ADF4116_15 [ADI]

RF PLL Frequency Synthesizers;
ADF4116_15
型号: ADF4116_15
厂家: ADI    ADI
描述:

RF PLL Frequency Synthesizers

文件: 总28页 (文件大小:486K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
RF PLL Frequency Synthesizers  
ADF4116/ADF4117/ADF4118  
GENERAL DESCRIPTION  
FEATURES  
ADF4116: 550 MHz  
ADF4117: 1.2 GHz  
ADF4118: 3.0 GHz  
The ADF411x family of frequency synthesizers can be used to  
implement local oscillators (LO) in the upconversion and  
downconversion sections of wireless receivers and transmitters.  
They consist of a low noise digital phase frequency detector  
(PFD), a precision charge pump, a programmable reference  
divider, programmable A and B counters, and a dual-modulus  
prescaler (P/P + 1). The A (5-bit) and B (13-bit) counters, in  
conjunction with the dual-modulus prescaler (P/P + 1),  
implement an N divider (N = BP + A). In addition, the 14-bit  
reference counter (R counter) allows selectable REFIN frequencies  
at the PFD input. A complete phase-locked loop (PLL) can be  
implemented if the synthesizer is used with an external loop  
filter and voltage controlled oscillator (VCO).  
2.7 V to 5.5 V power supply  
Separate VP allows extended tuning voltage in 3 V systems  
Y Grade: −40°C to +125°C  
Dual-modulus prescaler  
ADF4116: 8/9  
ADF4117/ADF4118: 32/33  
3-wire serial interface  
Digital lock detect  
Power-down mode  
Fastlock mode  
APPLICATIONS  
All of the on-chip registers are controlled via a simple 3-wire  
interface. The devices operate with a power supply ranging  
from 2.7 V to 5.5 V and can be powered down when not in use.  
Base stations for wireless radio  
(GSM, PCS, DCS, CDMA, WCDMA)  
Wireless handsets  
(GSM, PCS, DCS, CDMA, WCDMA)  
Wireless LANs  
Communications test equipment  
CATV equipment  
FUNCTIONAL BLOCK DIAGRAM  
AV  
DV  
V
P
CPGND  
DD  
DD  
REFERENCE  
ADF4116/ADF4117/ADF4118  
14-BIT  
R COUNTER  
REF  
IN  
PHASE  
FREQUENCY  
DETECTOR  
CHARGE  
PUMP  
CP  
14  
R COUNTER  
LATCH  
CLK  
DATA  
LE  
21-BIT  
INPUT REGISTER  
FUNCTION  
LATCH  
LOCK  
DETECT  
19  
A, B COUNTER  
LATCH  
SD  
OUT  
18  
HIGH Z  
FROM  
FUNCTION LATCH  
AV  
DD  
13  
MUX  
MUXOUT  
N = BP + A  
13-BIT  
B COUNTER  
SD  
OUT  
RF  
RF  
A
B
IN  
LOAD  
LOAD  
PRESCALER  
P/P + 1  
IN  
5-BIT  
A COUNTER  
M3 M2 M1  
FL  
SWITCH  
O
FL  
O
5
CE  
AGND  
DGND  
Figure 1.  
Rev. D  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 www.analog.com  
Fax: 781.461.3113 ©2000–2007 Analog Devices, Inc. All rights reserved.  
 
ADF4116/ADF4117/ADF4118  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Latch Summaries........................................................................ 14  
Latch Maps .................................................................................. 15  
Function Latch................................................................................ 19  
Counter Reset ............................................................................. 19  
Power-Down ............................................................................... 19  
MUXOUT Control..................................................................... 19  
Phase Detector Polarity ............................................................. 19  
Charge Pump Three-State......................................................... 19  
Fastlock Enable Bit..................................................................... 19  
Fastlock Mode Bit....................................................................... 19  
Timer Counter Control ............................................................. 19  
Initialization Latch ..................................................................... 20  
Device Programming After Initial Power-Up ........................ 20  
Applications Information.............................................................. 21  
Local Oscillator for the GSM Base Station Transmitter........ 21  
Shutdown Circuit ....................................................................... 21  
Direct Conversion Modulator .................................................. 21  
Interfacing ................................................................................... 24  
Outline Dimensions....................................................................... 25  
Ordering Guide .......................................................................... 25  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Timing Characteristics ................................................................ 5  
Absolute Maximum Ratings............................................................ 6  
ESD Caution.................................................................................. 6  
Pin Configuration and Function Descriptions............................. 7  
Typical Performance Characteristics ............................................. 8  
Circuit Description......................................................................... 12  
Reference Input Section............................................................. 12  
RF Input Stage............................................................................. 12  
Prescaler (P/P + 1)...................................................................... 12  
A Counter and B Counter ......................................................... 12  
R Counter .................................................................................... 12  
Phase Frequency Detector (PFD) and Charge Pump............ 13  
MUXOUT and Lock Detect...................................................... 13  
Input Shift Register..................................................................... 13  
REVISION HISTORY  
9/04—Rev. A to Rev. B  
4/07—Rev. C to Rev. D  
Changes to Specifications.................................................................3  
Changes to Ordering Guide.......................................................... 25  
Changes to REFIN Characteristics Section..................................... 3  
Changes to Table 4............................................................................ 7  
Changes to Figure 35...................................................................... 22  
Changes to Ordering Guide .......................................................... 25  
3/01—Rev. 0 to Rev. A  
4/00—Rev. 0: Initial Version  
11/05—Rev. B to Rev. C  
Changes to Table 1............................................................................ 3  
Changes to Table 2............................................................................ 5  
Changes to Table 3............................................................................ 6  
Changes to Table 4............................................................................ 7  
Changed OSC 3B1-13M0 to FOX801BH-130............................ 21  
Changes to Ordering Guide .......................................................... 25  
Rev. D | Page 2 of 28  
 
ADF4116/ADF4117/ADF4118  
SPECIFICATIONS  
AVDD = DVDD = 3 V 10ꢀ, 5 V 10ꢀꢁ AVDD ≤ VP ≤ 6.0 Vꢁ AGND = DGND = CPGND = 0 Vꢁ TA = TMIN to TMAX, unless otherwise  
notedꢁ dBm referred to 50 Ω.  
Table 1.  
Parameter  
B Version1  
Y Version2 Unit  
Test Conditions/Comments  
RF CHARACTERISTICS  
RF Input Sensitivity  
−15 to 0  
−10 to 0  
−10 to 0  
−10 to 0  
dBm min to max  
dBm min to max  
AVDD = 3 V  
AVDD = 5 V  
RF Input Frequency  
ADF4116  
See Figure 26 for input circuit  
80 to 550  
45 to 550  
MHz min to max  
MHz min to max  
Input level = −8 dBm; for lower frequencies,  
ensure slew rate (SR) > 36 V/μs  
ADF4117  
ADF4118  
0.1 to 1.2  
0.1 to 3.0  
0.2 to 3.0  
165  
GHz min to max  
GHz min to max  
GHz min to max  
MHz max  
0.1 to 3.0  
Input level = −10 dBm  
Input level = −15 dBm  
AVDD, DVDD = 3 V  
Maximum Allowable Prescaler  
Output Frequency3  
165  
200  
200  
MHz max  
AVDD, DVDD = 5 V  
REFIN CHARACTERISTICS  
Reference Input Frequency  
Reference Input Sensitivity4,5  
5 to 100  
0.4 to AVDD  
0.7 to AVDD  
10  
5 to 100  
MHz min to max  
For f < 5 MHz, ensure SR > 100 V/μs  
0.4 to AVDD V p-p min to max AVDD = 3.3 V, biased at AVDD/2  
0.7 to AVDD V p-p min to max For f ≥ 10 MHz, AVDD = 5 V, biased at AVDD/2  
10  
100  
REFIN Input Capacitance  
REFIN Input Current  
PHASE DETECTOR FREQUENCY5  
CHARGE PUMP  
pF max  
μA max  
MHz max  
100  
55  
55  
ICP Sink/Source  
High Value  
Low Value  
Absolute Accuracy  
ICP Three-State Leakage Current  
1
1
mA typ  
μA typ  
% typ  
nA max  
nA typ  
% typ  
250  
2.5  
3
1
3
250  
2.5  
25  
16  
3
Sink and Source Current Matching  
ICP vs. VCP  
0.5 V ≤ VCP ≤ VP − 0.5  
0.5 V ≤ VCP ≤ VP − 0.5  
VCP = VP/2  
2
2
% typ  
ICP vs. Temperature  
2
2
% typ  
LOGIC INPUTS  
VINH, Input High Voltage  
VINL, Input Low Voltage  
IINH/IINL, Input Current  
CIN, Input Capacitance  
Reference Input Current  
LOGIC OUTPUTS  
0.8 × DVDD  
0.2 × DVDD  
1
10  
0.8 × DVDD  
0.2 × DVDD  
1
10  
100  
V min  
V max  
μA max  
pF max  
μA max  
100  
VOH, Output High Voltage  
VOL, Output Low Voltage  
DVDD − 0.4  
0.4  
DVDD − 0.4  
0.4  
V min  
V max  
IOH = 500 μA  
IOL = 500 μA  
Rev. D | Page 3 of 28  
 
ADF4116/ADF4117/ADF4118  
Parameter  
B Version1  
Y Version2 Unit  
Test Conditions/Comments  
POWER SUPPLIES  
AVDD  
DVDD  
2.7 to 5.5  
AVDD  
2.7 to 5.5  
AVDD  
V min to V max  
VP  
AVDD to 6.0  
AVDD to 6.0 V min to V max  
AVDD ≤ VP ≤ 6.0 V  
IDD (AIDD + DIDD)6  
ADF4116  
ADF4117  
ADF4118  
5.5  
5.5  
7.5  
0.4  
1
mA max  
mA max  
mA max  
mA max  
μA typ  
4.5 mA typical  
4.5 mA typical  
6.5 mA typical  
TA = 25°C  
7.5  
0.4  
1
IP  
Low-Power Sleep Mode  
NOISE CHARACTERISTICS  
ADF4118 Normalized Phase Noise  
−213  
−213  
dBc/Hz typ  
Floor7  
Phase Noise Performance8  
ADF4116 540 MHz Output9  
ADF4117 900 MHz Output10  
ADF4118 900 MHz Output10  
ADF4117 836 MHz Output11  
ADF4118 1750 MHz Output12  
ADF4118 1750 MHz Output13  
ADF4118 1960 MHz Output14  
Spurious Signals  
@ VCO output  
−89  
−87  
−90  
−78  
−85  
−65  
−84  
−89  
−87  
−90  
−78  
−85  
−65  
−84  
dBc/Hz typ  
dBc/Hz typ  
dBc/Hz typ  
dBc/Hz typ  
dBc/Hz typ  
dBc/Hz typ  
dBc/Hz typ  
@ 1 kHz offset and 200 kHz PFD frequency  
@ 1 kHz offset and 200 kHz PFD frequency  
@ 1 kHz offset and 200 kHz PFD frequency  
@ 300 Hz offset and 30 kHz PFD frequency  
@ 1 kHz offset and 200 kHz PFD frequency  
@ 200 Hz offset and 10 kHz PFD frequency  
@ 1 kHz offset and 200 kHz PFD frequency  
ADF4116 540 MHz Output10  
ADF4117 900 MHz Output10  
ADF4118 900 MHz Output10  
ADF4117 836 MHz Output11  
ADF4118 1750 MHz Output12  
ADF4118 1750 MHz Output13  
ADF4118 1960 MHz Output14  
−88/−99  
−90/−104  
−91/−100  
−80/−84  
−88/−90  
−65/−73  
−80/−86  
−88/−99  
−90/−104  
−91/−100  
−80/−84  
−88/−90  
−65/−73  
−80/−86  
dBc typ  
dBc typ  
dBc typ  
dBc typ  
dBc typ  
dBc typ  
dBc typ  
@ 200 kHz/400 kHz and 200 kHz PFD frequency  
@ 200 kHz/400 kHz and 200 kHz PFD frequency  
@ 200 kHz/400 kHz and 200 kHz PFD frequency  
@ 30 kHz/60 kHz and 30 kHz PFD frequency  
@ 200 kHz/400 kHz and 200 kHz PFD frequency  
@ 10 kHz/20 kHz and 10 kHz PFD frequency  
@ 200 kHz/400 kHz and 200 kHz PFD frequency  
1 Operating temperature range for the B version is −40°C to +85°C.  
2 Operating temperature range for the Y version is −40°C to +125°C.  
3 This is the maximum operating frequency of the CMOS counters.  
4 AC coupling ensures AVDD/2 bias. See Figure 35 for typical circuit.  
5 Guaranteed by design.  
6 TA = 25°C; AVDD = DVDD = 3 V; RFIN for ADF4116 = 540 MHz; RFIN for ADF4117, ADF4118 = 900 MHz.  
7 The synthesizer phase noise floor is estimated by measuring the in-band phase noise at the output of the VCO, PNTOT, and subtracting 20logN (where N is the N  
divider value) and 10logFPFD: PNSYNTH = PNTOT – 10logFPFD – 20logN.  
8 The phase noise is measured with the EVAL-ADF411xEB and the HP8562E Spectrum Analyzer. The spectrum analyzer provides the REFIN for the synthesizer  
(fREFOUT = 10 MHz @ 0 dBm).  
9 fREFIN = 10 MHz; fPFD = 200 kHz; offset frequency = 1 kHz; fRF = 540 MHz; N = 2700; loop bandwidth = 20 kHz.  
10  
f
f
f
f
f
= 10 MHz; fPFD = 200 kHz; offset frequency = 1 kHz; fRF = 900 MHz; N = 4500; loop bandwidth = 20 kHz.  
= 10 MHz; fPFD = 30 kHz; offset frequency = 300 Hz; fRF = 836 MHz; N = 27867; loop bandwidth = 3 kHz.  
= 10 MHz; fPFD = 200 kHz; offset frequency = 1 kHz; fRF = 1750 MHz; N = 8750; loop bandwidth = 20 kHz.  
= 10 MHz; fPFD = 10 kHz; offset frequency = 200 Hz; fRF = 1750 MHz; N = 175000; loop bandwidth = 1 kHz.  
= 10 MHz; fPFD = 200 kHz; offset frequency = 1 kHz; fRF = 1960 MHz; N = 9800; loop bandwidth = 20 kHz.  
REFIN  
REFIN  
REFIN  
REFIN  
REFIN  
11  
12  
13  
14  
Rev. D | Page 4 of 28  
 
ADF4116/ADF4117/ADF4118  
TIMING CHARACTERISTICS  
AVDD = DVDD = 3 V 10ꢀ, 5 V 10ꢀꢁ AVDD ≤ VP < 6.0 Vꢁ AGND = DGND = CPGND = 0 Vꢁ TA = TMIN to TMAX, unless otherwise noted.  
Guaranteed by design, but not production tested.  
Table 2.  
Parameter  
Limit at TMIN to TMAX (B, Y Version)  
Unit  
Test Conditions/Comments  
DATA to CLK setup time  
DATA to CLK hold time  
CLK high duration  
CLK low duration  
CLK to LE setup time  
LE pulse width  
t1  
t2  
t3  
t4  
t5  
t6  
10  
10  
25  
25  
10  
20  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
t3  
t4  
CLK  
t1  
t2  
DB1  
DB0 (LSB)  
(CONTROL BIT C1)  
DB20 (MSB)  
DB19  
DB2  
DATA  
LE  
(CONTROL BIT C2)  
t6  
t5  
LE  
Figure 2. Timing Diagram  
Rev. D | Page 5 of 28  
 
 
ADF4116/ADF4117/ADF4118  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating onlyꢁ functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Table 3.  
Parameter  
AVDD to GND1  
Rating  
−0.3 V to +7 V  
−0.3 V to +0.3 V  
−0.3 V to +7 V  
−0.3 V to +5.5 V  
−0.3 V to VDD + 0.3 V  
−0.3 V to VP + 0.3 V  
−0.3 V to VDD + 0.3 V  
320 mV  
AVDD to DVDD  
VP to GND1  
VP to AVDD  
This device is a high performance RF integrated circuit with an  
ESD rating of <2 kV, and it is ESD sensitive. Proper precautions  
should be taken for handling and assembly.  
Digital I/O Voltage to GND1  
Analog I/O Voltage to GND1  
REFIN, RFINA, RFINB to GND1  
RFINA to RFINB  
Operating Temperature Range  
Industrial (B Version)  
Extended (Y Version)  
Storage Temperature Range  
Maximum Junction Temperature  
TSSOP θJA Thermal Impedance  
Reflow Soldering  
ESD CAUTION  
−40°C to +85°C  
−40°C to +125°C  
−65°C to +150°C  
150°C  
112°C/W  
Peak Temperature  
Time at Peak Temperature  
Transistor Count  
260°C  
40 sec  
CMOS  
Bipolar  
6425  
303  
1 GND = AGND = DGND = 0 V.  
Rev. D | Page 6 of 28  
 
 
ADF4116/ADF4117/ADF4118  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
FL  
V
O
P
CP  
CPGND  
AGND  
DV  
DD  
ADF4116/  
ADF4117/  
ADF4118  
TOP VIEW  
(Not to Scale)  
MUXOUT  
LE  
RF  
RF  
B
A
DATA  
CLK  
IN  
IN  
AV  
CE  
DD  
REF  
DGND  
IN  
Figure 3. Pin Configuration  
Table 4. Pin Function Descriptions  
Pin No. Mnemonic Description  
1
FLO  
Fast Lock Switch Output. This can be used to switch an external resistor to change the loop filter bandwidth  
and speed up locking the PLL.  
2
CP  
Charge Pump Output. When enabled, this provides the ICP to the external loop filter, which in turn drives the  
external VCO.  
3
4
5
CPGND  
AGND  
RFINB  
Charge Pump Ground. This is the ground return path for the charge pump.  
Analog Ground. This is the ground return path for the prescaler.  
Complementary Input to the RF Prescaler. This point should be decoupled to the ground plane with a small  
bypass capacitor, typically 100 pF. See Figure 26.  
6
7
RFINA  
AVDD  
Input to the RF Prescaler. This small signal input is ac-coupled from the VCO.  
Analog Power Supply. This can range from 2.7 V to 5.5 V. Decoupling capacitors to the analog ground plane  
should be placed as close as possible to this pin. AVDD must have the same value as DVDD.  
8
REFIN  
Reference Input. This is a CMOS input with a nominal threshold of VDD/2 and an equivalent input resistance of 100 kΩ.  
See Figure 25. The oscillator input can be driven from a TTL or CMOS crystal oscillator, or it can be ac-coupled.  
9
10  
DGND  
CE  
Digital Ground.  
Chip Enable. A logic low on this pin powers down the device and puts the charge pump output into three-state  
mode. Taking the pin high powers up the device depending on the status of the power-down bit F2.  
11  
12  
13  
14  
15  
CLK  
Serial Clock Input. This serial clock is used to clock in the serial data to the registers. The data is latched into the  
21-bit shift register on the CLK rising edge. This input is a high impedance CMOS input.  
Serial Data Input. The serial data is loaded MSB first with the two LSBs as the control bits. This input is a high  
impedance CMOS input.  
Load Enable, CMOS Input. When LE goes high, the data stored in the shift registers is loaded into one of the four  
latches, the latch being selected using the control bits.  
This multiplexer output allows either the lock detect, the scaled RF, or the scaled reference frequency to be  
accessed externally.  
Digital Power Supply. This can range from 2.7 V to 5.5 V. Decoupling capacitors to the digital ground plane (1 μF, 1 nF)  
should be placed as close as possible to this pin. For best performance, the 1 μF capacitor should be placed within 2 mm  
of the pin. The placing of the 1 nF capacitor is less critical, but should still be within 5 mm of the pin.  
DVDD must have the same value as AVDD.  
DATA  
LE  
MUXOUT  
DVDD  
16  
VP  
Charge Pump Power Supply. This should be greater than or equal to VDD. In systems where VDD is 3 V, this supply can  
be set to 6 V and used to drive a VCO with a tuning range of up to 6 V.  
Rev. D | Page 7 of 28  
 
ADF4116/ADF4117/ADF4118  
TYPICAL PERFORMANCE CHARACTERISTICS  
10dB/DIVISION  
–40  
R
= –40dBc/Hz  
RMS NOISE = 0.64°  
L
FREQ- PARAM-TYPE DATA-FORMAT KEYWORD IMPEDANCE-  
UNIT  
OHMS  
–50  
–60  
GHz  
S
MA  
R
50  
0.64° rms  
FREQ  
MagS11  
AngS11  
FREQ MagS11 AngS11  
0.05  
0.10  
0.15  
0.20  
0.25  
0.30  
0.35  
0.40  
0.45  
0.50  
0.55  
0.60  
0.65  
0.70  
0.75  
0.80  
0.85  
0.90  
0.89207  
0.8886  
–2.0571  
–4.4427  
–6.3212  
–2.1393  
–12.13  
0.95  
1.00  
1.05  
1.10  
1.15  
1.20  
1.25  
1.30  
1.35  
1.40  
1.45  
1.50  
1.55  
1.60  
1.65  
1.70  
1.75  
1.80  
0.92087  
0.93788  
0.9512  
–36.961  
–39.343  
–40.134  
–43.747  
–44.393  
–46.937  
–49.6  
–51.884  
–51.21  
–53.55  
–56.786  
–58.781  
–60.545  
–61.43  
–61.241  
–64.051  
–66.19  
–70  
0.89022  
0.96323  
0.90566  
0.90307  
0.89318  
0.89806  
0.89565  
0.88538  
0.89699  
0.89927  
0.87797  
0.90765  
0.88526  
0.81267  
0.90357  
0.92954  
–80  
0.93458  
0.94782  
0.96875  
0.92216  
0.93755  
0.96178  
0.94354  
0.95189  
0.97647  
0.98619  
0.95459  
0.97945  
0.98864  
0.97399  
0.97216  
–13.52  
–90  
–15.746  
–18.056  
–19.693  
–22.246  
–24.336  
–25.948  
–28.457  
–29.735  
–31.879  
–32.681  
–31.522  
–34.222  
–100  
–110  
–120  
–130  
–140  
100Hz  
FREQUENCY OFFSET FROM 900MHz CARRIER  
1MHz  
–63.775  
Figure 4. S-Parameter Data for the ADF4118 RF Input (Up to 1.8 GHz)  
Figure 7. ADF4118 Integrated Phase Noise  
(900 MHz, 200 kHz, 35 kHz, Typical Lock Time: 200 μs)  
0
10dB/DIVISION  
–40  
R
= –40dBc/Hz  
RMS NOISE = 0.575°  
L
–5  
V
V
= 3V  
= 3V  
DD  
–50  
–60  
P
0.575° rms  
–10  
–15  
–20  
–25  
–70  
–80  
–90  
T
T
= –40°C  
= +25°C  
A
A
–100  
–30  
–35  
–110  
–120  
–130  
T
= +85°C  
3.5  
A
–40  
–45  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
4.0  
–140  
100Hz  
FREQUENCY OFFSET FROM 900MHz CARRIER  
1MHz  
RF INPUT FREQUENCY (GHz)  
Figure 5. Input Sensitivity (ADF4118)  
Figure 8. ADF4118 Integrated Phase Noise  
(900 MHz, 200 kHz, 20 kHz, Typical Lock Time: 400 μs)  
0
–10  
–20  
–30  
–40  
–50  
0
REFERENCE  
LEVEL = –3.8dBm  
V
I
= 3V, V = 5V  
P
REFERENCE  
LEVEL = –4.2dBm  
V
I
= 3V, V = 5V  
P
DD  
DD  
–10  
–20  
–30  
–40  
–50  
= 1mA  
= 1mA  
CP  
CP  
PFD FREQUENCY = 200kHz  
LOOP BANDWIDTH = 20kHz  
RES. BANDWIDTH = 1kHz  
VIDEO BANDWIDTH = 1kHz  
SWEEP = 2.5 SECONDS  
AVERAGES = 4  
PFD FREQUENCY = 200kHz  
LOOP BANDWIDTH = 20kHz  
RES. BANDWIDTH = 10Hz  
VIDEO BANDWIDTH = 10Hz  
SWEEP = 1.9 SECONDS  
AVERAGES = 22  
–60  
–70  
–60  
–70  
–90.2dBc/Hz  
–91.5dBc  
–80  
–80  
–90  
–90  
–100  
–100  
–400kHz  
–200kHz  
900MHz  
200kHz  
400kHz  
–2kHz  
–1kHz  
900MHz  
1kHz  
2kHz  
Figure 9. ADF4118 Reference Spurs  
(900 MHz, 200 kHz, 20 kHz)  
Figure 6. ADF4118 Phase Noise  
(900 MHz, 200 kHz, 20 kHz)  
Rev. D | Page 8 of 28  
 
ADF4116/ADF4117/ADF4118  
0
0
–10  
–20  
–30  
–40  
–50  
V
I
= 3V, V = 5V  
P
V
I
= 3V, V = 5V  
P
DD  
DD  
REFERENCE  
LEVEL = –4.2dBm  
REFERENCE  
LEVEL = –7.0dBm  
–10  
–20  
–30  
–40  
–50  
= 5mA  
= 1mA  
CP  
CP  
PFD FREQUENCY = 30kHz  
LOOP BANDWIDTH = 5kHz  
RES. BANDWIDTH = 300Hz  
VIDEO BANDWIDTH = 300Hz  
SWEEP = 4.2ms  
PFD FREQUENCY = 200kHz  
LOOP BANDWIDTH = 35kHz  
RES. BANDWIDTH = 1kHz  
VIDEO BANDWIDTH = 1kHz  
SWEEP = 2.5 SECONDS  
AVERAGES = 10  
AVERAGES = 20  
–60  
–70  
–60  
–70  
–72.3dBc  
–90.67dBc  
–80  
–90  
–80  
–90  
–100  
–100  
–400kHz  
–200kHz  
900MHz  
200kHz  
400kHz  
–60kHz  
–30kHz  
1750MHz  
30kHz  
60kHz  
Figure 10. ADF4118 Reference Spurs  
(900 MHz, 200 kHz, 35 kHz)  
Figure 13. ADF4118 Reference Spurs  
(1750 MHz, 30 kHz, 3 kHz)  
0
–10  
–20  
–30  
–40  
–50  
0
V
= 3V, V = 5V  
P
DD  
REFERENCE  
LEVEL = –7.0dBm  
V
= 3V, V = 5V  
DD P  
REFERENCE  
LEVEL = –10.3dBm  
I
= 1mA  
CP  
–10  
–20  
–30  
–40  
I
= 1mA  
CP  
PFD FREQUENCY = 30kHz  
LOOP BANDWIDTH = 5kHz  
RES. BANDWIDTH = 10kHz  
VIDEO BANDWIDTH = 10kHz  
SWEEP = 477ms  
PFD FREQUENCY = 1MHz  
LOOP BANDWIDTH = 100kHz  
RES. BANDWIDTH = 10Hz  
VIDEO BANDWIDTH = 10Hz  
SWEEP = 1.9 SECONDS  
AVERAGES = 26  
–50  
AVERAGES = 25  
–60  
–70  
–60  
–70  
–85.2dBc/Hz  
–71.5dBc/Hz  
–80  
–80  
–90  
–90  
–100  
–100  
–400kHz  
–200kHz  
1750MHz  
200kHz  
400kHz  
–2kHz  
–1kHz  
1kHz  
2kHz  
2800MHz  
Figure 11. ADF4118 Phase Noise  
(1750 MHz, 30 kHz, 3 kHz)  
Figure 14. ADF4118 Phase Noise  
(2800 MHz, 1 MHz, 100 kHz)  
10dB/DIVISION  
–40  
R
= –40dBc/Hz  
RMS NOISE = 2.0°  
10dB/DIVISION  
–40  
R
= –40dBc/Hz  
RMS NOISE = 1.552°  
L
L
–50  
–60  
–50  
–60  
1.55° rms  
2.0° rms  
–70  
–80  
–70  
–80  
–90  
–90  
–100  
–100  
–110  
–120  
–130  
–110  
–120  
–130  
–140  
100Hz  
–140  
100Hz  
FREQUENCY OFFSET FROM 1.75GHz CARRIER  
1MHz  
FREQUENCY OFFSET FROM 2.8GHz CARRIER  
1MHz  
Figure 15. ADF4118 Integrated Phase Noise  
(2800 MHz, 1 MHz, 100 kHz)  
Figure 12. ADF4118 Integrated Phase Noise  
(1750 MHz, 30 kHz, 3 kHz)  
Rev. D | Page 9 of 28  
ADF4116/ADF4117/ADF4118  
0
–60  
–70  
V
I
= 3V, V = 5V  
P
DD  
REFERENCE  
LEVEL = –9.3dBm  
–10  
–20  
–30  
–40  
–50  
= 1mA  
V
V
= 3V  
CP  
DD  
= 5V  
P
PFD FREQUENCY = 1MHz  
LOOP BANDWIDTH = 100kHz  
RES. BANDWIDTH = 3kHz  
VIDEO BANDWIDTH = 3kHz  
SWEEP = 1.4 SECONDS  
AVERAGES = 4  
–80  
–60  
–70  
–77.3dBc  
–90  
–80  
–90  
–100  
–100  
–40  
–20  
0
20  
40  
60  
80  
100  
–2MHz  
–1MHz  
2800MHz  
1MHz  
2MHz  
TEMPERATURE (°C)  
Figure 16. ADF4118 Reference Spurs  
(2800 MHz, 1 MHz, 100 kHz)  
Figure 19. ADF4118 Reference Spurs vs. Temperature  
(900 MHz, 200 kHz, 20 kHz)  
–130  
–135  
–140  
–145  
–150  
–155  
–160  
–165  
–170  
–175  
5
–5  
V
V
= 3V  
DD  
= 5V  
V
V
= 3V  
DD  
= 5V  
P
P
–15  
–25  
–35  
–45  
–55  
–65  
–75  
–85  
–95  
–105  
0
1
2
3
4
5
1
10  
100  
1000  
10000  
PHASE DETECTOR FREQUENCY (kHz)  
TUNING VOLTAGE  
Figure 17. ADF4118 Phase Noise (Referred to CP Output) vs.  
PFD Frequency  
Figure 20. ADF4118 Reference Spurs (200 kHz) vs. VTUNE  
(900 MHz, 200 kHz, 20 kHz)  
–60  
–60  
–70  
–80  
–90  
V
V
= 3V  
DD  
= 5V  
V
V
= 3V  
P
DD  
= 5V  
P
–70  
–80  
–90  
–100  
0
20  
40  
60  
80  
100  
–40  
–20  
0
20  
40  
60  
80  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 18. ADF4118 Phase Noise vs. Temperature  
(900 MHz, 200 kHz, 20 kHz)  
Figure 21. ADF4118 Phase Noise vs. Temperature  
(836 MHz, 30 kHz, 3 kHz)  
Rev. D | Page 10 of 28  
ADF4116/ADF4117/ADF4118  
–60  
–70  
1.2  
1.0  
0.8  
0.6  
V
V
= 3V  
DD  
= 5V  
V
= 5V  
SETTING: 1mA  
P
P
I
CP  
0.4  
0.2  
–80  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–1.2  
–90  
–100  
0
20  
40  
60  
80  
100  
0
0.5  
1.0  
1.5  
2.0  
2.5  
(V)  
3.0  
3.5  
4.0  
4.5  
5.0  
TEMPERATURE (°C)  
V
CP  
Figure 22. ADF4118 Reference Spurs vs. Temperature  
(836 MHz, 30 kHz, 3 kHz)  
Figure 24. Charge Pump Output Characteristics  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
0
50  
100  
150  
200  
PRESCALER OUTPUT FREQUENCY (MHz)  
Figure 23. DIDD vs. Prescaler Output Frequency  
Rev. D | Page 11 of 28  
ADF4116/ADF4117/ADF4118  
CIRCUIT DESCRIPTION  
REFERENCE INPUT SECTION  
A COUNTER AND B COUNTER  
The A CMOS counter and B CMOS counter combine with the  
dual-modulus prescaler to allow a wide ranging division ratio in  
the PLL feedback counter. The counters are specified to work  
when the prescaler output is 200 MHz or less.  
The reference input stage is shown in Figure 25. SW1 and SW2  
are normally closed switchesꢁ SW3 is normally open. When  
power-down is initiated, SW3 is closed and SW1 and SW2 are  
opened. This ensures that there is no loading of the REFIN pin  
on power-down.  
Pulse Swallow Function  
POWER-DOWN  
CONTROL  
The A counter and B counter, in conjunction with the dual-  
modulus prescaler, make it possible to generate output  
frequencies that are spaced only by the reference frequency  
divided by R. The equation for the VCO frequency is as follows:  
100k  
NC  
SW2  
TO R COUNTER  
REF  
IN  
NC  
SW1  
BUFFER  
fVCO  
where:  
VCO is the output frequency of external voltage controlled  
=
(P×B)+ A × fREFIN /R  
[ ]  
SW3  
NO  
Figure 25. Reference Input Stage  
f
oscillator (VCO).  
RF INPUT STAGE  
P is the preset modulus of dual-modulus prescaler.  
B is the preset divide ratio of binary 13-bit counter (3 to 8191).  
A is the preset divide ratio of binary 5-bit swallow counter (0 to 31).  
The RF input stage is shown in Figure 26. It is followed by a  
2-stage limiting amplifier to generate the CML clock levels  
needed for the prescaler.  
f
REFIN is the output frequency of the external reference frequency  
oscillator.  
1.6V  
BIAS  
GENERATOR  
AV  
DD  
R is the preset divide ratio of binary 14-bit programmable  
reference counter (1 to 16,383).  
500  
500Ω  
R COUNTER  
RF  
RF  
A
B
IN  
The 14-bit R counter allows the input reference frequency to be  
divided down to produce the input clock to the phase frequency  
detector (PFD). Division ratios from 1 to 16,383 are allowed.  
IN  
AGND  
N = BP + A  
TO PFD  
13-BIT  
Figure 26. RF Input Stage  
B COUNTER  
FROM RF  
PRESCALER (P/P + 1)  
LOAD  
LOAD  
INPUT STAGE  
PRESCALER  
P/P + 1  
The dual-modulus prescaler (P/P + 1), along with the A counter  
and B counter, enables the large division ratio, N, to be realized  
(N = PB + A). The dual-modulus prescaler takes the CML clock  
from the RF input stage and divides it down to a manageable  
frequency for the CMOS A counter and CMOS B counter. The  
prescaler is programmable. It can be set in software to 8/9 for the  
ADF4116 and to 32/33 for the ADF4117 and ADF4118. It is based  
on a synchronous 4/5 core.  
MODULUS  
CONTROL  
5-BIT  
A COUNTER  
Figure 27. A Counter and B Counter  
Rev. D | Page 12 of 28  
 
 
 
ADF4116/ADF4117/ADF4118  
PHASE FREQUENCY DETECTOR (PFD)  
AND CHARGE PUMP  
MUXOUT AND LOCK DETECT  
The output multiplexer on the ADF411x family allows the user  
to access various internal points on the chip. The state of  
MUXOUT is controlled by M3, M2, and M1 in the function  
latch. Figure 33 shows the full truth table. Figure 29 shows the  
MUXOUT section in block diagram form.  
The PFD takes inputs from the R counter and N counter and  
produces an output proportional to the phase and frequency  
difference between them. Figure 28 is a simplified schematic of  
the PFD. The PFD includes a fixed delay element that sets the  
width of the antibacklash pulse. This is typically 3 ns. This pulse  
ensures that there is no dead zone in the PFD transfer function  
and gives a consistent reference spur level.  
DV  
DD  
V
P
ANALOG LOCK DETECT  
DIGITAL LOCK DETECT  
CHARGE  
PUMP  
MUXOUT  
R COUNTER OUTPUT  
N COUNTER OUTPUT  
SDOUT  
MUX  
CONTROL  
UP  
HI  
D1  
Q1  
U1  
R DIVIDER  
CLR1  
DGND  
Figure 29. MUXOUT Circuit  
CP  
DELAY  
DOWN  
U3  
Lock Detect  
MUXOUT can be programmed for both digital lock detect and  
analog lock detect.  
CLR2  
U2  
Digital lock detect is active high. It is set high when the phase  
error on three consecutive phase detector cycles is less than  
15 ns. It stays set high until a phase error greater than 25 ns is  
detected on any subsequent PD cycle.  
D2  
Q2  
HI  
N DIVIDER  
CPGND  
The N channel, open-drain, analog lock detect should be  
operated with an external pull-up resistor of 10 kΩ nominal.  
When lock is detected, it is high with narrow low going pulses.  
R DIVIDER  
N DIVIDER  
INPUT SHIFT REGISTER  
CP OUTPUT  
The ADF411x family digital section includes a 21-bit input shift  
register, a 14-bit R counter, and an 18-bit N counter, comprising  
a 5-bit A counter and a 13-bit B counter. Data is clocked into  
the 21-bit shift register on each rising edge of CLK. The data is  
clocked in MSB first. Data is transferred from the shift register  
to one of four latches on the rising edge of LE. The destination  
latch is determined by the state of the two control bits (C2, C1)  
in the shift register. These are the two LSBs, DB1 and DB0, as  
shown in the timing diagram in Figure 2. The truth table for  
these bits is shown in Figure 34. Table 5 summarizes how the  
latches are programmed.  
Figure 28. PFD Simplified Schematic and Timing (In Lock)  
Table 5. Programming Data Latches  
Control Bits  
C2  
0
C1  
0
Data Latch  
R Counter  
0
1
1
1
0
1
N Counter (A and B)  
Function Latch  
Initialization Latch  
Rev. D | Page 13 of 28  
 
 
 
 
ADF4116/ADF4117/ADF4118  
LATCH SUMMARIES  
REFERENCE COUNTER LATCH  
TEST  
MODE BITS  
CONTROL  
BITS  
14-BIT REFERENCE COUNTER, R  
DB20  
LDP  
DB19 DB18 DB17 DB16 DB15 DB14  
T4 T3 T2 T1 R14 R13  
DB13  
R12  
DB12 DB11 DB10  
R11 R10 R9  
DB9  
R8  
DB8  
R7  
DB7  
R6  
DB6  
R5  
DB5  
R4  
DB4  
R3  
DB3  
R2  
DB2  
R1  
DB1  
DB0  
C2 (0) C1 (0)  
AB COUNTER LATCH  
CONTROL  
BITS  
13-BIT B COUNTER  
5-BIT A COUNTER  
DB20 DB19 DB18  
G1 B13 B12  
DB17 DB16 DB15 DB14 DB13 DB12  
DB11 DB10  
B5 B4  
DB9  
B3  
DB8  
B2  
DB7  
B1  
DB6  
A5  
DB5  
DB4  
A3  
DB3  
DB2  
A1  
DB1  
DB0  
B11  
B10  
B9  
B8  
B7  
B6  
A4  
A2  
C2 (0) C1 (1)  
FUNCTION LATCH  
TIMER COUNTER  
CONTROL  
MUXOUT  
CONTROL  
CONTROL  
BITS  
RESERVED  
DB20 DB19  
PD2  
DB18 DB17 DB16 DB15 DB14  
DB13 DB12  
DB11 DB10  
F6  
DB9  
F4  
DB8  
F3  
DB7  
F2  
DB6  
M3  
DB5  
M2  
DB4  
M1  
DB3  
PD1  
DB2  
F1  
DB1  
DB0  
X
X
X
X
TC4  
TC3  
TC2  
TC1  
X
C2 (1) C1 (0)  
INITIALIZATION LATCH  
TIMER COUNTER  
CONTROL  
MUXOUT  
CONTROL  
CONTROL  
BITS  
RESERVED  
DB20 DB19  
DB18 DB17 DB16 DB15 DB14 DB13 DB12  
DB11 DB10  
F6  
DB9  
F4  
DB8  
F3  
DB7  
F2  
DB6  
M3  
DB5  
M2  
DB4  
M1  
DB3  
PD1  
DB2  
F1  
DB1  
DB0  
X
X
X
X
PD2  
TC4  
TC3  
TC2  
TC1  
X
C2 (1) C1 (1)  
Figure 30. ADF411x family Latch Summary  
Rev. D | Page 14 of 28  
 
ADF4116/ADF4117/ADF4118  
LATCH MAPS  
TEST  
MODE BITS  
CONTROL  
BITS  
14-BIT REFERENCE COUNTER, R  
DB20 DB19 DB18 DB17  
LDP T4 T3 T2  
DB16 DB15 DB14 DB13 DB12  
T1 R14 R13 R12 R11  
DB11 DB10  
DB9  
R8  
DB8  
R7  
DB7  
R6  
DB6  
R5  
DB5  
R4  
DB4  
R3  
DB3  
R2  
DB2  
R1  
DB1  
DB0  
R10  
R9  
C2 (0) C1 (0)  
R14  
0
R13  
0
R12  
0
••••••••  
••••••••••  
R3  
R2  
0
R1  
1
DIVIDE RATIO  
1
0
0
0
1
0
0
0
0
0
0
0
0
0
••••••••••  
••••••••••  
••••••••••  
••••••••••  
••••••••••  
••••••••••  
••••••••••  
••••••••••  
••••••••••  
••••••••••  
1
1
0
0
1
0
2
3
4
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
163 80  
163 81  
163 82  
163 83  
TEST MODE BITS SHOULD  
BE SET TO 0000 FOR  
NORMAL OPERATION  
LDP  
OPERATION  
3 CONSECUTIVE CYCLES OF PHASE DELAY LESS THAN  
15ns MUST OCCUR BEFORE LOCK DETECT IS SET.  
5 CONSECUTIVE CYCLES OF PHASE DELAY LESS THAN  
15ns MUST OCCUR BEFORE LOCK DETECT IS SET.  
0
1
Figure 31. Reference Counter Latch Map  
Rev. D | Page 15 of 28  
 
ADF4116/ADF4117/ADF4118  
CONTROL  
BITS  
13-BIT B COUNTER  
5-BIT A COUNTER  
DB20  
G1  
DB19 DB18  
B13 B12  
DB17 DB16 DB15 DB14  
DB13 DB12  
B7 B6  
DB11 DB10  
DB9  
B3  
DB8  
B2  
DB7  
B1  
DB6  
A5  
DB5  
A4  
DB4  
A3  
DB3  
DB2  
A1  
DB1  
DB0  
B11  
B10  
B9  
B8  
B5  
B4  
A2  
C2 (0) C1 (1)  
A COUNTER  
DIVIDE RATIO  
A5  
A4  
X
X
A3  
A2  
A1  
0
1
X
X
0
0
0
0
0
1
ADF4116  
X
X
X
X
1
1
1
1
0
1
6
7
A COUNTER  
DIVIDE RATIO  
A5  
0
0
0
A4  
0
0
0
A3  
0
0
0
A2  
0
0
1
A1  
0
1
0
0
1
ADF4117/ADF4118  
2
1
1
1
1
1
1
1
1
1
0
1
1
1
0
1
29  
30  
31  
••••••••••  
••••••••••  
B13  
B12  
0
B11  
0
B3  
0
B2  
0
B1  
1
B COUNTER DIVIDE RATIO  
NOT ALLOWED  
0
0
0
0
0
0
0
0
0
0
••••••••••  
••••••••••  
••••••••••  
••••••••••  
••••••••••  
••••••••••  
••••••••••  
••••••••••  
••••••••••  
••••••••••  
0
0
1
1
1
0
0
1
0
NOT ALLOWED  
3
4
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
8188  
8189  
8190  
8191  
LDP CURRENT SETTINGS  
250µA  
1mA  
0
1
N = BP + A, P IS PRESCALER VALUE. B MUST BE GREATER  
THAN OR EQUAL TO A. FOR CONTINUOUSLY ADJACENT  
2
VALUES OF N  
F
, N  
IS (P – P).  
MIN  
X
REF  
Figure 32. A Counter/B Counter Latch Map  
Rev. D | Page 16 of 28  
ADF4116/ADF4117/ADF4118  
TIMER COUNTER  
CONTROL  
MUXOUT  
CONTROL  
CONTROL  
BITS  
RESERVED  
DB20  
X
DB19 DB18  
PD2  
DB17 DB16 DB15 DB14  
DB13 DB12 DB11 DB10  
DB9  
F4  
DB8  
F3  
DB7  
F2  
DB6  
M3  
DB5  
M2  
DB4  
M1  
DB3  
PD1  
DB2  
F1  
DB1  
DB0  
X
X
X
TC4  
TC3  
TC2  
TC1  
F6  
X
C2 (1) C1 (0)  
COUNTER  
OPERATION  
F1  
0
NORMAL  
R, A, B COUNTERS  
HELD IN RESET  
1
CE PIN PD2 PD1  
MODE  
M3  
M2  
0
M1  
OUTPUT  
ASYNCHRONOUS POWER-DOWN  
NORMAL OPERATION  
0
1
1
1
X
X
0
1
X
0
1
1
0
0
THREE-STATE OUTPUT  
DIGITAL LOCK DETECT  
(ACTIVE HIGH)  
ASYNCHRONOUS POWER-DOWN  
SYNCHRONOUS POWER-DOWN  
0
0
0
1
0
1
1
0
1
0
1
0
N DIVIDER OUTPUT  
AV  
DD  
R DIVIDER OUTPUT  
ANALOG LOCK DETECT  
(N CHANNEL OPEN DRAIN)  
1
0
1
SERIAL DATA OUTPUT  
(INVERSE POLARITY OF  
SERIAL DATA INPUT)  
1
1
1
1
0
1
DGND  
PHASE DETECTOR  
POLARITY  
F2  
0
NEGATIVE  
1
POSITIVE  
CHARGE PUMP  
OUTPUT  
F3  
0
NORMAL  
1
THREE-STATE  
F4  
0
F6  
X
FASTLOCK MODE  
FASTLOCK DISABLED  
FASTLOCK MODE 1  
FASTLOCK MODE 2  
TIMEOUT  
1
0
1
1
TC4  
TC3  
TC2  
TC1  
(PFD CYCLES)  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
3
7
11  
15  
19  
23  
27  
31  
35  
39  
43  
47  
51  
55  
59  
63  
Figure 33. Function Latch Map  
Rev. D | Page 17 of 28  
 
ADF4116/ADF4117/ADF4118  
RESERVED  
TIMER COUNTER  
MUXOUT  
CONTROL  
CONTROL  
BITS  
CONTROL  
DB20 DB19  
DB18 DB17  
DB16  
X
DB15 DB14 DB13 DB12  
DB11 DB10  
F6  
DB9  
F4  
DB8  
F3  
DB7  
F2  
DB6  
M3  
DB5  
M2  
DB4  
M1  
DB3  
PD1  
DB2  
F1  
DB1  
DB0  
X
X
X
PD2  
TC4  
TC3  
TC2  
TC1  
X
C2 (1) C1 (1)  
COUNTER  
OPERATION  
F1  
0
1
NORMAL  
R, A, B COUNTERS  
HELD IN RESET  
M3  
M2  
0
M1  
OUTPUT  
CE PIN PD2 PD1  
MODE  
0
0
THREE-STATE OUTPUT  
ASYNCHRONOUS POWER-DOWN  
NORMAL OPERATION  
0
1
1
1
X
X
0
1
X
0
1
1
DIGITAL LOCK DETECT  
(ACTIVE HIGH)  
0
0
1
1
0
1
0
1
0
ASYNCHRONOUS POWER-DOWN  
N DIVIDER OUTPUT  
0
SYNCHRONOUS POWER-DOWN  
AV  
DD  
0
1
R DIVIDER OUTPUT  
ANALOG LOCK DETECT  
(N CHANNEL OPEN DRAIN)  
1
0
1
SERIAL DATA OUTPUT  
(INVERSE POLARITY OF  
SERIAL DATA INPUT)  
1
1
1
1
0
1
DGND  
PHASE DETECTOR  
POLARITY  
F2  
0
NEGATIVE  
1
POSITIVE  
CHARGE PUMP  
OUTPUT  
F3  
0
NORMAL  
1
THREE-STATE  
F4  
0
F6  
FASTLOCK MODE  
FASTLOCK DISABLED  
X
0
1
FASTLOCK MODE 1  
FASTLOCK MODE 2  
1
1
TIMEOUT  
(PFD CYCLES)  
TC4  
TC3  
TC2  
TC1  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
3
7
11  
15  
19  
23  
27  
31  
35  
39  
43  
47  
51  
55  
59  
63  
Figure 34. Initialization Latch Map  
Rev. D | Page 18 of 28  
 
ADF4116/ADF4117/ADF4118  
FUNCTION LATCH  
With C2 and C1 set to 1 and 0, respectively, the on-chip  
function latch is programmed. Figure 33 shows the input data  
format for programming the function latch.  
CHARGE PUMP THREE-STATE  
The DB8 (F3) bit puts the charge pump into three-state mode  
when programmed to 1. It should be set to 0 for normal operation.  
COUNTER RESET  
FASTLOCK ENABLE BIT  
DB2 (F1) is the counter reset bit. When this bit is set to 1, the R  
counter, A counter, and B counter are reset. For normal operation,  
this bit should be set to 0. On power-up, the F1 bit needs to be  
disabled, for the N counter to resume counting in “close”  
alignment with the R counter. (The maximum error is one  
prescaler cycle.)  
DB9 (F4) of the function latch is the fastlock enable bit. Fastlock  
is enabled only when DB9 is set to 1.  
FASTLOCK MODE BIT  
DB11 (F6) of the function latch is the fastlock mode bit. When  
fastlock is enabled, this bit determines which fastlock mode is  
used. If the fastlock mode bit is 0, Fastlock Mode 1 is selectedꢁ if  
the fastlock mode bit is 1, Fastlock Mode 2 is selected.  
POWER-DOWN  
DB3 (PD1) and DB19 (PD2) on the ADF411x family provide  
programmable power-down modes. They are enabled by the  
CE pin.  
If fastlock is not enabled (DB9 = 0), DB11 (ADF4116)  
determines the state of the FLO output. FLO state is the same as  
that programmed to DB11.  
When the CE pin is low, the device is immediately disabled  
regardless of the states of PD2 and PD1.  
Fastlock Mode 1  
In the ADF411x family, the output level of FLO is programmed  
to a low state, and the charge pump current is switched to the  
high value (1 mA). FLO is used to switch a resistor in the loop  
filter and to ensure stability while in fastlock by altering the  
loop bandwidth.  
In programmed asynchronous power-down, the device powers  
down immediately after latching a 1 into the PD1 bit, with the  
condition that PD2 is loaded with a 0.  
In programmed synchronous power-down, the device power-  
down is gated by the charge pump to prevent unwanted  
frequency jumps. Once power-down is enabled by writing a 1  
into the PD1 bit (on condition that a 1 is also loaded to PD2),  
the device goes into power-down after the first successive  
charge pump event.  
The device enters fastlock by having a 1 written to the CP Gain  
bit in the N register. The device exits fastlock by having a 0  
written to the CP Gain bit in the N register.  
Fastlock Mode 2  
In the ADF411x family, the output level of FLO is programmed  
to a low state, and the charge pump current is switched to the  
high value (1 mA). FLO is used to switch a resistor in the loop  
filter and to ensure stability while in fastlock by altering the  
loop bandwidth.  
When a power-down is activated (either synchronous or  
asynchronous mode including CE pin-activated power-down),  
the following events occur:  
All active dc current paths are removed.  
The R counter, N counter, and timeout counter are forced  
to their load state conditions.  
The device enters fastlock by having a 1 written to the CP gain  
bit in the N register. The device exits fastlock under the control  
of the timer counter. After the timeout period determined by  
the value in TC4 to TC1, the CP Gain bit in the N register is  
automatically reset to 0, and the device reverts to normal mode  
instead of fastlock.  
The charge pump is forced into three-state mode.  
The digital clock detect circuitry is reset.  
The RFIN input is debiased.  
The oscillator input buffer circuitry is disabled.  
TIMER COUNTER CONTROL  
The input register remains active and capable of loading  
and latching data.  
In the ADF411x family, the user has the option of switching  
between two charge pump current values to speed up locking to  
a new frequency.  
MUXOUT CONTROL  
When using the fastlock feature with the ADF411x family, the  
following should be noted:  
The on-chip multiplexer is controlled by DB6 (M3), DB5 (M2),  
and DB4 (M1) on the ADF411x family. Figure 33 shows the  
truth table.  
The user must make sure that fastlock is enabled. Set DB9  
to 1. The user must also choose which fastlock mode to use.  
PHASE DETECTOR POLARITY  
DB7 (F2) of the function latch sets the phase detector polarity.  
When the VCO characteristics are positive, DB7 should be set  
to 1. When they are negative, it should be set to 0.  
Rev. D | Page 19 of 28  
 
ADF4116/ADF4117/ADF4118  
4. Do an N load (01 in 2 LSBs).  
Fastlock Mode 2 uses the values in the timer counter to  
determine the timeout period before reverting to normal  
mode operation after fastlock. Fastlock Mode 2 is chosen  
by setting DB11 to 1.  
When the initialization latch is loaded, the following occurs:  
The function latch contents are loaded.  
An internal pulse resets the R, N, and timeout counters to  
load state conditions and also three-states the charge pump.  
Note that the prescaler band gap reference and the oscillator  
input buffer are unaffected by the internal reset pulse, allowing  
close phase alignment when counting resumes.  
The user must also decide how long to keep the high  
current (1 mA) active before reverting to low current  
(250 μA). This is controlled by the timer counter control  
bits, DB14 to DB11 (TC4 to TC1), in the function latch.  
The truth table is given in Figure 33.  
Latching the first N counter data after the initialization  
word activates the same internal reset pulse. Successive  
N loads do not trigger the internal reset pulse unless there  
is another initialization.  
To program a new output frequency, program the A counter  
and B counter latch with new values for A and B. At the  
same time, set the CP Gain bit to a 1, which sets the charge  
pump to 1 mA for a period of time determined by TC4 to  
TC1. When this time is up, the charge pump current  
reverts to 250 μA. At the same time, the CP Gain bit in the  
A counter and B counter latch is reset to 0 and is ready for  
the next time that the user wants to change the frequency.  
CE Pin Method  
1. Apply VDD  
.
2. Bring CE low to put the device into power-down. This is an  
asynchronous power-down in that it happens immediately.  
INITIALIZATION LATCH  
3. Program the function latch (10).  
When C2 and C1 are both set to 1, the initialization latch is  
programmed. This is essentially the same as the function latch  
that is programmed when C2, C1 = 1, 0.  
4. Program the R counter latch (00).  
5. Program the N counter latch (01).  
6. Bring CE high to take the device out of power-down.  
The R counter and N counter resume counting in close alignment.  
However, when the initialization latch is programmed, an  
additional internal reset pulse is applied to the R counter and  
N counter. This pulse ensures that the N counter is at a load  
point when the N counter data is latched and that the device  
begins counting in close phase alignment.  
Note that after CE goes high, a duration of 1 μs may be required  
for the prescaler band gap voltage and oscillator input buffer  
bias to reach a steady state.  
If the latch is programmed for synchronous power-down (CE  
pin is highꢁ PD1 bit is highꢁ PD2 bit is low), the internal pulse  
also triggers this power-down. The prescaler reference and the  
oscillator input buffer are unaffected by the internal reset pulse,  
so close phase alignment is maintained when counting resumes.  
CE can be used to power up and power down the device to check  
for channel activity. The input register does not need to be repro-  
grammed each time the device is disabled and enabled, as long  
as it is programmed at least once after VCC is initially applied.  
Counter Reset Method  
When the first N counter data is latched after initialization, the  
internal reset pulse is again activated. However, successive  
N counter loads do not trigger the internal reset pulse.  
1. Apply VDD  
.
2. Do a function latch load (10 in 2 LSBs). As part of this,  
load 1 to the F1 bit. This enables the counter reset.  
DEVICE PROGRAMMING AFTER  
INITIAL POWER-UP  
3. Do an R counter load (00 in 2 LSBs).  
4. Do an N counter load (01 in 2 LSBs).  
After initial power-up, the device can be programmed by the  
initialization latch method, the CE pin method, or the counter  
reset method.  
5. Do a function latch load (10 in 2 LSBs). As part of this,  
load 0 to the F1 bit. This disables the counter reset.  
Initialization Latch Method  
This sequence provides the same close alignment as the initiali-  
zation method. It offers direct control over the internal reset.  
Note that counter reset holds the counters at load point and  
three-states the charge pump, but it does not trigger synchro-  
nous power-down. The counter reset method requires an extra  
function latch load compared to the initialization latch method.  
1. Apply VDD  
.
2. Program the initialization latch (11 in 2 LSBs of input  
word). Make sure that F1 bit is programmed to 0.  
3. Do an R load (00 in 2 LSBs).  
Rev. D | Page 20 of 28  
 
ADF4116/ADF4117/ADF4118  
APPLICATIONS INFORMATION  
LOCAL OSCILLATOR FOR THE  
SHUTDOWN CIRCUIT  
GSM BASE STATION TRANSMITTER  
The attached circuit in Figure 36 shows how to shut down both  
the ADF411x family and the accompanying VCO. The ADG702  
switch goes open-circuit when a Logic 1 is applied to the IN  
input. The low cost switch is available in both SOT-23 and  
MSOP packages.  
Figure 35 shows the ADF4117/ADF4118 being used with a  
VCO to produce the LO for a GSM base station transmitter.  
The reference input signal is applied to the circuit at FREFIN and,  
in this case, is terminated in 50 Ω. A typical GSM system has a  
13 MHz TCXO driving the reference input without a 50 Ω  
termination. To have a channel spacing of 200 kHz (the GSM  
standard), the reference input must be divided by 65, using the  
on-chip reference divider of the ADF4117/ADF1118.  
DIRECT CONVERSION MODULATOR  
In some applications, a direct conversion architecture can be  
used in base station transmitters. Figure 37 shows the  
combination available from Analog Devices, Inc. to implement  
this solution.  
The charge pump output of the ADF4117/ADF1118 (Pin 2)  
drives the loop filter. In calculating the loop filter component  
values, a number of items need to be considered. In this example,  
the loop filter was designed so that the overall phase margin for  
the system is 45°. Other PLL system specifications include:  
The circuit diagram shows the AD9761 being used with the  
AD8346. The use of dual integrated DACs, such as the AD9761  
with specified 0.02 dB and 0.004 dB gain and offset matching  
characteristics, ensures minimum error contribution (over  
temperature) from this portion of the signal chain.  
KD = 1 mA  
KV = 12 MHz/V  
Loop bandwidth = 20 kHz  
FREF = 200 kHz  
The local oscillator is implemented by using the ADF4117/  
ADF4118. In this case, the FOX801BH-130 provides the stable  
13 MHz reference frequency. The system is designed for  
200 kHz channel spacing and an output center frequency of  
1960 MHz. The target application is a WCDMA base station  
transmitter. Typical phase noise performance from this LO is  
−85 dBc/Hz at a 1 kHz offset. The LO port of the AD8346 is  
driven in single-ended fashion. LOIN is ac-coupled to ground  
with the 100 pF capacitor, and LOIP is driven through the ac-  
coupling capacitor from a 50 Ω source. An LO drive level between  
−6 dBm and −12 dBm is required. The circuit in Figure 37 gives a  
typical level of −8 dBm.  
N = 4500  
Extra reference spur attenuation = 10 dB  
All of these specifications are needed and are used to produce  
the loop filter component values shown in Figure 36.  
The loop filter output drives the VCO, which, in turn, is fed back  
to the RF input of the PLL synthesizerꢁ it also drives the RF  
output terminal. A T-circuit configuration provides 50 Ω  
matching between the VCO output, the RF output, and the  
RFIN terminal of the synthesizer.  
The RF output is designed to drive a 50 Ω load, but it must be  
ac-coupled as shown in Figure 37. If the I and Q inputs are  
driven in quadrature by 2 V p-p signals, the resulting output  
power is approximately −10 dBm.  
In a PLL system, it is important to know when the system is in  
locked mode. In Figure 35, this is accomplished by using the  
MUXOUT signal from the synthesizer. The MUXOUT pin can  
be programmed to monitor various internal signals in the  
synthesizer. One of these is the LD or lock-detect signal.  
Rev. D | Page 21 of 28  
 
ADF4116/ADF4117/ADF4118  
RF  
OUT  
V
V
DD  
P
100pF  
7
15 16  
DV  
AV  
V
P
18  
DD  
DD  
V
3.3kΩ  
CC  
2
1
100pF  
18Ω  
1000pF  
1000pF  
8
CP  
F
REF  
REFIN  
IN  
VCO190-902T  
620pF  
18Ω  
27kΩ  
0.15nF  
51*  
FL  
O
ADF4117/  
ADF4118  
10kΩ  
1.5nF  
14  
CE  
LOCK  
DETECT  
MUXOUT  
CLK  
DATA  
LE  
100pF  
6
5
RF  
RF  
A
IN  
51**  
B
IN  
100pF  
*TO BE USED WHEN GENERATOR SOURCE IMPEDANCE IS 50.  
**OPTIONAL MATCHING RESISTOR DEPENDING ON RF FREQUENCY.  
3
4
9
OUT  
DECOUPLING CAPACITORS ON AV , DV , AND V OF THE  
DD DD  
P
ADF4117/ADF4118 AND ON V OF THE VCO190-920T HAVE BEEN  
CC  
OMITTED FROM THE DIAGRAM FOR CLARITY.  
Figure 35. Local Oscillator for GSM Base Station  
V
P
POWER-DOWN CONTROL  
S
V
DD  
RF  
OUT  
IN  
V
7
ADG702  
GND  
DD  
D
100pF  
15 16  
18  
18Ω  
V
100pF  
AV  
DV  
DD  
V
CE  
CC  
18Ω  
DD  
P
2
1
LOOP  
FILTER  
8
CP  
O
F
REF  
REFIN  
IN  
VCO  
FL  
GND  
10kΩ  
ADF4116/  
ADF4117/  
ADF4118  
100pF  
6
5
RF  
RF  
A
IN  
51Ω  
B
IN  
100pF  
3
4
9
DECOUPLING CAPACITORS AND INTERFACE SIGNALS HAVE  
BEEN OMITTED FROM THE DIAGRAM FOR CLARITY.  
Figure 36. Local Oscillator Shutdown Circuit  
Rev. D | Page 22 of 28  
 
 
 
ADF4116/ADF4117/ADF4118  
0.1µF  
REFIO  
IBBP  
IBBP  
IOUTA  
IOUTB  
100pF  
LOW-PASS  
FILTER  
RF  
VOUT  
OUT  
MODULATED  
DIGITAL  
DATA  
AD9761  
TxDAC  
AD8346  
QBBP  
QBBP  
QOUTA  
QOUTB  
LOW-PASS  
FILTER  
FS ADJ  
2k  
LOIN  
LOIP  
100pF  
100pF  
FOX801BH-130  
TCXO  
18Ω  
10kΩ  
1kΩ  
REF  
IN  
CP  
VCO190-1960T  
18pF  
ADF4118  
680pF  
SERIAL  
DIGITAL  
INTERFACE  
100pF  
18Ω  
6.8nF  
18Ω  
RF  
B
RF A  
IN  
IN  
100pF  
100pF  
51Ω  
POWER SUPPLY CONNECTIONS AND DECOUPLING CAPACITORS  
ARE OMITTED FROM DIAGRAM FOR CLARITY.  
Figure 37. Direct Conversion Transmitter Solution  
Rev. D | Page 23 of 28  
 
ADF4116/ADF4117/ADF4118  
On first applying power to the ADF411x family, it requires three  
writes (one each to the R counter latch, the N counter latch, and  
the initialization latch) for the output to become active.  
INTERFACING  
The ADF411x family has a simple SPI®-compatible serial inter-  
face for writing to the device. CLK, DATA, and LE control the  
data transfer. When LE (latch enable) goes high, the 24 bits that  
are clocked into the input register on each rising edge of CLK  
are transferred to the appropriate latch. See Figure 2 for the  
timing diagram and Table 5 for the latch truth table.  
I/O port lines on the ADuC812 are also used to control power-  
down (CE input) and to detect lock (MUXOUT configured as  
lock detect and polled by the port input).  
When operating in the mode described, the maximum SCLOCK  
rate of the ADuC812 is 4 MHz. This means that the maximum  
rate at which the output frequency can be changed is 166 kHz.  
The maximum allowable serial clock rate is 20 MHz. This means  
that the maximum update rate possible for the device is 833 kHz  
or one update every 1.2 μs. This is more than adequate for  
systems that have typical lock times in hundreds of microseconds.  
ADSP-21xx Interface  
Figure 39 shows the interface between the ADF411x family and  
the ADSP-21xx digital signal processor. The ADF411x family  
needs a 21-bit serial word for each latch write. The easiest way  
to accomplish this using the ADSP-21xx family is to use the  
autobuffered transmit mode of operation with alternate framing.  
This provides a means for transmitting an entire block of serial  
data before an interrupt is generated.  
ADuC812 Interface  
Figure 38 shows the interface between the ADF411x family and  
the ADuC812 MicroConverter®. Since the ADuC812 is based  
on an 8051 core, this interface can be used with any 8051-based  
microcontroller. The MicroConverter is set up for SPI master  
mode with CPHA = 0. To initiate the operation, the I/O port  
driving LE is brought low. Each latch of the ADF411x family  
needs a 24-bit word. This is accomplished by writing three 8-bit  
bytes from the MicroConverter to the device. When the third  
byte has been written, the LE input should be brought high to  
complete the transfer.  
CLK  
SCLK  
DT  
DATA  
ADSP-21xx  
ADF4116/  
ADF4117/  
ADF4118  
TFS  
LE  
CE  
I/O FLAGS  
CLK  
DATA  
LE  
SCLOCK  
MOSI  
MUXOUT  
(LOCK DETECT)  
ADuC812  
ADF4116/  
ADF4117/  
ADF4118  
Figure 39. ADSP-21xx to ADF411x family Interface  
I/O PORTS  
Set up the word length for 8 bits and use three memory  
locations for each 24-bit word. To program each 21-bit latch,  
store the three 8-bit bytes, enable the autobuffered mode, and  
write to the transmit register of the DSP. This last operation  
initiates the autobuffer transfer.  
CE  
MUXOUT  
(LOCK DETECT)  
Figure 38. ADuC812 to ADF411x family Interface  
Rev. D | Page 24 of 28  
 
 
 
ADF4116/ADF4117/ADF4118  
OUTLINE DIMENSIONS  
5.10  
5.00  
4.90  
16  
9
8
4.50  
4.40  
4.30  
6.40  
BSC  
1
PIN 1  
1.20  
MAX  
0.15  
0.05  
0.20  
0.09  
0.75  
0.60  
0.45  
8°  
0°  
0.30  
0.19  
0.65  
BSC  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-153AB  
Figure 40. 16-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-16)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
ADF4116BRU  
Temperature Range  
40°C to +85°C  
40°C to +85°C  
40°C to +85°C  
40°C to +85°C  
40°C to +85°C  
40°C to +85°C  
40°C to +85°C  
40°C to +85°C  
40°C to +85°C  
40°C to +85°C  
40°C to +85°C  
40°C to +85°C  
Package Description  
Package Option  
RU-16  
16-Lead Thin Shrink Small Outline Package (TSSOP)  
16-Lead Thin Shrink Small Outline Package (TSSOP)  
16-Lead Thin Shrink Small Outline Package (TSSOP)  
16-Lead Thin Shrink Small Outline Package (TSSOP)  
16-Lead Thin Shrink Small Outline Package (TSSOP)  
16-Lead Thin Shrink Small Outline Package (TSSOP)  
16-Lead Thin Shrink Small Outline Package (TSSOP)  
16-Lead Thin Shrink Small Outline Package (TSSOP)  
16-Lead Thin Shrink Small Outline Package (TSSOP)  
16-Lead Thin Shrink Small Outline Package (TSSOP)  
16-Lead Thin Shrink Small Outline Package (TSSOP)  
16-Lead Thin Shrink Small Outline Package (TSSOP)  
ADF4116BRU-REEL  
ADF4116BRU-REEL7  
ADF4116BRUZ1  
ADF4116BRUZ-REEL1  
ADF4116BRUZ-REEL71  
RU-16  
RU-16  
RU-16  
RU-16  
RU-16  
ADF4117BRU  
RU-16  
RU-16  
RU-16  
RU-16  
RU-16  
RU-16  
ADF4117BRU-REEL  
ADF4117BRU-REEL7  
ADF4117BRUZ1  
ADF4117BRUZ-RL1  
ADF4117BRUZ-RL71  
ADF4118BRU  
16-Lead Thin Shrink Small Outline Package (TSSOP)  
16-Lead Thin Shrink Small Outline Package (TSSOP)  
16-Lead Thin Shrink Small Outline Package (TSSOP)  
16-Lead Thin Shrink Small Outline Package (TSSOP)  
16-Lead Thin Shrink Small Outline Package (TSSOP)  
16-Lead Thin Shrink Small Outline Package (TSSOP)  
16-Lead Thin Shrink Small Outline Package (TSSOP)  
16-Lead Thin Shrink Small Outline Package (TSSOP)  
16-Lead Thin Shrink Small Outline Package (TSSOP)  
Evaluation Board  
RU-16  
RU-16  
RU-16  
RU-16  
RU-16  
RU-16  
RU-16  
RU-16  
RU-16  
40°C to +85°C  
40°C to +85°C  
40°C to +85°C  
40°C to +85°C  
40°C to +85°C  
40°C to +85°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
ADF4118BRU-REEL  
ADF4118BRU-REEL7  
ADF4118BRUZ1  
ADF4118BRUZ-RL1  
ADF4118BRUZ-RL71  
ADF4118YRUZ1  
ADF4118YRUZ-RL1  
ADF4118YRUZ-RL71  
EVAL-ADF4118EBZ11  
EVAL-ADF411XEBZ11  
Evaluation Board  
1 Z = RoHS Compliant Part.  
Rev. D | Page 25 of 28  
 
ADF4116/ADF4117/ADF4118  
NOTES  
Rev. D | Page 26 of 28  
ADF4116/ADF4117/ADF4118  
NOTES  
Rev. D | Page 27 of 28  
ADF4116/ADF4117/ADF4118  
NOTES  
Purchase of licensed I2C components of Analog Devices or one of its sublicensed Associated Companies conveys a license for the purchaser under the Philips I2C Patent  
Rights to use these components in an I2C system, provided that the system conforms to the I2C Standard Specification as defined by Philips.  
© 2000–2007 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D00392-0-4/07(D)  
Rev. D | Page 28 of 28  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY