ADF4117BCPZ [ADI]

IC PLL FREQUENCY SYNTHESIZER, 1200 MHz, CQCC20, CSP-20, PLL or Frequency Synthesis Circuit;
ADF4117BCPZ
型号: ADF4117BCPZ
厂家: ADI    ADI
描述:

IC PLL FREQUENCY SYNTHESIZER, 1200 MHz, CQCC20, CSP-20, PLL or Frequency Synthesis Circuit

射频
文件: 总20页 (文件大小:227K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
a
RF PLL Frequency Synthesizers  
ADF4116/ADF4117/ADF4118  
GENERAL DESCRIPTION  
FEATURES  
The ADF4116 family of frequency synthesizers can be used  
to implement local oscillators in the up-conversion and down-  
conversion sections of wireless receivers and transmitters. They  
consist of a low-noise digital PFD (Phase Frequency Detector),  
a precision charge pump, a programmable reference divider,  
programmable A and B counters and a dual-modulus prescaler  
(P/P+1). The A (5-bit) and B (13-bit) counters, in conjunction  
with the dual modulus prescaler (P/P+1), implement an N  
divider (N = BP+A). In addition, the 14-bit reference counter  
(R Counter), allows selectable REFIN frequencies at the PFD  
input. A complete PLL (Phase-Locked Loop) can be imple-  
mented if the synthesizer is used with an external loop filter and  
VCO (Voltage Controlled Oscillator).  
ADF4116: 550 MHz  
ADF4117: 1.2 GHz  
ADF4118: 3.0 GHz  
2.7 V to 5.5 V Power Supply  
Separate VP Allows Extended Tuning Voltage in 3 V  
Systems  
Selected Charge Pump Currents  
Dual Modulus Prescaler  
ADF4116: 8/9  
ADF4117/ADF4118: 32/33  
3-Wire Serial Interface  
Digital Lock Detect  
Power-Down Mode  
Fast Lock Mode  
Control of all the on-chip registers is via a simple 3-wire interface.  
The devices operate with a power supply ranging from 2.7 V to  
5.5 V and can be powered down when not in use.  
APPLICATIONS  
Base Stations for Wireless Radio (GSM, PCS, DCS,  
CDMA, WCDMA)  
Wireless Handsets (GSM, PCS, DCS, CDMA, WCDMA)  
Wireless LANS  
Communications Test Equipment  
CATV Equipment  
FUNCTIONAL BLOCK DIAGRAM  
AV  
DD  
DV  
DD  
V
P
CPGND  
REFERENCE  
ADF4116/ADF4117/ADF4118  
14-BIT  
R COUNTER  
REF  
IN  
PHASE  
FREQUENCY  
DETECTOR  
CHARGE  
PUMP  
CP  
14  
R COUNTER  
LATCH  
CLK  
DATA  
LE  
21-BIT  
INPUT REGISTER  
FUNCTION  
LATCH  
LOCK  
DETECT  
19  
A, B COUNTER  
LATCH  
SD  
OUT  
18  
HIGH Z  
FROM  
FUNCTION LATCH  
AV  
DD  
13  
MUX  
MUXOUT  
N = BP + A  
13-BIT  
B COUNTER  
SD  
OUT  
RF  
RF  
A
B
IN  
LOAD  
LOAD  
PRESCALER  
P/P +1  
IN  
5-BIT  
A COUNTER  
M3 M2 M1  
FL  
SWITCH  
O
FL  
O
5
CE  
AGND  
DGND  
REV. 0  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, nor for any infringements of patents or other rights of third parties  
which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
World Wide Web Site: http://www.analog.com  
© Analog Devices, Inc., 2000  
ADF4116/ADF4117/ADF4118–SPECIFICATIONS1  
(AVDD = DVDD = 3 V ؎ 10%, 5 V ؎ 10%; AVDD VP 6.0 V; AGND = DGND = CPGND = 0 V; TA = TMIN to TMAX unless otherwise noted)  
Parameter  
B Version  
B Chips2  
Unit  
Test Conditions/Comments  
RF CHARACTERISTICS  
RF Input Frequency  
ADF4116  
See Figure 22 for Input Circuit  
45/550  
0.045/1.2  
0.1/3.0  
0.2/3.0  
45/550  
0.045/1.2  
0.1/3.0  
0.2/3.0  
MHz min/max  
GHz min/max  
GHz min/max  
GHz min/max  
ADF4117  
ADF4118  
ADF4118  
Input Level = –10 dBm  
Maximum Allowable  
Prescaler Output Frequency3  
165  
200  
–15/0  
–10/0  
165  
200  
–15/0  
–10/0  
MHz max  
MHz max  
dBm min/max  
dBm min/max  
AVDD, DVDD = 3 V  
AVDD, DVDD = 5 V  
AVDD = 3 V  
RF Input Sensitivity  
AVDD = 5 V  
REFIN CHARACTERISTICS  
Reference Input Frequency  
Reference Input Sensitivity4  
0/100  
–5/0  
0/100  
–5/0  
MHz min/max  
dBm min/max  
AC-Coupled. When DC-Coupled:  
0 to VDD Max (CMOS Compatible)  
REFIN Input Capacitance  
REFIN Input Current  
10  
100  
10  
100  
pF max  
µA max  
PHASE DETECTOR FREQUENCY5  
55  
55  
MHz max  
CHARGE PUMP  
ICP Sink/Source  
High Value  
Low Value  
Absolute Accuracy  
ICP Three-State Leakage Current  
Sink and Source Current Matching  
ICP vs. VCP  
1
1
mA typ  
µA typ  
% typ  
nA max  
% typ  
250  
2.5  
1
3
2
250  
2.5  
1
3
2
0.5 V VCP VP – 0.5  
0.5 V VCP VP – 0.5  
VCP = VP/2  
% typ  
ICP vs. Temperature  
2
2
% typ  
LOGIC INPUTS  
V
V
INH, Input High Voltage  
INL, Input Low Voltage  
0.8 × DVDD  
0.8 × DVDD V min  
0.2 × DVDD V max  
0.2 × DVDD  
IINH/IINL, Input Current  
CIN, Input Capacitance  
Reference Input Current  
1
10  
100  
1
µA max  
pF max  
µA max  
10  
100  
LOGIC OUTPUTS  
VOH, Output High Voltage  
VOL, Output Low Voltage  
DVDD – 0.4  
0.4  
DVDD – 0.4 V min  
IOH = 500 µA  
IOL = 500 µA  
0.4  
V max  
POWER SUPPLIES  
AVDD  
DVDD  
VP  
2.7/5.5  
AVDD  
AVDD/6.0  
2.7/5.5  
AVDD  
AVDD/6.0  
V min/V max  
V min/V max  
AVDD VP 6.0 V  
See Figure 20  
4.5 mA Typical  
4.5 mA Typical  
6.5 mA Typical  
TA = 25°C  
IDD6 (AIDD + DIDD  
ADF4116  
ADF4117  
ADF4118  
IP  
)
5.5  
5.5  
7.5  
0.4  
1
4.5  
4.5  
6.5  
0.4  
1
mA max  
mA max  
mA max  
mA max  
µA typ  
Low-Power Sleep Mode  
REV. 0  
–2–  
ADF4116/ADF4117/ADF4118  
Parameter  
B Version  
B Chips2 Unit  
Test Conditions/Comments  
NOISE CHARACTERISTICS  
ADF4118 Phase Noise Floor7  
–170  
–162  
–170  
–162  
dBc/Hz typ @ 25 kHz PFD Frequency  
dBc/Hz typ @ 200 kHz PFD Frequency  
@ VCO Output  
dBc/Hz typ @ 1 kHz Offset and 200 kHz PFD Frequency  
dBc/Hz typ Note 15  
dBc/Hz typ Note 15  
dBc/Hz typ @ 300 Hz Offset and 30 kHz PFD Frequency  
dBc/Hz typ @ 1 kHz Offset and 200 kHz PFD Frequency  
dBc/Hz typ @ 200 Hz Offset and 10 kHz PFD Frequency  
dBc/Hz typ @ 1 kHz Offset and 200 kHz PFD Frequency  
Phase Noise Performance8  
ADF41169 540 MHz Output  
ADF411710 900 MHz Output  
ADF411810 900 MHz Output  
ADF411711 836 MHz Output  
–89  
–87  
–90  
–78  
–89  
–87  
–90  
–78  
–85  
–65  
–84  
ADF411812 1750 MHz Output –85  
ADF411813 1750 MHz Output –65  
ADF411814 1960 MHz Output –84  
Spurious Signals  
ADF41169 540 MHz Output  
ADF411710 900 MHz Output  
ADF411810 900 MHz Output  
ADF411711 836 MHz Output  
–88/–99  
–88/–99  
–90/–104 dBc typ  
–91/–100 dBc typ  
–80/–84  
–88/–90  
–65/–73  
–80/–86  
dBc typ  
@ 200 kHz/400 kHz and 200 kHz PFD Frequency  
Note 15  
Note 15  
@ 30 kHz/60 kHz and 30 kHz PFD Frequency  
@ 200 kHz/400 kHz and 200 kHz PFD Frequency  
@ 10 kHz/20 kHz and 10 kHz PFD Frequency  
@ 200 kHz/400 kHz and 200 kHz PFD Frequency  
–90/–104  
–91/–100  
–80/–84  
dBc typ  
dBc typ  
dBc typ  
dBc typ  
ADF411812 1750 MHz Output –88/–90  
ADF411813 1750 MHz Output –65/–73  
ADF411814 1960 MHz Output –80/–86  
NOTES  
1Operating temperature range is as follows: B Version: –40°C to +85°C.  
2The B Chip specifications are given as typical values.  
3This is the maximum operating frequency of the CMOS counters.  
4AVDD = DVDD = 3 V; for AVDD = DVDD = 5 V, use CMOS-compatible levels.  
5Guaranteed by design. Sample tested to ensure compliance.  
6AVDD = DVDD = 3 V; RFIN for ADF4116 = 540 MHz; RFIN for ADF4117, ADF4118 = 900 MHz.  
7The synthesizer phase noise floor is estimated by measuring the in-band phase noise at the output of the VCO and subtracting 20 log N (where N is the N divider  
value).  
8The phase noise is measured with the EVAL-ADF411xEB Evaluation Board and the HP8562E Spectrum Analyzer. The spectrum analyzer provides the REFIN for  
the synthesizer (fREFOUT = 10 MHz @ 0 dBm).  
9fREFIN = 10 MHz; fPFD = 200 kHz; Offset frequency = 1 kHz; fRF = 540 MHz; N = 2700; Loop B/W = 20 kHz.  
10  
11  
12  
13  
14  
f
f
f
f
f
= 10 MHz; fPFD = 200 kHz; Offset frequency = 1 kHz; fRF = 900 MHz; N = 4500; Loop B/W = 20 kHz.  
= 10 MHz; fPFD = 30 kHz; Offset frequency = 300 Hz; fRF = 836 MHz; N = 27867; Loop B/W = 3 kHz.  
= 10 MHz; fPFD = 200 kHz; Offset frequency = 1 kHz; fRF = 1750 MHz; N = 8750; Loop B/W = 20 kHz.  
= 10 MHz; fPFD = 10 kHz; Offset frequency = 200 Hz; fRF = 1750 MHz; N = 175000; Loop B/W = 1 kHz.  
= 10 MHz; fPFD = 200 kHz; Offset frequency = 1 kHz; fRF = 1960 MHz; N = 9800; Loop B/W = 20 kHz.  
REFIN  
REFIN  
REFIN  
REFIN  
REFIN  
15Same conditions as above.  
Specifications subject to change without notice.  
(AVDD = DVDD = 3 V ؎ 10%, 5 V ؎ 10%; AVDD VP < 6.0 V; AGND = DGND = CPGND = 0 V;  
TIMING CHARACTERISTICS1  
TA = TMIN to TMAX unless otherwise noted)  
Limit at TMIN to TMAX  
(B Version)  
Parameter  
Unit  
Test Conditions/Comments  
t1  
t2  
t3  
t4  
t5  
t6  
10  
10  
25  
25  
10  
20  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
DATA to CLOCK Setup Time  
DATA to CLOCK Hold Time  
CLOCK High Duration  
CLOCK Low Duration  
CLOCK to LE Setup Time  
LE Pulsewidth  
NOTE  
1Guaranteed by design but not production tested.  
Specifications subject to change without notice.  
REV. 0  
–3–  
ADF4116/ADF4117/ADF4118  
ABSOLUTE MAXIMUM RATINGS1, 2  
Lead Temperature, Soldering  
Vapor Phase (60 sec) . . . . . . . . . . . . . . . . . . . . . . . . 215°C  
Infrared (15 sec) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220°C  
(TA = 25°C unless otherwise noted)  
AVDD to GND3 . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to +7 V  
AVDD to DVDD . . . . . . . . . . . . . . . . . . . . . . –0.3 V to +0.3 V  
VP to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to +7 V  
VP to AVDD . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to +5.5 V  
Digital I/O Voltage to GND . . . . . . . . –0.3 V to VDD + 0.3 V  
Analog I/O Voltage to GND . . . . . . . . . –0.3 V to VP + 0.3 V  
Operating Temperature Range  
Industrial (B Version) . . . . . . . . . . . . . . . –40°C to +85°C  
Storage Temperature Range . . . . . . . . . . . . –65°C to +150°C  
Maximum Junction Temperature . . . . . . . . . . . . . . . . 150°C  
TSSOP θJA Thermal Impedance . . . . . . . . . . . . . 150.4°C/W  
CSP θJA Thermal Impedance  
(Paddle Soldered) . . . . . . . . . . . . . . . . . . . . . . . . . 122°C/W  
(Paddle Not Soldered) . . . . . . . . . . . . . . . . . . . . . . 216°C/W  
NOTES  
1 Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions above those listed in the operational  
sections of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device reliability.  
2 This device is a high-performance RF integrated circuit with an ESD rating of  
< 2 kV and it is ESD sensitive. Proper precautions should be taken for handling  
and assembly.  
3 GND = AGND = DGND = 0 V.  
TRANSISTOR COUNT  
6425 (CMOS) and 303 (Bipolar).  
t3  
t4  
CLOCK  
t1  
t2  
DB1  
DB0 (LSB)  
DB20 (MSB)  
DB19  
DB2  
DATA  
LE  
(CONTROL BIT C2)  
(CONTROL BIT C1)  
t6  
t5  
LE  
Figure 1. Timing Diagram  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumu-  
late on the human body and test equipment and can discharge without detection. Although the  
ADF4116/ADF4117/ADF4118 features proprietary ESD protection circuitry, permanent damage may  
occur on devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions  
are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
ORDERING GUIDE  
Model  
Temperature Range  
Package Description  
Package Option*  
ADF4116BRU  
ADF4116BCP  
ADF4117BRU  
ADF4117BCP  
ADF4118BRU  
ADF4118BCP  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
Thin Shrink Small Outline Package (TSSOP)  
Chip Scale Package  
Thin Shrink Small Outline Package (TSSOP)  
Chip Scale Package  
Thin Shrink Small Outline Package (TSSOP)  
Chip Scale Package  
RU-16  
CP-20  
RU-16  
CP-20  
RU-16  
CP-20  
*Contact the factory for chip availability.  
REV. 0  
–4–  
ADF4116/ADF4117/ADF4118  
PIN FUNCTION DESCRIPTIONS  
Pin No. Mnemonic  
Function  
1
FLO  
Fast Lock Switch Output. This can be used to switch an external resistor to change the loop filter band-  
width. This will speed up locking of the PLL.  
2
CP  
Charge Pump Output. When enabled, this provides the  
the external VCO.  
ICP to the external loop filter, which in turn drives  
3
4
5
CPGND  
AGND  
RFINB  
Charge Pump Ground. This is the ground return path for the charge pump.  
Analog Ground. This is the ground return path for the prescaler.  
Complementary Input to the RF Prescaler. This point should be decoupled to the ground plane with a  
small bypass capacitor, typically 100 pF. See Figure 22.  
6
7
RFINA  
AVDD  
Input to the RF Prescaler. This small signal input is normally ac-coupled from the VCO.  
Analog Power Supply. This may range from 2.7 V to 5.5 V. Decoupling capacitors to the analog ground  
plane should be placed as close as possible to this pin. AVDD must be the same value as DVDD  
.
8
REFIN  
Reference Input. This is a CMOS input with a nominal threshold of VDD/2 and an equivalent input  
resistance of 100 k. See Figure 21. The oscillator input can be driven from a TTL or CMOS crystal  
oscillator or it can be ac-coupled.  
9
10  
DGND  
CE  
Digital Ground.  
Chip Enable. A logic low on this pin powers down the device and puts the charge pump output into three-  
state mode. Taking the pin high will power up the device depending on the status of the power-down bit F2.  
11  
12  
13  
14  
15  
16  
CLK  
Serial Clock Input. This serial clock is used to clock in the serial data to the registers. The data is latched into  
the 21-bit shift register on the CLK rising edge. This input is a high impedance CMOS input.  
Serial Data Input. The serial data is loaded MSB first with the two LSBs being the control bits. This  
input is a high impedance CMOS input.  
Load Enable, CMOS Input. When LE goes high, the data stored in the shift registers is loaded into one  
of the four latches, the latch being selected using the control bits.  
This multiplexer output allows either the Lock Detect, the scaled RF or the scaled Reference Frequency  
to be accessed externally.  
DATA  
LE  
MUXOUT  
DVDD  
VP  
Digital Power Supply. This may range from 2.7 V to 5.5 V. Decoupling capacitors to the digital ground  
plane should be placed as close as possible to this pin. DVDD must be the same value as AVDD  
.
Charge Pump Power Supply. This should be greater than or equal to VDD. In systems where VDD is 3 V,  
it can be set to 5 V and used to drive a VCO with a tuning range of up to 6 V.  
PIN CONFIGURATIONS  
TSSOP  
Chip Scale Package  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
V
P
FL  
O
DV  
CP  
CPGND  
AGND  
DD  
ADF4116  
ADF4117  
ADF4118  
TOP VIEW  
(Not to Scale)  
MUXOUT  
LE  
1
2
3
4
5
15  
14  
13  
12  
11  
CPGND  
AGND  
AGND  
MUXOUT  
LE  
ADF4116  
ADF4117  
ADF4118  
DATA  
CLK  
RF  
RF  
B
A
DATA  
CLK  
IN  
IN  
TOP VIEW  
(Not to Scale)  
RF  
IN  
B
CE  
AV  
DD  
RF  
IN  
A
CE  
DGND  
REF  
IN  
REV. 0  
5–  
Typical Performance Characteristics  
ADF4116/ADF4117/ADF4118  
Table I. S-Parameter Data for the ADF4118 RF Input  
(Up to 1.8 GHz)  
10dB/DIVISION  
R
= 40dBc/Hz  
RMS NOISE = 0.64؇  
0.64؇ rms  
L
40  
KEYWORD  
FREQ-  
UNIT  
PARAM-  
TYPE  
DATA-  
IMPEDANCE-  
50  
60  
FORMAT  
OHMS  
GHZ  
S
MA  
R
50  
FREQ MagS11 AngS11  
FREQ MagS11 AngS11  
70  
0.05  
0.10  
0.15  
0.20  
0.25  
0.30  
0.35  
0.40  
0.45  
0.50  
0.55  
0.60  
0.65  
0.70  
0.75  
0.80  
0.85  
0.90  
0.89207  
0.8886  
–2.0571  
–4.4427  
–6.3212  
–2.1393  
–12.13  
0.95  
1.00  
1.05  
1.10  
1.15  
1.20  
1.25  
1.30  
1.35  
1.40  
1.45  
1.50  
1.55  
1.60  
1.65  
1.70  
1.75  
1.80  
0.92087  
0.93788  
0.9512  
–36.961  
–39.343  
–40.134  
–43.747  
–44.393  
–46.937  
–49.6  
–51.884  
–51.21  
–53.55  
–56.786  
–58.781  
–60.545  
–61.43  
–61.241  
–64.051  
–66.19  
80  
0.89022  
0.96323  
0.90566  
0.90307  
0.89318  
0.89806  
0.89565  
0.88538  
0.89699  
0.89927  
0.87797  
0.90765  
0.88526  
0.81267  
0.90357  
0.92954  
0.93458  
0.94782  
0.96875  
0.92216  
0.93755  
0.96178  
0.94354  
0.95189  
0.97647  
0.98619  
0.95459  
0.97945  
0.98864  
0.97399  
0.97216  
90  
–13.52  
100  
110  
120  
130  
–15.746  
–18.056  
–19.693  
–22.246  
–24.336  
–25.948  
–28.457  
–29.735  
–31.879  
–32.681  
–31.522  
–34.222  
140  
100Hz  
FREQUENCY OFFSET FROM 900 MHz CARRIER  
1MHz  
Figure 4. ADF4118 Integrated Phase Noise (900 MHz,  
–63.775  
200 kHz, 35 kHz, Typical Lock Time: 200 µs)  
10dB/DIVISION  
40  
R
= 40dBc/Hz  
RMS NOISE = 0.575؇  
L
0
5  
V
= 3V  
= 3V  
50  
60  
DD  
V
0.575؇ rms  
P
10  
15  
20  
25  
70  
80  
90  
T
= 40؇C  
100  
A
30  
35  
110  
120  
130  
T
= ؉85؇C  
A
40  
45  
T
= ؉25  
؇
C
A
140  
100Hz  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
FREQUENCY OFFSET FROM 900 MHz CARRIER  
1MHz  
RF INPUT FREQUENCY GHz  
Figure 2. Input Sensitivity (ADF4118)  
Figure 5. ADF4118 Integrated Phase Noise (900 MHz,  
200 kHz, 20 kHz, Typical Lock Time: 400 µs)  
0
0
REFERENCE  
LEVEL = 4.2dBm  
V
I
= 3V, V = 5V  
P
DD  
REFERENCE  
LEVEL = 3.8dBm  
V
= 3V, V = 5V  
P
DD  
= 1mA  
10  
20  
30  
40  
50  
10  
20  
30  
40  
50  
= 1mA  
CP  
I
CP  
PFD FREQUENCY = 200kHz  
LOOP BANDWIDTH = 20kHz  
RES. BANDWIDTH = 10Hz  
VIDEO BANDWIDTH = 10Hz  
SWEEP = 1.9 SECONDS  
AVERAGES = 22  
PFD FREQUENCY = 200kHz  
LOOP BANDWIDTH = 20kHz  
RES. BANDWIDTH = 1kHz  
VIDEO BANDWIDTH = 1kHz  
SWEEP = 2.5 SECONDS  
AVERAGES = 4  
60  
70  
60  
70  
90.2dBc/Hz  
91.5dBc  
80  
90  
80  
90  
100  
100  
2kHz  
1kHz  
900MHz  
+1kHz  
+2kHz  
400kHz  
200kHz  
900MHz  
+200kHz  
+400kHz  
Figure 3. ADF4118 Phase Noise (900 MHz, 200 kHz, 20 kHz)  
Figure 6. ADF4118 Reference Spurs (900 MHz, 200 kHz,  
20 kHz)  
REV. 0  
6–  
ADF4116/ADF4117/ADF4118  
0
10  
20  
30  
40  
50  
0
V
I
= 3V, Vp = 5V  
V
I
= 3V, V = 5V  
P
DD  
DD  
= 1mA  
REFERENCE  
LEVEL = 7.0dBm  
REFERENCE  
LEVEL = 4.2dBm  
10  
20  
30  
40  
50  
= 5mA  
CP  
CP  
PFD FREQUENCY = 30kHz  
LOOP BANDWIDTH = 5kHz  
RES. BANDWIDTH = 300Hz  
VIDEO BANDWIDTH = 300Hz  
SWEEP = 4.2ms  
PFD FREQUENCY = 200kHz  
LOOP BANDWIDTH = 35kHz  
RES. BANDWIDTH = 1kHz  
VIDEO BANDWIDTH = 1kHz  
SWEEP = 2.5 SECONDS  
AVERAGES = 10  
AVERAGES = 20  
60  
70  
60  
70  
72.3dBc  
90.67dBc  
80  
80  
90  
90  
100  
100  
60kHz  
30kHz  
1750MHz  
+30kHz  
+60kHz  
400kHz  
200kHz  
900MHz  
+200kHz  
+400kHz  
Figure 7. ADF4118 Reference Spurs (900 MHz, 200 kHz,  
35 kHz)  
Figure 10. ADF4118 Reference Spurs (1750 MHz,  
30 kHz, 3 kHz)  
0
0
V
I
= 3V, Vp = 5V  
V
I
= 3V, Vp = 5V  
DD  
DD  
REFERENCE  
LEVEL = 7.0dBm  
REFERENCE  
LEVEL = 10.3dBm  
10  
20  
30  
40  
50  
= 1mA  
10  
20  
30  
40  
= 1mA  
CP  
CP  
PFD FREQUENCY = 30kHz  
LOOP BANDWIDTH = 5kHz  
RES. BANDWIDTH = 10kHz  
VIDEO BANDWIDTH = 10kHz  
SWEEP = 477ms  
PFD FREQUENCY = 1MHz  
LOOP BANDWIDTH = 100kHz  
RES. BANDWIDTH = 10Hz  
VIDEO BANDWIDTH = 10Hz  
SWEEP = 1.9 SECONDS  
AVERAGES = 26  
50  
AVERAGES = 25  
60  
70  
60  
70  
85.2dBc/Hz  
71.5dBc/Hz  
80  
80  
90  
90  
100  
100  
2kHz  
1kHz  
+1kHz  
+2kHz  
2800MHz  
400kHz  
200kHz  
1750MHz  
+200kHz  
+400kHz  
Figure 8. ADF4118 Phase Noise (1750 MHz, 30 kHz,  
3 kHz)  
Figure 11. ADF4118 Phase Noise (2800 MHz, 1 MHz,  
100 kHz)  
10dB/DIVISION  
R
= 40dBc/Hz  
RMS NOISE = 2.0؇  
2.0؇ rms  
10dB/DIVISION  
R
= 40dBc/Hz  
RMS NOISE = 1.552؇  
1.55؇ rms  
L
L
40  
40  
50  
60  
50  
60  
70  
80  
70  
80  
90  
90  
100  
100  
110  
120  
130  
110  
120  
130  
140  
100Hz  
140  
100Hz  
FREQUENCY OFFSET FROM 1.75GHz CARRIER  
1MHz  
FREQUENCY OFFSET FROM 2.8 GHz CARRIER  
1MHz  
Figure 9. ADF4118 Integrated Phase Noise (1750 MHz,  
30 kHz, 3 kHz)  
Figure 12. ADF4118 Integrated Phase Noise (2800 MHz,  
1 MHz, 100 kHz)  
REV. 0  
7–  
ADF4116/ADF4117/ADF4118  
60  
70  
0
V
= 3V, V = 5V  
P
DD  
I = 1mA  
CP  
REFERENCE  
LEVEL = 9.3dBm  
10  
20  
30  
40  
50  
V
V
= 3V  
DD  
= 5V  
P
PFD FREQUENCY = 1MHz  
LOOP BANDWIDTH = 100kHz  
RES. BANDWIDTH = 3kHz  
VIDEO BANDWIDTH = 3kHz  
SWEEP = 1.4 SECONDS  
AVERAGES = 4  
80  
60  
70  
77.3dBc  
90  
80  
90  
100  
100  
40  
20  
0
20  
40  
60  
80  
100  
2MHz  
1MHz  
2800MHz  
+1MHz  
+2MHz  
TEMPERATURE –  
؇
C
Figure 16. ADF4118 Reference Spurs vs. Temperature  
(900 MHz, 200 kHz, 20 kHz)  
Figure 13. ADF4118 Reference Spurs (2800 MHz, 1 MHz,  
100 kHz)  
5
130  
V
V
= 3V  
= 5V  
DD  
5  
15  
25  
35  
45  
55  
65  
75  
85  
95  
V
V
= 3V  
= 5V  
DD  
135  
140  
145  
150  
155  
160  
165  
170  
175  
P
P
105  
0
1
2
3
4
5
1
10  
100  
1000  
10000  
TURNING VOLTAGE  
PHASE DETECTOR FREQUENCY kHz  
Figure 17. ADF4118 Reference Spurs (200 kHz) vs.  
VTUNE (900 MHz, 200 kHz, 20 kHz)  
Figure 14. ADF4118 Phase Noise (Referred to CP Out-  
put) vs. PFD Frequency  
60  
60  
V
V
= 3V  
DD  
= 5V  
V
V
= 3V  
P
DD  
= 5V  
P
70  
80  
70  
80  
90  
90  
100  
0
20  
40  
60  
80  
100  
40  
20  
0
20  
40  
60  
80  
100  
TEMPERATURE –  
؇C  
TEMPERATURE –  
؇C  
Figure 18. ADF4118 Phase Noise vs. Temperature  
(836 MHz, 30 kHz, 3 kHz)  
Figure 15. ADF4118 Phase Noise vs. Temperature  
(900 MHz, 200 kHz, 20 kHz)  
REV. 0  
8–  
ADF4116/ADF4117/ADF4118  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
60  
70  
V
V
= 3V  
DD  
= 5V  
P
80  
90  
100  
0
20  
40  
60  
80  
100  
0
50  
100  
150  
200  
TEMPERATURE –  
؇
C
PRESCALER OUTPUT FREQUENCY MHz  
Figure 19. ADF4118 Reference Spurs vs. Temperature  
(836 MHz, 30 kHz, 3 kHz)  
Figure 20. DIDD vs. Prescaler Output Frequency  
(ADF4116, ADF4117, ADF4118)  
CIRCUIT DESCRIPTION  
REFERENCE INPUT SECTION  
A AND B COUNTERS  
The A and B CMOS counters combine with the dual modulus  
prescaler to allow a wide ranging division ratio in the PLL  
feedback counter. The counters are specified to work when the  
prescaler output is 200 MHz or less.  
The reference input stage is shown below in Figure 21. SW1  
and SW2 are normally-closed switches. SW3 is normally-open.  
When power-down is initiated, SW3 is closed and SW1 and SW2  
are opened. This ensures that there is no loading of the REFIN  
pin on power-down.  
Pulse Swallow Function  
The A and B counters, in conjunction with the dual modulus  
prescaler make it possible to generate output frequencies which  
are spaced only by the Reference Frequency divided by R. The  
equation for the VCO frequency is as follows:  
POWER-DOWN  
CONTROL  
100k  
SW2  
NC  
f
VCO = [(P × B) + A] × fREFIN/R  
TO R COUNTER  
REF  
IN  
NC  
SW1  
BUFFER  
fVCO  
Output Frequency of external voltage controlled oscilla-  
tor (VCO).  
SW3  
NO  
P
Preset modulus of dual modulus prescaler.  
Figure 21. Reference Input Stage  
RF INPUT STAGE  
The RF input stage is shown in Figure 22. It is followed by a 2-  
stage limiting amplifier to generate the CML clock levels needed  
for the prescaler.  
B
A
Preset Divide Ratio of binary 13-bit counter (3 to 8191).  
Preset Divide Ratio of binary 5-bit swallow counter  
(0 to 31).  
fREFIN Output frequency of the external reference frequency  
oscillator.  
R
Preset divide ratio of binary 14-bit programmable refer-  
ence counter (1 to 16383).  
1.6V  
BIAS  
GENERATOR  
AV  
DD  
500  
500⍀  
R COUNTER  
The 14-bit R counter allows the input reference frequency to be  
divided down to produce the input clock to the phase frequency  
detector (PFD). Division ratios from 1 to 16,383 are allowed.  
RF  
RF  
A
B
IN  
IN  
N = BP + A  
TO PFD  
AGND  
13-BIT B  
COUNTER  
Figure 22. RF Input Stage  
FROM RF  
INPUT STAGE  
LOAD  
LOAD  
PRESCALER  
P/P + 1  
PRESCALER (P/P + 1)  
The dual modulus prescale (P/P + 1), along with the A and B  
counters, enables the large division ratio, N, to be realized, (N =  
PB + A). The dual-modulus prescaler takes the CML clock  
from the RF input stage and divides it down to a manageable  
frequency for the CMOS A and B counters. The prescaler is  
programmable. It can be set in software to 8/9 for the  
ADF4116, and set to 32/33 for the ADF4117 and ADF4118.  
It is based on a synchronous 4/5 core.  
MODULUS  
CONTROL  
5-BIT A  
COUNTER  
Figure 23. A and B Counters  
REV. 0  
9–  
ADF4116/ADF4117/ADF4118  
PHASE FREQUENCY DETECTOR (PFD) AND CHARGE  
PUMP  
DV  
DD  
The PFD takes inputs from the R counter and N counter and  
produces an output proportional to the phase and frequency  
difference between them. Figure 24 is a simplified schematic.  
The PFD includes a fixed delay element which sets the width of  
the antibacklash pulse. This is typically 3 ns. This pulse ensures  
that there is no dead zone in the PFD transfer function and  
gives a consistent reference spur level.  
ANALOG LOCK DETECT  
DIGITAL LOCK DETECT  
R COUNTER OUTPUT  
N COUNTER OUTPUT  
SDOUT  
MUXOUT  
MUX  
CONTROL  
V
DGND  
P
CHARGE  
PUMP  
Figure 25. MUXOUT Circuit  
UP  
HI  
D1  
Q1  
Lock Detect  
U1  
MUXOUT can be programmed for two types of lock detect:  
Digital Lock Detect and Analog Lock Detect.  
R DIVIDER  
CLR1  
Digital Lock Detect is active high. It is set high when the phase  
error on three consecutive phase detector cycles is less than 15 ns.  
It will stay set high until a phase error of greater than 25 ns is  
detected on any subsequent PD cycle.  
CP  
DELAY  
DOWN  
U3  
The N-channel open-drain analog lock detect should be oper-  
ated with an external pull-up resistor of 10 knominal. When  
lock has been detected it is high with narrow low-going pulses.  
CLR2  
U2  
D2  
Q2  
HI  
INPUT SHIFT REGISTER  
The ADF4116 family digital section includes a 21-bit input shift  
register, a 14-bit R counter and a˙`-bit N counter, comprising  
a 5-bit A counter and a 13-bit B counter. Data is clocked into  
the 21-bit shift register on each rising edge of CLK. The data is  
clocked in MSB first. Data is transferred from the shift register  
to one of four latches on the rising edge of LE. The destination  
latch is determined by the state of the two control bits (C2, C1)  
in the shift register. These are the two LSBs DB1, DB0 as  
shown in the timing diagram of Figure 1. The truth table for  
these bits is shown in Table VII. Table II shows a summary  
of how the latches are programmed.  
N DIVIDER  
CP GND  
R DIVIDER  
N DIVIDER  
CP OUTPUT  
Figure 24. PFD Simplied Schematic and Timing (In Lock)  
Table II. C2, C1 Truth Table  
Control Bits  
MUXOUT AND LOCK DETECT  
The output multiplexer on the ADF4116 family allows the  
user to access various internal points on the chip. The state of  
MUXOUT is controlled by M3, M2 and M1 in the function  
latch. Table VI shows the full truth table. Figure 25 shows the  
MUXOUT section in block diagram form.  
C2  
C1  
Data Latch  
0
0
1
1
0
1
0
1
R Counter  
N Counter (A and B)  
Function Latch  
Initialization Latch  
REV. 0  
10–  
ADF4116/ADF4117/ADF4118  
Table III. ADF4116 Family Latch Summary  
REFERENCE COUNTER LATCH  
TEST  
MODE BITS  
CONTROL  
BITS  
14-BIT REFERENCE COUNTER, R  
DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10  
LDP T4 T3 T2 T1 R14 R13 R12 R11 R10 R9  
DB9  
R8  
DB8  
R7  
DB7  
R6  
DB6  
R5  
DB5  
R4  
DB4  
R3  
DB3  
R2  
DB2  
R1  
DB1  
DB0  
C2 (0) C1 (0)  
AB COUNTER LATCH  
CONTROL  
BITS  
13-BIT B COUNTER  
5-BIT A COUNTER  
DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10  
DB9  
B3  
DB8  
B2  
DB7  
B1  
DB6  
A5  
DB5  
DB4  
A3  
DB3  
DB2  
A1  
DB1  
DB0  
G1  
B13  
B12  
B11  
B10  
B9  
B8  
B7  
B6  
B5  
B4  
A4  
A2  
C2 (0) C1 (1)  
FUNCTION LATCH  
TIMER COUNTER  
CONTROL  
MUXOUT  
CONTROL  
CONTROL  
BITS  
RESERVED  
DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11  
DB10  
X
DB9  
F4  
DB8  
F3  
DB7  
F2  
DB6  
M3  
DB5  
M2  
DB4  
M1  
DB3  
PD1  
DB2  
F1  
DB1  
DB0  
X
PD2  
X
X
X
TC4  
TC3  
TC2  
TC1  
F6  
C2 (1) C1 (0)  
INITIALIZATION LATCH  
TIMER COUNTER  
CONTROL  
MUXOUT  
CONTROL  
CONTROL  
BITS  
RESERVED  
DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10  
DB9  
F4  
DB8  
F3  
DB7  
F2  
DB6  
M3  
DB5  
M2  
DB4  
M1  
DB3  
PD1  
DB2  
F1  
DB1  
DB0  
X
X
X
X
PD2  
TC4  
TC3  
TC2  
TC1  
F6  
X
C2 (1) C1 (1)  
REV. 0  
11–  
ADF4116/ADF4117/ADF4118  
Table IV. Reference Counter Latch Map  
TEST  
MODE BITS  
CONTROL  
BITS  
14-BIT REFERENCE COUNTER, R  
DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10  
DB9  
R8  
DB8  
R7  
DB7  
R6  
DB6  
R5  
DB5  
R4  
DB4  
R3  
DB3  
R2  
DB2  
R1  
DB1  
DB0  
LDP  
T4  
T3  
T2  
T1  
R14  
R13  
R12  
R11  
R10  
R9  
C2 (0) C1 (0)  
R14  
0
R13  
0
R12  
0
••••••••••  
••••••••••  
R3  
R2  
0
R1  
1
DIVIDE RATIO  
1
0
0
0
1
0
0
0
0
0
0
0
0
0
••••••••••  
••••••••••  
••••••••••  
••••••••••  
••••••••••  
••••••••••  
••••••••••  
••••••••••  
••••••••••  
••••••••••  
1
1
0
0
1
0
2
3
4
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
163 80  
163 81  
163 82  
163 83  
TEST MODE BITS SHOULD  
BE SET TO 0000 FOR  
NORMAL OPERATION  
LDP  
OPERATION  
3 CONSECUTIVE CYCLES OF PHASE DELAY LESS THAN  
15ns MUST OCCUR BEFORE LOCK DETECT IS SET.  
5 CONSECUTIVE CYCLES OF PHASE DELAY LESS THAN  
15ns MUST OCCUR BEFORE LOCK DETECT IS SET.  
0
1
REV. 0  
12–  
ADF4116/ADF4117/ADF4118  
Table V. AB Counter Latch Map  
CONTROL  
BITS  
13-BIT B COUNTER  
5-BIT A COUNTER  
DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10  
DB9  
B3  
DB8  
B2  
DB7  
B1  
DB6  
A5  
DB5  
A4  
DB4  
A3  
DB3  
A2  
DB2  
A1  
DB1  
DB0  
G1  
B13  
B12  
B11  
B10  
B9  
B8  
B7  
B6  
B5  
B4  
C2 (0) C1 (1)  
A COUNTER  
A5  
A4  
X
X
A3  
A2  
A1  
0
1
DIVIDE RATIO  
X
X
0
0
0
0
0
1
ADF4116  
X
X
X
X
1
1
1
1
0
1
6
7
A COUNTER  
A5  
0
0
0
A4  
0
0
0
A3  
0
0
0
A2  
0
0
1
A1  
0
1
0
DIVIDE RATIO  
0
1
ADF4117/ADF4118  
2
1
1
1
1
1
1
1
1
1
0
1
1
1
0
1
29  
30  
31  
••••••••••  
••••••••••  
B13  
B12  
B11  
0
B3  
0
B2  
0
B1  
1
B COUNTER DIVIDE RATIO  
NOT ALLOWED  
0
0
0
0
0
0
0
0
0
0
0
••••••••••  
••••••••••  
••••••••••  
••••••••••  
••••••••••  
••••••••••  
••••••••••  
••••••••••  
••••••••••  
••••••••••  
0
0
1
1
1
0
0
1
0
NOT ALLOWED  
3
4
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
8188  
8189  
8190  
8191  
LDP CURRENT SETTINGS  
250A  
0
1
N = BP + A, P IS PRESCALER VALUE. B MUST BE GREATER  
1mA  
THAN OR EQUAL TO A. FOR CONTINUOUSLY ADJACENT  
2
VALUES OF N  
F
, N  
IS (P -P).  
MIN  
X
REF  
REV. 0  
13–  
ADF4116/ADF4117/ADF4118  
Table VI. Function Latch Map  
TIMER COUNTER  
CONTROL  
MUXOUT  
CONTROL  
CONTROL  
BITS  
RESERVED  
DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11  
DB10  
X
DB9  
F4  
DB8  
F3  
DB7  
F2  
DB6  
M3  
DB5  
M2  
DB4  
M1  
DB3  
PD1  
DB2  
F1  
DB1  
DB0  
X
PD2  
X
X
X
TC4  
TC3  
TC2  
TC1  
F6  
C2 (1) C1 (0)  
COUNTER  
F1  
0
OPERATION  
NORMAL  
R, A, B COUNTERS  
HELD IN RESET  
1
CE PIN PD2 PD1  
MODE  
M3  
M2  
0
M1  
OUTPUT  
ASYNCHRONOUS POWER-DOWN  
NORMAL OPERATION  
0
1
1
1
X
X
0
1
X
0
1
1
0
0
THREE-STATE OUTPUT  
DIGITAL LOCK DETECT  
(ACTIVE HIGH)  
ASYNCHRONOUS POWER-DOWN  
SYNCHRONOUS POWER-DOWN  
0
0
0
1
0
1
1
0
1
0
1
0
N DIVIDER OUTPUT  
AV  
DD  
R DIVIDER OUTPUT  
ANALOG LOCK DETECT  
(N CHANNEL OPEN DRAIN)  
1
0
1
SERIAL DATA OUTPUT  
(INVERSE POLARITY OF  
SERIAL DATA INPUT)  
1
1
1
1
0
1
DGND  
F2  
0
PD POLARITY  
NEGATIVE  
POSITIVE  
1
CHARGE PUMP  
OUTPUT  
F3  
0
NORMAL  
1
3-STATE  
F4  
0
F6  
FASTLOCK MODE  
FASTLOCK DISABLED  
FASTLOCK MODE 1  
FASTLOCK MODE 2  
X
0
1
1
1
TIMEOUT  
TC4  
TC3  
TC2  
TC1  
(PFD CYCLES)  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
3
7
11  
15  
19  
23  
27  
31  
35  
39  
43  
47  
51  
55  
59  
63  
REV. 0  
14–  
ADF4116/ADF4117/ADF4118  
Table VII. Initialization Latch Map  
RESERVED  
TIMER COUNTER  
CONTROL  
MUXOUT  
CONTROL  
CONTROL  
BITS  
DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10  
DB9  
F4  
DB8  
F3  
DB7  
F2  
DB6  
M3  
DB5  
M2  
DB4  
M1  
DB3  
PD1  
DB2  
F1  
DB1  
DB0  
X
X
X
X
PD2  
TC4  
TC3  
TC2  
TC1  
F6  
X
C2 (1) C1 (1)  
COUNTER  
OPERATION  
F1  
0
1
NORMAL  
R, A, B COUNTERS  
HELD IN RESET  
M3  
M2  
0
M1  
OUTPUT  
CE PIN PD2 PD1  
MODE  
0
0
THREE-STATE OUTPUT  
ASYNCHRONOUS POWER-DOWN  
NORMAL OPERATION  
0
1
1
1
X
X
0
1
X
0
1
1
DIGITAL LOCK DETECT  
(ACTIVE HIGH)  
0
0
1
1
0
1
0
1
0
ASYNCHRONOUS POWER-DOWN  
N DIVIDER OUTPUT  
0
SYNCHRONOUS POWER-DOWN  
AV  
DD  
0
1
R DIVIDER OUTPUT  
ANALOG LOCK DETECT  
(N CHANNEL OPEN DRAIN)  
1
0
1
SERIAL DATA OUTPUT  
(INVERSE POLARITY OF  
SERIAL DATA INPUT)  
1
1
1
1
0
1
DGND  
F2  
0
PD POLARITY  
NEGATIVE  
POSITIVE  
1
CHARGE PUMP  
OUTPUT  
F3  
0
NORMAL  
1
THREE-STATE  
F4  
0
F6  
FASTLOCK MODE  
FASTLOCK DISABLED  
X
0
1
FASTLOCK MODE 1  
FASTLOCK MODE 2  
1
1
TIMEOUT  
TC4  
TC3  
TC2  
TC1  
(PFD CYCLES)  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
3
7
11  
15  
19  
23  
27  
31  
35  
39  
43  
47  
51  
55  
59  
63  
REV. 0  
15–  
ADF4116/ADF4117/ADF4118  
THE FUNCTION LATCH  
Fastlock Mode Bit  
With C2, C1 set to 1, 0, the on-chip function latch will be pro-  
grammed. Table VI shows the input data format for programming  
the Function Latch.  
DB11 of the Function Latch is the Fastlock Mode bit. When  
Fastlock is enabled, this bit determines which Fastlock Mode is  
used. If the Fastlock Mode bit is “0” then Fastlock Mode 1 is  
selected and if the Fastlock Mode bit is “1,” then Fastlock  
Mode 2 is selected.  
Counter Reset  
DB2 (F1) is the counter reset bit. When this is “1,” the R counter  
and the A, B counters are reset. For normal operation this bit  
should be “0.” Upon powering up, the F1 bit needs to be disabled,  
the N counter resumes counting in “close” alignment with the R counter.  
(The maximum error is one prescaler cycle.)  
If Fastlock is not enabled (DB9 = “0”), then DB11 (ADF4116)  
determines the state of the FLO output. FLO state will be the  
same as that programmed to DB11.  
Fastlock Mode 1  
Power-Down  
In the ADF4116 family, the output level of FLO is programmed  
to a low state and the charge pump current is switched to the  
high value (1 mA). FLO is used to switch a resistor in the loop  
filter and ensure stability while in Fastlock by altering the loop  
bandwidth.  
DB3 (PD1) and DB19 (PD2) on the ADF4116 family, provide  
programmable power-down modes. They are enabled by the  
CE pin.  
When the CE pin is low, the device is immediately disabled  
regardless of the states of PD2, PD1.  
The device enters Fastlock by having a “1” written to the CP  
Gain bit in the N register. The device exits Fastlock by having a  
“0” written to the CP Gain bit in the N register.  
In the programmed asynchronous power-down, the device pow-  
ers down immediately after latching a “1” into bit PD1, with the  
condition that PD2 has been loaded with a “0.”  
Fastlock Mode 2  
In the ADF4116 family, the output level of FLO is programmed  
to a low state and the charge pump current is switched to the high  
value (1 mA). FLO is used to switch a resistor in the loop filter and  
ensure stability while in Fastlock by altering the loop bandwidth.  
In the programmed synchronous power-down, the device power  
down is gated by the charge pump to prevent unwanted fre-  
quency jumps. Once the power-down is enabled by writing a  
“1” into bit PD1 (on condition that a “1” has also been loaded  
to PD2), then the device will go into power-down after the first  
successive charge pump event.  
The device enters Fastlock by having a “1” written to the CP  
Gain bit in the N register. The device exits Fastlock under the  
control of the Timer Counter. After the timeout period deter-  
mined by the value in TC4–TC1, the CP Gain bit in the N  
register is automatically reset to “0” and the device reverts to  
normal mode instead of Fastlock.  
When a power down is activated (either synchronous or asynchro-  
nous mode including CE-pin-activated power down), the  
following events occur:  
All active dc current paths are removed.  
Timer Counter Control  
The R, N and timeout counters are forced to their load state  
conditions.  
In the ADF4116 family, the user has the option of switching  
between two charge pump current values to speed up locking to  
a new frequency.  
The charge pump is forced into three-state mode.  
The digital clock detect circuitry is reset.  
The RFIN input is debiased.  
When using the Fastlock feature with the ADF4116 family, the  
normal sequence of events is as follows:  
The user must make sure that Fastlock is enabled. Set DB9 of the  
ADF4116 family to “1.” The user must also choose which Fastlock  
Mode to use. As discussed in the previous section, Fastlock  
Mode 2 uses the values in the Timer Counter to determine the  
timeout period before reverting to normal mode operation after  
Fastlock. Fastlock Mode 2 is chosen by setting DB11 of the  
ADF4116 family to “1.”  
The oscillator input buffer circuitry is disabled.  
The input register remains active and capable of loading and  
latching data.  
MUXOUT Control  
The on-chip multiplexer is controlled by M3, M2, M1 on the  
ADF4116 family. Table VI shows the truth table.  
The user must also decide how long they want the high current  
(1 mA) to stay active before reverting to low current (250 µA).  
This is controlled by the Timer Counter Control Bits DB14 to  
DB11 (TC4–TC1) in the Function Latch. The truth table is  
given in Table VI.  
Phase Detector Polarity  
DB7 (F2) of the function latch sets the Phase Detector Polarity.  
When the VCO characteristics are positive this should be set to  
“1.” When they are negative it should be set to “0.”  
Charge Pump Three-State  
Now, when the user wishes to program a new output frequency,  
they can simply program the A, B counter latch with new values  
for A and B. At the same time they can set the CP Gain bit to a  
“1,” which sets the charge pump 1 mA for a period of time deter-  
mined by TC4–TC1. When this time is up, the charge pump  
current reverts to 250 µA. At the same time the CP Gain Bit in  
the A, B Counter latch is reset to 0 and is now ready for the  
next time that the user wishes to change the frequency again.  
This bit puts the charge pump into three-state mode when pro-  
grammed to a “1.” It should be set to “0” for normal operation.  
Fastlock Enable Bit  
DB9 of the Function Latch is the Fastlock Enable Bit. Only  
when this is “1” is Fastlock enabled.  
REV. 0  
16–  
ADF4116/ADF4117/ADF4118  
The Initialization Latch  
The CE Pin Method  
Apply VDD  
When C2, C1 = 1, 1 then the Initialization Latch is programmed.  
This is essentially the same as the Function Latch (programmed  
when C2, C1 = 1, 0).  
.
Bring CE low to put the device into power-down. This is an  
asynchronous power-down in that it happens immediately.  
Program the Function Latch (10). Program the R Counter  
Latch (00). Program the N Counter Latch (01). Bring CE high  
to take the device out of power-down. The R and N counter will  
now resume counting in close alignment.  
However, when the Initialization Latch is programmed there is a  
additional internal reset pulse applied to the R and N counters.  
This pulse ensures that the N counter is at load point when the  
N counter data is latched and the device will begin counting in  
close phase alignment.  
Note that after CE goes high, a duration of 1 µs may be required  
for the prescaler bandgap voltage and oscillator input buffer bias  
to reach steady state.  
If the Latch is programmed for synchronous power-down (CE  
pin is High; PD1 bit is High; PD2 bit is Low), the internal pulse  
also triggers this power-down. The prescaler reference and the  
oscillator input buffer are unaffected by the internal reset pulse and  
so close phase alignment is maintained when counting resumes.  
CE can be used to power the device up and down in order to  
check for channel activity. The input register does not need to  
be reprogrammed each time the device is disabled and enabled  
as long as it has been programmed at least once after VCC was  
initially applied.  
When the first N counter data is latched after initialization, the  
internal reset pulse is again activated. However, successive N  
counter loads after this will not trigger the internal reset pulse.  
The Counter Reset Method  
Device Programming After Initial Power-Up  
After initially powering up the device, there are three ways to  
program the device.  
Apply VDD.  
Do a Function Latch Load (“10” in 2 LSBs). As part of this,  
load “1” to the F1 bit. This enables the counter reset. Do an R  
Counter Load (“00” in 2 LSBs). Do an N Counter Load (“01”  
in 2 LSBs). Do a Function Latch Load (“10” in 2 LSBs). As  
part of this, load “0” to the F1 bit. This disables the counter reset.  
Initialization Latch Method  
Apply VDD  
.
Program the Initialization Latch (“11” in 2 LSBs of input word).  
Make sure that F1 bit is programmed to “0.” Then do an R load  
(“00” in 2 LSBs). Then do an N load (“01” in 2 LSBs). When the  
Initialization Latch is loaded, the following occurs:  
This sequence provides the same close alignment as the initial-  
ization method. It offers direct control over the internal reset.  
Note that counter reset holds the counters at load point and  
three-states the charge pump, but does not trigger synchronous  
power-down. The counter reset method requires an extra func-  
tion latch load compared to the initialization latch method.  
1. The function latch contents are loaded.  
2. An internal pulse resets the R, N and timeout counters to  
load state conditions and also three-states the charge pump.  
Note that the prescaler bandgap reference and the oscillator  
input buffer are unaffected by the internal reset pulse,  
allowing close phase alignment when counting resumes.  
3. Latching the first N counter data after the initialization word  
will activate the same internal reset pulse. Successive N loads  
will not trigger the internal reset pulse unless there is another  
initialization.  
REV. 0  
17–  
ADF4116/ADF4117/ADF4118  
APPLICATIONS SECTION  
SHUTDOWN CIRCUIT  
Local Oscillator for GSM Base Station Transmitter  
Figure 26 shows the ADF4117/ADF4118 being used with a  
VCO to produce the LO for a GSM base station transmitter.  
The attached circuit in Figure 27 shows how to shut down both  
the ADF4116 family and the accompanying VCO. The ADG702  
switch goes open circuit when a Logic 1 is applied to the IN  
input. The low-cost switch is available in both SOT-23 and  
micro SOIC packages.  
The reference input signal is applied to the circuit at FREFIN  
and, in this case, is terminated in 50 . Typical GSM system  
would have a 13 MHz TCXO driving the Reference Input  
without any 50 termination. In order to have a channel  
spacing of 200 kHz (the GSM standard), the reference input  
must be divided by 65, using the on-chip reference divider of  
the ADF4117/ADF1118.  
DIRECT CONVERSION MODULATOR  
In some applications a direct conversion architecture can be used  
in base station transmitters. Figure 28 shows the combination  
available from ADI to implement this solution.  
The circuit diagram shows the AD9761 being used with the  
AD8346. The use of dual integrated DACs such as the AD9761  
with specified 0.02 dB and 0.004 dB gain and offset match-  
ing characteristics ensures minimum error contribution (over  
temperature) from this portion of the signal chain.  
The charge pump output of the ADF4117/ADF1118 (Pin 2)  
drives the loop filter. In calculating the loop filter component  
values, a number of items need to be considered. In this example,  
the loop filter was designed so that the overall phase margin for  
the system would be 45 degrees. Other PLL system specifica-  
tions are given below:  
The Local Oscillator (LO) is implemented using the ADF4117/  
ADF4118. In this case, the OSC 3B1-13M0 provides the  
stable 13 MHz reference frequency. The system is designed  
for a 200 kHz channel spacing and an output center frequency  
of 1960 MHz. The target application is a WCDMA base sta-  
tion transmitter. Typical phase noise performance from this LO  
is –85 dBc/Hz at a 1 kHz offset. The LO port of the AD8346 is  
driven in single-ended fashion. LOIN is ac-coupled to ground  
with the 100 pF capacitor and LOIP is driven through the ac-  
coupling capacitor from a 50 source. An LO drive level of  
between –6 dBm and –12 dBm is required. The circuit of Figure  
28 gives a typical level of –8 dBm.  
K
D = 1 mA  
KV = 12 MHz/V  
Loop Bandwidth = 20 kHz  
F
REF = 200 kHz  
N = 4500  
Extra Reference Spur Attenuation = 10 dB  
All of these specifications are needed and used to come up with  
the loop filter components values shown in Figure 27.  
The loop filter output drives the VCO, which, in turn, is fed  
back to the RF input of the PLL synthesizer and also drives  
the RF Output terminal. A T-circuit configuration provides  
50 matching between the VCO output, the RF output and  
the RFIN terminal of the synthesizer.  
The RF output is designed to drive a 50 load but must be  
ac-coupled as shown in Figure 28. If the I and Q inputs are driven  
in quadrature by 2 V p-p signals, the resulting output power will  
be around –10 dBm.  
In a PLL system, it is important to know when the system is in  
lock. In Figure 26, this is accomplished by using the MUXOUT  
signal from the synthesizer. The MUXOUT pin can be pro-  
grammed to monitor various internal signals in the synthesizer.  
One of these is the LD or lock-detect signal.  
RF  
OUT  
V
V
DD  
P
100pF  
7
15 16  
DV  
AV  
DD  
V
P
18  
18⍀  
DD  
V
3.3k⍀  
CC  
2
100pF  
18⍀  
1000pF  
1000pF  
8
CP  
FREF  
IN  
REF  
IN  
VCO190-902T  
620pF  
27k⍀  
0.15nF  
51⍀  
FL  
O
ADF4117/  
ADF4118  
10k⍀  
1.5nF  
14  
CE  
LOCK  
MUXOUT  
CLK  
DATA  
LE  
DETECT  
100pF  
6
5
RF  
IN  
A
51⍀  
RF  
B
IN  
100pF  
3
4
9
DECOUPLING CAPACITORS (10F/10pF) ON AV , DV , V OF THE  
DD DD  
P
ADF4117/ADF4118 AND ON V OF THE VCO190-902T HAVE BEEN  
CC  
OMITTED FROM THE DIAGRAM TO AID CLARITY.  
Figure 26. Local Oscillator for GSM Base Station  
REV. 0  
18–  
ADF4116/ADF4117/ADF4118  
V
P
POWER-DOWN CONTROL  
V
S
DD  
RF  
OUT  
IN  
V
ADG702  
GND  
DD  
D
100pF  
7
15 16  
DV  
DD  
18  
18⍀  
V
100pF  
AV  
DD  
V
CE  
CP  
CC  
18⍀  
P
2
1
LOOP  
FILTER  
8
FREF  
IN  
REF  
IN  
VCO  
FL  
O
GND  
ADF4116/  
ADF4117/  
ADF4118  
10k⍀  
100pF  
6
5
RF  
A
IN  
51⍀  
RF  
IN  
B
100pF  
3
4
9
DECOUPLING CAPACITORS AND INTERFACE SIGNALS HAVE  
BEEN OMITTED FROM THE DIAGRAM TO AID CLARITY.  
Figure 27. Local Oscillator Shutdown Circuit  
0.1F  
REFIO  
IBBP  
IBBP  
IOUTA  
IOUTB  
100pF  
LOW-PASS  
FILTER  
RF  
OUT  
VOUT  
MODULATED  
DIGITAL  
DATA  
AD9761  
TXDAC  
AD8346  
QBBP  
QBBP  
QOUTA  
QOUTB  
LOW-PASS  
FILTER  
FS ADJ  
2k⍀  
LOIN  
LOIP  
100pF  
100pF  
OSC 3B1-13M0  
TCXO  
18⍀  
R
SET  
10k⍀  
REF  
IN  
CP  
VCO190-1960T  
1k⍀  
18pF  
ADF4118  
680pF  
SERIAL  
DIGITAL  
NTERFACE  
100pF  
18⍀  
6.8nF  
18⍀  
RF  
IN  
B
RF A  
IN  
100pF  
100pF  
51⍀  
POWER SUPPLY CONNECTIONS AND DECOUPLING CAPACITORS  
ARE OMITTED FROM DIAGRAM FOR CLARITY.  
Figure 28. Direct Conversion Transmitter Solution  
The maximum allowable serial clock rate is 20 MHz. This means  
that the maximum update rate possible for the device is 833 kHz or  
one update every 1.2 microseconds. This is certainly more than  
adequate for systems which will have typical lock times in hun-  
dreds of microseconds.  
INTERFACING  
The ADF4116 family has a simple SPI-compatible serial inter-  
face for writing to the device. SCLK, SDATA and LE control  
the data transfer. When LE (Latch Enable) goes high, the 24 bits  
which have been clocked into the input register on each rising  
edge of SCLK will get transferred to the appropriate latch. See  
Figure 1 for the Timing Diagram and Table II for the Latch  
Truth Table.  
REV. 0  
19–  
ADF4116/ADF4117/ADF4118  
ADuC812 Interface  
When operating in the mode described, the maximum SCLOCK  
rate of the ADuC812 is 4 MHz. This means that the maximum  
rate at which the output frequency can be changed will be 166 kHz.  
Figure 29 shows the interface between the ADF4116 family and  
the ADuC812 microconverter. Since the ADuC812 is based on  
an 8051 core, this interface can be used with any 8051-based  
microcontroller. The microconverter is set up for SPI Master  
Mode with CPHA = 0. To initiate the operation, the I/O port  
driving LE is brought low. Each latch of the ADF4116 family  
needs a 24-bit word. This is accomplished by writing three 8-bit  
bytes from the microconverter to the device. When the third  
byte has been written the LE input should be brought high to  
complete the transfer.  
ADSP-2181 Interface  
Figure 30 shows the interface between the ADF4116 family and  
the ADSP-21xx Digital Signal Processor. The ADF4116 family  
needs a 21-bit serial word for each latch write. The easiest way  
to accomplish this using the ADSP-21xx family is to use the  
Autobuffered Transmit Mode of operation with Alternate Fram-  
ing. This provides a means for transmitting an entire block of  
serial data before an interrupt is generated.  
SCLK  
SDATA  
LE  
SCLOCK  
MOSI  
SCLK  
SCLK  
DT  
ADuC812  
SDATA  
ADSP-21xx  
ADF4116/  
ADF4117/  
ADF4118  
ADF4116/  
ADF4117/  
ADF4118  
TFS  
LE  
I/O PORTS  
CE  
CE  
I/O FLAGS  
MUXOUT  
(LOCK DETECT)  
MUXOUT  
(LOCK DETECT)  
Figure 29. ADuC812 to ADF4116 Family Interface  
Figure 30. ADSP-21xx to ADF4116 Family Interface  
On first applying power to the ADF4116 family, it needs three  
writes (one each to the R counter latch, the N counter latch and  
the initialization latch) for the output to become active.  
Set up the word length for 8 bits and use three memory loca-  
tions for each 24-bit word. To program each 21-bit latch, store  
the three 8-bit bytes, enable the Autobuffered mode and then  
write to the transmit register of the DSP. This last operation  
initiates the autobuffer transfer.  
I/O port lines on the ADuC812 are also used to control power-  
down (CE input) and to detect lock (MUXOUT configured as  
lock detect and polled by the port input).  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
Chip Scale  
(CP-20)  
Thin Shrink Small Outline  
(RU-16)  
0.201 (5.10)  
0.193 (4.90)  
0.159 (4.05)  
0.157 (4.00)  
0.156 (3.95)  
0.079 (2.0) REF  
0.014 (0.35) 
؋
45°  
0.018 (0.45)  
0.016 (0.40)  
0.014 (0.35)  
16  
20  
16  
15  
1
9
0.177 (4.50)  
0.169 (4.30)  
0.159 (4.05)  
0.157 (4.00)  
0.156 (3.95)  
0.079  
(2.0)  
REF  
DETAIL E  
TOP VIEW  
0.020 (0.5) REF  
LEAD PITCH  
0.256 (6.50)  
0.246 (6.25)  
11  
10  
5
6
1
8
0.039 (1.00)  
0.035 (0.90)  
0.031 (0.80)  
0.0083 (0.211)  
0.0079 (0.200)  
0.0077 (0.195)  
BOTTOM VIEW  
(ROTATED 180؇)  
PIN 1  
0.006 (0.15)  
0.002 (0.05)  
0.0433 (1.10)  
MAX  
0.0079 (0.20)  
REF  
SEATING  
PLANE  
8؇  
0؇  
LEAD OPTION  
DETAIL E  
0.0118 (0.30)  
0.0075 (0.19)  
0.0256 (0.65)  
0.028 (0.70)  
0.020 (0.50)  
0.0079 (0.20)  
0.0035 (0.090)  
SEATING  
PLANE  
BSC  
0.011 (0.275)  
0.010 (0.250)  
0.009 (0.225)  
0.018 (0.45)  
0.016 (0.40)  
0.014 (0.35)  
0.0059  
(0.15)  
REF  
0.0059 (0.15)  
REF  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS  
REV. 0  
20–  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY