Outline Dimensions....................................................................... 27  
Ordering Guide............................................................................... 28  
Applications....................................................................................... 1  
General Description ......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Timing Characteristics..................................................................... 5  
Absolute Maximum Ratings............................................................ 6  
Transistor Count........................................................................... 6  
ESD Caution.................................................................................. 6  
Pin Configurations and Function Descriptions ........................... 7  
Typical Performance Characteristics ............................................. 8  
Circuit Description......................................................................... 12  
Reference Input Section............................................................. 12  
RF Input Stage............................................................................. 12  
Prescaler (P/P + 1)...................................................................... 12  
A and B Counters ....................................................................... 12  
R Counter .................................................................................... 12  
REVISION HISTORY  
1/13—Rev. E to Rev. F  
3/03—Data sheet changed from Rev. A to Rev. B.  
Changes to Table 1.............................................................................4  
Changes to Ordering Guide ...........................................................28  
Edits to Specifications.......................................................................2  
Updated OUTLINE DIMENSIONS .............................................24  
8/12—Rev. D to Rev. E  
1/01—Data sheet changed from Rev. 0 to Rev. A.  
Changed CP-20-1 to CP-20-6 ...........................................Universal  
Updated Outline Dimensions........................................................28  
Changes to Ordering Guide ...........................................................28  
Changes to DC Specifications in B Version, B Chips,  
Unit, and Test Conditions/Comments Columns .....................2  
Changes to Absolute Maximum Rating .........................................4  
Changes to FRINA Function Test .....................................................5  
Changes to Figure 8...........................................................................7  
New Graph Added—TPC 22 ...........................................................9  
Change to PD Polarity Box in Table V .........................................15  
Change to PD Polarity Box in Table VI........................................16  
Change to PD Polarity Paragraph .................................................17  
Addition of New Material  
5/12—Rev. C to Rev. D  
Changes to Figure 2...........................................................................5  
Changes to Figure 4 and Table 4......................................................7  
Updated Outline Dimensions........................................................28  
Changes to Ordering Guide ...........................................................28  
3/04—Data sheet changed from Rev. B to Rev. C.  
(PCB Design Guidelines for Chip–Scale package) ................23  
Replacement of CP-20 Outline with CP-20 [2] Outline ............24  
Updated Format..................................................................Universal  
Changes to Specifications .................................................................2  
Changes to Figure 32.......................................................................22  
Changes to the Ordering Guide.....................................................28  
Rev. F | Page 2 of 28  
 
Data Sheet  
ADF4110/ADF4111/ADF4112/ADF4113  
SPECIFICATIONS  
AVDD = DVDD = 3 V 10%, 5 V 10%; AVDD ≤VP ≤ 6.0 V; AGND = DGND = CPGND = 0 V; RSET = 4.7 kΩ; dBm referred to 50 Ω;  
TA = TMIN to TMAX, unless otherwise noted. Operating temperature range is as follows: B Version: −40°C to +85°C.  
Table 1.  
Parameter  
B Version  
−15/0  
B Chips1  
−15/0  
Unit  
Test Conditions/Comments  
RF CHARACTERISTICS (3 V)  
RF Input Sensitivity  
RF Input Frequency  
ADF4110  
See Figure 29 for input circuit.  
dBm min/max  
MHz min/max  
80/550  
80/550  
For lower frequencies, ensure slew rate  
(SR) > 30 V/µs.  
ADF4110  
ADF4111  
ADF4112  
ADF4112  
ADF4113  
50/550  
0.08/1.2  
0.2/3.0  
0.1/3.0  
0.2/3.7  
50/550  
0.08/1.2  
0.2/3.0  
0.1/3.0  
0.2/3.7  
MHz min/max  
GHz min/max  
GHz min/max  
GHz min/max  
GHz min/max  
Input level = −10 dBm.  
For lower frequencies, ensure SR > 30 V/µs.  
For lower frequencies, ensure SR > 75 V/µs.  
Input level = −10 dBm.  
Input level = −10 dBm. For lower frequencies,  
ensure SR > 130 V/µs.  
Maximum Allowable Prescaler Output  
Frequency2  
165  
165  
MHz max  
RF CHARACTERISTICS (5 V)  
RF Input Sensitivity  
RF Input Frequency  
ADF4110  
−10/0  
−10/0  
dBm min/max  
80/550  
0.08/1.4  
0.1/3.0  
0.2/3.7  
0.2/4.0  
80/550  
0.08/1.4  
0.1/3.0  
0.2/3.7  
0.2/4.0  
MHz min/max  
GHz min/max  
GHz min/max  
GHz min/max  
GHz min/max  
For lower frequencies, ensure SR > 50 V/µs.  
For lower frequencies, ensure SR > 50 V/µs.  
For lower frequencies, ensure SR > 75 V/µs.  
For lower frequencies, ensure SR > 130 V/µs.  
Input level = −5 dBm.  
ADF4111  
ADF4112  
ADF4113  
ADF4113  
Maximum Allowable Prescaler Output  
Frequency2  
200  
200  
MHz max  
REFIN CHARACTERISTICS  
REFIN Input Frequency  
Reference Input Sensitivity  
5/104  
0.4/AVDD  
3.0/AVDD  
10  
5/104  
0.4/AVDD  
3.0/AVDD  
10  
MHz min/max  
For f < 5 MHz, ensure SR > 100 V/µs.  
V p-p min/max AVDD = 3.3 V, biased at AVDD/2. See Note 3.  
V p-p min/max  
pF max  
AVDD = 5 V, biased at AVDD/2. See Note 3.  
REFIN Input Capacitance  
REFIN Input Current  
PHASE DETECTOR FREQUENCY4  
CHARGE PUMP  
100  
100  
µA max  
55  
55  
MHz max  
ICP Sink/Source  
Programmable (see Table 9).  
With RSET = 4.7 kΩ.  
High Value  
Low Value  
Absolute Accuracy  
RSET Range  
5
5
mA typ  
µA typ  
% typ  
kΩ typ  
nA typ  
% typ  
% typ  
% typ  
625  
2.5  
2.7/10  
1
2
1.5  
2
625  
2.5  
2.7/10  
1
2
1.5  
2
With RSET = 4.7 kΩ.  
See Table 9.  
ICP 3-State Leakage Current  
Sink and Source Current Matching  
ICP vs. VCP  
ICP vs. Temperature  
LOGIC INPUTS  
0.5 V ≤ VCP ≤ VP – 0.5 V.  
0.5 V ≤ VCP ≤ VP – 0.5 V.  
VCP = VP/2.  
VINH, Input High Voltage  
VINL, Input Low Voltage  
IINH/IINL, Input Current  
CIN, Input Capacitance  
LOGIC OUTPUTS  
0.8 × DVDD  
0.2 × DVDD  
1
10  
0.8 × DVDD  
0.2 × DVDD  
1
10  
V min  
V max  
µA max  
pF max  
VOH, Output High Voltage  
VOL, Output Low Voltage  
DVDD – 0.4  
0.4  
DVDD – 0.4  
0.4  
V min  
V max  
IOH = 500 µA.  
IOL = 500 µA.  
Rev. F | Page 3 of 28  
 
 
ADF4110/ADF4111/ADF4112/ADF4113  
Data Sheet  
Parameter  
B Version  
B Chips1  
Unit  
Test Conditions/Comments  
POWER SUPPLIES  
AVDD  
DVDD  
VP  
2.7/5.5  
AVDD  
AVDD/6.0  
2.7/5.5  
AVDD  
AVDD/6.0  
V min/V max  
V min/V max  
AVDD ≤ VP ≤ 6.0 V. See Figure 25 and Figure 26.  
IDD5 (AIDD + DIDD)  
ADF4110  
ADF4111  
ADF4112  
ADF4113  
5.5  
5.5  
7.5  
11  
0.5  
1
4.5  
4.5  
6.5  
8.5  
0.5  
1
mA max  
mA max  
mA max  
mA max  
mA max  
µA typ  
4.5 mA typical.  
4.5 mA typical.  
6.5 mA typical.  
8.5 mA typical.  
TA = 25°C.  
IP  
Low Power Sleep Mode  
NOISE CHARACTERISTICS  
ADF4113 Normalized Phase Noise Floor6 −215  
Phase Noise Performance7  
−215  
dBc/Hz typ  
@ VCO output.  
ADF4110: 540 MHz Output8  
ADF4111: 900 MHz Output9  
ADF4112: 900 MHz Output9  
ADF4113: 900 MHz Output9  
ADF4111: 836 MHz Output10  
ADF4112: 1750 MHz Output11  
ADF4112: 1750 MHz Output12  
ADF4112: 1960 MHz Output13  
ADF4113: 1960 MHz Output13  
ADF4113: 3100 MHz Output14  
Spurious Signals  
−91  
−87  
−90  
−91  
−78  
−86  
−66  
−84  
−85  
−86  
−91  
−87  
−90  
−91  
−78  
−86  
−66  
−84  
−85  
−86  
dBc/Hz typ  
dBc/Hz typ  
dBc/Hz typ  
dBc/Hz typ  
dBc/Hz typ  
dBc/Hz typ  
dBc/Hz typ  
dBc/Hz typ  
dBc/Hz typ  
dBc/Hz typ  
@ 1 kHz offset and 200 kHz PFD frequency.  
@ 1 kHz offset and 200 kHz PFD frequency.  
@ 1 kHz offset and 200 kHz PFD frequency.  
@ 1 kHz offset and 200 kHz PFD frequency.  
@ 300 Hz offset and 30 kHz PFD frequency.  
@ 1 kHz offset and 200 kHz PFD frequency.  
@ 200 Hz offset and 10 kHz PFD frequency.  
@ 1 kHz offset and 200 kHz PFD frequency.  
@ 1 kHz offset and 200 kHz PFD frequency.  
@ 1 kHz offset and 1 MHz PFD frequency.  
ADF4110: 540 MHz Output9  
ADF4111: 900 MHz Output9  
ADF4112: 900 MHz Output9  
ADF4113: 900 MHz Output9  
ADF4111: 836 MHz Output10  
ADF4112: 1750 MHz Output11  
ADF4112: 1750 MHz Output12  
ADF4112: 1960 MHz Output13  
ADF4113: 1960 MHz Output13  
ADF4113: 3100 MHz Output14  
−97/−106  
−98/−110  
−91/−100  
−97/−106  
−98/−110  
−91/−100  
dBc typ  
dBc typ  
dBc typ  
@ 200 kHz/400 kHz and 200 kHz PFD frequency.  
@ 200 kHz/400 kHz and 200 kHz PFD frequency.  
@ 200 kHz/400 kHz and 200 kHz PFD frequency.  
@ 200 kHz/400 kHz and 200 kHz PFD frequency.  
@ 30 kHz/60 kHz and 30 kHz PFD frequency.  
@ 200 kHz/400 kHz and 200 kHz PFD frequency.  
@ 10 kHz/20 kHz and 10 kHz PFD frequency.  
@ 200 kHz/400 kHz and 200 kHz PFD frequency.  
@ 200 kHz/400 kHz and 200 kHz PFD frequency.  
@ 1 MHz/2 MHz and 1 MHz PFD frequency.  
−100/−110 −100/−110 dBc typ  
−81/−84  
−88/−90  
−65/−73  
−80/−84  
−80/−84  
−80/−82  
−81/−84  
−88/−90  
−65/−73  
−80/−84  
−80/−84  
−82/−82  
dBc typ  
dBc typ  
dBc typ  
dBc typ  
dBc typ  
dBc typ  
1The B chip specifications are given as typical values.  
2This is the maximum operating frequency of the CMOS counters. The prescaler value should be chosen to ensure that the RF input is divided down to a frequency that  
is less than this value.  
3AC coupling ensures AVDD/2 bias. See Figure 33 for a typical circuit.  
4Guaranteed by design.  
5 TA = 25°C; AVDD = DVDD = 3 V; P = 16; SYNC = 0; DLY = 0; RFIN for ADF4110 = 540 MHz; RFIN for ADF4111, ADF4112, ADF4113 = 900 MHz.  
6 The synthesizer phase noise floor is estimated by measuring the in-band phase noise at the output of the VCO, PNTOT, and subtracting 20logN (where N is the N divider  
value) and 10logFPFD: PNSYNTH = PNTOT – 10logFPFD – 20logN.  
7 The phase noise is measured with the EV-ADF411XSD1Z evaluation board and the HP8562E spectrum analyzer. The spectrum analyzer provides the REFIN for the  
synthesizer (fREFOUT = 10 MHz @ 0 dBm). SYNC = 0; DLY = 0 (Table 7).  
8 fREFIN = 10 MHz; fPFD = 200 kHz; offset frequency = 1 kHz; fRF = 540 MHz; N = 2700; loop B/W = 20 kHz.  
9 fREFIN = 10 MHz; fPFD = 200 kHz; offset frequency = 1 kHz; fRF = 900 MHz; N = 4500; loop B/W = 20 kHz.  
10  
f
f
f
f
f
= 10 MHz; fPFD = 30 kHz; offset frequency = 300 Hz; fRF = 836 MHz; N = 27867; loop B/W = 3 kHz.  
= 10 MHz; fPFD = 200 kHz; offset frequency = 1 kHz; fRF = 1750 MHz; N = 8750; loop B/W = 20 kHz  
= 10 MHz; fPFD = 10 kHz; offset frequency = 200 Hz; fRF = 1750 MHz; N = 175000; loop B/W = 1 kHz.  
= 10 MHz; fPFD = 200 kHz; offset frequency = 1 kHz; fRF = 1960 MHz; N = 9800; loop B/W = 20 kHz.  
= 10 MHz; fPFD = 1 MHz; offset frequency = 1 kHz; fRF = 3100 MHz; N = 3100; loop B/W = 20 kHz.  
REFIN  
REFIN  
REFIN  
REFIN  
REFIN  
11  
12  
13  
14  
Rev. F | Page 4 of 28  
 
 
 
 
 
 
Data Sheet  
ADF4110/ADF4111/ADF4112/ADF4113  
TIMING CHARACTERISTICS  
Guaranteed by design but not production tested. AVDD = DVDD = 3 V ꢀ10% ꢁ V ꢀ10ꢂ AVDD ≤ VP ≤ 6 Vꢂ  
AGND = DGND = CPGND = 1 Vꢂ RSET = 4.7 kΩꢂ TA = TMIN to TMAX% unless otherwise noted.  
Table 2.  
Parameter  
Limit at TMIN to TMAX (B Version)  
Unit  
Test Conditions/Comments  
DATA to CLOCK setup time  
DATA to CLOCK hold time  
CLOCK high duration  
CLOCK low duration  
t1  
t2  
t3  
t4  
t5  
t6  
10  
10  
25  
25  
10  
20  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
CLOCK to LE setup time  
LE pulse width  
t3  
t4  
CLOCK  
t1  
t2  
DB1  
(CONTROL BIT C2)  
DB0 (LSB)  
(CONTROL BIT C1)  
DB23 (MSB)  
DB22  
DB2  
DATA  
LE  
t6  
t5  
LE  
Figure 2. Timing Diagram  
Rev. F | Page 5 of 28  
 
 
 
 
ADF4110/ADF4111/ADF4112/ADF4113  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those listed in the operational sections  
of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Table 3.  
Parameter  
AVDD to GND1  
Rating  
−0.3 V to +7 V  
−0.3 V to +0.3 V  
−0.3 V to +7 V  
−0.3 V to +5.5 V  
−0.3 V to VDD + 0.3 V  
−0.3 V to VP + 0.3 V  
−0.3 V to VDD + 0.3 V  
320 mV  
AVDD to DVDD  
VP to GND  
VP to AVDD  
Digital I/O Voltage to GND  
Analog I/O Voltage to GND  
REFIN, RFINA, RFINB to GND  
RFINA to RFINB  
This device is a high performance RF integrated circuit with an  
ESD rating of <2 kV, and it is ESD sensitive. Proper precautions  
should be taken for handling and assembly.  
TRANSISTOR COUNT  
Operating Temperature Range  
Industrial (B Version)  
Storage Temperature Range  
Maximum Junction Temperature  
TSSOP θJA Thermal Impedance  
LFCSP θJA Thermal Impedance  
(Paddle Soldered)  
6425 (CMOS) and 303 (Bipolar).  
−40°C to +85°C  
−65°C to +150°C  
150°C  
150.4°C/W  
122°C/W  
LFCSP θJA Thermal Impedance  
(Paddle Not Soldered)  
Lead Temperature, Soldering  
Vapor Phase (60 sec)  
Infrared (15 sec)  
216°C/W  
215°C  
220°C  
1 GND = AGND = DGND = 0 V.  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the  
human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. F | Page 6 of 28  
 
 
 
 
Data Sheet  
ADF4110/ADF4111/ADF4112/ADF4113  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
16  
15  
14  
13  
12  
11  
10  
9
1
2
3
4
5
6
7
8
R
V
P
SET  
DV  
CP  
15 MUXOUT  
14 LE  
CPGND  
AGND  
AGND  
1
2
3
4
5
DD  
ADF4110  
ADF4111  
ADF4112  
ADF4113  
ADF4110  
ADF4111  
ADF4112  
ADF4113  
MUXOUT  
LE  
CPGND  
AGND  
13 DATA  
12 CLK  
11 CE  
RF  
RF  
B
A
IN  
TOP VIEW  
(Not to Scale)  
DATA  
CLK  
RF  
RF  
B
IN  
IN  
IN  
A
TOP VIEW  
(Not to Scale)  
CE  
AV  
DD  
DGND  
REF  
IN  
NOTES  
1. THE EXPOSED PADDLE SHOULD BE CONNECTED TO AGND.  
Figure 3. TSSOP Pin Configuration  
Figure 4. LFCSP Pin Configuration  
Table 4. Pin Function Descriptions  
TSSOP  
Pin No.  
LFCSP  
Pin No.  
Mnemonic Function  
1
19  
RSET  
Connecting a resistor between this pin and CPGND sets the maximum charge pump output current.  
The nominal voltage potential at the RSET pin is 0.56 V. The relationship between ICP and RSET is  
23.5  
RSET  
ICPmax  
=
So, with RSET = 4.7 kΩ, ICPmax = 5 mA.  
2
20  
CP  
Charge Pump Output. When enabled, this provides ICP to the external loop filter, which in turn  
drives the external VCO.  
3
4
5
1
2, 3  
4
CPGND  
AGND  
RFINB  
Charge Pump Ground. This is the ground return path for the charge pump.  
Analog Ground. This is the ground return path of the prescaler.  
Complementary Input to the RF Prescaler. This point should be decoupled to the ground plane with  
a small bypass capacitor, typically 100 pF. See Figure 29.  
6
7
5
6, 7  
RFINA  
AVDD  
Input to the RF Prescaler. This small-signal input is ac-coupled from the VCO.  
Analog Power Supply. This may range from 2.7 V to 5.5 V. Decoupling capacitors to the analog ground  
plane should be placed as close as possible to this pin. AVDD must be the same value as DVDD.  
8
8
REFIN  
Reference Input. This is a CMOS input with a nominal threshold of VDD/2, and an equivalent input  
resistance of 100 kΩ. See Figure 28. This input can be driven from a TTL or CMOS crystal oscillator, or  
can be ac-coupled.  
9
10  
9, 10  
11  
DGND  
CE  
Digital Ground.  
Chip Enable. A logic low on this pin powers down the device and puts the charge pump output into  
three-state mode. Taking the pin high powers up the device depending on the status of the power-  
down Bit F2.  
11  
12  
CLK  
Serial Clock Input. This serial clock is used to clock in the serial data to the registers. The data is  
latched into the 24-bit shift register on the CLK rising edge. This input is a high impedance CMOS  
input.  
12  
13  
14  
15  
16  
13  
DATA  
LE  
Serial Data Input. The serial data is loaded MSB first with the two LSBs being the control bits. This  
input is a high impedance CMOS input.  
Load Enable, CMOS Input. When LE goes high, the data stored in the shift registers is loaded into  
one of the four latches; the latch is selected using the control bits.  
This multiplexer output allows either the lock detect, the scaled RF, or the scaled reference  
frequency to be accessed externally.  
Digital Power Supply. This may range from 2.7 V to 5.5 V. Decoupling capacitors to the digital ground  
plane should be placed as close as possible to this pin. DVDD must be the same value as AVDD.  
14  
15  
MUXOUT  
DVDD  
VP  
16, 17  
18  
Charge Pump Power Supply. This should be greater than or equal to VDD. In systems where VDD is 3 V,  
VP can be set to 6 V and used to drive a VCO with a tuning range of up to 6 V. 1  
EPAD  
Exposed Pad (LFCSP Only). The exposed paddle should be connected to AGND.  
Rev. F | Page 7 of 28  
 
ADF4110/ADF4111/ADF4112/ADF4113  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
FREQ  
–UNIT  
PARAM  
DATA  
KEYWORD  
IMPEDANCE  
–OHMS  
–TYPE –FORMAT  
REFERENCE  
LEVEL = –4.2dBm  
V
= 3V, V = 5V  
P
DD  
= 5mA  
GHz  
S
MA  
R
50  
I
CP  
FREQ MAGS11  
ANGS11  
–2.0571  
–4.4427  
–6.3212  
–2.1393  
–12.13  
FREQ MAGS11  
ANGS11  
–40.134  
–43.747  
–44.393  
–46.937  
–49.6  
PFD FREQUENCY = 200kHz  
LOOP BANDWIDTH = 20kHz  
RES. BANDWIDTH = 10Hz  
VIDEO BANDWIDTH = 10Hz  
SWEEP = 1.9 s  
0.05  
0.10  
0.15  
0.20  
0.25  
0.30  
0.35  
0.40  
0.45  
0.50  
0.55  
0.60  
0.65  
0.70  
0.75  
0.80  
0.85  
0.90  
0.95  
1.00  
0.89207  
1.05  
1.10  
1.15  
1.20  
1.25  
1.30  
1.35  
1.40  
1.45  
1.50  
1.55  
1.60  
1.65  
1.70  
1.75  
1.80  
0.9512  
0.8886  
0.93458  
0.94782  
0.96875  
0.92216  
0.93755  
0.96178  
0.94354  
0.95189  
0.97647  
0.98619  
0.95459  
0.97945  
0.98864  
0.97399  
0.97216  
0.89022  
0.96323  
0.90566  
0.90307  
0.89318  
0.89806  
0.89565  
0.88538  
0.89699  
0.89927  
0.87797  
0.90765  
0.88526  
0.81267  
0.90357  
0.92954  
0.92087  
0.93788  
–13.52  
–51.884  
–51.21  
AVERAGES = 19  
–15.746  
–18.056  
–19.693  
–22.246  
–24.336  
–25.948  
–28.457  
–29.735  
–31.879  
–32.681  
–31.522  
–34.222  
–36.961  
–39.343  
–53.55  
–56.786  
–58.781  
–60.545  
–61.43  
–61.241  
–64.051  
–66.19  
–92.5dBc/Hz  
–63.775  
–2.0kHz  
–1.0kHz  
900MHz  
FREQUENCY  
1.0kHz  
2.0kHz  
Figure 5. S-Parameter Data for the ADF4113 RF Input (up to 1.8 GHz)  
Figure 8. ADF4113 Phase Noise  
(900 MHz, 200kHz, 20 kHz) with DLY and SYNC Enabled  
0
–40  
–50  
V
V
= 3V  
DD  
= 3V  
–5  
–10  
–15  
–20  
–25  
–30  
–35  
P
–60  
RMS NOISE = 0.52°  
–70  
R
= –40dBc/Hz  
L
–80  
T
= +25°C  
A
–90  
T
= +85°C  
A
–100  
–110  
–120  
–130  
–140  
T
= –40°C  
2
A
0
1
3
4
5
100  
1k  
10k  
100k  
1M  
RF INPUT FREQUENCY (GHz)  
FREQUENCY OFFSET FROM 900MHz CARRIER (Hz)  
Figure 9. ADF4113 Integrated Phase Noise  
(900 MHz, 200 kHz, 20 kHz, Typical Lock Time: 400 µs)  
Figure 6. Input Sensitivity (ADF4113)  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–40  
–50  
REFERENCE  
LEVEL = –4.2dBm  
V
= 3V, V = 5V  
P
DD  
= 5mA  
I
CP  
PFD FREQUENCY = 200kHz  
LOOP BANDWIDTH = 20kHz  
RES. BANDWIDTH = 10Hz  
VIDEO BANDWIDTH = 10Hz  
SWEEP = 1.9 s  
–60  
RMS NOISE = 0.62°  
–70  
R
= –40dBc/Hz  
L
–80  
AVERAGES = 19  
–90  
–100  
–110  
–120  
–130  
–140  
–91.0dBc/Hz  
–2.0kHz  
–1.0kHz  
900MHz  
FREQUENCY  
1.0kHz  
2.0kHz  
100  
1k  
10k  
100k  
1M  
FREQUENCY OFFSET FROM 900MHz CARRIER (Hz)  
Figure 7. ADF4113 Phase Noise (900 MHz, 200 kHz, 20 kHz)  
Figure 10. ADF4113 Integrated Phase Noise  
(900 MHz, 200 kHz, 35 kHz, Typical Lock Time: 200 µs)  
Rev. F | Page 8 of 28  
 
 
Data Sheet  
ADF4110/ADF4111/ADF4112/ADF4113  
0
–40  
–50  
REFERENCE  
LEVEL = –4.2dBm  
V
= 3V, V = 5V  
P
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
DD  
= 5mA  
I
CP  
PFD FREQUENCY = 200kHz  
LOOP BANDWIDTH = 20kHz  
RES. BANDWIDTH = 1kHz  
VIDEO BANDWIDTH = 1kHz  
SWEEP = 2.5s  
–60  
RMS NOISE = 1.6°  
–70  
–80  
R
= –40dBc/Hz  
L
AVERAGES = 30  
–90  
–100  
–110  
–120  
–130  
–140  
–90.2dBc/Hz  
–400kHz  
–200kHz  
900MHz  
FREQUENCY  
200kHz  
400kHz  
100  
1k  
10k  
100k  
1M  
FREQUENCY OFFSET FROM 1750MHz CARRIER (Hz)  
Figure 11. ADF4113 Reference Spurs (900 MHz, 200 kHz, 20 kHz)  
Figure 14. ADF4113 Integrated Phase Noise  
(1750 MHz, 30 kHz, 3 kHz)  
0
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
REFERENCE  
LEVEL = –4.2dBm  
V
= 3V, V = 5V  
P
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
DD  
= 5mA  
REFERENCE  
LEVEL = –5.7dBm  
V
= 3V, V = 5V  
P
DD  
= 5mA  
I
CP  
I
CP  
PFD FREQUENCY = 200kHz  
LOOP BANDWIDTH = 35kHz  
RES. BANDWIDTH = 1kHz  
VIDEO BANDWIDTH = 1kHz  
SWEEP = 2.5s  
PFD FREQUENCY = 30kHz  
LOOP BANDWIDTH = 3kHz  
RES. BANDWIDTH = 3Hz  
VIDEO BANDWIDTH = 3Hz  
SWEEP = 255s  
AVERAGES = 30  
POSITIVE PEEK DETECT  
MODE  
–79.6dBc/Hz  
–89.3dBc/Hz  
–400kHz  
–200kHz  
900MHz  
FREQUENCY  
200kHz  
400kHz  
–80kHz  
–40kHz  
1750MHz  
FREQUENCY  
40kHz  
80kHz  
Figure 12. ADF4113 (900 MHz, 200 kHz, 35 kHz)  
Figure 15. ADF4113 Reference Spurs (1750 MHz, 30 kHz, 3 kHz)  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
REFERENCE  
LEVEL = –8.0dBm  
REFERENCE  
LEVEL = –4.2dBm  
V
I
= 3V, V = 5V  
P
V
I
= 3V, V = 5V  
P
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
DD  
= 5mA  
DD  
= 5mA  
CP  
CP  
PFD FREQUENCY = 30kHz  
LOOP BANDWIDTH = 3kHz  
RES. BANDWIDTH = 10kHz  
VIDEO BANDWIDTH = 10kHz  
SWEEP = 477ms  
PFD FREQUENCY = 1MHz  
LOOP BANDWIDTH = 100kHz  
RES. BANDWIDTH = 10Hz  
VIDEO BANDWIDTH = 10Hz  
SWEEP = 1.9s  
AVERAGES = 10  
AVERAGES = 45  
–86.6dBc/Hz  
–75.2dBc/Hz  
–400Hz  
–200Hz  
1750MHz  
FREQUENCY  
200Hz  
400Hz  
–2.0kHz  
–1.0kHz  
3100MHz  
FREQUENCY  
1.0kHz  
2.0kHz  
Figure 13. ADF4113 Phase Noise (1750 MHz, 30 kHz, 3 kHz)  
Figure 16. ADF4113 Phase Noise (3100 MHz, 1 MHz, 100 kHz)  
Rev. F | Page 9 of 28  
ADF4110/ADF4111/ADF4112/ADF4113  
Data Sheet  
–60  
–70  
–40  
–50  
V
V
= 3V  
= 3V  
DD  
P
–60  
RMS NOISE = 1.7°  
–70  
–80  
R
= 40dBc/Hz  
L
–80  
–90  
–100  
–110  
–90  
–120  
–130  
–140  
–100  
2
3
4
5
6
–40  
–20  
0
20  
40  
60  
80  
100  
10  
10  
10  
10  
10  
TEMPERATURE (°C)  
FREQUENCY OFFSET FROM 3100MHz CARRIER (Hz)  
Figure 17. ADF4113 Integrated Phase Noise  
(3100 MHz, 1 MHz, 100 kHz)  
Figure 20. ADF4113 Phase Noise vs. Temperature  
(900 MHz, 200 kHz, 20 kHz)  
–60  
–70  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
REFERENCE  
LEVEL = –17.2dBm  
V
= 3V, V = 5V  
P
DD  
= 5mA  
V
V
= 3V  
DD  
= 5V  
I
CP  
PFD FREQUENCY = 1MHz  
P
LOOP BANDWIDTH = 100kHz  
RES. BANDWIDTH = 1kHz  
VIDEO BANDWIDTH = 1kHz  
SWEEP = 13s  
AVERAGES = 1  
–80  
–80.6dBc/Hz  
–90  
–100  
–40  
–20  
0
20  
40  
60  
80  
100  
–2.0MHz  
–1.0MHz  
3100MHz  
FREQUENCY  
1.0MHz  
2.0MHz  
TEMPERATURE (°C)  
Figure 18. Reference Spurs (3100 MHz, 1 MHz, 100 kHz)  
Figure 21. ADF4113 Reference Spurs vs. Temperature  
(900 MHz, 200 kHz, 20 kHz)  
–120  
–130  
–140  
–150  
–160  
–170  
–180  
–5  
–15  
–25  
–35  
–45  
–55  
–65  
–75  
–85  
–95  
–105  
V
V
= 3V  
DD  
= 5V  
V
V
= 3V  
DD  
= 5V  
P
P
1
10  
100  
1000  
10000  
0
1
2
3
4
5
PHASE DETECTOR FREQUENCY (kHz)  
TUNING VOLTAGE (V)  
Figure 19. ADF4113 Phase Noise (Referred to CP Output)  
vs. Phase Detector Frequency  
Figure 22. ADF4113 Reference Spurs (200 kHz) vs. VTUNE  
(900 MHz, 200 kHz, 20 kHz)  
Rev. F | Page 10 of 28  
Data Sheet  
ADF4110/ADF4111/ADF4112/ADF4113  
–60  
3.0  
V
V
= 3V  
DD  
= 3V  
P
V
V
= 3V  
DD  
= 5V  
2.5  
2.0  
1.5  
1.0  
0.5  
0
P
–70  
–80  
–90  
–100  
–40  
–20  
0
20  
40  
60  
80  
100  
0
50  
100  
150  
200  
TEMPERATURE (°C)  
PRESCALER OUTPUT FREQUENCY (MHz)  
Figure 23. ADF4113 Phase Noise vs. Temperature  
(836 MHz, 30 kHz, 3 kHz)  
Figure 26. DIDD vs. Prescaler Output Frequency  
(ADF4110, ADF4111, ADF4112, ADF4113)  
–60  
6
5
V
V
= 3V  
DD  
= 5V  
V
= 5V  
PP  
= 5mA  
4
P
I
CP  
–70  
–80  
3
2
1
0
–1  
–2  
–3  
–4  
–5  
–6  
–90  
–100  
–40  
–20  
0
20  
40  
60  
80  
100  
0
0.5  
1.0  
1.5  
2.0  
2.5  
(V)  
3.0  
3.5  
4.0  
4.5  
5.0  
TEMPERATURE (°C)  
V
CP  
Figure 24. ADF4113 Reference Spurs vs. Temperature  
(836 MHz, 30 kHz, 3 kHz)  
Figure 27. Charge Pump Output Characteristics for ADF4110 Family  
10  
9
8
7
6
5
4
3
2
1
0
ADF4113  
ADF4112  
ADF4110  
ADF4111  
0
8/9  
16/17  
32/33  
64/65  
PRESCALER VALUE  
Figure 25. AIDD vs. Prescaler Value  
Rev. F | Page 11 of 28  
 
 
ADF4110/ADF4111/ADF4112/ADF4113  
Data Sheet  
CIRCUIT DESCRIPTION  
REFERENCE INPUT SECTION  
A AND B COUNTERS  
The reference input stage is shown in Figure 28. SW1 and SW2  
are normally closed switches. SW3 is normally open. When  
power-down is initiated, SW3 is closed and SW1 and SW2 are  
opened. This ensures that there is no loading of the REFIN pin  
on power-down.  
The A and B CMOS counters combine with the dual-modulus  
prescaler to allow a wide ranging division ratio in the PLL  
feedback counter. The counters are specified to work when the  
prescaler output is 200 MHz or less. Thus, with an RF input  
frequency of 2.5 GHz, a prescaler value of 16/17 is valid but a  
value of 8/9 is not.  
POWER-DOWN  
CONTROL  
Pulse Swallow Function  
The A and B counters, in conjunction with the dual-modulus  
prescaler, make it possible to generate output frequencies that  
are spaced only by the reference frequency divided by R. The  
equation for the VCO frequency is  
100k  
SW2  
NC  
REF  
TO R COUNTER  
IN  
NC  
SW1  
BUFFER  
SW3  
NO  
fVCO = [(P × B) + A]fREFIN/R  
Figure 28. Reference Input Stage  
where:  
fVCO = output frequency of external voltage controlled oscillator  
(VCO)  
RF INPUT STAGE  
The RF input stage is shown in Figure 29. It is followed by a  
two-stage limiting amplifier to generate the current mode logic  
(CML) clock levels needed for the prescaler.  
P = preset modulus of dual-modulus prescaler  
B = preset divide ratio of binary 13-bit counter(3 to 8191)  
A = preset divide ratio of binary 6-bit swallow counter (0 to 63)  
fREFIN = output frequency of the external reference frequency  
oscillator  
1.6V  
BIAS  
GENERATOR  
AV  
DD  
R = preset divide ratio of binary 14-bit programmable reference  
500  
500  
counter (1 to 16383)  
RF  
RF  
A
B
IN  
R COUNTER  
The 14-bit R counter allows the input reference frequency to be  
divided down to produce the reference clock to the phase  
frequency detector (PFD). Division ratios from 1 to 16,383 are  
allowed.  
IN  
AGND  
Figure 29. RF Input Stage  
N = BP + A  
TO PFD  
PRESCALER (P/P + 1)  
13-BIT B  
COUNTER  
Along with the A and B counters, the dual-modulus prescaler  
(P/P + 1) enables the large division ratio, N, to be realized (N =  
BP + A). The dual-modulus prescaler, operating at CML levels,  
takes the clock from the RF input stage and divides it down to a  
manageable frequency for the CMOS A and B counters. The  
prescaler is programmable; it can be set in software to 8/9,  
16/17, 32/33, or 64/65. It is based on a synchronous 4/5 core.  
FROM RF  
INPUT STAGE  
LOAD  
PRESCALER  
P/P + 1  
LOAD  
6-BIT A  
MODULUS  
CONTROL  
COUNTER  
Figure 30. A and B Counters  
Rev. F | Page 12 of 28  
 
 
 
 
 
 
 
 
Data Sheet  
ADF4110/ADF4111/ADF4112/ADF4113  
Lock Detect  
PHASE FREQUENCY DETECTOR (PFD) AND  
CHARGE PUMP  
MUXOUT can be programmed for two types of lock detect:  
digital lock detect and analog lock detect.  
The PFD takes inputs from the R counter and N counter (N =  
BP + A) and produces an output proportional to the phase and  
frequency difference between them. Figure 31 is a simplified  
schematic. The PFD includes a programmable delay element  
that controls the width of the antibacklash pulse. This pulse  
ensures that there is no dead zone in the PFD transfer function  
and minimizes phase noise and reference spurs. Two bits in the  
reference counter latch, ABP2 and ABP1, control the width of  
the pulse. See Table 7.  
Digital lock detect is active high. When LDP in the R counter  
latch is set to 0, digital lock detect is set high when the phase  
error on three consecutive phase detector (PD) cycles is less  
than 15 ns. With LDP set to 1, five consecutive cycles of less  
than 15 ns are required to set the lock detect. It stays high until  
a phase error greater than 25 ns is detected on any subsequent  
PD cycle.  
The N-channel open-drain analog lock detect should be  
operated with a 10 kΩ nominal external pull-up resistor. When  
lock has been detected, this output is high with narrow low-  
going pulses.  
V
P
CHARGE  
PUMP  
UP  
HI  
D1  
Q1  
U1  
DV  
DD  
R DIVIDER  
CLR1  
PROGRAMMABLE  
DELAY  
ANALOG LOCK DETECT  
DIGITAL LOCK DETECT  
R COUNTER OUTPUT  
N COUNTER OUTPUT  
SDOUT  
CP  
U3  
MUXOUT  
MUX  
CONTROL  
ABP1  
ABP2  
CLR2  
U2  
DOWN  
HI  
D2  
Q2  
DGND  
N DIVIDER  
Figure 32. MUXOUT Circuit  
CPGND  
INPUT SHIFT REGISTER  
R DIVIDER  
N DIVIDER  
CP OUTPUT  
The ADF4110 family digital section includes a 24-bit input shift  
register, a 14-bit R counter, and a 19-bit N counter comprised of  
a 6-bit A counter and a 13-bit B counter. Data is clocked into  
the 24-bit shift register on each rising edge of CLK MSB first.  
Data is transferred from the shift register to one of four latches  
on the rising edge of LE. The destination latch is determined by  
the state of the two control bits (C2, C1) in the shift register.  
These are the two LSBs, DB1 and DB0, as shown in Figure 2.  
The truth table for these bits is shown in Table 5.  
Figure 31. PFD Simplified Schematic and Timing (In Lock)  
MUXOUT AND LOCK DETECT  
The output multiplexer on the ADF4110 family allows the user  
to access various internal points on the chip. The state of  
MUXOUT is controlled by M3, M2, and M1 in the function  
latch. Table 9 shows the full truth table. Figure 32 shows the  
MUXOUT section in block diagram form.  
Table 6 shows a summary of how the latches are programmed.  
Table 5. C2, C1 Truth Table  
Control Bits  
C2  
0
C1  
0
Data Latch  
R Counter  
0
1
1
1
0
1
N Counter (A and B)  
Function Latch (Including Prescaler)  
Initialization Latch  
Rev. F | Page 13 of 28  
 
 
 
 
 
 
ADF4110/ADF4111/ADF4112/ADF4113  
Data Sheet  
Table 6. ADF4110 Family Latch Summary  
REFERENCE COUNTER LATCH  
ANTI-  
BACKLASH  
WIDTH  
TEST  
MODE BITS  
CONTROL  
BITS  
SYNC  
14-BIT REFERENCE COUNTER, R  
DLY  
DB21 DB20  
DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9  
DB8 DB7  
DB6 DB5  
DB4 DB3  
R3 R2  
DB2  
DB1  
DB23 DB22  
DB19  
T2  
DB0  
DLY SYNC LDP  
T1  
ABP2 ABP1 R14  
R13 R12  
R11  
R10  
R9  
R8  
R7  
R6  
R5  
R4  
R1 C2 (0) C1 (0)  
X
X = DON'T CARE  
N COUNTER LATCH  
CONTROL  
BITS  
RESERVED  
13-BIT B COUNTER  
6-BIT A COUNTER  
DB5 DB4  
DB23 DB22 DB21  
DB19  
B12  
DB17  
B10  
DB15  
B8  
DB13 DB12 DB11 DB10  
DB6  
A5  
DB3 DB2  
A2 A1  
DB1 DB0  
DB20  
B13  
DB18  
B11  
DB16  
B9  
DB14  
B7  
DB9 DB8  
B2 B1  
DB7  
A6  
G1  
B6  
B5  
B4  
B3  
A4  
A3  
C2 (0) C1 (1)  
X
X
X = DON'T CARE  
FUNCTION LATCH  
CURRENT  
SETTING  
2
CURRENT  
SETTING  
1
TIMER COUNTER  
CONTROL  
MUXOUT  
CONTROL  
CONTROL  
BITS  
PRESCALER  
VALUE  
DB21 DB20  
DB18  
DB16  
DB14  
DB12 DB11 DB10 DB9 DB8  
DB7 DB6  
F2 M3  
DB3 DB2  
PD1 F1  
DB1  
DB23 DB22  
P2 P1  
DB19  
DB17  
DB15  
DB13  
DB5 DB4  
DB0  
PD2 CPI6 CPI5 CPI4 CPI3 CPI2 CPI1 TC4  
TC3 TC2  
TC1  
F5  
F4  
F3  
M2  
M1  
C2 (1) C1 (0)  
INITIALIZATION LATCH  
CURRENT  
SETTING  
2
CURRENT  
SETTING  
1
PRESCALER  
VALUE  
TIMER COUNTER  
CONTROL  
MUXOUT  
CONTROL  
CONTROL  
BITS  
DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14  
PD2 CPI6 CPI5 CPI4 CPI3 CPI2 CPI1 TC4  
DB12 DB11 DB10 DB9 DB8  
DB7 DB6  
F2 M3  
DB5 DB4  
M2 M1  
DB3 DB2  
PD1 F1  
DB1  
C2 (1) C1 (1)  
DB23 DB22  
DB13  
DB0  
P2  
P1  
TC3 TC2  
TC1  
F5  
F4  
F3  
Rev. F | Page 14 of 28  
 
Data Sheet  
ADF4110/ADF4111/ADF4112/ADF4113  
Table 7. Reference Counter Latch Map  
ANTI-  
BACKLASH  
WIDTH  
TEST  
MODE BITS  
CONTROL  
BITS  
DLY  
SYNC  
14-BIT REFERENCE COUNTER  
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9  
DB8  
R7  
DB7  
R6  
DB6  
R5  
DB5  
R4  
DB4  
R3  
DB3  
R2  
DB2  
DB1  
DB0  
DLY SYNC LDP  
T2  
T1  
ABP2 ABP1 R14  
R13  
R12  
R11  
R10  
R9  
R8  
R1 C2 (0) C1 (0)  
X
X = DON'T  
CARE  
R14  
R13  
0
R12  
••••••••••  
••••••••• •  
R3  
R2  
R1  
1
DIVIDE RATIO  
1
0
0
0
0
0
0
0
0
0
0
0
1
0
1
1
0
0
0
0
••••••••• •  
••••••••• •  
••••••••• •  
••••••••• •  
••••••••• •  
••••••••• •  
••••••••• •  
••••••••• •  
••••••••• •  
••••••••• •  
0
1
0
2
3
4
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
16380  
16381  
16382  
16383  
ABP2 ABP1 ANTIBACKLASH PULSE WIDTH  
0
0
1
1
0
1
0
1
3.0ns  
1.5ns  
6.0ns  
3.0ns  
TEST MODE BITS SHOULD  
BE SET TO 00 FOR NORMAL  
OPERATION  
OPERATION  
LDP  
0
THREE CONSECUTIVE CYCLES OF PHASE DELAY LESS THAN  
15ns MUST OCCUR BEFORE LOCK DETECT IS SET.  
FIVE CONSECUTIVE CYCLES OF PHASE DELAY LESS THAN  
15ns MUST OCCUR BEFORE LOCK DETECT IS SET.  
1
DLY SYNC  
OPERATION  
0
0
0
1
NORMAL OPERATION  
OUTPUT OF PRESCALER IS RESYNCHRONIZED  
WITH NONDELAYED VERSION OF RF INPUT  
1
1
0
1
NORMAL OPERATION  
OUTPUT OF PRESCALER IS RESYNCHRONIZED  
WITH DELAYED VERSION OF RF INPUT  
Rev. F | Page 15 of 28  
 
ADF4110/ADF4111/ADF4112/ADF4113  
Data Sheet  
Table 8. AB Counter Latch Map  
CONTROL  
BITS  
RESERVED  
DB23 DB22  
13-BIT B COUNTER  
6-BIT A COUNTER  
DB21 DB20  
G1 B13  
DB18 DB17 DB16  
DB14  
B7  
DB12 DB11 DB10 DB9  
DB8  
B1  
DB7  
A6  
DB6  
A5  
DB3  
A2  
DB2  
DB1  
DB19  
B12  
DB15  
B8  
DB13  
B6  
DB5  
A4  
DB4  
A3  
DB0  
B11 B10  
B9  
B5  
B4  
B3  
B2  
A1 C2 (0) C1 (1)  
X
X
X = DON'T CARE  
A COUNTER  
DIVIDE RATIO  
A6  
0
0
0
0
A5  
A2  
0
0
1
1
A1  
0
1
0
1
••••••••• •  
••••••••• •  
••••••••• •  
••••••••• •  
••••••••• •  
••••••••• •  
••••••••• •  
••••••••• •  
••••••••• •  
••••••••• •  
••••••••• •  
••••••••• •  
0
0
0
0
0
1
2
3
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
60  
61  
62  
63  
B13  
0
B12  
0
B11  
••••••••• •  
••••••••• •  
B3  
B2  
B1  
B COUNTER DIVIDE RATIO  
NOT ALLOWED  
0
0
0
0
0
0
0
0
0
1
0
0
1
1
0
0
1
0
1
0
0
0
0
0
0
0
0
0
••••••••• •  
••••••••• •  
••••••••• •  
••••••••• •  
••••••••• •  
••••••••• •  
••••••••• •  
••••••••• •  
••••••••• •  
••••••••• •  
••••••••• •  
NOT ALLOWED  
NOT ALLOWED  
3
4
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
8188  
8189  
8190  
8191  
F4 (FUNCTION LATCH)  
FASTLOCK ENABLE*  
CP GAIN  
OPERATION  
0
0
1
1
0
1
0
1
CHARGE PUMP CURRENT SETTING 1  
IS PERMANENTLY USED.  
CHARGE PUMP CURRENT SETTING 2  
IS PERMANENTLY USED.  
CHARGE PUMP CURRENT SETTING 1  
IS USED.  
CHARGE PUMP CURRENT IS SWITCHED  
TO SETTING 2. THE TIME SPENT IN  
SETTING 2 IS DEPENDENT UPON WHICH  
FASTLOCK MODE IS USED. SEE FUNCTION  
LATCH DESCRIPTION.  
N = BP + A, P IS PRESCALER VALUE SET IN THE  
FUNCTION LATCH, B MUST BE GREATER THAN OR  
EQUAL TO A. FOR CONTINUOUSLY ADJACENT VALUES  
*SEE TABLE 9  
2
OF (N  
F ), AT THE OUTPUT, N IS (P –P).  
REF  
MIN  
X
THESE BITS ARE NOT USED  
BY THE DEVICE AND ARE  
DON'T CARE BITS  
Rev. F | Page 16 of 28  
Data Sheet  
ADF4110/ADF4111/ADF4112/ADF4113  
Table 9. Function Latch Map  
CURRENT  
SETTING  
2
CURRENT  
SETTING  
1
TIMER COUNTER  
CONTROL  
MUXOUT  
CONTROL  
CONTROL  
BITS  
PRESCALER  
VALUE  
DB17 DB16  
DB14 DB13 DB12 DB11 DB10 DB9  
DB8  
F3  
DB7  
F2  
DB6  
M3  
DB3  
PD1  
DB2  
F1  
DB1  
C2(1) C1(0)  
DB23 DB22 DB21 DB20 DB19 DB18  
DB15  
DB5  
M2  
DB4  
M1  
DB0  
P2  
P1  
PD2  
CPI6 CPI5 CPI4 CPI3 CPI2 CPI1 TC4  
TC3  
TC2  
TC1  
F5  
F4  
COUNTER  
OPERATION  
F1  
0
NORMAL  
PHASE DETECTOR  
POLARITY  
F2  
0
1
R, A, B COUNTERS  
HELD IN RESET  
NEGATIVE  
1
POSITIVE  
F3  
0
CHARGE PUMP OUTPUT  
NORMAL  
1
THREE-STATE  
F4  
0
F5  
FASTLOCK MODE  
FASTLOCK DISABLED  
FASTLOCK MODE 1  
FASTLOCK MODE 2  
X
0
1
1
1
TIMEOUT  
TC4  
TC3  
TC2  
TC1  
(PFD CYCLES)  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
3
7
11  
15  
19  
23  
27  
31  
35  
39  
43  
47  
51  
55  
59  
63  
M3  
M2  
0
M1  
OUTPUT  
0
0
0
1
THREE-STATE OUTPUT  
0
DIGITAL LOCK DETECT  
(ACTIVE HIGH)  
0
0
1
1
1
1
0
0
0
1
0
1
N DIVIDER OUTPUT  
DVDD  
R DIVIDER OUTPUT  
ANALOG LOCK DETECT  
(N-CHANNEL OPEN-DRAIN)  
SEE FUNCTION LATCH,  
TIMER COUNTER CONTROL  
SECTION  
CPI6  
CPI5  
CPI4  
ICP (mA)  
1
1
1
1
0
1
SERIAL DATA OUTPUT  
DGND  
2.7k  
4.7kΩ  
10kΩ  
CPI3  
0
CPI2  
0
CPI1  
0
1.09  
2.18  
3.26  
4.35  
5.44  
6.53  
7.62  
8.70  
0.63  
0.29  
0
0
0
1
1
1
1
0
1
1
0
0
1
1
1
0
1
0
1
0
1
1.25  
1.88  
2.50  
3.13  
3.75  
4.38  
5.00  
0.59  
0.88  
1.76  
1.47  
1.76  
2.06  
2.35  
CE PIN PD2 PD1  
MODE  
0
1
1
1
X
X
0
1
X
0
1
1
ASYNCHRONOUS POWER-DOWN  
NORMAL OPERATION  
ASYNCHRONOUS POWER-DOWN  
SYNCHRONOUS POWER-DOWN  
P2  
P1  
0
PRESCALER VALUE  
8/9  
0
0
1
1
16/17  
32/33  
64/65  
1
0
1
Rev. F | Page 17 of 28  
 
ADF4110/ADF4111/ADF4112/ADF4113  
Data Sheet  
Table 10. Initialization Latch Map  
CURRENT  
SETTING  
2
CURRENT  
SETTING  
1
PRESCALER  
VALUE  
TIMER COUNTER  
CONTROL  
MUXOUT  
CONTROL  
CONTROL  
BITS  
DB13 DB12 DB11 DB10  
DB9  
F4  
DB8  
F3  
DB7  
F2  
DB6  
M3  
DB5  
M2  
DB4  
M1  
DB3  
PD1  
DB2  
F1  
DB1  
C2 (1) C1 (1)  
DB0  
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14  
P2  
P1  
PD2  
CPI6 CPI5 CPI4 CPI3 CPI2 CPI1  
TC4  
TC3  
TC2  
TC1  
F5  
COUNTER  
OPERATION  
F1  
0
PHASE DETECTOR  
POLARITY  
NORMAL  
F2  
0
1
R, A, B COUNTERS  
HELD IN RESET  
NEGATIVE  
POSITIVE  
1
F3  
0
CHARGE PUMP  
OUTPUT NORMAL  
THREE-STATE  
1
F4  
0
F5  
FASTLOCK MODE  
FASTLOCK DISABLED  
FASTLOCK MODE 1  
FASTLOCK MODE 2  
X
0
1
1
1
TIMEOUT  
TC4  
TC3  
TC2  
TC1  
(PFD CYCLES)  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
3
7
11  
15  
19  
23  
27  
31  
35  
39  
43  
47  
51  
55  
59  
63  
M3  
0
M2  
0
M1  
0
OUTPUT  
THREE-STATE OUTPUT  
0
0
1
DIGITAL LOCK DETECT  
(ACTIVE HIGH)  
0
0
1
1
1
1
0
0
0
1
0
1
N DIVIDER OUTPUT  
DV  
DD  
R DIVIDER OUTPUT  
ANALOG LOCK DETECT  
(N-CHANNEL OPEN-DRAIN)  
SEE FUNCTION LATCH,  
TIMER COUNTER CONTROL  
SECTION  
CPI6  
CPI5  
CPI4  
I
(mA)  
CP  
1
1
1
1
0
1
SERIAL DATA OUTPUT  
DGND  
2.7k  
4.7kΩ  
10kΩ  
CPI3  
0
CPI2  
0
CPI1  
0
1.09  
0.63  
0.29  
0.59  
0.88  
1.76  
1.47  
1.76  
2.06  
2.35  
0
0
0
1
1
1
1
0
1
1
0
0
1
1
1
0
1
0
1
0
1
2.18  
3.27  
4.35  
5.44  
6.53  
7.62  
8.70  
1.25  
1.88  
2.50  
3.13  
3.75  
4.38  
5.00  
CE PIN PD2 PD1  
MODE  
0
1
1
1
X
X
0
1
X
0
1
1
ASYNCHRONOUS POWER-DOWN  
NORMAL OPERATION  
ASYNCHRONOUS POWER-DOWN  
SYNCHRONOUS POWER-DOWN  
P2  
P1  
0
PRESCALER VALUE  
8/9  
0
0
1
1
16/17  
32/33  
64/65  
1
0
1
Rev. F | Page 18 of 28  
Data Sheet  
ADF4110/ADF4111/ADF4112/ADF4113  
FUNCTION LATCH  
Fastlock Mode Bit  
The on-chip function latch is programmed with C2, C1 set to 1.  
Table 9 shows the input data format for programming the  
function latch.  
DB10 of the function latch is the fastlock enable bit. When  
fastlock is enabled, this bit determines which fastlock mode is  
used. If the fastlock mode bit is 0, fastlock mode 1 is selected; if  
the fastlock mode bit is 1, fastlock mode 2 is selected.  
Counter Reset  
DB2 (F1) is the counter reset bit. When DB2 is 1, the R counter  
and the AB counters are reset. For normal operation, this bit  
should be 0. Upon powering up, the F1 bit must be disabled,  
and the N counter resumes counting in “close” alignment with  
the R counter. (The maximum error is one prescaler cycle.)  
Fastlock Mode 1  
The charge pump current is switched to the contents of Current  
Setting 2.  
The device enters fastlock by having a 1 written to the CP gain  
bit in the AB counter latch. The device exits fastlock by having a  
0 written to the CP gain bit in the AB counter latch.  
Power-Down  
DB3 (PD1) and DB21 (PD2) on the ADF411x provide  
program-mable power-down modes. They are enabled by the  
CE pin.  
Fastlock Mode 2  
The charge pump current is switched to the contents of Current  
Setting 2. The device enters fastlock by having a 1 written to the  
CP gain bit in the AB counter latch. The device exits fastlock  
under the control of the timer counter. After the timeout period  
determined by the value in TC4 through TC1, the CP gain bit in  
the AB counter latch is automatically reset to 0 and the device  
reverts to normal mode instead of fastlock. See Table 9 for the  
timeout periods.  
When the CE pin is low, the device is immediately disabled  
regardless of the states of PD2, PD1.  
In the programmed asynchronous power-down, the device  
powers down immediately after latching a 1 into Bit PD1,  
provided PD2 has been loaded with a 0.  
In the programmed synchronous power-down, the device  
power-down is gated by the charge pump to prevent unwanted  
frequency jumps. Once power-down is enabled by writing a 1  
into Bit PD1 (provided a 1 has also been loaded to PD2), the  
device goes into power-down on the next charge pump event.  
Timer Counter Control  
The user has the option of programming two charge pump cur-  
rents. Current Setting 1 is meant to be used when the RF output  
is stable and the system is in a static state. Current Setting 2 is  
meant to be used when the system is dynamic and in a state of  
change (i.e., when a new output frequency is programmed).  
When a power-down is activated (either synchronous or  
asynchronous mode including CE pin activated power-down),  
the following events occur:  
The normal sequence of events is as follows:  
All active dc current paths are removed.  
The user initially decides what the preferred charge pump  
currents are going to be. For example, they may choose 2.5 mA  
as Current Setting 1 and 5 mA as Current Setting 2.  
The R, N, and timeout counters are forced to their load  
state conditions.  
The charge pump is forced into three-state mode.  
The digital clock detect circuitry is reset.  
The RFIN input is debiased.  
At the same time, they must also decide how long they want the  
secondary current to stay active before reverting to the primary  
current. This is controlled by the timer counter control bits,  
DB14 through DB11 (TC4 through TC1) in the function latch.  
The truth table is given in Table 10.  
The reference input buffer circuitry is disabled.  
A user can program a new output frequency simply by pro-  
gramming the AB counter latch with new values for A and B. At  
the same time, the CP gain bit can be set to 1, which sets the  
charge pump with the value in CPI6–CPI4 for a period deter-  
mined by TC4 through TC1. When this time is up, the charge  
pump current reverts to the value set by CPI3–CPI1. At the  
same time, the CP gain bit in the AB counter latch is reset to 0  
and is ready for the next time the user wishes to change the  
frequency.  
The input register remains active and capable of loading  
and latching data.  
MUXOUT Control  
The on-chip multiplexer is controlled by M3, M2, and M1 on  
the ADF4110 family. Table 9 shows the truth table.  
Fastlock Enable Bit  
DB9 of the function latch is the fastlock enable bit. Fastlock is  
enables only when this is 1.  
Rev. F | Page 19 of 28  
 
ADF4110/ADF4111/ADF4112/ADF4113  
Data Sheet  
Note that there is an enable feature on the timer counter. It is  
enabled when Fastlock Mode 2 is chosen by setting the fastlock  
mode bit (DB10) in the function latch to 1.  
When the initialization latch is loaded, the following occurs:  
1. The function latch contents are loaded.  
2. An internal pulse resets the R, A, B, and timeout counters  
to load state conditions and three-states the charge pump.  
Note that the prescaler band gap reference and the oscil-  
lator input buffer are unaffected by the internal reset pulse,  
allowing close phase alignment when counting resumes.  
Charge Pump Currents  
CPI3, CPI2, and CPI1 program Current Setting 1 for the charge  
pump. CPI6, CPI5, and CPI4 program Current Setting 2 for the  
charge pump. The truth table is given in Table 10.  
Prescaler Value  
3. Latching the first AB counter data after the initialization  
word activates the same internal reset pulse. Successive AB  
loads do not trigger the internal reset pulse unless there is  
another initialization.  
P2 and P1 in the function latch set the prescaler values. The  
prescaler value should be chosen so that the prescaler output  
frequency is always less than or equal to 200 MHz. Thus, with  
an RF frequency of 2 GHz, a prescaler value of 16/17 is valid but  
a value of 8/9 is not.  
CE Pin Method  
1. Apply VDD  
.
PD Polarity  
2. Bring CE low to put the device into power-down. This is an  
asynchronous power-down in that it happens immediately.  
This bit sets the phase detector polarity bit. See Table 10.  
CP Three-State  
3. Program the function latch (10). Program the R counter  
latch (00). Program the AB counter latch (01).  
This bit controls the CP output pin. With the bit set high, the  
CP output is put into three-state. With the bit set low, the CP  
output is enabled.  
4. Bring CE high to take the device out of power-down. The R  
and AB counters now resume counting in close alignment.  
INITIALIZATION LATCH  
When C2, C1 = 1, 1, the initialization latch is programmed.  
This is essentially the same as the function latch (programmed  
when C2, C1 = 1, 0).  
After CE goes high, a duration of 1 µs may be required for the  
prescaler band gap voltage and oscillator input buffer bias to  
reach steady state.  
However, when the initialization latch is programmed, an addi-  
tional internal reset pulse is applied to the R and AB counters.  
This pulse ensures that the AB counter is at load point when the  
AB counter data is latched, and the device begins counting in  
close phase alignment.  
CE can be used to power the device up and down in order to  
check for channel activity. The input register does not need to  
be reprogrammed each time the device is disabled and enabled  
as long as it has been programmed at least once after VDD was  
initially applied.  
If the latch is programmed for synchronous power-down (CE  
pin high; PD1 bit high; PD2 bit low), the internal pulse also  
triggers this power-down. The prescaler reference and the  
oscillator input buffer are unaffected by the internal reset pulse,  
so close phase alignment is maintained when counting resumes.  
Counter Reset Method  
1. Apply VDD  
.
2. Do a function latch load (10 in 2 LSBs). As part of this,  
load 1 to the F1 bit. This enables the counter reset.  
3. Do an R counter load (00 in 2 LSBs). Do an AB counter  
load (01 in 2 LSBs). Do a function latch load (10 in 2  
LSBs). As part of this, load 0 to the F1 bit. This disables the  
counter reset.  
When the first AB counter data is latched after initialization, the  
internal reset pulse is again activated. However, successive AB  
counter loads after this will not trigger the internal reset pulse.  
DEVICE PROGRAMMING AFTER INITIAL  
POWER-UP  
This sequence provides the same close alignment as the initiali-  
zation method. It offers direct control over the internal reset.  
Note that counter reset holds the counters at load point and  
three states the charge pump but does not trigger synchronous  
power-down. The counter reset method requires an extra  
function latch load compared to the initialization latch method.  
After initial power-up of the device, there are three ways to  
program the device.  
Initialization Latch Method  
Apply VDD. Program the initialization latch (11 in 2 LSBs of  
input word). Make sure the F1 bit is programmed to 0. Then, do  
an R load (00 in 2 LSBs). Then do an AB load (01 in 2 LSBs).  
Rev. F | Page 20 of 28  
 
 
Data Sheet  
ADF4110/ADF4111/ADF4112/ADF4113  
RESYNCHRONIZING THE PRESCALER OUTPUT  
Table 7 (the Reference Counter Latch Map) shows two bits,  
DB22 and DB21, which are labeled DLY and SYNC,  
respectively. These bits affect the operation of the prescaler.  
If the SYNC feature is used on the synthesizer, some care must  
be taken. At some point, (at certain temperatures and output  
frequencies), the delay through the prescaler coincides with the  
active edge on RF input; this causes the SYNC feature to break  
down. It is important to be aware of this when using the SYNC  
feature. Adding a delay to the RF signal, by programming  
DLY = 1, extends the operating frequency and temperature  
somewhat. Using the SYNC feature also increases the value of  
the AIDD for the device. With a 900 MHz output, the ADF4113  
AIDD increases by about 1.3 mA when SYNC is enabled and by  
an additional 0.3 mA if DLY is enabled.  
With SYNC = 1, the prescaler output is resynchronized with the  
RF input. This has the effect of reducing jitter due to the  
prescaler and can lead to an overall improvement in synthesizer  
phase noise performance. Typically, a 1 dB to 2 dB  
improvement is seen in the ADF4113. The lower bandwidth  
devices can show an even greater improvement. For example,  
the ADF4110 phase noise is typically improved by 3 dB when  
SYNC is enabled.  
All the typical performance plots in this data sheet, except for  
Figure 8, apply for DLY and SYNC = 0, i.e., no resynchroniza-  
tion or delay enabled.  
With DLY = 1, the prescaler output is resynchronized with a  
delayed version of the RF input.  
Rev. F | Page 21 of 28  
 
ADF4110/ADF4111/ADF4112/ADF4113  
Data Sheet  
APPLICATIONS  
LOCAL OSCILLATOR FOR GSM BASE STATION TRANSMITTER  
Figure 33 shows the ADF4111/ADF4112/ADF4113 being used  
with a VCO to produce the LO for a GSM base station  
transmitter.  
All of these specifications are needed and used to come up with  
the loop filter component values shown in Figure 33.  
The loop filter output drives the VCO, which in turn is fed back  
to the RF input of the PLL synthesizer. It also drives the RF out-  
put terminal. A T-circuit configuration provides 50 Ω matching  
between the VCO output, the RF output, and the RFIN terminal  
of the synthesizer.  
The reference input signal is applied to the circuit at FREFIN  
and, in this case, is terminated in 50 Ω. A typical GSM system  
would have a 13 MHz TCXO driving the reference input with-  
out any 50 Ω termination. In order to have channel spacing of  
200 kHz (GSM standard), the reference input must be divided  
by 65, using the on-chip reference divider of the ADF4111/  
ADF4112/ADF4113.  
In a PLL system, it is important to know when the system is in  
lock. In Figure 33, this is accomplished by using the MUXOUT  
signal from the synthesizer. The MUXOUT pin can be pro-  
grammed to monitor various internal signals in the synthesizer.  
One of these is the LD or lock-detect signal.  
The charge pump output of the ADF4111/ADF4112/ADF4113  
(Pin 2) drives the loop filter. In calculating the loop filter  
component values, a number of items need to be considered. In  
this example, the loop filter was designed so that the overall  
phase margin for the system would be 45 degrees. Other PLL  
system specifications are  
KD = 5 mA  
KV = 12 MHz/V  
Loop Bandwidth = 20 kHz  
F
REF = 200 kHz  
N = 4500  
Extra Reference Spur Attenuation = 10 dB  
V
V
DD  
P
RF  
OUT  
100pF  
18Ω  
18Ω  
16  
7
15  
100pF  
B
18Ω  
V
AV  
DV  
P
DD  
DD  
3.3kΩ  
P
V
CC  
1000pF  
1000pF  
2
C
CP  
FREF  
IN  
8
REF  
IN  
620pF  
1nF  
5.6kΩ  
1
VCO190-902T  
51Ω  
ADF4111  
ADF4112  
ADF4113  
8.2nF  
CE  
LOCK  
DETECT  
MUXOUT  
14  
CLK  
DATA  
LE  
100pF  
6
5
RF  
RF  
A
B
IN  
R
2
51Ω  
1
SET  
IN  
4.7kΩ  
100pF  
3
4
9
1
2
TO BE USED WHEN GENERATOR SOURCE IMPEDANCE IS 50.  
OPTIONAL MATCHING RESISTOR DEPENDING ON RF FREQUENCY.  
OUT  
DECOUPLING CAPACITORS ON AV , DV , AND V OF THE ADF411x  
DD DD  
P
AND ON THE POSITIVE SUPPLY OF THE VCO190-902T HAVE BEEN  
OMITTED FROM THE DIAGRAM TO INCREASE CLARITY.  
Figure 33. Local Oscillator for GSM Base Station  
Rev. F | Page 22 of 28  
 
 
 
Data Sheet  
ADF4110/ADF4111/ADF4112/ADF4113  
RF  
OUT  
100pF  
18  
18Ω  
VCO  
100pF  
18Ω  
LOOP  
FILTER  
2
CP  
FREF  
IN  
8
REF  
IN  
INPUT OUTPUT  
ADF4111  
ADF4112  
ADF4113  
GND  
CE  
CLK  
DATA  
LE  
LOCK  
DETECT  
14  
MUXOUT  
1
R
SET  
100pF  
6
5
RF  
RF  
A
B
IN  
2.7kΩ  
51Ω  
IN  
100pF  
AD5320  
12-BIT  
V-OUT DAC  
POWER SUPPLY CONNECTIONS AND DECOUPLING  
CAPACITORS ARE OMITTED FOR CLARITY.  
SPI COMPATIBLE SERIAL BUS  
Figure 34. Driving the RSET Pin with a D/A Converter  
a tuning range as wide as an octave. For example, cable TV  
tuners have a total range of about 400 MHz. Figure 36 shows an  
application where the ADF4113 is used to control and program  
the Micronetics M3500-2235. The loop filter was designed for  
an RF output of 2900 MHz, a loop bandwidth of 40 kHz, a PFD  
frequency of 1 MHz, ICP of 10 mA (2.5 mA synthesizer ICP  
multiplied by the gain factor of 4), VCO KD of 90 MHz/V  
(sensitivity of the M3500-2235 at an output of 2900 MHz), and  
a phase margin of 45°C.  
USING A D/A CONVERTER TO DRIVE THE RSET PIN  
A D/A converter can be used to drive the RSET pin of the  
ADF4110 family, thus increasing the level of control over the  
charge pump current, ICP. This can be advantageous in wide-  
band applications where the sensitivity of the VCO varies over  
the tuning range. To compensate for this, the ICP may be varied  
to maintain good phase margin and ensure loop stability. See  
Figure 34.  
SHUTDOWN CIRCUIT  
In narrow-band applications, there is generally a small variation  
in output frequency (generally less than 10%) and a small  
variation in VCO sensitivity over the range (typically 10% to  
15%). However, in wideband applications, both of these  
parameters have a much greater variation. In Figure 36, for  
example, there is a −25% and +17% variation in the RF output  
from the nominal 2.9 GHz. The sensitivity of the VCO can vary  
from 120 MHz/V at 2750 MHz to 75 MHz/V at 3400 MHz  
(+33%, −17%). Variations in these parameters change the loop  
bandwidth. This in turn can affect stability and lock time. By  
changing the programmable ICP, it is possible to get compensa-  
tion for these varying loop conditions and ensure that the loop  
is always operating close to optimal conditions.  
The attached circuit in Figure 35 shows how to shut down both  
the ADF4110 family and the accompanying VCO. The ADG701  
switch goes closed circuit when a Logic 1 is applied to the IN  
input. The low cost switch is available in both SOT-23 and  
MSOP packages.  
WIDEBAND PLL  
Many of the wireless applications for synthesizers and VCOs in  
PLLs are narrow band in nature. These applications include the  
various wireless standards like GSM, DSC1800, CDMA, and  
WCDMA. In each of these cases, the total tuning range for the  
local oscillator is less than 100 MHz. However, there are also  
wideband applications for which the local oscillator could have  
Rev. F | Page 23 of 28  
 
 
 
 
ADF4110/ADF4111/ADF4112/ADF4113  
Data Sheet  
V
P
POWER-DOWN CONTROL  
V
S
DD  
RF  
OUT  
ADG701  
IN  
V
DD  
D
GND  
100pF  
7
15  
DV  
16 10  
V CE  
P
18  
100pF  
V
18Ω  
CC  
AV  
DD  
DD  
LOOP  
FILTER  
2
1
CP  
FREF  
IN  
8
VCO  
18Ω  
REF  
IN  
R
SET  
GND  
4.7kΩ  
ADF4110  
ADF4111  
ADF4112  
ADF4113  
100pF  
RF  
A
B
6
5
IN  
51Ω  
RF  
IN  
3
4
9
100pF  
DECOUPLING CAPACITORS AND INTERFACE SIGNALS HAVE  
BEEN OMITTED FROM THE DIAGRAM TO INCREASE CLARITY.  
Figure 35. Local Oscillator Shutdown Circuit  
RF  
OUT  
20V  
12V  
V
7
V
DD  
P
3k  
100pF  
1kΩ  
18Ω  
18Ω  
V
CC  
100pF  
18Ω  
15  
DV  
16  
OUT  
AD820  
V_TUNE  
3.3kΩ  
AV  
V
DD  
DD  
P
2
1
1000pF  
1000pF  
M3500-2235  
GND  
CP  
8
REF  
FREF  
IN  
IN  
2.8nF  
19nF  
130pF  
R
51Ω  
SET  
680Ω  
4.7kΩ  
ADF4113  
CE  
LOCK  
DETECT  
CLK MUXOUT  
DATA  
LE  
14  
100pF  
RF  
RF  
A
B
IN  
6
5
IN  
51Ω  
3
4
9
100pF  
DECOUPLING CAPACITORS ON AV , DV , V OF THE ADF4113  
DD DD  
P
AND ON VCC OF THE M3500-2250 HAVE BEEN OMITTED FROM  
THE DIAGRAM TO AID CLARITY.  
Figure 36. Wideband Phase-Locked Loop  
Rev. F | Page 24 of 28  
 
 
Data Sheet  
ADF4110/ADF4111/ADF4112/ADF4113  
DIRECT CONVERSION MODULATOR  
Typical phase noise performance from this LO is −85 dBc/Hz at  
a 1 kHz offset.  
In some applications, a direct conversion architecture can be  
used in base station transmitters. Figure 37 shows the combina-  
tion available from ADI to implement this solution.  
The LO port of the AD8346 is driven in single-ended fashion.  
LOIN is ac-coupled to ground with the 100 pF capacitor; LOIP  
is driven through the ac coupling capacitor from a 50 Ω source.  
An LO drive level of between −6 dBm and −12 dBm is required.  
The circuit of Figure 37 gives a typical level of −8 dBm.  
The circuit diagram shows the AD9761 being used with the  
AD8346. The use of dual integrated DACs such as the AD9761  
with specified 0.02 dB and 0.004 dB gain and offset matching  
characteristics ensures minimum error contribution (over  
temperature) from this portion of the signal chain.  
The RF output is designed to drive a 50 Ω load but must be ac-  
coupled as shown in Figure 37. If the I and Q inputs are driven  
in quadrature by 2 V p-p signals, the resulting output power is  
around −10 dBm.  
The local oscillator (LO) is implemented using the ADF4113. In  
this case, the OSC 3B1-13M0 provides the stable 13 MHz  
reference frequency. The system is designed for a 200 kHz  
channel spacing and an output center frequency of 1960 MHz.  
The target application is a WCDMA base station transmitter.  
REFIO  
IOUTA  
IOUTB  
IBBP  
IBBN  
100pF  
LOW-PASS  
FILTER  
RF  
OUT  
VOUT  
MODULATED  
DIGITAL  
DATA  
AD9761  
TxDAC  
AD8346  
QOUTA  
QOUTB  
QBBP  
QBBN  
LOW-PASS  
FILTER  
FS ADJ  
2kΩ  
LOIN  
LOIP  
100pF  
4.7kΩ  
100pF  
OSC 3B1-13M0  
TCXO  
18Ω  
R
100pF  
18Ω  
SET  
3.3kΩ  
REF  
CP  
IN  
3.9kΩ  
VCO190-1960T  
910pF  
ADF4113  
620pF  
SERIAL  
DIGITAL  
9.1nF  
INTERFACE  
18Ω  
RF B  
IN  
RF A  
IN  
100pF  
100pF  
51Ω  
POWER SUPPLY CONNECTIONS AND DECOUPLING CAPACITORS  
ARE OMITTED FROM DIAGRAM TO INCREASE CLARITY.  
Figure 37. Direct Conversion Transmitter Solution  
Rev. F | Page 25 of 28  
 
 
ADF4110/ADF4111/ADF4112/ADF4113  
Data Sheet  
INTERFACING  
ADSP-2181 Interface  
The ADF4110 family has a simple SPI® compatible serial inter-  
face for writing to the device. SCLK, SDATA, and LE control the  
data transfer. When latch enable (LE) goes high, the 24 bits that  
have been clocked into the input register on each rising edge of  
SCLK get transferred to the appropriate latch. See Figure 2 for  
the timing diagram and Table 5 for the latch truth table.  
Figure 39 shows the interface between the ADF4110 family and  
the ADSP-21xx digital signal processor. The ADF4110 family  
needs a 24-bit serial word for each latch write. The easiest way  
to accomplish this using the ADSP-21xx family is to use the  
auto buffered transmit mode of operation with alternate  
framing. This provides a means for transmitting an entire block  
of serial data before an interrupt is generated.  
The maximum allowable serial clock rate is 20 MHz. This  
means that the maximum update rate possible for the device is  
833 kHz, or one update every 1.2 µs. This is certainly more than  
adequate for systems that have typical lock times in the  
hundreds of microseconds.  
SCLK  
SCLK  
DT  
SDATA  
ADSP-21xx  
ADF4110  
ADF4111  
ADF4112  
ADF4113  
TFS  
LE  
ADuC812 Interface  
CE  
Figure 38 shows the interface between the ADF4110 family and  
the ADuC812 MicroConverter®. Since the ADuC812 is based  
on an 8051 core, this interface can be used with any 8051 based  
microcontroller. The MicroConverter is set up for SPI master  
mode with CPHA = 0. To initiate the operation, the I/O port  
driving LE is brought low. Each latch of the ADF4110 family  
needs a 24-bit word. This is accomplished by writing three 8-bit  
bytes from the MicroConverter to the device. When the third  
byte has been written, the LE input should be brought high to  
complete the transfer.  
I/O FLAGS  
MUXOUT  
(LOCK DETECT)  
Figure 39. ADSP-21xx to ADF4110 Family Interface  
Set up the word length for 8 bits and use three memory  
locations for each 24-bit word. To program each 24-bit latch,  
store the three 8-bit bytes, enable the auto buffered mode, and  
then write to the transmit register of the DSP. This last opera-  
tion initiates the autobuffer transfer.  
When power is first applied to the ADF4110 family, three writes  
are needed (one each to the R counter latch, N counter latch,  
and initialization latch) for the output to become active.  
PCB DESIGN GUIDELINES FOR CHIP SCALE  
PACKAGE  
The lands on the chip scale package (CP-20) are rectangular.  
The printed circuit board pad for these should be 0.1 mm  
longer than the package land length and 0.05 mm wider than  
the package land width. The land should be centered on the  
pad. This ensures that the solder joint size is maximized.  
I/O port lines on the ADuC812 are also used to control power-  
down (CE input), and to detect lock (MUXOUT configured as  
lock detect and polled by the port input).  
When the ADuC812 is operating in the mode described above,  
the maximum SCLOCK rate of the ADuC812 is 4 MHz. This  
means that the maximum rate at which the output frequency  
can be changed is 166 kHz.  
The bottom of the chip scale package has a central thermal pad.  
The thermal pad on the printed circuit board should be at least  
as large as this exposed pad. On the printed circuit board, there  
should be a clearance of at least 0.25 mm between the thermal  
pad and the inner edges of the pad pattern. This ensures that  
shorting is avoided.  
SCLK  
SDATA  
LE  
SCLOCK  
MOSI  
ADuC812  
ADF4110  
ADF4111  
ADF4112  
ADF4113  
Thermal vias may be used on the printed circuit board thermal  
pad to improve thermal performance of the package. If vias are  
used, they should be incorporated in the thermal pad at 1.2 mm  
pitch grid. The via diameter should be between 0.3 mm and  
0.33 mm, and the via barrel should be plated with 1 oz. copper  
to plug the via.  
I/O PORTS  
CE  
MUXOUT  
(LOCK DETECT)  
Figure 38. ADuC812 to ADF4110 Family Interface  
The user should connect the printed circuit board thermal pad  
to AGND.  
Rev. F | Page 26 of 28  
 
 
 
 
Data Sheet  
ADF4110/ADF4111/ADF4112/ADF4113  
OUTLINE DIMENSIONS  
4.10  
4.00 SQ  
3.90  
0.30  
0.25  
0.18  
PIN 1  
INDICATOR  
PIN 1  
INDICATOR  
16  
15  
20  
0.50  
BSC  
1
EXPOSED  
PAD  
2.30  
2.10 SQ  
2.00  
11  
5
6
10  
0.65  
0.60  
0.55  
0.20 MIN  
TOP VIEW  
BOTTOM VIEW  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.20 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-WGGD-1.  
Figure 40. 20-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
4 mm × 4 mm Body, Very Very Thin Quad  
(CP-20-6)  
Dimensions shown in millimeters  
5.10  
5.00  
4.90  
16  
9
8
4.50  
4.40  
4.30  
6.40  
BSC  
1
PIN 1  
1.20  
MAX  
0.15  
0.05  
0.20  
0.09  
0.75  
0.60  
0.45  
8°  
0°  
0.30  
0.19  
0.65  
BSC  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-153-AB  
Figure 41. 16-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-16)  
Dimensions shown in millimeters  
Rev. F | Page 27 of 28  
 
ADF4110/ADF4111/ADF4112/ADF4113  
Data Sheet  
ORDERING GUIDE  
Model1  
Temperature Range  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
-40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
Package Description  
Package Option2  
ADF4110BCPZ  
20-Lead Frame Chip Scale Package [LFCSP_WQ]  
20-Lead Frame Chip Scale Package [LFCSP_WQ]  
20-Lead Frame Chip Scale Package [LFCSP_WQ]  
16-Lead Thin Shrink Small Outline Package [TSSOP]  
16-Lead Thin Shrink Small Outline Package [TSSOP]  
16-Lead Thin Shrink Small Outline Package [TSSOP]  
16-Lead Thin Shrink Small Outline Package [TSSOP]  
16-Lead Thin Shrink Small Outline Package [TSSOP]  
16-Lead Thin Shrink Small Outline Package [TSSOP]  
20-Lead Frame Chip Scale Package [LFCSP_WQ]  
20-Lead Frame Chip Scale Package [LFCSP_WQ]  
20-Lead Frame Chip Scale Package [LFCSP_WQ]  
16-Lead Thin Shrink Small Outline Package [TSSOP]  
16-Lead Thin Shrink Small Outline Package [TSSOP]  
16-Lead Thin Shrink Small Outline Package [TSSOP]  
16-Lead Thin Shrink Small Outline Package [TSSOP]  
20-Lead Frame Chip Scale Package [LFCSP_WQ]  
20-Lead Frame Chip Scale Package [LFCSP_WQ]  
20-Lead Frame Chip Scale Package [LFCSP_WQ]  
16-Lead Thin Shrink Small Outline Package [TSSOP]  
16-Lead Thin Shrink Small Outline Package [TSSOP]  
16-Lead Thin Shrink Small Outline Package [TSSOP]  
16-Lead Thin Shrink Small Outline Package [TSSOP]  
16-Lead Thin Shrink Small Outline Package [TSSOP]  
20-Lead Frame Chip Scale Package [LFCSP_WQ]  
20-Lead Frame Chip Scale Package [LFCSP_WQ]  
20-Lead Frame Chip Scale Package [LFCSP_WQ]  
16-Lead Thin Shrink Small Outline Package [TSSOP]  
16-Lead Thin Shrink Small Outline Package [TSSOP]  
16-Lead Thin Shrink Small Outline Package [TSSOP]  
16-Lead Thin Shrink Small Outline Package [TSSOP]  
16-Lead Thin Shrink Small Outline Package [TSSOP]  
DIE  
CP-20-6  
CP-20-6  
CP-20-6  
RU-16  
RU-16  
RU-16  
RU-16  
RU-16  
RU-16  
ADF4110BCPZ-RL  
ADF4110BCPZ-RL7  
ADF4110BRU  
ADF4110BRU-REEL  
ADF4110BRU-REEL7  
ADF4110BRUZ  
ADF4110BRUZ-RL  
ADF4110BRUZ-RL7  
ADF4111BCPZ  
ADF4111BCPZ-RL  
ADF4111BCPZ-RL7  
ADF4111BRU  
CP-20-6  
CP-20-6  
CP-20-6  
RU-16  
RU-16  
RU-16  
ADF4111BRUZ  
ADF4111BRUZ-RL  
ADF4111BRUZ-RL7  
ADF4112BCPZ  
ADF4112BCPZ-RL  
ADF4112BCPZ-RL7  
ADF4112BRU  
ADF4112BRU-REEL7  
ADF4112BRUZ  
ADF4112BRUZ-REEL  
ADF4112BRUZ-REEL7  
ADF4113BCPZ  
ADF4113BCPZ-RL  
ADF4113BCPZ-RL7  
ADF4113BRU  
ADF4113BRU-REEL7  
ADF4113BRUZ  
ADF4113BRUZ-REEL  
ADF4113BRUZ-REEL7  
ADF4113BCHIPS  
EVAL-ADF4113EBZ1  
EVAL-ADF4113EBZ2  
EV-ADF411XSD1Z  
RU-16  
CP-20-6  
CP-20-6  
CP-20-6  
RU-16  
RU-16  
RU-16  
RU-16  
RU-16  
CP-20-6  
CP-20-6  
CP-20-6  
RU-16  
RU-16  
RU-16  
RU-16  
RU-16  
Evaluation Board  
Evaluation Board  
Evaluation Board  
1 Z = RoHS Compliant Part.  
2 CP-20-6 package was formerly CP-20-1 package.  
Purchase of licensed I2C components of Analog Devices or one of its sublicensed Associated Companies conveys a license for the purchaser under the Philips I2C Patent  
Rights to use these components in an I2C system, provided that the system conforms to the I2C Standard Specification as defined by Philips.  
©2013 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D03496-0-1/13(F)  
Rev. F | Page 28 of 28  
 
 
 

相关型号:

ADF4110BCPZ-REEL

IC PLL FREQUENCY SYNTHESIZER, 550 MHz, CQCC20, MO-220-VGGD, LFCSP-20, PLL or Frequency Synthesis Circuit
ADI

ADF4110BCPZ-REEL7

IC PLL FREQUENCY SYNTHESIZER, 550 MHz, CQCC20, MO-220-VGGD, LFCSP-20, PLL or Frequency Synthesis Circuit
ADI

ADF4110BCPZ-RL

RF PLL Frequency Synthesizers
ADI

ADF4110BCPZ-RL7

RF PLL Frequency Synthesizers
ADI

ADF4110BRU

RF PLL Frequency Synthesizers
ADI

ADF4110BRU-REEL

RF PLL Frequency Synthesizers
ADI

ADF4110BRU-REEL7

RF PLL Frequency Synthesizers
ADI

ADF4110BRUZ

RF PLL Frequency Synthesizers
ADI

ADF4110BRUZ-RL

RF PLL Frequency Synthesizers
ADI

ADF4110BRUZ-RL7

RF PLL Frequency Synthesizers
ADI

ADF4110_13

RF PLL Frequency Synthesizers
ADI

ADF4110_15

RF PLL Frequency Synthesizers
ADI