ADF41513_V01 [ADI]

26.5 GHz, Integer N/Fractional-N, PLL Synthesizer;
ADF41513_V01
型号: ADF41513_V01
厂家: ADI    ADI
描述:

26.5 GHz, Integer N/Fractional-N, PLL Synthesizer

文件: 总30页 (文件大小:1391K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
26.5 GHz, Integer N/Fractional-N,  
PLL Synthesizer  
Data Sheet  
ADF41513  
FEATURES  
GENERAL DESCRIPTION  
1 GHz to 26.5 GHz bandwidth  
Ultralow noise PLL  
Integer N = −235 dBc/Hz, fractional-N = −231 dBc/Hz  
High maximum PFD frequency  
The ADF41513 is an ultralow noise frequency synthesizer that  
can be used to implement local oscillators (LOs) as high as  
26.5 GHz in the upconversion and downconversion sections of  
wireless receivers and transmitters.  
Integer N = 250 MHz, fractional-N = 125 MHz  
25-bit fixed/49-bit variable fractional modulus mode  
Single-ended reference input  
3.3 V power supply, 3.3 V charge pump  
Integrated 1.8 V logic capability  
Phase resync  
Programmable charge pump currents: 16× range  
Digital lock detect  
The ADF41513 is designed on a high performance silicon  
geranium (SiGe), bipolar complementary metal-oxide  
semiconductor (BiCMOS) process, achieving a normalized  
phase noise floor of −235 dBc/Hz. The phase frequency  
detector (PFD) operates up to 250 MHz (integer N mode)/  
125 MHz (fractional-N mode) for improved phase noise and  
spur performance. The variable modulus, ∑-Δ modulator allows  
extremely fine resolution when using a 49-bit divide value. The  
ADF41513 can be used as an integer N phase-locked loop  
(PLL), or it can be used as a fractional-N PLL with either a fixed  
modulus for subhertz frequency resolution or variable modulus  
for subhertz exact frequency resolution.  
3-wire serial interface with register readback option  
Hardware and software power-down mode  
Operating range from −40°C to +105°C  
APPLICATIONS  
Test equipment and instrumentation  
Wireless infrastructure  
Microwave point to point and multipoint radios  
Very small aperture terminal (VSAT) radios  
Aerospace and defense  
A complete PLL is implemented when the synthesizer is used  
with an external loop filter and voltage controlled oscillator  
(VCO). The 26.5 GHz bandwidth eliminates the need for a  
frequency doubler or divider stage, simplifying system  
architecture and reducing cost. The ADF41513 is packaged in a  
compact, 24-lead, 4 mm × 4 mm LFCSP.  
FUNCTIONAL BLOCK DIAGRAM  
V
AV  
AV  
AV  
AV  
AV  
AV  
R
SET  
P
DD1  
DD1  
DD2  
DD3  
DD4  
DD5  
ADF41513  
REFERENCE  
5-BIT  
R COUNTER  
×2  
REF  
IN  
DOUBLER  
÷2  
DIVIDER  
PHASE  
FREQUENCY  
DETECTOR  
+
N
CP  
CHARGE  
PUMP  
HIGH-Z  
GND  
DC1  
DC2  
LOCK  
DETECT  
OUTPUT  
MUX  
MUXOUT  
AV  
R
DD  
+
RF  
RF  
A
B
IN  
N COUNTER  
DLD  
CE  
DIV  
IN  
SD  
OUT  
25-BIT FIXED/49-BIT VARIABLE  
FRACTIONAL INTERPOLATOR  
TX  
DATA  
FRACTION  
VALUE  
INTEGER  
VALUE  
MODULUS  
25  
CLK  
32-BIT  
DATA  
REGISTER  
2
VALUE  
DATA  
LE  
C
C
REG1  
REG2  
1.8V  
REGULATOR  
GND  
Figure 1.  
Rev. 0  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2019 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
 
ADF41513  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Register 2 (R2) Map ................................................................... 18  
Register 3 (R3) Map ................................................................... 18  
Register 4 (R4) Map ................................................................... 19  
Register 5 (R5) Map ................................................................... 19  
Register 6 (R6) Map ................................................................... 21  
Register 7 (R7) Map ................................................................... 23  
Register 8 (R8) Map ................................................................... 24  
Register 9 (R9) Map ................................................................... 24  
Register 10 (R10) Map............................................................... 25  
Register 11 (R11) Map............................................................... 25  
Register 12 (R12) Map............................................................... 26  
Register 13 (R13) Map............................................................... 27  
Applications information .............................................................. 28  
Initialization Sequence .............................................................. 28  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Timing Characteristics ................................................................ 5  
Absolute Maximum Ratings............................................................ 6  
Thermal Resistance ...................................................................... 6  
ESD Caution.................................................................................. 6  
Pin Configuration and Function Description .............................. 7  
Typical Performance Characteristics ............................................. 9  
Theory of Operation ...................................................................... 11  
Reference Input........................................................................... 11  
RF Input Stage............................................................................. 11  
N Divider and R Counter .......................................................... 11  
R Counter .................................................................................... 12  
PFD and Charge Pump.............................................................. 12  
MUXOUT.................................................................................... 12  
Lock Detector.............................................................................. 12  
Readback...................................................................................... 13  
Input Shift Registers................................................................... 13  
Program Modes .......................................................................... 13  
Register Maps.................................................................................. 14  
Register 0 (R0) Map ................................................................... 17  
Register 1 (R1) Map ................................................................... 17  
RF Synthesizer: A Worked Example of 25-Bit Fixed Modulus  
Mode ............................................................................................ 28  
RF Synthesizer: A Worked Example of Variable Modulus  
Mode ............................................................................................ 28  
Modulus....................................................................................... 28  
Reference Doubler and Reference Divider ............................. 28  
Spur Mechanisms ....................................................................... 29  
Phase Resync............................................................................... 29  
Outline Dimensions....................................................................... 30  
Ordering Guide .......................................................................... 30  
REVISION HISTORY  
1/2019—Revision 0: Initial Version  
Rev. 0 | Page 2 of 30  
 
Data Sheet  
ADF41513  
SPECIFICATIONS  
AVDDx = AVDD1 = AVDD2 = AVDD3 = AVDD4 = AVDD5 = VP = 3.3 V 5%, GND = 0 V, RSET = 1.8 kΩ, dBm referred to 50 Ω, TA = TMIN (−40°C)  
to TMAX (+105°C), unless otherwise noted.  
Table 1.  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
RADIO FREQUENCY (RF)  
CHARACTERISTICS  
8/9 Prescaler  
RF Input Frequency (fRFIN) Range  
1
1
26.5  
24  
GHz  
Recommended input power of −5 dBm to  
+5 dBm, operation at this frequency range is  
limited to 70°C to TMIN  
GHz  
Operation at this frequency range is TMAX to TMIN  
RF Input Sensitivity  
−11  
dBm  
Refer to Figure 10 and Figure 11 for more  
information  
4/5 Prescaler  
fRFIN Range  
1
16  
+5  
GHz  
For lower frequencies, ensure slew rate >  
320 V/µs  
Measured single-ended to RFINA via a 1 pF series  
capacitor, 1 pF capacitor to GND on RFINB  
RF Input Sensitivity Range  
−7  
dBm  
INPUT REFERENCE FREQUENCY  
(REFIN) CHARACTERISTICS  
REFIN Input  
Frequency  
Voltage Range  
Sensitivity Range  
10  
0
−10  
800  
1.8  
8
MHz  
V
dBm  
Biased at 1 V (ac coupling ensures 1 V bias), use  
square wave at low power and/or frequency to  
ensure slew rate is > 320 V/µs; for best inband  
phase noise performance, ensure slew rate >  
500 V/µs  
Capacitance  
Current  
Doubler Input Frequency  
10  
150  
225  
pF  
µA  
MHz  
Maximum reference frequency when the  
doubler is enabled  
MAXIMUM PFD FREQUENCY  
Integer N Mode  
Fractional-N Mode  
N DIVIDER RANGE  
16-Bit N Divider Range  
Integer N Mode  
250  
125  
MHz  
MHz  
20  
64  
23  
75  
511  
1023  
511  
4/5 prescaler  
8/9 prescaler  
4/5 prescaler  
8/9 prescaler  
Fractional-N Mode  
1023  
CHARGE PUMP (CP)  
CP Current (ICP) Sink and Source  
High Value  
Low Value  
Absolute Accuracy  
RSET Range  
ICP Three-State Leakage  
Sink and Source Current Matching  
ICP vs. VCP  
Programmable  
With RSET = 1.8 kΩ  
7.2  
0.45  
5
2.7  
2
5
5
5
mA  
mA  
%
kΩ  
nA  
%
With RSET = 1.8 kΩ  
5% accuracy  
VCP = 0.9 V, TA = 25°C  
0.7 V ≤ CP voltage (VCP) ≤ VP − 0.7 V  
0.7 V ≤ VCP ≤ VP − 0.7 V  
VCP = VP/2  
1.8  
10  
%
%
ICP vs. Temperature  
Rev. 0 | Page 3 of 30  
 
ADF41513  
Data Sheet  
Parameter  
LOGIC INPUTS  
Input Voltage  
High (VIH)  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
1.4  
V
The serial port interface (SPI) block can accept  
both 1.8 V or 3.3 V logic inputs  
Low (VIL)  
Input Current (IINH, IINL  
Input Capacitance (CIN)  
LOGIC OUTPUTS  
Output Voltage  
High (VOH)  
0.6  
1
10  
V
µA  
pF  
)
1.4  
2.6  
V
V
MUXOUT voltage = 1.8 V, DLD voltage = 1.8 V  
MUXOUT voltage = 3.3 V, DLD voltage = 3.3 V  
Low (VOL)  
0.4  
V
Output High Current, Output Low  
Current (IOH, IOL)  
500  
µA  
POWER SUPPLIES  
AVDD1, AVDD2, AVDD3, AVDD4, AVDD5, VP 3.135  
3.3  
2
63.5  
2.1  
1.45  
20  
3.465  
3.2  
88  
3.6  
2
25  
7
128.8  
100  
V
1
IDD1  
IDD2  
IDD3  
IDD4  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
µA  
Current drawn by AVDD1  
Current drawn by AVDD2  
Current drawn by AVDD3  
Current drawn by AVDD4  
Current drawn by AVDD5  
Current drawn by VP  
Total current drawn by AVDDx and VP  
TA = 25°C, CE is low, total of all rails  
1
1
1
1
IDD5  
IP  
ITOTAL  
6
95.1  
Power-Down Mode  
NOISE CHARACTERISTICS  
Normalized Phase Noise Floor  
(PNSYNTH  
)
In Integer N Mode2  
−235  
dBc/Hz  
PLL loop bandwidth (BW) = 1 MHz (Integer N  
mode)  
In Fractional-N Mode3  
Normalized 1∕f Noise (PN1_f)3  
SPURIOUS SIGNALS  
−231  
−128  
dBc/Hz  
dBc/Hz  
PLL loop BW = 1 MHz (fractional-N mode)  
10 kHz offset, normalized to 1 GHz  
Reference Spurious  
PFD Spurious  
In-Band Integer Boundary  
Spurious  
−90  
−87  
−45  
dBc  
dBc  
dBc  
At reference = 100 MHz, PLL loop BW = 40 kHz  
At PFD = 50 MHz, PLL loop BW = 40 kHz  
10 kHz offset, PLL loop BW = 250 kHz  
1 TA = 25°C, AVDDx = 3.3 V (where x = 1, 2, 3, or 4), prescaler (P) = 8/9, fRFIN = 26.5 GHz, REFIN = 124 MHz, PFD frequency input (fPFD) = 124 MHz.  
2 The synthesizer phase noise floor is estimated by measuring the inband phase noise at the output of the VCO and subtracting 20 log N (where N is the N divider value)  
and 10 log fPFD. PNSYNTH is the total phase noise measured at the VCO output (PNTOT) − 10 log fPFD − 20 log N.  
3 The PLL phase noise is composed of 1/f (flicker) noise plus the normalized PLL noise floor. The formula for calculating the 1/f noise contribution at an RF frequency, fRF,  
and at a frequency offset, f, is given by phase noise (PN) = P1_f + 10 log(10 kHz/f) + 20 log(fRF/1 GHz). Both the normalized phase noise floor and flicker noise are  
modeled in the ADIsimPLL.  
Rev. 0 | Page 4 of 30  
Data Sheet  
ADF41513  
TIMING CHARACTERISTICS  
AVDDx = AVDD1 = AVDD2 = AVDD3 = AVDD4 = AVDD5 = VP = 3.3 V 5%, GND = 0 V, RSET = 1.8 kΩ, dBm referred to 50 Ω, TA = TMIN (−40°C)  
to TMAX (+105°C), unless otherwise noted.  
Table 2. Read and Write Timing  
Parameter  
Limit at TMIN to TMAX  
Unit  
Test Conditions/Comments  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
t9  
10  
5
5
12.5  
12.5  
5
10  
20  
20  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns max  
ns max  
LE setup time  
DATA to CLK setup time  
DATA to CLK hold time  
CLK high duration  
CLK low duration  
CLK to LE setup time  
LE pulse width  
LE setup time to MUXOUT when MUXOUT is configured as SPI output  
CLK setup time to MUXOUT when MUXOUT is configured as SPI output  
Timing Diagram  
t4  
t5  
CLK  
t2  
t3  
DB2  
(CONTROL BIT C3)  
DB1  
DB0 (LSB)  
(CONTRO BIT C1)  
DB30  
DATA  
LE  
DB31 (MSB)  
(CONTROL BIT C2)  
L
t7  
t1  
t6  
DB31  
(MSB)  
MUXOUT  
DB30  
DB1  
DB0  
t8  
t9  
Figure 2. Read and Write Timing  
Rev. 0 | Page 5 of 30  
 
ADF41513  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
TA = 25°C, unless otherwise noted.  
Thermal performance is directly linked to printed circuit board  
(PCB) design and operating environment. Careful attention to  
PCB thermal design is required.  
Table 3.  
Parameter  
AVDDx to GND1  
VP to GND  
Rating  
−0.3 V to +3.6 V  
−0.3 V to +3.6 V  
−0.3 V to +0.3 V  
−0.3 V to AVDDx + 0.3 V  
−0.3 V to VP + 0.3 V  
−0.3 V to +3.6 V  
1.4 V  
θ
JA is the natural convection junction to ambient thermal  
resistance measured in a one cubic foot sealed enclosure. θJC is  
the junction to case thermal resistance.  
VP to AVDDx  
Digital Input/Output Voltage to GND  
Analog Input/Output Voltage to GND  
RFINA, RFINB to GND  
RFINA to RFINB1  
REFIN to GND  
Operating Temperature Range  
Industrial  
Storage Temperature Range  
Maximum Junction Temperature  
Operational  
Table 4. Thermal Resistance  
Package Type  
θJA  
θJC  
Unit  
CP-24-81  
48  
38  
°C/W  
−0.3 V to +2.1 V  
1 The thermal resistance values are defined per the JESD51 standard.  
−40°C to +105°C  
−65°C to +125°C  
ESD CAUTION  
125°C  
Reflow Soldering  
Peak Temperature  
Time at Peak Temperature  
Electrostatic Discharge (ESD)  
Charged Device Model  
Human Body Model  
Transistor Count  
260°C  
40 sec  
1250 V  
1500 V  
CMOS  
Bipolar  
215,726  
1625  
1 Approximately 13 dBm into a 50 Ω input.  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
This device is a high performance RF IC with an electrostatic  
discharge (ESD) rating of <2 kV, and the device is ESD sensitive.  
Take proper precautions for handling and assembly.  
Rev. 0 | Page 6 of 30  
 
 
 
Data Sheet  
ADF41513  
PIN CONFIGURATION AND FUNCTION DESCRIPTION  
1
2
3
18  
17  
16  
15  
14  
13  
GND  
C
REG1  
AV  
MUXOUT  
LE  
DD1  
DD1  
AV  
ADF41513  
TOP VIEW  
(Not to Scale)  
DATA  
CLK  
RF B 4  
IN  
5
6
RF  
AV  
A
IN  
CE  
DD2  
NOTES  
1. EXPOSED PAD. THE EXPOSED PAD MUST  
BE CONNECTED TO GND.  
Figure 3. Pin Configuration  
Table 5. Pin Function Descriptions  
Pin No. Mnemonic Description  
1
GND  
Ground Pin.  
2, 3  
AVDD1  
PFD and Up and Down Digital Driver Power Supply. Pin 2 and Pin 3 can be tied together. With Pin 2 and Pin 3 tied  
together, place three parallel capacitors as close as possible to the AVDD1 pins: 10 µF, 100 nF, and 100 pF.  
4
RFINB  
Complementary Input to the RF Prescaler. In single-ended mode, decouple this pin to the ground plane with a  
small bypass capacitor, typically 100 pF.  
5
6
RFINA  
AVDD2  
Input to the RF Prescaler. AC-couple this signal to the external VCO.  
RF Buffer and Prescaler Power Supply. Place three parallel capacitors as close as possible to the AVDD2 pin: 10 µF,  
100 nF, and 100 pF.  
7
AVDD3  
AVDD4  
AVDD5  
REFIN  
N Divider Power Supply. Place three parallel capacitors as close as possible to the AVDD3 pin: 10 µF, 100 nF, and  
100 pF.  
R Divider and Lock Detector Power Supply. Place three parallel capacitors as close as possible to the AVDD4 pin:  
10 µF, 1 µF, and 100 nF. Pin 8 powers the internal low dropout (LDO) regulator for the reference divider.  
Σ-Δ Modulator and SPI Power Supply. Place three parallel capacitors as close as possible to the AVDD5 pin: 10 µF,  
1 µF, and 100 nF. This pin powers the internal LDO regulator for the Σ-Δ modulator.  
Reference Input. The reference can accept either a single-ended CMOS (dc-coupled) or single-ended sine wave  
(ac-coupled). The single-ended input has a nominal threshold of 1 V and a dc equivalent input resistance of 20 kΩ.  
8
9
10  
11  
12  
13  
DLD  
TXDATA  
CE  
Digital Lock Detect Pin. A logic high on this pin indicates PLL lock.  
Transmit Data Pin. Pin 12 is not used. Connect Pin 12 to GND.  
Chip Enable. A logic low on this pin powers down the device and puts the charge pump output into three-state  
mode. Registers do not hold their values when CE is low. This pin only supports 3.3 V logic inputs.  
14  
15  
16  
17  
18  
19  
CLK  
Serial Clock Input. CLK clocks in the serial data to the registers. The data is latched into the 32-bit shift register on  
the CLK rising edge. This input is a high impedance CMOS input.  
Serial Data Input. The serial data is loaded most significant bit (MSB) first with the two least significant bits (LSBs) as  
the control bits. This input is a high impedance CMOS input.  
Load Enable, CMOS Input. When LE goes high, the data stored in the shift registers is loaded into one of the four  
latches. Select the latch using the control bits.  
Multiplexer Output. This multiplexer output allows the lock detect, the scaled RF, the scaled reference frequency,  
logic high, logic low, or register readback data to be accessed externally.  
Internal 1.8 V Regulator Output Pin. Place three parallel capacitors as close to the CREG1 pin as possible: 4.7 µF,  
100 nF, and 1 nF.  
Internal 1.8 V Regulator Output Pin. Place three parallel capacitors as close to the CREG2 pin as possible: 4.7 µF,  
100 nF, and 1 nF.  
DATA  
LE  
MUXOUT  
CREG1  
CREG2  
20  
21  
22  
23  
DC1  
DC2  
VP  
DC Bias Pin 1. Place a 1 µF capacitor in parallel with a 1 nF capacitor to ground, as close as possible to the DC1 pin.  
DC Bias Pin 2. Place a 1 µF capacitor in parallel with a 1 nF capacitor to ground, as close as possible to the DC2 pin.  
Charge Pump Power Supply.  
Maximum Charge Pump Current Setting Resistor. Connecting a resistor between the RSET pin and GND sets the  
maximum charge pump output current. The nominal voltage potential at the RSET pin is 0.66 V. The relationship  
between ICP and RSET is ICP_MAX = 12.96/RSET. For example, with RSET = 2.7 kΩ, ICP MAX = 4.8 mA. The relationship between  
bleed current (IBLEED) and RSET is IBLEED_MIN = 0.0103/RSET. For example, with RSET = 2.7 kΩ, IBLEED_MIN = 3.81 µA.  
RSET  
Rev. 0 | Page 7 of 30  
 
ADF41513  
Data Sheet  
Pin No. Mnemonic Description  
24  
CP  
Charge Pump Output. When enabled, this pin provides ICP to the external loop filter, which in turn drives the  
external VCO.  
EPAD  
Exposed Pad. The exposed pad must be connected to GND.  
Rev. 0 | Page 8 of 30  
Data Sheet  
ADF41513  
TYPICAL PERFORMANCE CHARACTERISTICS  
–50  
–60  
–60  
1: 100Hz –84.7799dBc/Hz  
HMC733, 10GHz  
2: 1kHz  
–100.0772dBc/Hz  
HMC733, 15GHz  
3: 10kHz –106.0022dBc/Hz  
4: 100kHz –107.2571dBc/Hz  
HMC733, 20GHz  
–70  
–80  
5: 1MHz  
6: 5MHz  
7: 5MHz  
–120.4055dBc/Hz  
–137.4443dBc/Hz  
–137.4443dBc/Hz  
–80  
–90  
–100  
–120  
–140  
–160  
–180  
1
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
2
3
4
5
6
CARRIER 7.999978185GHz  
10.6758dBm  
100  
1k  
10k  
100k  
1M  
10M  
100  
1k  
10k  
100k  
1M  
10M  
100M  
OFFSET FREQUENCY (Hz)  
OFFSET FREQUENCY (Hz)  
Figure 4. Phase Noise vs. Offset Frequency at 10 GHz, 15 GHz, and 20 GHz  
with the HMC733, ICP = 3.5 mA, Integer N Mode  
Figure 7. 8 GHz Phase Noise vs. Offset Frequency with the HMC509,  
I
CP = 3.5 mA, Fractional-N Mode  
–50  
–60  
–70  
1: 100Hz –77.5694dBc/Hz  
2: 1kHz  
–88.8020dBc/Hz  
–60  
–70  
3: 10kHz –96.3815dBc/Hz  
4: 100kHz –97.7809dBc/Hz  
5: 1MHz  
6: 5MHz  
–99.0890dBc/Hz  
–124.770dBc/Hz  
7: 10MHz –131.8076dBc/Hz  
8: 40MHz –150.4377dBc/Hz  
–80  
1
–80  
–90  
2
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
3
–90  
4
5
–120 BLEED  
–100  
–110  
–120  
–130  
6
7
8
PHASE NOISE 10.00dB/REF –60.00dBc/Hz  
CARRIER 19.999935636GHz  
–3.0171dBm  
–136 BLEED  
1k  
10k  
100k  
1M  
10M  
100  
1k  
10k  
100k  
1M  
10M  
OFFSET FREQUENCY (Hz)  
OFFSET FREQUENCY (Hz)  
Figure 5. 20 GHz Phase Noise vs. Offset Frequency with the HMC733,  
CP = 3.5 mA, Fractional-N Mode  
Figure 8. Phase Noise vs. Offset Frequency for Various Bleeds  
I
8.5  
7.5  
–30  
7.5937mA UP  
6.5812mA UP  
5.5687mA UP  
4.5562mA UP  
3.5437mA UP  
8dBm  
4dBm  
0dBm  
–4dBm  
–8dBm  
6.5  
–50  
–70  
5.5  
4.5  
3.5  
2.5312mA UP  
1.5187mA UP  
2.5  
1.5  
–90  
0.5062mA UP  
0.5  
–0.5  
–1.5  
–2.5  
–3.5  
–4.5  
–5.5  
–6.5  
–7.5  
–8.5  
0.5062mA DOWN  
1.5187mA DOWN  
2.5312mA DOWN  
3.5437mA DOWN  
4.5562mA DOWN  
5.5687mA DOWN  
6.5812mA DOWN  
7.5937mA DOWN  
–100  
–130  
–150  
–170  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
1k  
10k  
100k  
1M  
10M  
100M  
CP VOLTAGE (V)  
OFFSET FREQUENCY (Hz)  
Figure 9. 15 GHz Phase Noise vs. Offset Frequency at Various REFIN Powers,  
Fractional-N Mode, PFD = 100 MHz  
Figure 6. Current vs. CP Voltage, Charge Pump Compliance, RSET = 1.8 kΩ  
Rev. 0 | Page 9 of 30  
 
ADF41513  
Data Sheet  
10  
–50  
–60  
DEVICE A  
DEVICE B  
DEVICE C  
DEVICE D  
DEVICE E  
DEVICE F  
DEVICE G  
DEVICE H  
DEVICE I  
100MHz  
200MHz  
300MHz  
5
0
–70  
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–80  
–90  
–100  
–110  
–120  
22.5 25.0  
15.0 17.5 20.0  
2.5 5.0  
7.5 10.0 12.5  
12.5  
12.7  
12.9  
13.1  
13.3  
13.5  
13.7  
13.9  
0
(GHz)  
FREQUENCY  
TARGET FREQUENCY (GHz)  
Figure 12. Spur Level vs. Target Frequency with the HMC584 VCO,  
REFIN = 100 MHz, PFD = 100 MHz, PLL Loop BW = 80 kHz  
Figure 10. Sensitivity vs. Frequency for Multiple Soldered Devices  
–50  
10  
5
–60  
MAXIMUM SENSITIVITY –40°C  
0
MAXIMUM SENSITIVITY +25°C  
100MHz  
200MHz  
300MHz  
MAXIMUM SENSITIVITY +85°C  
MAXIMUM SENSITIVITY +105°C  
–70  
–80  
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–90  
–100  
MINIMUM SENSITIVITY –40°C  
MINIMUM SENSITIVITY +25°C  
MINIMUM SENSITIVITY +85°C  
MINIMUM SENSITIVITY +105°C  
–110  
–120  
22.5 25.0  
15.0 17.5 20.0  
2.5 5.0  
7.5 10.0 12.5  
0
(GHz)  
FREQUENCY  
TARGET FREQUENCY (GHz)  
Figure 11. Sensitivity vs. Frequency at Various Temperatures for Device A  
Figure 13. Spur Level vs. Target Frequency with Z-Communications  
V940ME03 VCO, REFIN = 100 MHz, PFD = 100 MHz, PLL Loop BW = 80 kHz  
Rev. 0 | Page 10 of 30  
 
 
Data Sheet  
ADF41513  
THEORY OF OPERATION  
The N divider value is generated by a Σ-Δ modulator. The  
REFERENCE INPUT  
ADF41513 contains two selectable Σ-Δ modulators. One  
modulator has a 25-bit fixed modulus (see Figure 16) and one  
has a variable modulus up to 49 bits (see Figure 17). Register 0,  
Bit 28 selects the modulator.  
The reference input stage is shown in Figure 14. The reference  
input accepts an ac-coupled, single-ended signal. During  
power-down, this circuit remains active and draws the same  
current from AVDD4 as during normal operation. With no  
reference connected, AVDD4 drops to approximately 600 μA.  
20k  
25  
RF INT DIVIDER  
N = INT + FRAC/2  
FROM RF  
INPUT STAGE  
TO PFD  
N COUNTER  
REF  
TO R COUNTER  
IN  
BUFFER  
THIRD-ORDER  
FRACTIONAL  
INTERPOLATOR  
Figure 14. Reference Input Stage  
INT  
VALUE  
FRAC  
VALUE  
25  
2
RF INPUT STAGE  
The RF input stage is shown in Figure 15. A two-stage limiting  
amplifier follows the RF input stage to generate the current  
mode logic (CML) clock levels needed for the prescaler. The  
RFINA and RFINB inputs require dc blocking capacitors to isolate  
the 1.65 V bias level from the input signal.  
Figure 16. Fixed Modulus N Divider  
FRAC2  
MOD2  
RF INT DIVIDER  
N = INT +  
FRAC1 +  
2
TO PFD  
FROM RF  
INPUT STAGE  
N COUNTER  
1.65V  
BIAS  
THIRD-ORDER  
FRACTIONAL  
INTERPOLATOR  
GENERATOR  
AV  
DD2  
768  
768Ω  
EXTERNAL  
AC COUPLING  
FOR SE INPUT  
INT  
REG  
FRAC1  
REG  
FRAC2  
VALUE  
MOD2  
VALUE  
RF  
A
IN  
1pF  
1pF  
Figure 17. Variable Modulus N Divider  
RF  
B
IN  
25-Bit Fixed Modulus (Register 0, Bit 28 = 0)  
For the 25-bit fixed modulus, the RF VCO frequency (RFOUT  
equation is  
)
RFOUT = fPFD × (INT + (FRAC/225))  
(2)  
AGND  
where:  
Figure 15. RF Input Stage  
RFOUT is the RF VCO frequency.  
N DIVIDER AND R COUNTER  
INT is a 16-bit value set by Bits[19:4] in Register 0. In Integer N  
mode, INT is 20 to 511 for a 4/5 prescaler and 64 to 1023 for a 8/9  
prescaler, and in fractional-N mode, INT is 23 to 511 for a 4/5  
prescaler and 75 to 1023 for a 8/9 prescaler.  
FRAC is a 25-bit value set by Bits[28:4], FRAC1, in Register 1.  
The minimum RF output resolution is set by fPFD/225. For  
The N divider is used to divide the RF input signal down to the  
PFD frequency (fPFD).  
f
PFD = REFIN × ((1 + D)/(R × (1 + T)))  
(1)  
where:  
REFIN is the reference input frequency.  
D is the REFIN doubler bit value (0 or 1).  
R is the preset divide ratio of the binary 5-bit programmable  
reference counter (1 to 32).  
example, if fPFD = 100 MHz, the minimum resolution is 2.98 Hz.  
By default, due to the architecture of the Σ-Δ modulator, there is  
a fixed (fPFD/226) offset added or subtracted from the programmed  
output frequency. To remove this offset, set LSB_PI (Register 5,  
Bit 24).  
T is the REFIN divide by 2 bit value (0 or 1).  
Rev. 0 | Page 11 of 30  
 
 
 
 
 
 
 
 
ADF41513  
Data Sheet  
Variable Modulus (R0, DB28 = 1)  
MUXOUT  
For the variable modulus, the RF VCO frequency (RFOUT  
equation is  
RFOUT = fPFD × (INT + (FRAC1 + (FRAC2/MOD2))/225) (3)  
where:  
)
The output multiplexer on the ADF41513 allows the user to access  
various internal nodes on the chip. The M4, M3, M2, and M1 bits  
in Register 12 (see the Register 12 (R12) Map section) controls  
the state of MUXOUT. Figure 19 shows the MUXOUT section in  
block diagram form. Many of these access points are useful for  
debugging. For example, select the N divider output to check if  
the N divider is functioning correctly. Most of the access points  
are self explanatory. Set the CLK1 divider output signal to access  
the internal CLK1 divider signal used for phase resync. During  
power-down (CE = logic low), MUXOUT is set to GND.  
THREE-STATE OUTPUT  
RFOUT is the output frequency of external VCO.  
INT is a 16-bit value set by Bits[19:4] in Register 0. In Integer N  
mode, INT is 20 to 511 for a 4/5 prescaler and 64 to 1023 for a 8/9  
prescaler, and in fractional-N mode, INT is 23 to 511 for a 4/5  
prescaler and 75 to 1023 for a 8/9 prescaler.  
FRAC1 is a 25-bit value set by Bits[28:4] in Register 1.  
FRAC2 is a 24-bit value set by Bits[27:4] in Register 3.  
MOD2 is a 24-bit value set by Bits[27:4] in Register 4.  
The minimum RF output resolution is set by fPFD/249. Therefore,  
for fPFD = 100 MHz, the minimum resolution is 0.1776 µHz. To  
achieve this resolution, MOD2 must be set to its maximum of  
(224 − 1), which is 16,777,215.  
AV  
DD5  
AV  
DD5  
DGND  
R-DIVIDER OUTPUT  
N-DIVIDER OUTPUT  
DIGITAL LOCK DETECT  
SERIAL DATA OUTPUT  
CLK DIVIDER OUTPUT  
R-DIVIDER/2  
CONTROL  
MUXOUT  
MUX  
N-DIVIDER/2  
Integer N Mode  
DGND  
READBACK TO MUXOUT  
When FRAC1 and FRAC2 are both equal to 0, the ADF41513  
can operate in purely integer N mode, which improves the  
phase noise performance of the PLL and sets the frequency  
resolution to fPFD. This feature is not automatic and must be  
manually set for Integer N channels. Bleed must also be  
disabled when using the ADF41513 in Integer N operation. See  
the Register 12 (R12) Map section for more information on  
programming the ADF41513 for Integer N operation.  
Figure 19. MUXOUT Schematic  
LOCK DETECTOR  
The lock detector compares the PFD output pulse width against  
a lock detector window. Measurements are performed every  
PFD comparison cycle when LD_CLK_SEL = 0 or every 32nd  
cycle when LD_CLK_SEL = 1. If the pulse width falls within the  
lock window, a counter is incremented. If the counter reaches  
the count set by LD_COUNT without an up or down pulse  
width exceeding the lock detect window and without a cycle slip  
occurring, lock is then declared by the lock detector.  
R COUNTER  
The 5-bit R counter allows REFIN to be divided down to produce  
the reference clock to the PFD. Division ratios from 1 to 32 are  
allowed.  
When the lock detector has declared lock, the main mechanism  
to declare a loss of lock is for a cycle slip to occur. This cycle slip  
is usually caused by a frequency error at the phase detector  
input, causing the phase error to grow until the error exceeds  
360°. The phase error then wraps around to 0°. This phase wrap  
around is a cycle slip.  
PFD AND CHARGE PUMP  
The PFD takes inputs from the R counter and N counter and  
produces an output proportional to the phase and frequency  
difference between these inputs. Figure 18 shows a PFD simplified  
schematic. The PFD includes a fixed delay element that sets the  
width of the antibacklash pulse, which is typically 1 ns. This pulse  
ensures that there is no dead zone in the PFD transfer function  
and produces a consistent reference spur level.  
A high level on MUXOUT indicates the PLL is in lock.  
The lock detector window size, LD_COUNT, and  
LD_CLK_SEL all affect the sensitivity of the lock detector.  
Larger windows, smaller LD_COUNT values, and  
UP  
HIGH  
D1  
Q1  
LD_CLK_SEL = 0 shorten the overall lock detect time and  
increase sensitivity. Smaller windows, larger LD_COUNT  
values, and LD_CLK_SEL = 1 increase the overall lock detect  
time and reduce sensitivity. Excessive lock detector sensitivity  
can cause multiple transitions between a locked state and out of  
lock state during frequency changes. Insufficient lock detector  
sensitivity can cause the detector to indicate an out of lock state  
when, in fact, the PLL is locked.  
U1  
CLR1  
+IN  
CHARGE  
PUMP  
CP  
U3  
DELAY  
DOWN  
CLR2  
D2 Q2  
HIGH  
U2  
–IN  
Figure 18. PFD Simplified Schematic  
Rev. 0 | Page 12 of 30  
 
 
 
 
 
 
Data Sheet  
ADF41513  
The window size can be adjusted between 0.9 ns and 11.5 ns  
with LDP, Bits[9:8] in Register 6 and LD bias, Bits[31:30] in  
Register 9. The ideal window size is halfway between the  
maximum window, set by the phase comparison period, tPFD  
(10 ns for 100 MHz reference and R = 1), and the minimum is  
set by  
PROGRAM MODES  
Table 6 and Figure 23 through Figure 36 show how to set up the  
program modes in the ADF41513.  
Several settings in the ADF41513 are double buffered. These  
settings include MOD2, FRAC1, FRAC2, R counter value,  
reference doubler, CP current setting, RDIV2, phase word,  
prescaler, and CLK1 divider. Two events must occur before the  
device uses a new value for any of the double buffered settings.  
First, the new value is latched into the device by writing to the  
appropriate register. Second, a new write must be performed on  
Register 0. For example, updating the FRAC1 value requires a  
write to Register 1 and a write to Register 0. Write to Register 1  
first, followed by the write to Register 0. The frequency change  
begins after the write to Register 0. Double buffering ensures  
that the bits written to Register 1 do not take effect until after  
the write to Register 0.  
(IBLEED/ICP) × tPFD  
(4)  
LD_COUNT can range from 2 counts to 8192 counts. The  
fastest lock indication requires two measurement cycles (20 ns  
with 100 MHz reference, R = 1, and LD_CLK_SEL = 0). In  
practice, the lock indication takes much longer because of the  
loop filter on the phase comparator. When LD_CLK_SEL = 1, a  
minimum 64 measurements are required (640 ns).  
READBACK  
Register data can be read by setting MUXOUT to serial data  
output. In this mode, the MUXOUT line concurrently transfers  
32 bits of the previous written register value while clocking in  
32 bits of write data.  
Table 6. C4, C3, C2, and C1 Truth Table  
Control Bits  
C4  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
C3  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
C2  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
C1  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
Register  
R0  
R1  
R2  
R3  
R4  
R5  
R6  
R7  
R8  
R9  
R10  
R11  
R12  
R13  
To read back a specific register, chip revision code, or bit  
pattern, write 1000b to Bits[31:28], Register 12. Bits[19:14] in  
Register 12 set the data that is output from the MUXOUT pin  
when in readback mode.  
To prevent spurious writes, the DATA pin must be held at logic  
low while a readback is taking place.  
INPUT SHIFT REGISTERS  
The ADF41513 contains a programmable digital block. Data is  
clocked into the 32-bit shift register on each rising edge of CLK.  
The data is clocked in MSB first. Data is transferred from the  
shift register to the chosen register on the rising edge of LE. The  
destination latch is determined by the state of the four control  
bits (C4, C3, C2, and C1) in the shift register. The following are  
the four LSBs: DB3, DB2, DB1, and DB0. The truth table for  
these bits is shown in Table 6. Figure 20 through Figure 22 show  
a summary of how the registers are programmed.  
Rev. 0 | Page 13 of 30  
 
 
 
 
ADF41513  
Data Sheet  
REGISTER MAPS  
INT REGISTER (R0)  
CONTROL  
BITS  
RESERVED  
16-BIT INTEGER VALUE (INT)  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
0
0
0
V1  
0
0
0
0
0
0
0
0
N16 N15 N14 N13 N12 N11 N10 N9  
N8  
N7  
N6  
N5  
N4  
N3  
N2 N1 C4(0) C3(0) C2(0) C1(0)  
FRAC1 REGISTER (R1)  
DBB  
CONTROL  
BITS  
25-BIT FRAC1 VALUE (FRAC1)  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
D1  
0
0
F25 F24 F23 F22 F21 F20 F19 F18 F17 F16 F15 F14 F13 F12 F11 F10 F9  
F8  
F7  
F6  
F5  
F4  
F3  
F2  
F1 C4(0) C3(0) C2(0) C1(1)  
PHASE REGISTER (R2)  
DBB  
CONTROL  
BITS  
RESERVED  
12-BIT PHASE VALUE (PHASE)  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
PA1 P12 P11 P10 P9 P8 P7 P6 P5 P4 P3 P2 P1 C4(0) C3(0) C2(1) C1(0)  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
FRAC2 REGISTER (R3)  
DBB  
CONTROL  
BITS  
24-BIT FRAC2 VALUE (FRAC2)  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
0
0
0
0
F24 F23 F22 F21 F20 F19 F18 F17 F16 F15 F14 F13 F12 F11 F10 F9  
F8  
F7  
F6  
F5  
F4  
F3  
F2  
F1 C4(0) C3(0) C2(1) C1(1)  
MOD2 REGISTER (R4)  
DBB  
CONTROL  
BITS  
24-BIT MOD2 VALUE (MOD2)  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
M24 M23 M22 M21 M20 M19 M18 M17 M16 M15 M14 M13 M12 M11 M10 M9 M8 M7 M6 M5 M4 M3 M2 M1 C4(0) C3(1) C2(0) C1(0)  
0
0
0
0
NOTES  
1. DBB MEANS DOUBLE-BUFFERED BITS.  
Figure 20. Register Summary for Register 0 (R0) to Register 4 (R4)  
Rev. 0 | Page 14 of 30  
 
 
Data Sheet  
ADF41513  
R DIVIDER REGISTER (R5)  
DBB  
DBB  
DBB  
DBB  
CP  
CURRENT  
SETTING  
5-BIT R COUNTER  
CONTROL  
BITS  
12-BIT CLK DIVIDER VALUE  
1
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
DL2 DL1  
0
CPI4 CPI3 CPI2 CPI1 L1  
P1  
U2  
U1  
R5  
R4  
R3  
R2  
R1 D12 D11 D10 D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
C4(0) C3(1) C2(0) C1(1)  
FUNCTION REGISTER (R6)  
CONTROL  
BITS  
BLEED CURRENT  
RESERVED  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
A1 LOL1  
BC8 BC7 BC6 BC5 BC4 BC3 BC2 BC1 BP1  
SD1 CP1  
1
0
0
0
0
0
LDP2 LDP1 PP1 PD C31 CR1  
C4(0) C3(1) C2(1) C1(0)  
BE1  
0
IM1  
CLOCK 2 REGISTER (R7)  
CLK  
DIVIDER  
MODE  
CONTROL  
BITS  
12-BIT CLK DIVIDER VALUE  
2
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
C4(0) C3(1) C2(1) C1(1)  
D1 CS2 CS1  
0
CN1 LD1  
0
CN3 CN2  
0
0
ND2 ND1 PB2 PB1  
C
C1 D12 D11 D10 D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
RESERVED REGISTER (R8)  
CONTROL  
BITS  
RESERVED  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
C4(1) C3(0) C2(0) C1(0)  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RESERVED REGISTER (R9)  
RESERVED  
CONTROL  
BITS  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
C4(1) C3(0) C2(0) C1(1)  
LB2 LB1  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
NOTES  
1. DBB MEANS DOUBLE-BUFFERED BITS.  
Figure 21. Register Summary for Register 5 (R5) to Register 9 (R9)  
Rev. 0 | Page 15 of 30  
ADF41513  
Data Sheet  
RESERVED REGISTER (R10)  
CONTROL  
BITS  
RESERVED  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
0
0
0
0
C4(1) C3(0) C2(1) C1(0)  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RESERVED REGISTER (R11)  
CONTROL  
BITS  
RESERVED  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
PDS  
0
0
0
0
0
C4(1) C3(0) C2(1) C1(1)  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
MUXOUT REGISTER (R12)  
READBACK  
SELECT  
CONTROL  
BITS  
MUXOUT  
RESERVED  
RESERVED  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
M4 M3 M2 M1 LL  
0
0
0
0
MR1  
0
L1  
R6  
R5  
R4  
R3  
R2  
R1  
0
0
0
0
0
0
0
0
0
0
C4(1) C3(1) C2(0) C1(0)  
RESERVED REGISTER (R13)  
CONTROL  
BITS  
RESERVED  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
C4(1) C3(1) C2(0) C1(1)  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Figure 22. Register Summary for Register 10 (R10) to Register 13 (R13)  
Rev. 0 | Page 16 of 30  
 
Data Sheet  
ADF41513  
REGISTER 0 (R0) MAP  
REGISTER 1 (R1) MAP  
DITHER2  
Frequency changes occur only on a write to Register 0.  
Variable Modulus  
Set Register 1, Bit 31 = 1 to enable the Σ-Δ modulator dither.  
Enabling DITHER2 can reduce fractional spurs.  
Register 0, Bit 28 = 0 enables the 25-bit fixed modulus.  
Register 0, Bit 28 = 1 enables the variable modulus. See the  
N Divider and R Counter section for more information.  
FRAC1  
Register 1, Bits[28:4] set the FRAC1 value. See the N Divider  
and R Counter section for more information. When using a  
fixed modulus, Bits[28:4] are the FRAC value.  
INT Value  
Register 0, Bits[19:4] set the INT value. See the N Divider and  
R Counter section for more information.  
INT REGISTER (R0)  
CONTROL  
BITS  
RESERVED  
RESERVED  
16-BIT INTEGER VALUE (INT)  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
0
0
0
V1  
0
0
0
0
0
0
0
0
N16 N15 N14 N13 N12 N11 N10 N9  
N8  
N7  
N6  
N5  
N4  
N3  
N2 N1 C4(0) C3(0) C2(0) C1(0)  
V1 VARIABLE MODULUS  
...  
N16 N15 N14 N13 N12 N11 N10  
N5 N4  
N3 N2  
N1  
INTEGER WORD  
0
1
25-BIT FIXED MODULUS  
VARIABLE MODULUS  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
NOT ALLOWED  
NOT ALLOWED  
...  
...  
0
.
0
.
0
.
0
.
0
.
0
.
0
.
0
.
0
.
0
.
1
.
0
.
NOT ALLOWED  
.
...  
...  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
1
1
0
1
0
NOT ALLOWED  
20  
...  
...  
0
.
0
.
0
.
0
.
0
.
0
.
0
.
1
.
0
.
1
.
0
.
1
.
21  
.
...  
...  
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
0
1
1022  
1023  
...  
...  
...  
0
.
1
.
0
.
0
.
0
.
0
.
0
.
0
.
NOT ALLOWED  
.
0
.
0
.
0
.
0
.
1
1
1
1
1
1
1
...  
1
1
1
1
1
NOT ALLOWED  
INTEGER N MODE  
PRESCALER 4/5: 20 ≤ INT ≤ 511  
PRESCALER 8/9: 64 ≤ INT ≤ 1023  
FRACTIONAL-N MODE  
PRESCALER 4/5: 23 ≤ INT ≤ 511  
PRESCALER 8/9: 75 ≤ INT ≤ 1023  
Figure 23. Register 0 (R0) Map  
FRAC1 REGISTER (R1)  
DBB  
CONTROL  
BITS  
25-BIT FRAC1 VALUE (FRAC1)  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
D1  
0
0
F25 F24 F23 F22 F21 F20 F19 F18 F17 F16 F15 F14 F13 F12 F11 F10 F9  
F8  
F7  
F6  
F5  
F4  
F3  
F2  
F1 C4(0) C3(0) C2(0) C1(1)  
D1  
0
DITHER2  
OFF  
...  
F25 F24  
F2  
F1  
FRAC1 WORD  
0
0
0
0
.
0
0
0
0
.
...  
...  
...  
...  
...  
...  
...  
...  
...  
...  
...  
0
0
1
1
.
0
1
0
1
.
0
1
ON  
1
2
3
.
.
.
.
.
.
.
.
.
.
.
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
33,554,428  
33,554,429  
33,554,430  
33,554,431  
NOTES  
1. DBB MEANS DOUBLE-BUFFERED BITS.  
Figure 24. Register 1 (R1) Map  
Rev. 0 | Page 17 of 30  
 
 
 
ADF41513  
Data Sheet  
REGISTER 2 (R2) MAP  
REGISTER 3 (R3) MAP  
Phase Adjust  
FRAC2  
Set Register 2, Bit 31 to 1 to enable phase adjust. Phase adjust  
increases the phase of the output relative to the current phase.  
The phase change occurs after a write to Register 0.  
Register 3, Bits[27:4] set the FRAC2 value. See the N Divider  
and R Counter section for more information. When using a  
fixed modulus, FRAC2 is ignored.  
Phase Shift = (Phase Value × 360°)/212  
(5)  
Phase Value  
Register 2, Bits[15:4] set the phase value for phase adjust. For  
example, setting the phase value = 512 increases the output  
phase by 45°.  
If phase adjust is not used, set the phase value to 0.  
PHASE REGISTER (R2)  
DBB  
CONTROL  
BITS  
RESERVED  
12-BIT PHASE VALUE (PHASE)  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
PA1 P12 P11 P10 P9 P8 P7 P6 P5 P4 P3 P2 P1 C4(0) C3(0) C2(1) C1(0)  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
PA1 PHASE ADJUST  
0
1
DISABLED  
ENABLED  
...  
P12 P11  
P2  
P1  
PHASE VALUE  
0
0
0
0
.
0
0
0
0
.
...  
...  
...  
...  
...  
...  
...  
...  
...  
...  
...  
0
0
1
1
.
0
1
0
1
.
0
1
2
3
.
.
.
.
.
.
.
.
.
.
.
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
4,092  
4,093  
4,094  
4,095  
NOTES  
1. DBB MEANS DOUBLE-BUFFERED BITS.  
Figure 25. Register 2 (R2) Map  
FRAC2 REGISTER (R3)  
DBB  
CONTROL  
BITS  
24-BIT FRAC2 VALUE (FRAC2)  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
C4(0) C3(0) C2(1) C1(1)  
0
0
0
0
F24 F23 F22 F21 F20 F19 F18 F17 F16 F15 F14 F13 F12 F11 F10 F9  
F8  
F7  
F6  
F5  
F4  
F3  
F2  
F1  
...  
F24 F23  
F2  
F1  
FRAC2 WORD  
0
0
0
0
.
0
0
0
0
.
...  
...  
...  
...  
...  
...  
...  
...  
...  
...  
...  
0
0
1
1
.
0
1
0
1
.
0
1
2
3
.
.
.
.
.
.
.
.
.
.
.
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
16,777,212  
16,777,213  
16,777,214  
16,777,215  
NOTES  
1. DBB MEANS DOUBLE-BUFFERED BITS.  
Figure 26. Register 3 (R3) Map  
Rev. 0 | Page 18 of 30  
 
 
Data Sheet  
ADF41513  
the fRFIN signal so that the N divider can operate correctly. The  
prescaler is based on a synchronous 4/5 core. The prescaler  
setting affects the RF frequency and the minimum and maximum  
INT value as follows:  
REGISTER 4 (R4) MAP  
MOD2  
Register 4, Bits[27:4] set the MOD2 value. See the N Divider  
and R Counter section for more information. When using a  
fixed modulus, MOD2 is ignored.  
For Integer N mode,  
Prescaler 4/5: 20 ≤ INT ≤ 511, fRFIN_MAX = 16 GHz  
Prescaler 8/9: 64 ≤ INT ≤ 1023, fRFIN_MAX = 26.5 GHz  
REGISTER 5 (R5) MAP  
DLD Modes  
For fractional-N mode,  
Register 5, Bits[31:30] set the digital lock detect (DLD) pin  
state. For normal digital lock detect, set Register 5, Bits[31:30] =  
0b01. Other options tristate the pin and force a high or low  
logic level, as shown in Figure 28.  
Prescaler 4/5: 23 ≤ INT ≤ 511, fRFIN_MAX = 16 GHz  
Prescaler 8/9: 75 ≤ INT ≤ 1023, fRFIN_MAX = 26.5 GHz  
RDIV2  
CP Current Setting  
Register 5, Bit 22 controls the reference divide by 2 block. See  
the N Divider and R Counter section for more information.  
This feature can provide a 50% duty cycle signal to the PFD.  
Register 5, Bits[28:25] set the charge pump current. Set these  
bits to the charge pump current that the loop filter is designed  
for based on the application of the user. The recommended  
practice is to design the loop filter for a charge pump current of  
2.4 mA or 2.7 mA and then use the programmable charge pump  
current to fine tune the loop filter frequency response.  
Reference Doubler  
Register 5, Bit 21 controls the reference doubler block. See the  
N Divider and R Counter section for more information.  
LSB_P1  
R Counter  
Register 5, Bit 24 = 0 enables a 26th bit in the fixed modulus  
MOD value. Enabling the 26th bit reduces fractional spurs but  
the reduction also adds a fixed fPFD/226 frequency offset to the  
output frequency. To disable this frequency offset, set Register 5,  
Bit 24 = 1.  
Register 5, Bits[20:16] control the R counter value. See the N  
Divider and R Counter section for more information.  
CLK1 Divider  
Register 5, Bits[15:4] control the CLK1 divider value. See the  
Phase Resync section for more information.  
Prescaler  
The dual modulus prescaler (4/5 and 8/9) is set by Register 5,  
Bit 23. The prescaler, at the input to the N divider, divides down  
MOD2 REGISTER (R4)  
DBB  
CONTROL  
BITS  
24-BIT MOD2 VALUE (MOD2)  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
M24 M23 M22 M21 M20 M19 M18 M17 M16 M15 M14 M13 M12 M11 M10 M9 M8 M7 M6 M5 M4 M3 M2 M1  
0
0
0
0
C4(0) C3(1) C2(0) C1(0)  
...  
M24 M23  
M2  
M1  
MOD2 WORD  
0
0
0
0
.
0
0
0
0
.
...  
...  
...  
...  
...  
...  
...  
...  
...  
...  
...  
0
0
1
1
.
0
1
0
1
.
0
1
2
3
.
.
.
.
.
.
.
.
.
.
.
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
16,777,212  
16,777,213  
16,777,214  
16,777,215  
NOTES  
1. DBB MEANS DOUBLE-BUFFERED BITS.  
Figure 27. Register 4 (R4) Map  
Rev. 0 | Page 19 of 30  
 
 
ADF41513  
Data Sheet  
R DIVIDER REGISTER (R5)  
DBB  
DBB  
DBB  
DBB  
CP  
CURRENT  
SETTING  
5-BIT R COUNTER  
CONTROL  
BITS  
12-BIT CLK DIVIDER VALUE  
1
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
C4(0) C3(1) C2(0) C1(1)  
DL2 DL1  
0
CPI4 CPI3 CPI2 CPI1 L1  
P1  
U2  
U1  
R5  
R4  
R3  
R2  
R1 D12 D11 D10 D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
REFERENCE  
DOUBLER  
U1  
DL2 DL1 DLD PIN  
D12 D11 ...  
D2 D1  
CLK DIVIDER VALUE  
1
0
0
0
1
TRISTATE  
0
1
DISABLED  
ENABLED  
0
0
0
0
.
0
0
0
0
.
...  
...  
...  
...  
...  
...  
...  
...  
...  
...  
...  
0
0
1
1
.
0
1
0
1
.
0
DIGITAL LOCK DETECT  
1
1
1
0
1
LOW  
HIGH  
2
3
U2  
R DIVIDER  
DISABLED  
ENABLED  
.
0
1
.
.
.
.
.
.
.
.
.
.
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
4,092  
4,093  
4,094  
4,095  
P1  
PRESCALER  
0
1
4/5  
8/9  
L1  
0
LSB P1  
R5  
R4  
0
0
0
0
.
R3  
0
0
0
1
.
R2  
R1  
1
0
1
0
.
R COUNTER DIVIDE RATIO  
ON: 0.5 LSB OFFSET  
OFF: NO OFFSET  
0
0
0
0
.
0
1
1
0
.
1
1
2
3
4
I
(mA)  
CP  
.
CPI4  
CPI3  
CPI2  
CPI1  
2.7kΩ 1.8kΩ  
.
.
.
.
.
.
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0.3  
0.6  
0.9  
1.2  
1.5  
1.8  
2.1  
2.4  
2.7  
3.0  
3.3  
3.6  
3.9  
4.2  
4.5  
4.8  
0.45  
0.90  
1.35  
1.80  
2.25  
2.70  
3.15  
3.60  
4.05  
4.50  
4.95  
5.40  
5.85  
6.30  
6.75  
7.20  
.
.
.
.
.
.
1
1
1
0
1
1
1
0
1
1
1
0
0
1
1
0
1
0
1
0
29  
30  
31  
32  
NOTES  
1. DBB MEANS DOUBLE-BUFFERED BITS.  
Figure 28. Register 5 (R5) Map  
Rev. 0 | Page 20 of 30  
 
Data Sheet  
ADF41513  
FRAC = 0. Remove this glitch by setting Register 6, Bit 17 = 1  
(recommended setting).  
REGISTER 6 (R6) MAP  
Bleed Current  
CP Three-State, PD on  
Register 6, Bits[31:24] set the bleed current. If the PD polarity is  
set to positive, the optimum bleed current is set by  
When Register 6, Bit 16 = 1, the charge pump is in three-state  
mode but the phase detector (PD) is still operational. Set  
Register 6, Bit 16 = 0 for normal operation.  
Bleed Value = floor(90 × (fPFD/100 MHz) × (ICP_CODE + 1)/16) (6)  
where:  
Lock Detector Precision (LDP)  
Bleed Value is the value programmed to Register 6, Bits[31:24].  
Register 6, Bits[9:8] and Register 9, Bits[31:30] control the  
sensitivity of the digital lock detector. Lock detect precision  
(Register 6, Bits[9:8]) in conjunction with lock detector bias  
(Register 9, Bits[31:30]) adjusts the width of the digital lock  
detector window. Lock is declared when the PFD reference  
arrival time and divided VCO input arrival times consistently  
differ by less than the LDP value. Small LDP settings may cause  
a false out of lock indication when used with large bleed  
currents. See the Lock Detector section for more information.  
I
CP_CODE is the charge pump current setting programmed to  
Register 5, Bits[28:25].  
PFD is the PFD frequency in MHz.  
f
If the PD polarity is set to negative, the optimum bleed current  
is set by  
Bleed Value = floor(144 × (fPFD/100 MHz) × (ICP_CODE +1)/16) (7)  
Bleed Polarity  
Register 6, Bit 23 controls the polarity of the bleed current.  
Negative polarity is the typical usage.  
Phase Detector (PD) Polarity  
If using a noninverting loop filter and a VCO with a positive  
tuning slope, set the PD polarity to positive.  
Bleed Enable  
In fractional-N mode of operation, charge pump linearity (and  
ultimately phase noise and spurious performance) is improved  
if the VCO and reference inputs to the phase detector operate  
with a phase offset. This phase offset is implemented by adding  
a constant bleed current at the output of the charge pump. Use  
bleed only when operating in fractional-N mode, that is,  
FRAC1 or FRAC2 not equal to 0. Set Register 6, Bit 22 = 1 to  
enable bleed.  
If using an inverting loop filter and a VCO with a negative  
tuning slope, set the PD polarity to positive.  
If using a noninverting loop filter and a VCO with a negative  
tuning slope, set the PD polarity to negative.  
If using an inverting loop filter and a VCO with a positive  
tuning slope, set the PD polarity to negative.  
Power Down  
INT Mode  
Set Register 6, Bit 6 = 1 to perform a software power-down. All  
circuit blocks are disabled, and the chip enters a low power state  
drawing approximately 4 mA. Set Register 6, Bit 6 = 0 to reenable  
the chip. Register values are not lost during power-down. Only  
one power-down mode is available via Register 11, Bit 31. Set  
Register 11, Bit 31 = 1 to leave the internal 1.8 V N divider  
regulator on during power-down.  
Register 6, Bit 20 completely disables the fractional-N Σ-Δ  
modulator (SDM). Setting Register 6, Bit 20 = 1 disables the  
SDM so the ADF41513 operates purely in integer N mode.  
Disabling the SDM improves phase noise performance and  
changes the frequency resolution to fPFD  
.
ABP  
Register 6, Bit 19 affects the antibacklash pulse (ABP) width.  
The recommended setting for best figure of merit (FOM) is  
narrow (Register 6, Bit 19 = 1).  
Note that Register 12, Bit 20 must be set to 0 when writing this  
power-down bit. Otherwise, the chip cannot be powered back  
on again by setting Register 6, Bit 6 = 0.  
Loss of Lock (LOL) Enable  
CP Three-State  
If digital lock detect is asserted when loss of lock is enabled and  
the reference signal is removed, digital lock detect goes low. Set  
Register 6, Bit 18 = 1 to enable loss of lock (recommended).  
Setting Register 6, Bit 5 = 1 puts the charge pump into three-  
state mode. Set Register 6, Bit 5 = 0 for normal operation.  
Counter Reset  
Sigma-Delta (SD) Reset  
Setting Register 6, Bit 4 = 1 holds the N divider and R counter  
in reset, which results in no signals being received at the PFD.  
When Register 6, Bit 17 = 0 on a write to Register 0, the SDM is  
temporarily set to a fractional value of 0. The SD reset ensures a  
consistent fractional spur pattern but also results in a glitch in  
the output frequency when the N divider momentarily outputs  
Rev. 0 | Page 21 of 30  
 
ADF41513  
Data Sheet  
FUNCTION REGISTER (R6)  
CONTROL  
BITS  
BLEED CURRENT  
RESERVED  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
BC8 BC7 BC6 BC5 BC4 BC3 BC2 BC1 BP1 BE1  
0
IM1 A1  
L1 SR1 CP1  
1
0
0
0
0
0
LDP2 LDP1 PP1 PD C31 CR1  
C4(0) C3(1) C2(1) C1(0)  
COUNTER  
CR1 RESET  
0
0
1
BLEED POLARITY  
NEGATIVE  
IM1  
0
INT MODE  
0
1
DISABLED  
ENABLED  
SD ON (FRAC-N)  
SD OFF (INT-N)  
CP THREE-STATE  
PD ON  
POSITIVE  
CP1  
1
0
1
DISABLED  
ENABLED  
CP  
C31 THREE-STATE  
A1 ABP  
0
0
1
BLEED ENABLE  
DISABLED  
WIDE  
0
1
0
1
DISABLED  
ENABLED  
NARROW  
ENABLED  
PD  
POWER DOWN  
L1  
LOL  
0
1
NORMAL OPERATION  
POWER-DOWN DEVICE  
0
1
DISABLED  
ENABLED  
PP1 PD POLARITY  
SR1  
0
SD RESET  
0
1
NEGATIVE  
POSITIVE  
RESET ON R0 WRITE  
NO RESET  
1
LDP2 LDP1 R9[31] R9[30]  
LDP  
...  
BC8 BC7  
BC2 BC1 BLEED CURRENT (µA)  
2.7kΩ 1.8kΩ  
0
0
1
1
0
1
0
1
0
0
0
0
0
0
0
0
4.3ns  
2.8ns  
1.7ns  
0.9ns  
0
0
0
0
.
0
0
0
0
.
...  
...  
...  
...  
...  
...  
...  
...  
...  
...  
...  
0
0
1
1
.
0
1
0
1
.
0
0
3.81  
7.63  
11.44  
.
5.72  
11.44  
17.17  
.
0
0
1
1
0
1
0
1
5.2ns  
3.5ns  
2.1ns  
1.2ns  
0
0
0
0
1
1
1
1
.
.
.
.
.
.
.
.
.
.
.
.
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
961.33  
965.15  
968.96  
972.78  
1442  
1447.72  
1453.44  
1459.17  
0
0
1
1
0
1
0
1
7.0ns  
4.7ns  
2.9ns  
1.6ns  
1
1
1
1
0
0
0
0
0
0
1
1
0
1
0
1
1
1
1
1
1
1
1
1
11.5ns  
7.9ns  
4.9ns  
2.8ns  
Figure 29. Register 6 (R6) Map  
Rev. 0 | Page 22 of 30  
Data Sheet  
ADF41513  
Prescaler (PS) Bias  
Set these bits to 0b10.  
CLK Divider Mode  
REGISTER 7 (R7) MAP  
Lock Detector Count (LD_COUNT)  
LD_COUNT sets the initial value of the lock detect counter. See  
the Lock Detector section for more information about the  
operation of the lock detector.  
Setting Register 7, Bits[19:18] = 0b10 enables a phase resync.  
See the Phase Resync section for more information.  
Lock Detect Clock Select (LD_CLK_SEL)  
When not using phase resync, set Register 7, Bits[19:18] = 0b00.  
The lock detector checks for lock on every phase comparison  
cycle when LD CLK SEL = 1. Otherwise, the lock detector  
checks for lock on every 32nd cycle. Use LD CLK SEL = 1 to  
speed up declaration of lock at the cost of reduced lock  
indication stability during frequency changes.  
CLK2 Divider Value  
Register 7, Bits[17:6] control the CLK2 divider value. The CLK2  
divider value controls the timing of the phase resync pulse. See  
the Phase Resync section for more information.  
SDM to N Divider Timing Adjustment (N Delay)  
This control adjusts the timing between the SDM output and  
the N divider. Set these bits to 0b01.  
CLOCK 2 REGISTER (R7)  
CLK  
DIVIDER  
MODE  
CONTROL  
BITS  
12-BIT CLK DIVIDER VALUE  
2
N DELAY PS BIAS  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
LC3 LC2 LC1 C4(0) C3(1) C2(1) C1(1)  
0
0
0
0
LS1  
0
0
ND2 ND1 PB2 PB1 C2 C1 D12 D11 D10 D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
...  
DB17 DB16  
DB7 DB6  
CLK DIVIDER VALUE  
2
0
0
0
0
.
.
.
1
1
1
1
0
0
0
0
.
.
.
1
1
1
1
...  
...  
...  
...  
...  
...  
...  
...  
...  
...  
...  
0
0
1
1
.
.
.
0
0
1
1
0
1
0
1
.
.
.
0
1
0
1
0
1
2
3
.
.
.
PB2 PB1 PRESCALER BIAS  
0
0
1
1
0
1
0
1
RESERVED  
RESERVED  
PROGRAM THIS VALUE  
RESERVED  
LC2 LC1 LOCK DETECTOR COUNT  
LC3  
4,092  
4,093  
4,094  
4,095  
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
0
0
0
1
1
1
1
2
4
ND2 ND1 SDM TO N DELAY  
8
0
0
1
1
0
1
0
1
PROGRAM THIS VALUE  
RESERVED  
16  
32  
64  
128  
256  
C2  
C1  
CLK DIV MODE  
RESERVED  
0
0
1
1
0
1
0
1
CLK DIVIDER OFF  
RESERVED  
RESERVED  
PHASE RESYNC  
RESERVED  
LS1 LOCK DETECTOR CLOCK SELECT  
0
1
fPFD ÷ 32  
fPFD  
Figure 30. Register 7 (R7) Map  
Rev. 0 | Page 23 of 30  
 
ADF41513  
Data Sheet  
REGISTER 8 (R8) MAP  
REGISTER 9 (R9) MAP  
Lock Detector Bias  
Set all reserved bits to zero.  
The lock detector window size is set by adjusting the lock  
detector bias in conjunction with the lock detector precision  
bits (Register 6, Bits[9:8]). See the Lock Detector section.  
RESERVED REGISTER (R8)  
RESERVED  
CONTROL  
BITS  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
C4(1) C3(0) C2(0) C1(0)  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Figure 31. Register 8 (R8) Map  
LOCK DETECTOR BIAS REGISTER (R9)  
CONTROL  
BITS  
RESERVED  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
C4(1) C3(0) C2(0) C1(1)  
LB2 LB1  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
LB2 LB1 LOCK DETECTOR BIAS  
0
0
1
1
0
1
0
1
40µA  
30µA  
20µA  
10µA  
Figure 32. Register 9 (R9) Map  
Rev. 0 | Page 24 of 30  
 
 
Data Sheet  
ADF41513  
REGISTER 10 (R10) MAP  
REGISTER 11 (R11) MAP  
Power-Down Select  
Set all reserved bits to zero.  
Only one power-down option is available. Program Register 11,  
Bit 31 = 1. Set Register 6, Bit 6 = 1 to power down the device.  
RESERVED REGISTER (R10)  
CONTROL  
BITS  
RESERVED  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
C4(1) C3(0) C2(1) C1(1)  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Figure 33. Register 10 (R10) Map  
POWER-DOWN SELECT REGISTER (R11)  
CONTROL  
BITS  
RESERVED  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
PDS  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
C4(1) C3(0) C2(1) C1(1)  
POWER-DOWN SELECT  
RESERVED  
PDS  
0
PROGRAM THIS VALUE  
1
Figure 34. Register 11 (R11) Map  
Rev. 0 | Page 25 of 30  
 
 
ADF41513  
Data Sheet  
Master Reset  
REGISTER 12 (R12) MAP  
Register 12, Bit 22 = 1 resets all registers to all zeros.  
MUXOUT  
Register 12, Bits[31:28] select the MUXOUT signal. Register  
data can be read either by selecting the serial data output or via  
a readback. Serial data output sends the 32 bits of register data  
that was written in the previous access. A readback sends the  
data as defined by the readback select bits, Register 12,  
Bits[19:14].  
LE Select  
Register 12, Bit 20 = 1 synchronizes the rising edge of LE on an  
SPI write with the falling edge of the reference signal. This recom-  
mended setting ensures there is no glitch from asynchronous  
loading. Set Register 12, Bit 20 = 0 if it is necessary to write data  
into the ADF41513 when no reference is present.  
Logic Level  
Readback Select  
Register 12, Bit 27 selects the DLD and MUXOUT logic level.  
Register 12, Bits[19:14] select the value to be read back. For  
more information, see the Readback section.  
MUXOUT REGISTER (R12)  
READBACK  
SELECT  
CONTROL  
BITS  
MUXOUT  
RESERVED  
RESERVED  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
M4 M3 M2 M1  
LL  
0
0
0
0
MR1  
0
L1  
R6  
R5  
R4  
R3  
R2  
R1  
0
0
0
0
0
0
0
0
0
0
C4(1) C3(1) C2(0) C1(0)  
R6 R5 R4 R3 R2 R1  
READBACK SELECT  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
0
0
1
0
0
0
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
1
1
0
1
1
1
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1
0
1
0
1
0
32 ZEROS  
L1 LE SEL  
LL DLD AND MUXOUT LEVEL  
R0  
0
1
LE FROM PIN  
0
1
1.8V LOGIC HIGH  
3.3V LOGIC HIGH  
R1  
LE SYNCHRONIZED WITH  
RISING EDGE OF  
R2  
R3  
R DIVIDER OUTPUT  
R4  
MR1 MASTER RESET  
R5  
0
1
NORMAL OPERATION  
R6  
RESETS ALL REGISTERS  
R7  
R8  
R9  
R10  
R11  
R12  
R13  
M4 M3 M2 M1 OUTPUT  
INT (16-BIT R0[19:4] VALUE)  
FRAC (7-BIT R1[10:4] VALUE)  
32 ZEROS  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
THREE-STATE OUTPUT  
DV  
DD  
DGND  
RESERVED  
R DIVIDER OUTPUT  
N DIVIDER OUTPUT  
RESERVED  
REVISION CODE  
RESERVED  
RESERVED  
DIGITAL LOCK DETECT  
SERIAL DATA OUTPUT  
READBACK  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
CLK1 DIVIDER OUTPUT  
RESERVED  
RESERVED  
R DIVIDER/2  
N DIVIDER/2  
RESERVED  
RESERVED  
RESERVED  
Figure 35. Register 12 (R12) Map  
Rev. 0 | Page 26 of 30  
 
Data Sheet  
ADF41513  
REGISTER 13 (R13) MAP  
Set all reserved bits to zero.  
RESERVED REGISTER (R13)  
CONTROL  
BITS  
RESERVED  
DB3  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4  
DB2 DB1 DB0  
C4(1) C3(1) C2(0) C1(1)  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Figure 36. Register 13 (R13) Map  
Rev. 0 | Page 27 of 30  
 
 
ADF41513  
Data Sheet  
APPLICATIONS INFORMATION  
Note that 671088.64 is rounded to 671,089, resulting in a small  
frequency error. For exact frequency, use the variable  
modulus mode.  
INITIALIZATION SEQUENCE  
The following sequence of registers is the correct sequence for  
initial power-up of the ADF41513 after the correct application  
of voltages to the supply pins:  
RF SYNTHESIZER: A WORKED EXAMPLE OF  
VARIABLE MODULUS MODE  
1. Register 13  
2. Register 12  
3. Register 11  
4. Register 10  
5. Register 9  
6. Register 8  
7. Register 7  
8. Register 6  
9. Register 5  
10. Register 4  
11. Register 3  
12. Register 2  
13. Register 1  
14. Register 0  
The following is an example how to program the ADF41513  
synthesizer:  
RFOUT = fPFD × (INT + (FRAC1 + (FRAC2/MOD2))/225)  
(8)  
where:  
RFOUT is the output frequency of the external VCO.  
INT is a 16-bit value set by Bits[19:4] in Register 0. In Integer N  
mode, INT is 20 to 511 for a 4/5 prescaler and 64 to 1023 for a 8/9  
prescaler, and in fractional-N mode, INT is 23 to 511 for a 4/5  
prescaler and 75 to 1023 for a 8/9 prescaler.  
FRAC1 is a 25-bit value set by Bits[28:4] in Register 1.  
FRAC2 is a 24-bit value set by Bits[27:4] in Register 3.  
MOD2 is a 24-bit value set by Bits[27:4] in Register 4.  
f
PFD is the PFD frequency.  
RF SYNTHESIZER: A WORKED EXAMPLE OF 25-BIT  
FIXED MODULUS MODE  
For example, in a system where a 12.102 GHz RFOUT is required  
and a 100 MHz fPFD is available,  
The following equation governs how to program the  
synthesizer:  
INT = int(RFOUT/fPFD) = 121  
FRAC1 = int(((RFOUT/fPFD) – INT) × 225) = 671,088  
RFOUT = (INT + (FRAC1/225)) × fPFD  
(7)  
where:  
int() makes an integer of the argument in parentheses.  
where:  
RFOUT is the RF frequency output.  
INT is the integer division factor.  
FRAC1 is the fractional numerator.  
Remainder = FRAC2/MOD2 = 0.64  
where:  
FRAC2 = 64.  
MOD2 = 100.  
fPFD is the PFD frequency.  
For example, in a system where a 12.102 GHz RF frequency  
output (RFOUT) is required and a 100 MHz reference frequency  
input (REFIN) is available, the frequency resolution, fRES, is  
MODULUS  
The choice of modulus (MOD) depends on the reference signal  
(REFIN) available and the channel resolution (fRES) required at  
the RF output.  
f
f
RES = REFIN/225  
RES = 100 MHz/225  
= 2.98 Hz  
REFERENCE DOUBLER AND REFERENCE DIVIDER  
The on-chip reference doubler allows the input reference signal  
to be doubled. Doubling is useful for increasing the PFD  
comparison frequency. Setting the PFD frequency higher  
improves the noise performance of the system. Doubling the  
PFD frequency usually improves noise performance by 3 dB. It  
is important to note that the reference input cannot operate  
above 225 MHz when the reference doubler is on. The PFD  
maximum operating frequency is 250 MHz (integer N mode) or  
125 MHz (fractional-N mode) due to a limitation in the speed  
of the Σ-Δ circuit.  
From Equation 1 and Equation 2,  
f
PFD = (100 MHz × (1 + 0)/1) = 100 MHz  
12.102 GHz = 100 MHz × (N + FRAC/225)  
Calculating the INT and FRAC values,  
INT = int(RFOUT/fPFD) = 121  
FRAC1 = (int(RFOUT/fPFD) − INT) × 225 = 671088.64 ≈  
671089  
where:  
The reference divide by 2 divides the reference signal by 2,  
resulting in a 50% duty cycle PFD frequency.  
INT is the 16-bit INT value in Register 0.  
FRAC1 is the 25-bit FRAC1 value in Register 1.  
int() makes an integer of the argument in parentheses.  
Rev. 0 | Page 28 of 30  
 
 
 
 
 
 
Data Sheet  
ADF41513  
Phase resync is enabled by setting Register 7, Bits[19:18] =  
0b10. When phase resync is enabled, an internal timer generates  
sync signals at intervals of tSYNC given by the following formula:  
SPUR MECHANISMS  
This section describes the two different spur mechanisms that  
arise with a PLL, and how to minimize them in the ADF41513.  
tSYNC = CLK1 × CLK2 × tPFD  
where:  
CLK1 is the decimal value programmed in Register 5, Bits[15:4].  
CLK2 is the decimal value programmed in Register 7, Bits[17:6].  
(9)  
Integer Boundary Spurs  
Interactions between the RF VCO frequency and the reference  
frequency cause integer boundary spurs. When these  
frequencies are not integer related (the point of a fractional-N  
synthesizer), spur sidebands appear on the VCO output  
spectrum at an offset frequency that corresponds to the beat  
note or difference frequency between an integer multiple of the  
reference and the VCO frequency. These spurs are attenuated by  
the loop filter and are more noticeable on channels close to  
integer multiples of the reference where the difference  
frequency can be inside the loop bandwidth.  
tPFD is the PFD reference period (1/fPFD).  
When a new frequency is programmed, the second sync pulse  
after the LE rising edge resynchronizes the output phase to the  
reference. Program the tSYNC time to a value that is at least as  
long as the worst case lock time to guarantee that the phase  
resync occurs after the last cycle slip in the PLL settling  
transient.  
Reference Spurs  
In the example shown in Figure 37, tSYNC is set to 550 µs. The  
second sync pulse and any later sync pulses are ignored.  
Reference spurs are generally not a problem in fractional-N  
synthesizers because the reference offset is far outside the loop  
bandwidth. However, any reference feedthrough mechanism  
that bypasses the loop can cause a problem. Feedthrough of low  
levels of on-chip reference switching noise, through the RFINA  
pin or the RFINB pin back to the VCO, can result in reference  
spur levels as high as −90 dBc. PCB layout must ensure  
adequate isolation between VCO traces and the input reference  
to avoid a possible feedthrough path on the board.  
LE  
SYNC  
(INTERNAL)  
LAST CYCLE SLIP  
FREQUENCY  
PLL SETTLES TO  
INCORRECT PHASE  
PLL SETTLES TO  
CORRECT PHASE  
AFTER RESYNC  
PHASE RESYNC  
PHASE  
The output of a 25-bit fractional-N PLL can settle to any of the  
225 phase offsets with respect to the input reference. The phase  
resync feature in the ADF41513 produces a consistent output  
phase offset with respect to the input reference. This consistent  
output phase offset with respect to the input reference is neces-  
sary in applications where the output phase and frequency are  
important, such as digital beamforming. See the Phase  
Programmability section to program a specific RF output phase  
when using phase resync.  
300 400 500 600 700 800 900  
TIME (µs)  
–100  
0
100 200  
1000  
Figure 37. Phase Resync Example  
Phase Programmability  
The phase word in Register 2 controls the RF output phase. As  
this word is changed from 0 to 212, the RF output phase changes  
over a 360° range in steps of phase value × 360°/212.  
Rev. 0 | Page 29 of 30  
 
 
 
 
ADF41513  
Data Sheet  
OUTLINE DIMENSIONS  
DETAIL A  
(JEDEC 95)  
4.10  
4.00 SQ  
3.90  
0.30  
0.25  
0.18  
PIN 1  
INDICATOR  
AREA  
PIN 1  
IONS  
INDICATOR AR EA OP T  
(SEE DETAIL A)  
24  
19  
18  
1
0.50  
BSC  
2.85  
2.70 SQ  
2.45  
EXPOSED  
PAD  
13  
12  
6
7
0.50  
0.40  
0.30  
0.20 MIN  
TOP VIEW  
SIDE VIEW  
BOTTOM VIEW  
0.80  
0.75  
0.70  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.20 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-WGGD-8  
Figure 38. 24-Lead Lead Frame Chip Scale Package [LFCSP]  
4 mm × 4 mm Body and 0.75 mm Package Height  
(CP-24-8)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Parameter1  
Temperature Range  
−40°C to +105°C  
−40°C to +105°C  
Package Description  
Package Option  
CP-24-8  
CP-24-8  
ADF41513BCPZ  
24-Lead Lead Frame Chip Scale Package [LFCSP]  
24-Lead Lead Frame Chip Scale Package [LFCSP]  
Evaluation Board Without VCO  
ADF41513BCPZ-RL7  
EV-ADF41513SD1Z  
EV-ADF41513SD2Z  
Evaluation Board with On-Board VCO  
1 Z = RoHS Compliant Part.  
©2019 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D16805-0-1/19(0)  
Rev. 0 | Page 30 of 30  
 
 

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY