ADF4372BCCZ-RL7 [ADI]

Microwave Wideband Synthesizer with Integrated VCO;
ADF4372BCCZ-RL7
型号: ADF4372BCCZ-RL7
厂家: ADI    ADI
描述:

Microwave Wideband Synthesizer with Integrated VCO

文件: 总47页 (文件大小:849K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Microwave Wideband Synthesizer  
with Integrated VCO  
Data Sheet  
ADF4372  
FEATURES  
GENERAL DESCRIPTION  
RF output frequency range: 62.5 MHz to 16,000 MHz  
Fractional-N synthesizer and integer-N synthesizer  
High resolution 39-bit fractional modulus  
Typical spurious fPFD: −90 dBc  
Integrated rms jitter: 38 fs (1 kHz to 100 MHz)  
Normalized phase noise floor: −234 dBc/Hz  
The ADF4372 allows implementation of fractional-N or integer-N  
phase-locked loop (PLL) frequency synthesizers when used with  
an external loop filter and an external reference frequency. The  
wideband microwave voltage controlled oscillator (VCO) design  
allows frequencies from 62.5 MHz to 16 GHz to be generated.  
The ADF4372 has an integrated VCO with a fundamental output  
frequency ranging from 4000 MHz to 8000 MHz. In addition, the  
VCO frequency is connected to a divide by 1, 2, 4, 8, 16, 32, or 64  
circuit that allows the user to generate radio frequency (RF)  
output frequencies as low as 62.5 MHz at RF8x. A frequency  
multiplier at RF16x generates from 8 GHz to 16 GHz. RFAUX8x  
duplicates the frequency range of RF8x or permits direct access to  
the VCO output. To suppress the unwanted products of frequency  
multiplication, a harmonic filter exists between the multiplier and  
the output stage of RF16x.  
f
PFD operation to 250 MHz  
Reference input frequency operation to 600 MHz  
Programmable divide by 1, 2, 4, 8, 16, 32, or 64 output  
62.5 MHz to 8,000 MHz output at RF8x and RFAUX8x  
8,000 MHz to 16,000 MHz output at RF16x  
Lock time approximately 3 ms with automatic calibration  
Lock time <30 μs with autocalibration bypassed, typical  
Analog and digital power supplies: 3.3 V typical  
VCO supply voltage: 3.3 V and 5 V  
RF output mute function  
Control of all on-chip registers is through a 3-wire interface.  
The ADF4372 operates with analog and digital power supplies  
ranging from 3.15 V to 3.45 V, and 5 V for the VCO power  
supply. The ADF4372 also contains hardware and software  
power-down modes.  
7mm × 7mm, 48-terminal LGA package  
APPLICATIONS  
Wireless infrastructure (multicarrier global system for  
mobile communication (MC-GSM), 5G)  
Test equipment and instrumentation  
Clock generation  
Aerospace and defense  
FUNCTIONAL BLOCK DIAGRAM  
VCC_CAL VCC_VCO VCC_LDO VCC_X1 VCC_X2  
VCC_MUX VCC_3V VDD_NDIV VDD_LS VCC_LDO_3V VCC_REF VDD_PFD VDD_VP  
MUX  
MUXOUT  
5-BIT R  
COUNTER  
÷2  
DIVIDER  
REFP  
×2  
DOUBLER  
RS_SW  
REFN  
LOCK  
DETECT  
VCC_REG_OUT  
ADF4372  
SCLK  
SDIO  
CS  
CHARGE  
PUMP  
CPOUT  
VTUNE  
DATA REGISTER  
FUNCTION  
LATCH  
PHASE  
COMPARATOR  
TRACKING  
FILTER  
8GHz  
TO 16GHz  
VCO  
RF16P  
RF16N  
OUTPUT  
STAGE  
LOW  
NOISE  
LDO  
×2  
CORE  
INTEGER  
FRACTION  
MODULUS  
REGISTER  
62.5MHz TO 8000MHz  
REGISTER REGISTER  
RF8P  
RF8N  
1, 2, 4, 8,  
16, 32, 64  
OUTPUT  
STAGE  
THIRD-ORDER  
FRACTIONAL  
INTERPOLATOR  
MUX  
62.5MHz TO 8000MHz  
N COUNTER  
RFAUX8P  
RFAUX8N  
OUTPUT  
STAGE  
MUX  
GND  
Figure 1.  
Rev. 0  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
©2019 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
ADF4372  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
RF N Divider............................................................................... 18  
PFD and Charge Pump.............................................................. 19  
MUXOUT and Lock Detect...................................................... 19  
Double Buffers............................................................................ 19  
VCO ............................................................................................. 20  
Output Stage................................................................................ 20  
Doubler........................................................................................ 21  
Output Stage Mute ..................................................................... 21  
SPI................................................................................................. 21  
Device Setup.................................................................................... 22  
Step 1: Set Up the SPI Interface................................................ 22  
Step 2: Initialization Sequence.................................................. 22  
Step 3: Frequency Update Sequence........................................ 22  
Applications Information.............................................................. 23  
Power Supplies............................................................................ 23  
PCB Design Guidelines for an LGA Package ......................... 23  
Output Matching........................................................................ 23  
Register Summary .......................................................................... 24  
Register Details ............................................................................... 26  
Outline Dimensions....................................................................... 47  
Ordering Guide .......................................................................... 47  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Timing Specifications .................................................................. 6  
Absolute Maximum Ratings............................................................ 8  
Thermal Resistance ...................................................................... 8  
ESD Caution.................................................................................. 8  
Pin Configuration and Function Descriptions............................. 9  
Typical Performance Characteristics ........................................... 11  
Theory of Operation ...................................................................... 15  
RF Synthesizer, a Worked Example.......................................... 15  
Reference Input Sensitivity........................................................ 15  
Reference Doubler and Reference Divider ............................. 16  
Spurious Optimization and Fast Lock..................................... 16  
Optimizing Jitter......................................................................... 16  
Spur Mechanisms ....................................................................... 16  
Lock Time.................................................................................... 16  
Circuit Description......................................................................... 18  
Reference Input........................................................................... 18  
REVISION HISTORY  
8/2019—Revision 0: Initial Version  
Rev. 0 | Page 2 of 47  
 
Data Sheet  
ADF4372  
SPECIFICATIONS  
4.75 V ≤ VCC_VCO ≤ 5.25 V, all other supply pins (AVDD) = 3.3 V 5ꢀ, ꢁND = 0 V, dBm referred to 50 Ω, TA = whole operating  
temperature range, unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
REFP AND REFN CHARACTERISTICS  
Input Frequency  
Single-Ended Mode  
Differential Mode  
Single-Ended or Differential Mode  
Input Sensitivity  
10  
10  
10  
500  
600  
125  
MHz  
MHz  
MHz  
Doubler disabled  
Doubler disabled  
Doubler enabled  
Single-Ended Mode  
0.4  
0.4  
AVDD  
1.8  
V p-p  
V p-p  
REFP biased at AVDD/2, ac coupling  
ensures AVDD/2 bias  
Differential Mode  
Low voltage differential signal (LVDS) and  
low voltage positive emitter coupled  
logic (LVPECL) compatible, REFP and REFN  
biased at 2.1 V, ac coupling ensures 2.1 V  
bias  
Input Capacitance  
Single-Ended Mode  
Differential Mode  
Input Current  
6.9  
1.4  
pF  
pF  
μA  
μA  
MHz  
150  
300  
160  
Single-ended reference programmed  
Differential reference programmed  
Fractional mode  
Phase Frequency Detector Frequency  
(fPFD  
)
250  
MHz  
Integer mode  
CHARGE PUMP  
Charge Pump Current, Sink and Source  
High Value  
Low Value  
ICP  
5.6  
0.35  
3
mA  
mA  
%
Current Matching  
0.5 V ≤ voltage at the CPOUT pin (VCP) ≤  
VDD_VP − 0.5 V  
ICP vs. VCP  
ICP vs. Temperature  
LOGIC INPUTS  
3
1.5  
%
%
0.5 V ≤ VCP ≤ VDD_VP − 0.5 V  
VCP = 2.5 V  
CS, SDIO, SCLK, and CE are 3 V logic  
Input High Voltage  
Input Low Voltage  
Input Current  
Input Capacitance  
LOGIC OUTPUTS  
Output High Voltage  
VINH  
VINL  
IINH/IINL  
CIN  
1.17  
V
V
μA  
pF  
0.63  
1
3.0  
VOH  
AVDD  
− 0.4  
V
3.3 V output selected  
1.8 V output selected  
1.5  
1.875  
V
Output High Current  
Output Low Voltage  
IOH  
VOL  
500  
0.4  
μA  
V
Output low current (IOL) = 500 μA  
POWER SUPPLIES  
Supply Voltage (Except VCO)  
AVDD  
3.15  
3.45  
V
VCC_CAL, VCC_X1, VDD_X1, VCC_X2,  
VCC_MUX, VCC_3V, VDD_NDIV, VDD_LS,  
VCC_LDO_3V, VCC_REF, VDD_PFD,  
VDD_VP are grouped as AVDD and are at  
the same voltage  
Supply Current (Except VCO)1  
AIDD  
190  
260  
mA  
All outputs are disabled  
Rev. 0 | Page 3 of 47  
 
 
ADF4372  
Data Sheet  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
Output Dividers  
Divider = 2  
14  
50  
20  
65  
mA  
mA  
Each divide by 2 consumes additional  
typical 7 mA current  
Divider = 64  
VCO Supply Voltage  
VCC_VCO  
IVCO  
3.15  
4.75  
3.3  
5
80  
135  
3.45  
5.25  
120  
180  
V
V
mA  
mA  
3.3 V condition  
5 V condition  
3.3 V condition  
5 V condition  
VCO Supply Current  
RF8x Supply Current  
RF8P and RF8N output stage is  
programmable, extra current is drawn in  
VCC_X1  
25  
39  
52  
65  
42  
56  
70  
84  
90  
5.1  
8
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
−4 dBm setting  
−1 dBm setting  
2 dBm setting  
5 dBm setting  
−4 dBm setting  
−1 dBm setting  
2 dBm setting  
5 dBm setting  
RFAUX8x Supply Current  
RF16x Supply Current  
Low Power Sleep Mode  
120  
6.2  
9.5  
25  
Hardware power-down 3.3 V VCO case  
Hardware power-down 5 V VCO case  
Software power-down 3.3 V VCO case  
Software power-down 5 V VCO case  
21.5  
23.7  
28  
RF OUTPUT CHARACTERISTICS  
VCO Frequency Range  
RF8P and RF8N Output Frequency  
RFAUX8P and RFAUX8N Output  
Frequency  
4000  
62.5  
62.5  
8000  
8000  
8000  
MHz  
MHz  
MHz  
Fundamental VCO range  
RF16P and RF16N Output Frequency  
VCO Sensitivity  
8000  
16000  
MHz  
2 × VCO output  
KV  
For 5 V  
80  
60  
MHz/V VCO frequency = 6 GHz, see Figure 33 for  
KV plot  
MHz/V VCO frequency = 6 GHz, see Figure 34 for  
KV plot  
For 3.3 V  
Frequency Pushing (Open-Loop)  
Frequency Pulling (Open-Loop)  
8
0.5  
MHz/V  
MHz  
Voltage standing wave ratio (VSWR) = 2:1  
RF8P and RF8N  
30  
MHz  
°C  
VSWR = 2:1 RF16x  
Maintains lock without reprogramming  
device  
Maintain Lock Temperature Range2  
125  
Harmonic Content  
Second Harmonic RF8P and RF8N  
−25  
−25  
−12  
−15  
−30  
−30  
−62  
−30  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
Fundamental VCO output (RF8x)  
Divided VCO output (RF8x)  
Fundamental VCO output RF8x)  
Divided VCO output (RF8x)  
Measured at 20 GHz  
Third Harmonic RF8P and RF8N  
Second Harmonic RF16P and RF16N  
Third Harmonic RF16P and RF16N  
Fundamental VCO Feedthrough  
Measured at 30 GHz  
RF16x = 10 GHz, VCO frequency = 5 GHz  
RF8P and RF8N = 1 GHz,  
VCO frequency = 4 GHz  
RF8P = 4 GHz, 7.5 nH inductor to VCC_X1  
RF8P = 8 GHz, 7.5 nH inductor to VCC_X1  
RF16x = 8 GHz  
RF Output Power Maximum Setting3  
7
5
0
dBm  
dBm  
dBm  
Rev. 0 | Page 4 of 47  
Data Sheet  
ADF4372  
Parameter  
Symbol  
Min  
Typ  
4
±1  
±1  
±±  
Max  
Unit  
dBm  
dB  
dB  
dB  
Test Conditions/Comments  
RF16x = 16 GHz  
RF8P and RF8N = 5 GHz  
RF16x = 10 GHz  
RF Output Power Variation  
RF Output Power Variation (Over  
Frequency)  
RF8x and RFAUX8x = 4 GHz to 8 GHz  
±±.5  
−50  
−44  
−41  
−75  
−55  
dB  
RF16x = 8 GHz to 16 GHz  
RF8P and RF8N = 1 GHz  
RF8P and RF8N = 8 GHz  
RF8P and RF8N = 8 GHz, 5 V VCO case  
RF16P = 8 GHz  
Level of Signal with RF Output Disabled  
dBm  
dBm  
dBm  
dBm  
dBm  
RF16P = 16 GHz  
NOISE CHARACTERISTICS  
Fundamental VCO Phase Noise  
Performance where VCC VCO = 5 V  
VCO noise in open-loop conditions,  
VCC_VCO = 5 V  
−117  
−139  
−156  
−11±  
−136  
−153  
−109  
−133  
−15±  
dBc/Hz 100 kHz offset from 4.0 GHz carrier  
dBc/Hz 1 MHz offset from 4.0 GHz carrier  
dBc/Hz 10 MHz offset from 4.0 GHz carrier  
dBc/Hz 100 kHz offset from 5.7 GHz carrier  
dBc/Hz 1 MHz offset from 5.7 GHz carrier  
dBc/Hz 10 MHz offset from 5.7 GHz carrier  
dBc/Hz 100 kHz offset from 8.0 GHz carrier  
dBc/Hz 1 MHz offset from 8.0 GHz carrier  
dBc/Hz 10 MHz offset from 8.0 GHz carrier  
VCC_VCO = 5 V  
RF16x Output Phase Noise Performance  
where VCC_VCO = 5 V  
−106  
−130  
−146  
−103  
−1±7  
−145  
dBc/Hz 100 kHz offset from 11.4 GHz carrier  
dBc/Hz 1 MHz offset from 11.4 GHz carrier  
dBc/Hz 10 MHz offset from 11.4 GHz carrier  
dBc/Hz 100 kHz offset from 16 GHz carrier  
dBc/Hz 1 MHz offset from 16 GHz carrier  
dBc/Hz 10 MHz offset from 16 GHz carrier  
Fundamental VCO Phase Noise  
Performance where VCC_VCO = 3.3 V  
VCO noise in open-loop conditions,  
VCC_VCO = 3.3 V  
−116  
−137  
−156  
−111  
−133  
−153  
−109  
−13±  
−153  
dBc/Hz 100 kHz offset from 4.0 GHz carrier  
dBc/Hz 1 MHz offset from 4.0 GHz carrier  
dBc/Hz 10 MHz offset from 4.0 GHz carrier  
dBc/Hz 100 kHz offset from 5.7 GHz carrier  
dBc/Hz 1 MHz offset from 5.7 GHz carrier  
dBc/Hz 10 MHz offset from 5.7 GHz carrier  
dBc/Hz 100 kHz offset from 8.0 GHz carrier  
dBc/Hz 1 MHz offset from 8.0 GHz carrier  
dBc/Hz 10 MHz offset from 8.0 GHz carrier  
Normalized Inband Phase Noise Floor  
Fractional Channel4  
−±33  
−±34  
−1±7  
38  
dBc/Hz  
dBc/Hz  
Integer Channel5  
Normalized 1/f Noise6  
Integrated RMS Jitter  
PN1_f  
dBc/Hz 10 kHz offset, normalized to 1 GHz  
fs  
Wenzel oven controlled crystal oscillators  
(OCXO) as the reference frequency input  
(REFIN), integer-N mode, fPFD = ±45.76 MHz,  
300 kHz loop filter bandwidth, 1 kHz to  
100 MHz  
Integer Boundary Spurs (Filtered)  
Inband Integer Boundary Spur  
(Unfiltered)  
−90  
−55  
dBc  
dBc  
960 kHz offset from integer channel  
Measured at 5 kHz offset from integer  
channel  
Spurious Signals Due to fPFD  
−90  
dBc  
Rev. 0 | Page 5 of 47  
ADF4372  
Data Sheet  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
FREQUENCY LOCK TIME7  
Lock Time with Automatic Calibration  
Lock Time with Automatic Calibration  
Bypassed  
3
30  
ms  
µs  
1 TA = ±5°C, AVDD = 3.3 V, VCC_VCO = 5.0 V, prescaler = 4/5, reference frequency (fREFP) = 50 MHz, fPFD = 50 MHz, and RF frequency (fRF) = 5001 MHz. RF8x enabled. All RF  
outputs are disabled.  
± Guaranteed by design and characterization.  
3 RF output power using the EV-ADF437±SD±Z differential outputs combined using a Marki BAL-0036 balun, and measured by a spectrum analyzer with the evaluation  
board and cable losses de-embedded. Highest power output selected for RF8P, RF8N, RFAUX8P, and RFAUX8N.  
4 Use this value to calculate the phase noise for any application. To calculate inband phase noise performance as seen at the VCO output, use the following formula: −±33 +  
10log(fPFD) + ±0logN. The result is the lowest noise mode for the fractional channel.  
5 Use this value to calculate the phase noise for any application. To calculate inband phase noise performance as seen at the VCO output, use the following formula: −±34 +  
10log(fPFD) + ±0logN. The result is the lowest noise mode for the integer channel.  
6 The PLL phase noise is composed of 1/f (flicker) noise plus the normalized PLL noise floor. The formula for calculating the 1/f noise contribution at a radio frequency  
(fRF) and at a frequency offset (fOFFSET) is given by PN1_f + 10log(10 kHz/fOFFSET) + ±0log(fRF/1 GHz). Both the normalized phase noise floor and flicker noise are modeled in  
the ADIsimPLL design tool.  
7 Lock time is measured for 100 MHz jump with standard evaluation board configuration.  
TIMING SPECIFICATIONS  
Table 2.  
Parameter  
Symbol  
Test Conditions/Comments  
Min Typ Max Unit  
Serial Port Interface (SPI) Timing  
SCLK Frequency  
SCLK Period  
SCLK Pulse Width High  
SCLK Pulse Width Low  
SDIO Setup Time  
See Figure ±, Figure 3, and Figure 4  
fSCLK  
tSCLK  
tHIGH  
tLOW  
tDS  
50  
MHz  
ns  
ns  
ns  
ns  
±0  
10  
10  
±
SDIO Hold Time  
tDH  
±
ns  
SCLK Falling Edge to SDIO Valid Propagation  
Delay  
tACCESS  
10  
ns  
CS Rising Edge to SDIO High-Z  
CS Fall to SCLK Rise Setup Time  
SCLK Rise to CS Rise Hold Time  
tZ  
tS  
tH  
10  
±
ns  
ns  
ns  
±
Rev. 0 | Page 6 of 47  
 
 
Data Sheet  
ADF4372  
Timing Diagrams  
INSTRUCTION CYCLE  
DATA TRANSFER CYCLE  
CS  
SCLK  
R/W A14 A13  
A1 A0 D7 D6  
D1 D0  
N
SDIO  
1
INSTRUCTION CYCLE  
DATA TRANSFER CYCLE  
CS  
SCLK  
D0 D1  
SDIO  
A0 A1 A2  
A14 R/W  
D6 D7  
1
N
Figure 2. SPI Timing, MSB First (Upper) and LSB First (Lower)  
tS  
tSCLK  
tH  
CS  
tLOW  
tHIGH  
SCLK  
tDS  
tDH  
A14  
A13  
A0  
D7  
D6 D1  
D0  
SDIO  
R/W  
Figure 3. SPI Write Operation Timing  
tS tSCLK  
CS  
tLOW  
tHIGH  
SCLK  
tACCESS  
tDS  
tDH  
tZ  
SDIO  
A1  
A0  
A14  
D7  
D6 D1 D0  
A2  
R/W  
Figure 4. SPI Read Operation Timing  
CS  
DON’T  
SCLK  
DON’T  
CARE  
CARE  
DON’T  
CARE  
DON’T  
CARE  
R/W A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0  
16-BIT INSTRUCTION HEADER REGISTER (N) DATA REGISTER (N – 1) DATA REGISTER (N – ...) DATA  
SDIO  
Figure 5. 3-Wire, MSB First, Descending Data, Streaming  
Rev. 0 | Page 7 of 47  
 
 
 
 
ADF4372  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
THERMAL RESISTANCE  
Thermal performance is directly linked to printed circuit board  
(PCB) design and operating environment. Close attention to  
PCB thermal design is required.  
Table 3.  
Parameter  
Rating  
AVDD Rails to GND1  
AVDD Rails to Each Other  
VCC_VCO to GND1  
VCC_VCO to AVDD  
CPOUT to GND1  
VTUNE to GND  
−0.3 V to +3.6 V  
−0.3 V to +0.3 V  
−0.3 V to +5.5 V  
−0.3 V to AVDD + ±.8 V  
−0.3 V to AVDD + 0.3 V  
−0.3 V to AVDD + 0.3 V  
−0.3 V to AVDD + 0.3 V  
θJA is the natural convection, junction to ambient thermal resistance  
measured in a one cubic foot sealed enclosure. θJC is the junction to  
case thermal resistance.  
Table 4. Thermal Resistance  
Package Type  
CC-48-41  
θJA  
θJC  
Unit  
Digital Input and Output Voltage to  
GND1  
±5  
14.4  
°C/W  
Analog Input and Output Voltage to  
−0.3 V to AVDD + 0.3 V  
1 Test Condition 1: thermal impedance simulated values are based on JESD51  
standard.  
GND1  
REFP and REFN to GND1  
REFP to REFN  
−0.3 V to AVDD + 0.3 V  
±±.1 V  
ESD CAUTION  
Temperature  
Operating Range  
Storage Range  
Maximum Junction  
Reflow Soldering  
Peak  
−40°C to +105°C  
−65°C to +1±5°C  
1±5 °C  
±60°C  
30 sec  
Time at Peak  
Electrostatic Discharge (ESD)  
Charged Device Model  
Human Body Model  
Transistor Count  
1.0 kV  
4.0 kV  
Complementary Metal-Oxide  
Semiconductor (CMOS)  
Bipolar  
131,439  
4063  
1 GND = 0 V.  
Stresses at or above those listed under Absolute Maximum Ratings  
may cause permanent damage to the product. This is a stress rating  
only; functional operation of the product at these or any other  
conditions above those indicated in the operational section of this  
specification is not implied. Operation beyond the maximum  
operating conditions for extended periods may affect product  
reliability.  
Rev. 0 | Page 8 of 47  
 
 
 
 
 
Data Sheet  
ADF4372  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
48 47 46 45 44 43 42 41 40 39 38 37  
1
2
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
GND  
CPOUT  
RS_SW  
VCC_CAL  
GND  
SCLK  
SDIO  
CS  
VDD_LS  
VDD_NDIV  
VCC_3V  
VCC_MUX  
GND  
RF16N  
RF16P  
GND  
3
4
5
6
7
VTUNE  
ADF4372  
TOP VIEW  
(Not to Scale)  
VCC_REG_OUT  
VCC_VCO  
VCC_LDO  
GND  
8
9
10  
11  
12  
NC  
NC  
GND  
13 14 15 16 17 18 19 20 21 22 23 24  
NOTES  
1. THE LAND GRID ARRAY (LGA) HAS AN EXPOSED PAD  
THAT MUST BE SOLDERED TO A METAL PLATE ON  
THE PCB FOR MECHANICAL REASONS AND TO GND.  
Figure 6. Pin Configuration  
Table 5. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
Ground Return.  
1, 9, 1±, 13, ±0,  
±4, ±5, ±8, 36,  
37, 4±, 48  
GND  
±
CPOUT  
Charge Pump (CP) Output. When enabled, this output provides ±ICP to the external loop filter. The  
output of the loop filter is connected to VTUNE to drive the internal VCO.  
3
4
RS_SW  
VCC_CAL  
Loop Filter Switch. Used for switching loop filter resistors in fast lock applications.  
Power Supply for Internal Calibration Monitor Circuit. The voltage on this pin ranges from 3.15 V to  
3.45 V. VCC_CAL must have the same value as AVDD, nominally 3.3 V.  
5
6
VTUNE  
Control Input to the VCO. This voltage determines the output frequency and is derived from filtering  
the CPOUT output voltage.  
VCC_REG_OUT VCO Supply Regulator Out. The output supply voltage of the VCO regulator is available at this pin, and  
must be decoupled to GND with a 10 μF capacitor and shorted to the VCC_VCO pin. Leave this pin  
open if an external LDO regulator is connected to VCC_VCO.  
7
8
VCC_VCO  
Power Supply for the VCO. The voltage on this pin ranges from 4.75 V to 5.±5 V. Place decoupling  
capacitors to the analog ground plane as close to this pin as possible. For optimal performance, this  
supply must be clean and have low noise.  
Supply Pin to the VCO Regulator. If the internal regulator is used, connect the voltage supply to  
VCC_LDO. The voltage on this pin ranges from 4.75 V to 5.±5 V. If the external regulator is used, short  
this pin to VCC_VCO.  
VCC_LDO  
10, 11  
14, 16  
15, 17  
18  
NC  
No Connect.  
VCC_X1  
VDD_X1  
RF8P  
Power Supply for the Main RF Output. The voltage on this pin must have the same value as AVDD.  
Digital Supply for the Main RF Circuit. The voltage on this pin must have the same value as AVDD.  
Main RF Output. AC couple to the next stage. The output level is programmable. The VCO fundamental  
output or a divided down version is available.  
19  
RF8N  
Complementary Main RF Output. AC couple this pin to the next stage. The output level is  
programmable. The VCO fundamental output or a divided down version is available.  
±1  
±±  
±3  
VCC_X±  
RFAUX8P  
RFAUX8N  
Power Supply for the Doubled RF Output. The voltage on this pin must have the same value as AVDD.  
Auxiliary RF Output. AC couple to the next stage. This pin can be powered off when not in use.  
Complementary Auxiliary RF Output. AC couple this pin to the next stage. This pin can be powered off  
when not in use.  
±6  
±7  
RF16P  
RF16N  
Doubled VCO Output. AC or dc couple this pin to the next stage. This pin can be powered off when not  
in use. If unused, this pin can be left open.  
Complementary Doubled VCO Output. AC or dc couple this pin to the next stage. This pin can be  
powered off when not in use. If unused, this pin can be left open.  
Rev. 0 | Page 9 of 47  
 
ADF4372  
Data Sheet  
Pin No.  
±9  
30  
31  
3±  
Mnemonic  
VCC_MUX  
VCC_3V  
VDD_NDIV  
VDD_LS  
CS  
Description  
Power Supply for the VCO Mux. The voltage on this pin must have the same value as AVDD.  
Analog Power Supply. The voltage on this pin must have the same value as AVDD.  
N Divider Power Supply. The voltage on this pin must have the same value as AVDD.  
Level Shifter Power Supply. The voltage on this pin must have the same value as AVDD.  
Chip Select, CMOS Input. When CS goes high, the data stored in the shift register is loaded into the  
register that is selected by the address bits.  
33  
34  
35  
SDIO  
SCLK  
Serial Data Input Output. This input is a high impedance CMOS input.  
Serial Clock Input. Data is clocked into the ±4-bit shift register on the clock rising (or falling) edge. This  
input is a high impedance CMOS input.  
38  
39  
40  
41  
VCC_LDO_3V  
CE  
TEST  
Regulator Input for 1.8 V Digital Logic. The voltage on this pin must have the same value as AVDD.  
Chip Enable. Connect to 3.3 V or AVDD.  
Factory Test Pin. Connect this pin to ground.  
Mux Output. The mux output allows the digital lock detect, the analog lock detect, scaled RF, or the  
scaled reference frequency to be externally accessible. This pin can be programmed to output the  
register settings in 4-wire SPI mode.  
MUXOUT  
43  
44  
REFP  
REFN  
Reference Input. If driving the device with a single-ended reference, ac couple the signal to the REFP  
pin.  
Complementary Reference Input. If unused, ac couple this pin to GND. REFP and REFN must be ac-  
coupled if driven differentially. If driven single-ended, the reference signal must be connected to REFP,  
and the REFN must be ac-coupled to GND. In differential configuration, the differential impedance is  
100 Ω.  
45  
46  
VCC_REF  
VDD_PFD  
Power Supply to the Reference Buffer. The voltage on this pin must have the same value as AVDD.  
Power Supply to the Phase Frequency Detector (PFD). The voltage on this pin must have the same  
value as AVDD.  
47  
VDD_VP  
EP  
Charge Pump Power Supply. The voltage on this pin must have the same value as AVDD. A 1 μF  
decoupling capacitor to GND must be included to minimize spurious signals.  
Exposed Pad. The land grid array (LGA) has an exposed pad that must be soldered to a metal plate on  
the PCB for mechanical reasons and to the GND.  
Rev. 0 | Page 10 of 47  
Data Sheet  
ADF4372  
TYPICAL PERFORMANCE CHARACTERISTICS  
–20  
–20  
–30  
M1 1kHz  
–60.29dBc/Hz  
M1 1kHz  
–49.64dBc/Hz  
M2 10kHz –89.95dBc/Hz  
M3 100kHz –117.9dBc/Hz  
M2 10kHz –79.83dBc/Hz  
M3 100kHz –106.27dBc/Hz  
–30  
M1  
M4 1MHz  
–139.1dBc/Hz  
M4 1MHz  
–130.23dBc/Hz  
–40  
–40  
M5 10MHz –156.3dBc/Hz  
M6 30MHz –160.95dBc/Hz  
M7 95MHz –162.86dBc/Hz  
M5 10MHz –147.45dBc/Hz  
M6 30MHz –151.39dBc/Hz  
M7 95MHz –155.61dBc/Hz  
M1  
–50  
–50  
–60  
–60  
M2  
–70  
–70  
M2  
–80  
–80  
–90  
–90  
M3  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
M3  
M4  
M4  
M5  
M6  
M7  
M5  
M6  
M7  
100  
1k  
10k  
100k  
1M  
10M  
100M  
100  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 10. Open-Loop VCO Phase Noise at RF16x Output, 11.4 GHz, VCC_VCO = 5 V  
Figure 7. Open-Loop VCO Phase Noise, 4.0 GHz, VCC_VCO = 5 V  
–20  
–20  
M1 1kHz  
–48.74dBc/Hz  
M1 1kHz  
–55.29dBc/Hz  
M2 10kHz –78.16dBc/Hz  
M3 100kHz –103.95dBc/Hz  
M2 10kHz –85.75dBc/Hz  
M3 100kHz –112.32dBc/Hz  
–30  
–40  
–30  
–40  
M1  
M4 1MHz  
–127.04dBc/Hz  
M4 1MHz  
–136.05dBc/Hz  
M5 10MHz –146.07dBc/Hz  
M6 30MHz –151.02dBc/Hz  
M7 95MHz –154.34dBc/Hz  
M1  
M5 10MHz –155.3dBc/Hz  
M6 30MHz –161.75dBc/Hz  
M7 95MHz –161.11dBc/Hz  
–50  
–50  
–60  
–60  
M2  
–70  
–70  
M2  
–80  
–80  
–90  
–90  
M3  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
M3  
M4  
M4  
M5  
M6  
M7  
M5  
M6  
M7  
100  
1k  
10k  
100k  
1M  
10M  
100M  
100  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 11. Open-Loop VCO Phase Noise at RF16x Output, 16.0 GHz, VCC_VCO = 5 V  
Figure 8. Open-Loop VCO Phase Noise, 5.7 GHz, VCC_VCO = 5 V  
–40  
–20  
M1 1kHz  
–54.23dBc/Hz  
+105°C  
+25°C  
–40°C  
M2 10kHz –84.17dBc/Hz  
M3 100kHz –110.13dBc/Hz  
–30  
–40  
M4 1MHz  
–133.29dBc/Hz  
–60  
M1  
M5 10MHz –153.36dBc/Hz  
M6 30MHz –159.75dBc/Hz  
M7 95MHz –163.7dBc/Hz  
–50  
–60  
–80  
–100  
–120  
–140  
–160  
–180  
–70  
M2  
–80  
–90  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
M3  
M4  
M5  
M6  
M7  
1k  
10k  
100k  
1M  
10M  
100M  
100  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY OFFSET (Hz)  
FREQUENCY (Hz)  
Figure 12. Open-Loop VCO Phase Noise over Temperature, 8.0 GHz,  
VCC_VCO = 5 V  
Figure 9. Open-Loop VCO Phase Noise, 8.0 GHz, VCC_VCO = 5 V  
Rev. 0 | Page 11 of 47  
 
ADF4372  
Data Sheet  
20  
15  
10  
5
–35  
–45  
DE-EMBEDDED MEASUREMENT  
RAW MEASUREMENT  
–55  
–65  
–75  
–85  
–95  
–105  
–115  
–125  
–135  
0
153.6MHz  
122.88MHz  
61.44MHz  
–5  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5  
FREQUENCY (GHz)  
3.5  
4.5  
5.5  
6.5  
7.5  
8.5  
CARRIER FREQUENCY (GHz)  
Figure 13. RF8P and RF8N Output Power, De-Embedded Board and Cable  
Measurement, Combined Using Balun (7.4 nH Inductors, 10 pF AC Coupling  
Capacitors Limit Power at Low Frequencies)  
Figure 16. Integer Boundary Spurious Sweep vs. Carrier Frequency,  
f
PFD = 61.44 MHz, 122.88 MHz, and 153.6 MHz,  
Loop Filter Bandwidth = 100 kHz  
–70  
–75  
–80  
–85  
–90  
–95  
–100  
6
4
2
0
–2  
–4  
–6  
–8  
PFD FREQUENCY = 153.6MHz  
PFD FREQUENCY = 122.88MHz  
PFD FREQUENCY = 61.44MHz  
–105  
DE-EMBEDDED MEASUREMENT  
RAW MEASUREMENT  
–110  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
7.0  
7.5  
8.0  
8.5  
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
CARRIER FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 14. PFD Spurious Sweep, fPFD = 61.44 MHz, Loop Filter Bandwidth =  
100 kHz  
Figure 17. RF16P and RF16N Output Power, De-Embedded Board and Cable  
Measurement, Combined Using Balun  
0
–35  
+105°C, VCO SUPPLY = 5.30V  
SECOND HARMONIC  
+105°C, VCO SUPPLY = 4.80V  
+25°C, VCO SUPPLY = 5.05V  
THIRD HARMONIC  
FOURTH HARMONIC  
–10  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
–40°C, VCO SUPPLY = 5.30V  
–40°C, VCO SUPPLY = 4.80V  
FIFTH HARMONIC  
SIXTH HARMONIC  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5  
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
CARRIER FREQUENCY (GHz)  
CARRIER FREQUENCY (GHz)  
Figure 15. RF8P and RF8N Output Harmonics, De-Embedded Board and Cable  
Measurement, Combined Using Balun  
Figure 18. RF16P and RF16N VCO Feedthrough, De-Embedded Board and  
Cable Measurement, Combined Using Balun  
Rev. 0 | Page 1± of 47  
Data Sheet  
ADF4372  
–35  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
0.075  
0.070  
0.065  
0.060  
0.055  
0.050  
0.045  
0.040  
0.035  
0.030  
0.025  
+105°C, VCO SUPPLY = 5.30V  
+105°C, VCO SUPPLY = 4.80V  
+25°C, VCO SUPPLY = 5.05V  
–40°C, VCO SUPPLY = 5.30V  
–40°C, VCO SUPPLY = 4.80V  
1kHz TO 20MHz  
12kHz TO 20MHz  
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
7.0  
7.5  
8.0  
8.5  
CARRIER FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 19. RF16P and RF16N VCO × 3 Feedthrough, De-Embedded Board and  
Cable Measurement, Combined Using Balun  
Figure 22. RMS Jitter, Fractional-N, fPFD = 153.6 MHz, VCC_VCO = 5 V  
0
0.075  
0.070  
0.065  
0.060  
0.055  
0.050  
0.045  
0.040  
0.035  
0.030  
0.025  
SECOND HARMONIC (4 × VCO)  
THIRD HARMONIC (6 × VCO)  
TH  
5/2 HARMONIC (5 × VCO)  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
7.0  
7.5  
8.0  
8.5  
CARRIER FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 20. RF16P and RF16N Output Harmonics, De-Embedded Board and  
Cable Measurement, Combined Using Balun  
Figure 23. RMS Jitter Integrated from 1 kHz to 100 MHz, Fractional-N,  
PFD = 153.6 MHz, VCC_VCO = 3.3 V  
f
0.075  
1kHz TO 100MHz  
12kHz TO 20MHz  
0.070  
0.065  
0.060  
0.055  
0.050  
0.045  
0.040  
0.035  
0.030  
0.025  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
7.0  
7.5  
8.0  
8.5  
FREQUENCY (GHz)  
Figure 21. RMS Jitter, Integer-N, fPFD = 245.76 MHz, Loop Filter Bandwidth =  
220 kHz, VCC_VCO = 5 V  
Rev. 0 | Page 13 of 47  
ADF4372  
Data Sheet  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
DE-EMBEDDED MEASUREMENT  
RAW MEASUREMENT  
DE-EMBEDDED MEASUREMENT  
RAW MEASUREMENT  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5  
FREQUENCY (GHz)  
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
FREQUENCY (GHz)  
Figure 25. RF16P and RF16N Output Power When Disabled, De-Embedded  
Board and Cable Measurement, Combined Using Balun  
Figure 24. RF8P and RF8N Output Power When Disabled, De-Embedded Board  
and Cable Measurement, Combined Using Balun  
Rev. 0 | Page 14 of 47  
Data Sheet  
ADF4372  
THEORY OF OPERATION  
where:  
RF SYNTHESIZER, A WORKED EXAMPLE  
FRAC is the fractional part of the N.  
Use the following equations to program the ADF4372  
synthesizer:  
MOD1 = 33,554,432  
(6)  
(7)  
(8)  
FRAC1 = INT(MOD1 × FRAC) = 26,039,637  
Remainder = 0.3333333333 or 1/3  
MOD2 = fPFD/GCD(fPFD, fCHSP) =  
FRAC2  
MOD2  
FRAC1+  
fPFD  
RF Divider  
(1)  
f
RFOUT = INT +  
×
MOD1  
61.44 MHz/GCD(61.44 MHz, 200 kHz) = 1536  
(9)  
where:  
RFOUT is the RF output frequency.  
where:  
f
GCD is the greatest common divider operant.  
FRAC2 = Remainder × 1536 = 512  
From Equation 2,  
INT is the integer division factor.  
FRAC1 is the fractionality.  
FRAC2 is the auxiliary fractionality.  
MOD2 is the auxiliary modulus.  
MOD1 is the fixed 25-bit modulus.  
(10)  
fPFD = (122.88 MHz × (1 + 0)/2) = 61.44 MHz  
(11)  
(12)  
RF Divider is the output divider that divides down the VCO  
frequency.  
2112.8 MHz = 61.44 MHz × ((INT + (FRAC1 +  
FRAC2/MOD2)/225))/2  
f
PFD = REFIN × ((1 + D)/(R × (1 + T)))  
(2)  
where:  
INT = 68.  
where:  
FRAC1 = 26,039,637.  
FRAC2 = 512.  
MOD2 = 1536.  
RF Divider = 2.  
REFIN is the reference frequency input.  
D is the REFIN doubler bit.  
R is the reference division factor.  
T is the reference divide by 2 bit (0 or 1).  
For example, in a universal mobile telecommunication system  
(UMTS) where a 2112.8 MHz fRFOUT is required, a 122.88 MHz  
REFIN is available. The ADF4372 VCO operates in the frequency  
range of 4 GHz to 8 GHz. Therefore, the RF divider of 2 must be  
used (VCO frequency = 4225.6 MHz, fRFOUT = VCO frequency/RF  
divider = 4225.6 MHz/2 = 2112.8 MHz).  
REFERENCE INPUT SENSITIVITY  
The slew rate of the input reference signal significantly affects  
the performance. The device is functional with signals of very  
low amplitude down to 0.4 V p-p and with a slew rate of 21 V/μs.  
However, the optimal performance is achieved with slew rates  
as high as 1000 V/μs. Achieving this slew rate with sinusoidal  
waves requires high amplitudes and may not be possible at  
low frequencies. The jitter and phase noise performance of  
the ADF4372 is shown in Figure 27 and Figure 28 for PFD  
frequencies of 250 MHz and 100 MHz, respectively. A high  
performance square wave signal with a high slew rate is  
recommended as the reference input signal to achieve  
the best performance.  
The feedback path is also important. In this example, the VCO  
output is fed back before the output divider (see Figure 26).  
In this example, the 122.88 MHz reference signal is divided by  
2 to generate a fPFD of 61.44 MHz. The desired channel spacing  
is 200 kHz.  
fPFD  
RF  
OUT  
PFD  
VCO  
÷2  
65  
60  
55  
50  
45  
40  
35  
–100  
–102  
–104  
–106  
–108  
–110  
–112  
–114  
N
DIVIDER  
PHASE NOISE AT 10kHz  
PHASE NOISE AT 1kHz  
1kHz TO 100MHz  
Figure 26. Loop Closed Before Output Divider  
12kHz TO 20MHz  
The values used in this worked example are as follows:  
N = fVCO_OUT/fPFD = 4225.6 MHz/61.44 MHz =  
68.7760416666666667  
(3)  
where:  
N is the desired value of the feedback counter, N.  
VCO_OUT is the output frequency of the VCO voltage controlled  
oscillator without using the output divider.  
PFD is the frequency of the phase frequency detector.  
INT = INT(VCO frequency/fPFD) = 68  
FRAC = 0.7760416666666667  
f
–6  
–4  
–2  
0
2
4
6
8
10  
12  
f
REFERENCE POWER (dBm)  
(4)  
(5)  
Figure 27. Jitter and Phase Noise, fPFD = 250 MHz  
Rev. 0 | Page 15 of 47  
 
 
 
 
 
ADF4372  
Data Sheet  
105  
95  
85  
75  
65  
55  
45  
35  
SPUR MECHANISMS  
PHASE NOISE AT 10kHz  
PHASE NOISE AT 1kHz  
1kHz TO 100MHz  
–96  
This section describes the two different spur mechanisms that  
arise with a fractional-N synthesizer and how to minimize them  
in the ADF4372.  
12kHz TO 20MHz  
–87  
–100  
–102  
–104  
–106  
–108  
–110  
Integer Boundary Spurs  
One mechanism for fractional spur creation is the interactions  
between the RF VCO frequency and the reference frequency.  
When these frequencies are not integer related (which is the  
purpose of a fractional-N synthesizer), spur sidebands appear on  
the VCO output spectrum at an offset frequency that corresponds  
to the beat note or the difference in frequency between an integer  
multiple of the reference and the VCO frequency. These spurs  
are attenuated by the loop filter and are more noticeable on  
channels close to integer multiples of the reference where  
the difference frequency can be inside the loop bandwidth.  
–6  
–4  
–2  
0
2
4
6
8
10  
12  
REFERENCE POWER (dBm)  
Figure 28. Jitter and Phase Noise, fPFD = 100 MHz  
REFERENCE DOUBLER AND REFERENCE DIVIDER  
Reference Spurs  
The on-chip reference doubler allows the input reference signal  
to be doubled. The doubler is useful for increasing the PFD  
comparison frequency. To improve the noise performance of  
the system, increase the PFD frequency. Doubling the PFD  
frequency typically improves noise performance by 3 dB.  
Reference spurs are generally not a problem in fractional-N  
synthesizers because the reference offset is far outside the loop  
bandwidth. However, any reference feedthrough mechanism  
that bypasses the loop can cause a problem. Feedthrough of low  
levels of on-chip reference switching noise through the prescaler  
back to the VCO can result in reference spur levels as high as  
−100 dBc.  
The reference divide by 2 divides the reference signal by 2,  
resulting in a 50% duty cycle PFD frequency.  
SPURIOUS OPTIMIZATION AND FAST LOCK  
LOCK TIME  
Narrow loop bandwidths can filter unwanted spurious signals.  
However, these bandwidths typically have a long lock time. A  
wider loop bandwidth achieves faster lock times, but can lead  
to increased spurious signals inside the loop bandwidth.  
The PLL lock time divides into a number of settings. The total lock  
time for changing frequencies is the sum of the four separate times:  
synthesizer lock, VCO band selection, automatic level calibration  
(ALC), and PLL settling time.  
OPTIMIZING JITTER  
Synthesizer Lock  
For lowest jitter applications, use the highest possible PFD  
frequency to minimize the contribution of inband noise from the  
PLL. Set the PLL filter bandwidth such that the inband noise of the  
PLL intersects with the open-loop noise of the VCO, minimizing  
the contribution of both to the overall noise.  
The synthesizer lock timeout ensures that the VCO calibration  
DAC, which forces the VCO tune voltage (VTUNE), has settled  
to a steady value for the band select circuitry. The SYNTH_LOCK_  
TIMEOUT bit and the TIMEOUT bits select the length of time  
the DAC is allowed to settle to the final voltage before the VCO  
calibration process continues to the next phase (VCO band  
selection).  
Use the ADIsimPLL design tool for this task.  
Additional Optimization on Loop Filter  
The PFD frequency is the clock for this logic, and the duration  
is set using the following equation:  
The PLL filter is designed to find an optimum bandwidth for  
the reference, PFD, and VCO noise, depending on the system  
requirements. In addition to this design, when the Σ-Δ modulator  
(SDM) is enabled, further optimization may be necessary to filter  
SDM noise.  
SYNTH _ LOCK _TIMEEOUT ×1024 +TIMEOUT  
(13)  
fPFD  
where:  
Reducing Σ-Δ Modulator Noise  
SYNTH_LOCK_TIMEOUT is programmed in Address 0x33.  
TIMEOUT is programmed in Address 0x31 and Address 0x32.  
In fractional mode, SDM noise becomes apparent and starts  
to contribute to overall phase noise. This noise can be reduced  
to insignificant levels by using a series resistor between the  
CPOUT pin and the loop filter. Place this resistor close to the  
CPOUT pin. A reasonable resistor value does not affect the loop  
bandwidth and phase margin of the designed loop filter. In most  
cases, 91 Ω gives the best results. This resistor is not required in  
integer mode (SDM not enabled) or when a narrow-band loop  
filter is used (SDM noise attenuated).  
The calculated time must be greater than or equal to 20 µs.  
For the SYNTH_LOCK_TIMEOUT bit, the minimum value is  
2 and the maximum value is 31. For the TIMEOUT bits, the  
minimum value is 2 and the maximum value is 1023.  
Rev. 0 | Page 16 of 47  
 
 
 
 
 
 
Data Sheet  
ADF4372  
VCO Band Selection  
PLL Settling Time  
The VCO_BAND_DIV bits (programmed in Address 0x30) and  
The time taken for the loop to settle is inversely proportional to  
the low-pass filter bandwidth. The settling time is accurately  
modeled in the ADIsimPLL design tool.  
fPFD are used to generate the VCO band selection clock  
as follows:  
Lock Time, a Worked Example  
fPFD  
fBSC  
=
(14)  
VCO _ BAND _ DIV  
Assume that fPFD = 61.44 MHz,  
The calculated time must be less than or equal to 2.4 MHz.  
VCO_BAND_DIV = Ceiling(fPFD/2,400,000) = 26  
where Ceiling() rounds up to the nearest integer.  
(18)  
16 clock cycles are required for one VCO core and band  
calibration step and the total band selection process takes  
11 steps, resulting in the following equation:  
SYNTH_LOCK_TIMEOUT × 1024 + TIMEOUT > 1228.8 (19)  
VCO_ALC_TIMEOUT × 1024 + TIMEOUT > 3072  
(20)  
16×VCO _ BAND _ DIV  
11×  
(15)  
There are several suitable values that meet these criteria. By  
considering the minimum specifications, the following values  
are the most suitable:  
fPFD  
The minimum value for VCO_BAND_DIV is 1 and the  
maximum value is 255.  
SYNTH_LOCK_TIMEOUT = 2 (minimum value)  
VCO_ALC_TIMEOUT = 3  
TIMEOUT = 2  
ALC  
Use the ALC function to choose the correct bias current in the  
ADF4372 VCO core. The duration required for VCO bias  
voltage to settle for each step is set by the following equation:  
Much faster lock times than those detailed in this data sheet are  
possible by bypassing the calibration processes. Contact an  
Analog Devices, Inc., sales representative for more information.  
VCO _ ALC _TIMEOUT ×1024 +TIMEOUT  
(16)  
fPFD  
where:  
VCO_ALC_TIMEOUT and TIMEOUT are programmed in  
Address 0x34, Address 0x32, and Address 0x31.  
The calculated time must be greater than or equal to 50 µs.  
The total ALC takes 63 steps. Calculate the total duration for  
ALC as follows:  
VCO _ ALC _TIMEOUT ×1024 +TIMEOUT  
63×  
(17)  
fPFD  
The minimum value for VCO_ALC_TIMEOUT is 2 and the  
maximum value is 31.  
Rev. 0 | Page 17 of 47  
ADF4372  
Data Sheet  
CIRCUIT DESCRIPTION  
REFERENCE INPUT  
RF N DIVIDER  
Figure 29 shows the reference input stage. The reference input  
can accept both single-ended and differential signals. Use the  
reference mode bit (Bit 6 in Address 0x22) to select the signal.  
To use a differential signal on the reference input, program this  
bit high. In this case, SW1 and SW2 are open, SW3 and SW4  
are closed, and the current source that drives the differential pair of  
transistors switches on. The differential signal is buffered, and  
the signal is provided as an emitter coupled logic (ECL) to the  
CMOS buffer.  
The RF N divider allows a division ratio in the PLL feedback  
path. Determine the division ratio by the INT, FRAC1, FRAC2,  
and MOD2 values that this divider comprises.  
RF N COUNTER  
FROM  
VCO OUTPUT OR  
OUTPUT DIVIDERS  
TO PFD  
N COUNTER  
THIRD-ORDER  
FRACTIONAL  
INTERPOLATOR  
When a single-ended signal is used as the reference, connect the  
reference signal to REFP and program Bit 6 in Address 0x22  
to 0. In this case, SW1 and SW2 are closed, SW3 and SW4 are  
open, and the current source that drives the differential pair of  
transistors switches off.  
INT  
FRAC1  
VALUE  
FRAC2  
VALUE  
MOD2  
VALUE  
VALUE  
Figure 30. RF N Divider  
For optimum integer boundary spur and phase noise performance,  
use the single-ended setting for all references up to 500 MHz  
(even if using a differential signal). Use the differential setting  
for reference frequencies greater than 500 MHz.  
INT, FRAC, MOD, and R Counter Relationship  
The INT, FRAC1, FRAC2, MOD1, and MOD2 values, in  
conjunction with the R counter, make it possible to generate  
output frequencies that are spaced by fractions of fPFD. For more  
information, see the RF Synthesizer, a Worked Example section.  
REFERENCE  
INPUT MODE  
85k  
Calculate fVCO_OUT using the following equation:  
SW2  
BUFFER  
SW1  
fVCO_OUT = fPFD × N  
(21)  
(22)  
Calculate fPFD using the following equation:  
SW3  
TO  
R COUNTER  
MULTIPLEXER  
1D  
fPFD REFIN  
R 1T  
AV  
DD  
where:  
ECL TO CMOS  
BUFFER  
REFIN is the reference frequency input.  
D is the REFIN doubler bit.  
R is the preset divide ratio of the binary 10-bit programmable  
reference counter (1 to 1023).  
REFP  
REFN  
T is the REFIN divide by 2 bit (0 or 1)  
2.5kΩ  
2.5kΩ  
Calculate the desired value of the feedback counter N using the  
following equation:  
SW4  
BIAS  
GENERATOR  
FRAC2  
MOD2  
MOD1  
FRAC1  
Figure 29. Reference Input Stage, Differential Mode  
(23)  
N INT   
where:  
INT is the 16-bit integer value. In integer mode, INT = 20 to  
32,767 for the 4/5 prescaler, and 64 to 65,535 for the 8/9  
prescaler. In fractional mode, INT= = 23 to 32,767 for the 4/5  
prescaler, and 75 to 65,535 for the 8/9 prescaler.  
FRAC1 is the numerator of the primary modulus (0 to 33,554,431).  
FRAC2 is the numerator of the 14-bit auxiliary modulus  
(0 to 16,383).  
MOD2 is the programmable, 14-bit auxiliary fractional  
modulus (2 to 16,383).  
MOD1 is a 25-bit primary modulus with a fixed value of  
225 = 33,554,432.  
Rev. 0 | Page 18 of 47  
 
 
 
 
Data Sheet  
ADF4372  
UP  
These calculations result in a very low frequency resolution  
with no residual frequency error. To apply Equation 23, perform  
the following steps:  
HIGH  
D1  
Q1  
U1  
CLR1  
+IN  
1. Calculate N by dividing VCOOUT/fPFD. The integer value of  
this number forms INT.  
CHARGE  
PUMP  
CP  
U3  
DELAY  
2. Subtract INT from the full N value.  
3. Multiply the remainder by 225. The integer value of this  
number forms FRAC1.  
CLR2  
D2 Q2  
DOWN  
4. Calculate MOD2 based on the channel spacing (fCHSP  
using the following equation:  
)
HIGH  
U2  
–IN  
MOD2 = fPFD/GCD(fPFD, fCHSP  
)
(24)  
Figure 31. PFD Simplified Schematic  
where:  
MUXOUT AND LOCK DETECT  
GCD(fPFD, fCHSP) is the greatest common divisor of the  
PFD frequency and the channel spacing frequency.  
The output multiplexer on the ADF4372 allows the user to  
access various internal points on the chip. Figure 32 shows the  
MUXOUT section in block diagram form.  
fCHSP is the desired channel spacing frequency.  
5. Calculate FRAC2 using the following equation:  
AV  
DD  
FRAC2 = ((N – INT) × 225 – FRAC1) × MOD2  
(25)  
The FRAC2 and MOD2 fraction result in outputs with zero  
frequency error for channel spacing when  
THREE-STATE OUTPUT  
AV  
DD  
f
PFD/GCD(fPFD, fCHSP) = MOD2 < 16,383  
(26)  
R DIVIDER OUTPUT  
N DIVIDER OUTPUT  
If zero frequency error is not required, the MOD1 and  
MUX  
CONTROL  
MUXOUT  
MOD2 denominators operate together to create a 39-bit  
resolution modulus.  
ANALOG LOCK DETECT  
DIGITAL LOCK DETECT  
RESERVED  
Integer-N Mode  
When FRAC1 and FRAC2 are equal to 0, the synthesizer  
operates in integer-N mode. It is recommended that the  
SD_EN_FRAC0 bit in Address 0x2B be set to 1 to disable the  
SDMs, which gives an improvement in the inband phase  
noise and reduces any additional Σ-Δ noise.  
DIGITAL  
GROUND  
Figure 32. MUXOUT Schematic  
DOUBLE BUFFERS  
The main fractional value (FRAC1), auxiliary modulus value  
(MOD2), auxiliary fractional value (FRAC2), reference doubler,  
reference divide by 2 (RDIV2), R counter value, and charge pump  
current setting are double buffered in the ADF4372. Two events  
must occur before the ADF4372 uses a new value for any of the  
double buffered settings. First, the new value must latch into the  
device by writing to the appropriate register, and second, a new  
write to Address 0x10 must be performed.  
R Counter  
The 5-bit R counter allows the input reference frequency (input  
to REFP and REFN) to be divided down to produce the reference  
clock to the PFD. Division ratios from 1 to 32 are allowed.  
PFD AND CHARGE PUMP  
The PFD takes inputs from the R counter and N counter and  
produces an output proportional to the phase and frequency  
difference between them. Figure 31 is a simplified schematic  
of the PFD. The PFD includes a fixed delay element that sets the  
width of the antibacklash pulse. This pulse ensures that there is no  
dead zone in the PFD transfer function and provides a consistent  
reference spur level. Set the phase detector polarity to positive  
on this device because of the positive tuning of the VCO.  
For example, to ensure that the modulus value loads correctly,  
Address 0x10 must be written to every time that the modulus  
value updates.  
Rev. 0 | Page 19 of 47  
 
 
 
 
 
ADF4372  
Data Sheet  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VCO  
The VCO in the ADF4372 consists of four separate VCO cores,  
Core A, Core B, Core C, and Core D, each of which uses 256  
overlapping bands, which allows the device to cover a wide  
frequency range without large VCO sensitivity (KV) and without  
resultant poor phase noise and spurious performance.  
The correct VCO and band are chosen automatically by the  
VCO and band select logic whenever Address 0x10 is updated  
and automatic calibration is enabled. The VCO tune voltage is  
disconnected from the output of the loop filter and is connected  
to an internal reference voltage.  
The R counter output is used as the clock for the band select  
logic. After band selection, normal PLL action resumes. The  
nominal value of KV is 50 MHz/V when the N divider is driven  
from the VCO output, or the KV value is divided by D. D is  
the output divider value if the N divider is driven from the  
RF output divider.  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
7.0  
7.5  
8.0  
FREQUENCY (GHz)  
Figure 34. VCO Sensitivity, KV vs. Frequency, VCC_VCO = 3.3 V  
OUTPUT STAGE  
The RF8P pin and the RF8N pin of the ADF4372 connect to  
the collectors of a bipolar negative positive negative (NPN)  
differential pair driven by buffered outputs of the VCO, as  
shown in Figure 35. The ADF4372 contains internal 50 Ω  
resistors connected to the VCC_X1 pin. To optimize the power  
dissipation vs. the output power requirements, the tail current  
of the differential pair is programmable using Bits[1:0] in  
Address 0x25. Four current levels can be set. These levels give  
approximate output power levels of −4 dBm, −1 dBm, 2 dBm,  
and 5 dBm. Levels of −4 dBm, −1 dBm, and 2 dBm can be  
achieved by ac coupling into a 50 Ω load. A 5 dBm level  
requires an external shunt inductor to VCC_X1. An inductor  
has a narrower operating frequency than a 50 Ω resistor.  
For accurate power levels, refer to the Typical Performance  
Characteristics section. Add an external shunt inductor to  
provide higher power levels, which is less wideband than the  
internal bias only. Terminate the unused complementary output  
with a circuit similar to the used output.  
The VCO shows variation of KV as the tuning voltage, VTUNE  
,
varies within the band and from band to band. For wideband  
applications covering a wide frequency range (and changing  
output dividers), a value of 50 MHz/V provides the most accurate  
KV, because this value is closest to the average value. Figure 33  
and Figure 34 shows how KV varies with fundamental VCO  
frequency along with an average value for the frequency band.  
Users may prefer Figure 33 and Figure 34 when using narrow-  
band designs.  
150  
140  
130  
120  
110  
100  
90  
80  
70  
60  
VCC_X1  
VCC_X1  
50  
50Ω  
RF8P  
50Ω  
RF8N  
40  
30  
20  
10  
BUFFER,  
DIVIDE BY  
1, 2, 4, 8,  
16, 32, 64  
0
4.0  
VCO  
4.5  
5.0  
5.5  
6.0  
6.5  
7.0  
7.5  
8.0  
FREQUENCY (GHz)  
Figure 33. VCO Sensitivity, KV vs. Frequency, VCC_VCO = 5 V  
Figure 35. Output Stage  
The doubled VCO output (8 GHz to 16 GHz) is available on the  
RF16P pin and the RF16N pin, which can be directly connected  
to the next circuit. The RFAUX8P and the RFAUX8N provide the  
same functionality as the RF8x output, but they can output the  
divided RF8x frequency or the VCO frequency if desired.  
Rev. 0 | Page ±0 of 47  
 
 
 
 
 
Data Sheet  
ADF4372  
DOUBLER  
SPI  
The VCO frequency multiplied by 2 is available at the RF16P  
pin and RF16N pin. This output can be powered down when  
not in use, and the RF16P pin and the RF16N pin can be left open  
if unused.  
The SPI of the ADF4372 allows the user to configure the device  
as required via a 3-wire or 4-wire SPI port. This interface provides  
users with added flexibility and customization. The serial port  
CS  
interface consists of four control lines: SCLK, SDIO, , and  
MUXOUT (not used in 3-wire SPI). The timing requirements  
for the SPI port are detailed in Table 2.  
RF16P  
×2  
The SPI protocol consists of a read and write bit and 15 register  
address bits, followed by eight data bits. Both the address and data  
fields are organized with the MSB first and end with the LSB  
by default. The timing diagrams for write mode and read mode  
are shown in Figure 3 and Figure 4, respectively. The significant  
bit order can be changed via the Bit 1 (LSB_FIRST) setting at  
Address 0x00. The related timing diagram is shown in Figure 2.  
RF16N  
Figure 36. Doubler Output Stage  
An automatic tracking filter on the ADF4372 that suppresses  
the VCO and other unwanted frequency products ensures the  
doubled output is maximized and that the VCO and 3 × VCO  
frequencies are suppressed regardless of the output frequency.  
Suppression of <50 dB is typical. The optimum values are set  
automatically by the automatic tracking when it is enabled  
using Bit 1 in Address 0x23.  
The ADF4372 input logic level for the write cycle is compatible  
with 1.8 V logic level (see the logic parameters in Table 1). On a  
read cycle, both the SDIO pin and MUXOUT pin are configurable  
for 1.8 V (default) or 3.3 V output levels by the LEV_SEL bit  
setting.  
The settings for optimum output power, phase noise, and  
harmonic rejection are given in Table 6.  
SPI Stream Mode  
Table 6. Filter and Bias Settings for Doubled Output  
The ADF4372 supports stream mode, where data bits are loaded  
to or read from registers serially without writing the register  
address (instruction word). This mode is useful in time critical  
applications, when a large amount of data must be transferred or  
when some registers must be updated repeatedly.  
Frequency (GHz)  
Filter  
Bias  
<8.4  
7
6
5
4
3
±
1
0
3
8.4 to 9.4  
9.4 to 10  
3
3
10 to 11.5  
11.5 to 1±.±  
1±.± to 13.7  
13.7 to 14.5  
>14.5  
3
The slave device starts reading or writing data to this address and  
3
CS  
continues as long as is asserted and single-byte writes are not  
3
enabled (Bit 7 in Address 0x01). The slave device automatically  
increments or decrements the address depending on the setting  
of the address ascension bit (Bit 2 in Address 0x00).  
3
3
OUTPUT STAGE MUTE  
The diagram of 3-byte streaming is shown in Figure 5. The  
instruction header starts with a Logic 0 to indicate a write  
sequence and addresses the register. The data for registers (N,  
N − 1, and N − 2) are loaded consecutively without any assertion  
Another feature of the ADF4372 is that the supply current  
to the RF8P and RF8N output stage can shut down until the  
ADF4372 achieves lock as measured by the digital lock detect  
circuitry. The mute to lock detect bit (MUTE_LD) in Address 0x25  
enables this function.  
CS  
in  
.
The registers are organized into eight bits, and if a register  
requires more than eight bits, sequential register addresses  
are used. This organization enables using stream mode and  
simplifies loading. For example, FRAC1WORD is stored in  
Address 0x16, Address 0x15, and Address 0x14 (MSB to LSB).  
These registers can be loaded by using Address 0x16 and sending  
the whole 24-bit data afterward, as shown in Figure 5.  
Rev. 0 | Page ±1 of 47  
 
 
 
 
ADF4372  
Data Sheet  
DEVICE SETUP  
The recommended sequence of steps to set up the ADF4372 are  
as follows:  
STEP 3: FREQUENCY UPDATE SEQUENCE  
Frequency updates require updating MOD2, FRAC1, FRAC2,  
and INT. Therefore, the update sequence must be as follows:  
1. Set up the SPI interface.  
2. Perform the initialization sequence.  
3. Perform the frequency update sequence.  
1. Address 0x1A (new MOD2WORD[13:8])  
2. Address 0x19 (new MOD2WORD[7:0])  
3. Address 0x18 (new FRAC2WORD[13:7])  
4. Address 0x17 (new FRAC2WORD[6:0])  
5. Address 0x16 (new FRAC1WORD[23:16])  
6. Address 0x15 (new FRAC1WORD[15:8])  
7. Address 0x14 (new FRAC1WORD[7:0])  
8. Address 0x11 (new BIT_INTEGER_WORD[15:8])  
9. Address 0x10 (new BIT_INTEGER_WORD[7:0])  
STEP 1: SET UP THE SPI INTERFACE  
First, initialize the SPI. Write the values in Table 7 to Address 0x00  
and Address 0x01.  
Table 7. SPI Interface Setup  
Address Setting Notes  
0x00  
0x01  
0x18  
0x00  
4-wire SPI  
Stalling, master readback control  
The frequency change occurs on the write to Address 0x10.  
The unchanged registers do not need to be updated. For  
example, for an integer-N PLL configuration (fractional parts are  
not used), skip Step 1 to Step 7. In this case, the only required  
updates are Address 0x11 and Address 0x10.  
STEP 2: INITIALIZATION SEQUENCE  
Write to each register in reverse order from Address 0x7C to  
Address 0x10. Choosing appropriate values to generate the desired  
frequency. The registers that are not given in the datasheet can  
be skipped in normal SPI mode. If SPI stream mode is used, write  
0x00 to the registers not listed in the Register Summary section.  
The frequency update sequence follows to generate the desired  
output frequency.  
Rev. 0 | Page ±± of 47  
 
 
 
 
 
Data Sheet  
ADF4372  
APPLICATIONS INFORMATION  
POWER SUPPLIES  
OUTPUT MATCHING  
The ADF4372 contains four multiband VCOs that together cover  
an octave range of frequencies. To achieve optimal VCO phase  
noise performance, it is recommended to connect a low noise  
regulator, such as the ADM7150 or LT3045, to the VCC_VCO  
pin. Connect the same regulator to the VCC_VCO pin and the  
VCC_LDO pin. It is recommended to connect 1 μF decoupling  
capacitors to the 5 V VCO supply.  
The low frequency output can be ac-coupled to the next circuit,  
if desired. However, if higher output power is required, use a  
pull-up inductor to increase the output power level.  
VDD_X1  
7.5nH  
10pF  
RF8P  
50Ω  
For all other 3.3 V supply pins, use one ADM7150 or one  
LT3045 regulator. A 1 μF capacitor is also recommended for the  
VDD_VP pin. Additional decoupling to other supply pins is not  
required.  
Figure 37. Optimum Output Stage  
When differential outputs are not needed, terminate the unused  
output or combine it with both outputs using a balun.  
PCB DESIGN GUIDELINES FOR AN LGA PACKAGE  
For lower frequencies that are less than 1 GHz, it is recommended  
to use a 100 nH inductor on the RF8P pin and the RF8N pin.  
The bottom of the chip scale package has a central exposed  
thermal pad. The thermal pad on the PCB must be at least as  
large as the exposed pad. On the PCB, there must be a minimum  
clearance of 0.25 mm between the thermal pad and the inner  
edges of the pad pattern. This clearance ensures there is no  
shorting  
The RF8P and RF8N pins form a differential circuit. Provide  
each output with the same (or similar) components where  
possible, including the same shunt inductor value, bypass  
capacitor, and termination.  
The RFAUX8P pin and the RFAUX8N pin are effectively the  
same as the RF8P pin and the RF8N pin and must be treated in  
the manner as outlined for the RF8P pin and the RF8N pin.  
To improve the thermal performance of the package, use thermal  
vias on the PCB thermal pad. If vias are used, incorporate them  
into the thermal pad at the 1.2 mm pitch grid. The via diameter  
must be between 0.3 mm and 0.33 mm, and the via barrel must  
be plated with 1 oz. of copper to plug the via into the barrel.  
The RF16P pin and the RF16N pin can be directly connected to  
the next circuit stage. These pins are internally matched to 50 Ω  
and do not require additional decoupling.  
For a microwave PLL and VCO synthesizer, such as the  
ADF4372, take care with the board stackup and layout. Do not  
consider using FR4 material because it causes an amplitude  
decrease in signals greater than 3 GHz. Instead, Rogers 4350,  
Rogers 4003, or Rogers 3003 dielectric material is suitable.  
Take care with the RF output traces to minimize discontinuities  
and ensure the best signal integrity. Via placement and grounding  
are critical.  
Rev. 0 | Page ±3 of 47  
 
 
 
 
ADF4372  
Data Sheet  
REGISTER SUMMARY  
Table 8. ADF4372 Register Summary  
Reg  
Bits  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Default  
R/W  
Addr.  
0x00  
0x01  
[7:0]  
SOFT_RESET_R  
LSB_FIRST_R  
ADDRESS_  
ASCENSION  
_R  
SDO_ACTIVE_  
R
SDO_ACTIVE  
ADDRESS_  
ASCENSION  
LSB_FIRST  
SOFT_RESET  
0x18  
R/W  
[7:0]  
SINGLE_  
INSTRUCTION  
STALLING  
MASTER_  
READBACK_  
CONTROL  
RESERVED  
0x00  
R/W  
0x03  
0x04  
0x05  
0x06  
0x10  
0x11  
0x12  
0x14  
0x15  
0x16  
0x17  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
RESERVED  
CHIP_TYPE  
0x0X  
0xXX  
0xXX  
0xXX  
0x32  
0x00  
0x40  
0x00  
0x00  
0x00  
0x00  
R
PRODUCT_ID[7:0]  
R/W  
R/W  
R
PRODUCT_ID[15:8]  
PRODUCT_GRADE  
DEVICE_REVISION  
BIT_INTEGER_WORD[7:0]  
BIT_INTEGER_WORD[15:8]  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
RESERVED  
EN_AUTOCAL  
PRE_SEL  
RESERVED  
FRAC1WORD[7:0]  
FRAC1WORD[15:8]  
FRAC1WORD[23:16]  
FRAC2WORD[6:0]  
FRAC1WORD  
[24]  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
0x20  
0x22  
0x23  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
RESERVED  
RESERVED  
FRAC2WORD[13:7]  
0x00  
0xE8  
0x03  
0x00  
0x00  
0x00  
0x48  
0x01  
0x14  
0x00  
0x00  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
MOD2WORD[7:0]  
PHASE_ADJ  
MOD2WORD[13:8]  
PHASE_WORD[7:0]  
PHASE_WORD[15:8]  
PHASE_WORD[23:16]  
PD_POL  
CP_CURRENT  
PD  
RESERVED  
CNTR_RESET  
RESERVED  
R_WORD  
LEV_SEL  
MUXOUT  
MUXOUT_EN  
RESERVED  
RESERVED  
REFIN_MODE  
REF_DOUB  
RDIV2  
RESERVED  
RESERVED  
CLK_DIV_MODE  
RESERVED  
TRACKING_FIL  
TER_MUX_SEL  
RESERVED  
0x24  
0x25  
[7:0]  
[7:0]  
FB_SEL  
DIV_SEL  
RESERVED  
0x80  
0x07  
R/W  
R/W  
MUTE_LD  
RESERVED  
RF_DIVSEL_  
DB  
X4_EN  
X2_EN  
RF_EN  
RF_OUT_POWER  
0x26  
0x27  
[7:0]  
[7:0]  
BLEED_ICP  
0x32  
0xC5  
R/W  
R/W  
LD_BIAS  
LDP  
BLEED_GATE  
BLEED_EN  
VCOLDO_P  
D
RF_PBS  
LOL_EN  
0x28  
0x2A  
0x2B  
[7:0]  
[7:0]  
[7:0]  
DOUBLE_BUFF  
RESERVED  
RESERVED  
RESERVED  
LD_COUNT  
RESERVED  
0x03  
0x00  
0x01  
R/W  
R/W  
R/W  
BLEED_POL  
LSB_P1  
RESERVED  
LE_SEL  
READ_SEL  
VAR_MOD_EN  
RESERVED  
SD_LOAD_  
ENB  
RESERVED  
SD_EN_FRAC0  
0x2C  
[7:0]  
RESERVED  
ALC_RECT_  
SELECT_  
VCO1  
ALC_REF_  
DAC_LO_  
VCO1  
ALC_REF_DAC_NOM_VCO1  
VTUNE_  
CALSET_EN  
DISABLE_ALC  
0x44  
R/W  
0x2D  
0x2E  
0x2F  
[7:0]  
[7:0]  
[7:0]  
RESERVED  
ALC_RECT_  
SELECT_VCO2  
ALC_REF_DAC_  
LO_VCO2  
ALC_REF_DAC_NOM_VCO2  
ALC_REF_DAC_NOM_VCO3  
ALC_REF_DAC_NOM_VCO4  
0x11  
0x12  
0x94  
R/W  
R/W  
R/W  
RESERVED  
ALC_RECT_  
SELECT_VCO3  
ALC_REF_DAC_  
LO_VCO3  
SWITCH_LDO_  
3P3V_5V  
RESERVED  
ALC_RECT_  
SELECT_VCO4  
ALC_REF_DAC_  
LO_VCO4  
0x30  
0x31  
0x32  
[7:0]  
[7:0]  
[7:0]  
VCO_BAND_DIV  
TIMEOUT[7:0]  
0x3F  
0xA7  
0x04  
R/W  
R/W  
R/W  
ADC_MUX_  
SEL  
RESERVED  
RESERVED  
ADC_FAST_  
CONV  
ADC_CTS_  
CONV  
ADC_  
CONVERSION  
ADC_  
ENABLE  
TIMEOUT[9:8]  
0x33  
0x34  
0x35  
0x36  
0x37  
0x38  
0x39  
0x3A  
0x3D  
0x3E  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
SYNTH_LOCK_TIMEOUT  
VCO_ALC_TIMEOUT  
0x0C  
0x9E  
0x4C  
0x30  
0x00  
0x00  
0x07  
0x55  
0x00  
0x0C  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
VCO_FSM_TEST_MODES  
ADC_CLK_DIVIDER  
ICP_ADJUST_OFFSET  
SI_BAND_SEL  
SI_VCO_SEL  
SI_VCO_BIAS_CODE  
SI_VTUNE_CAL_SET  
RESERVED  
RESERVED  
VCO_FSM_TEST_MUX_SEL  
ADC_OFFSET  
SD_RESET  
RESERVED  
RESERVED  
CP_TMODE  
RESERVED  
Rev. 0 | Page 24 of 47  
 
Data Sheet  
ADF4372  
Reg  
Bits  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Default  
R/W  
Addr.  
0x3F  
0x40  
0x41  
0x47  
0x5±  
0x6E  
0x6F  
0x70  
0x71  
0x7±  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
CLK1_DIV[7:0]  
0x80  
0x50  
0x±8  
0xC0  
0xF4  
0x00  
0x00  
0x03  
0x60  
0x3±  
R/W  
R/W  
R/W  
R/W  
R/W  
R
RESERVED  
TRM_IB_VCO_BUF  
CLK1_DIV[11:8]  
CLK±_DIVIDER_1[7:0]  
TRM_RESD_VCO_MUX  
TRM_RESD_VCO_BUF  
RESERVED  
TRM_RESCI_VCO_BUF  
RESERVED  
VCO_DATA_READBACK[7:0]  
VCO_DATA_READBACK[15:8]  
RESERVED  
R
BAND_SEL_X±  
BAND_SEL_X4  
BIAS_SEL_X±  
BIAS_SEL_X4  
R/W  
R/W  
R/W  
RESERVED  
RESERVED  
AUX_FREQ_  
SEL  
POUT_AUX  
RESERVED  
PDB_AUX  
RESERVED  
COUPLED_  
RESERVED  
VCO  
0x73  
0x7C  
[7:0]  
[7:0]  
ADC_CLK_  
DISABLE  
PD_NDIV  
LD_DIV  
0x00  
0x00  
R/W  
R
RESERVED  
LOCK_DETECT  
_READBACK  
Rev. 0 | Page ±5 of 47  
ADF4372  
Data Sheet  
REGISTER DETAILS  
Address: 0x00, Default: 0x18, Name: REG0000  
7
6
5
4
3
2
1
0
0
0
0
1
1
0
0
0
[7] SOFT_RESET_R (R/W)  
[0] SOFT_RESET (R/W)  
Copy of Bit-0.  
Soft Reset.  
[6] LSB_FIRST_R (R/W)  
[1] LSB_FIRST (R/W)  
Copy of Bit-1.  
Reads LSB first when Active.  
[5] ADDRESS_ASCENSION_R (R/W)  
Copy of Bit-2.  
[2] ADDRESS_ASCENSION (R/W)  
Set Address in Ascending Order (Default  
is Ascending).  
[4] SDO_ACTIVE_R (R/W)  
Copy of Bit-3.  
[3] SDO_ACTIVE (R/W)  
Choose Between 3-Pin or 4-Pin Operation.  
Table 9. Bit Descriptions for REG0000  
Bit(s) Bit Name  
Description  
Default Access  
7
SOFT_RESET_R  
Copy of Bit 0.  
0x0  
Read/Write  
(R/W)  
6
5
4
3
LSB_FIRST_R  
Copy of Bit 1.  
Copy of Bit ±.  
Copy of Bit 3.  
0x0  
0x0  
0x1  
0x1  
R/W  
R/W  
R/W  
R/W  
ADDRESS_ASCENSION_R  
SDO_ACTIVE_R  
SDO_ACTIVE  
Choose Between 3-Pin or 4-Pin Operation.  
0: 3-pin.  
1: 4-pin. Enables SDIO pin and the SDIO pin becomes an input only.  
±
ADDRESS_ASCENSION  
Set Address in Ascending Order (Default Is Ascending).  
0x0  
R/W  
0: descending.  
1: ascending.  
1
0
LSB_FIRST  
Reads LSB First when Active.  
Soft Reset.  
0x0  
0x0  
R/W  
R/W  
SOFT_RESET  
0: normal operation.  
1: soft reset.  
Address: 0x01, Default: 0x00, Name: REG0001  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7] SINGLE_INSTRUCTION (R/W)  
[4:0] RESERVED  
Single Instruction.  
[5] MASTER_READBACK_CONTROL (R/W)  
[6] STALLING (R/W)  
Master Readback Control.  
Stalling.  
Table 10. Bit Descriptions for REG0001  
Bit(s)  
7
Bit Name  
SINGLE_INSTRUCTION  
STALLING  
MASTER_READBACK_CONTROL  
RESERVED  
Description  
Default  
Access  
R/W  
Single Instruction. SPI stream mode is disabled if this bit is set to 1.  
Stalling. For internal use.  
Master Readback Control. For internal use.  
Reserved.  
0x0  
0x0  
0x0  
0x0  
6
5
R/W  
R/W  
[4:0]  
Read  
Only (R)  
Rev. 0 | Page ±6 of 47  
 
Data Sheet  
ADF4372  
Address: 0x03, Default: 0x0X, Name: REG0003  
7
6
5
4
3
2
1
0
0
0
0
0
X
X
X
X
[7:4] RESERVED  
[3:0] CHIP_TYPE (RP)  
Chip Type.  
Table 11. Bit Descriptions for REG0003  
Bit(s)  
[7:4]  
[3:0]  
Bit Name  
RESERVED  
CHIP_TYPE  
Description  
Reserved.  
Default  
0x0  
0x0  
Access  
R
Chip Type.  
Read Programmable  
(RP)  
Address: 0x04, Default: 0xXX, Name: REG0004  
7
6
5
4
3
2
1
0
X
X
X
X
X
X
X
X
[7:0] PRODUCT_ID[7:0] (R/WP)  
Product ID.  
Table 12. Bit Descriptions for REG0004  
Bit(s)  
Bit Name  
Description  
Default  
Access  
[7:0]  
PRODUCT_ID[7:0]  
Product ID.  
0x0  
Read/Write  
Programmable  
(R/WP)  
Address: 0x05, Default: 0xXX, Name: REG0005  
7
6
5
4
3
2
1
0
X
X
X
X
X
X
X
X
[7:0] PRODUCT_ID[15:8] (R/WP)  
Product ID.  
Table 13. Bit Descriptions for REG0005  
Bit(s) Bit Name  
Description  
Default Access  
[7:0] PRODUCT_ID[15:8]  
Product ID.  
0x0  
R/WP  
Address: 0x06, Default: 0xXX, Name: REG0006  
7
6
5
4
3
2
1
0
X
X
X
X
X
X
X
X
[7:4] PRODUCT_GRADE (RP)  
Product Grade.  
[3:0] DEVICE_REVISION (RP)  
Device Revision.  
Table 14. Bit Descriptions for REG0006  
Bit(s)  
[7:4]  
[3:0]  
Bit Name  
PRODUCT_GRADE  
DEVICE_REVISION  
Description  
Product Grade.  
Device Revision.  
Default  
0x0  
0x0  
Access  
RP  
RP  
Address: 0x10, Default: 0x32, Name: REG0010  
7
6
5
4
3
2
1
0
0
0
1
1
0
0
1
0
[7:0] BIT_INTEGER_WORD[7:0] (R/W)  
16-Bit Integer Word.  
Table 15. Bit Descriptions for REG0010  
Bit(s) Bit Name Description  
[7:0]  
Default Access  
0x3± R/W  
BIT_INTEGER_WORD[7:0] 16-Bit Integer Word. Sets the integer value of N. Updates to the PLL N counter,  
including FRAC1, FRAC±, and MOD±, are double buffered by this bitfield.  
Rev. 0 | Page ±7 of 47  
ADF4372  
Data Sheet  
Address: 0x11, Default: 0x00, Name: REG0011  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] BIT_INTEGER_WORD[15:8] (R/W)  
16-Bit Integer Word.  
Table 16. Bit Descriptions for REG0011  
Bit(s)  
[7:0]  
Bit Name  
BIT_INTEGER_WORD[15:8]  
Description  
16-Bit Integer Word. Sets the integer value of N.  
Default  
0x0  
Access  
R/W  
Address: 0x12, Default: 0x40, Name: REG0012  
7
6
5
4
3
2
1
0
0
1
0
0
0
0
0
0
[7] RESERVED  
[4:0] RESERVED  
[6] EN_AUTOCAL (R/W)  
[5] PRE_SEL (R/W)  
Enables Autocalibration.  
Prescaler Select.  
Table 17. Bit Descriptions for REG0012  
Bit(s) Bit Name  
Description  
Default Access  
7
6
RESERVED  
Reserved.  
0x0  
0x1  
R
EN_AUTOCAL Enables Autocalibration.  
0: VCO autocalibration disabled.  
1: VCO autocalibration enabled.  
R/W  
5
PRE_SEL  
Prescaler Select. The dual modulus prescaler is set by this bit. The prescaler, at the input to  
0x0  
0x0  
R/W  
the N divider, divides down the VCO signal. This action occurs so the N divider can handle the  
signal. The prescaler setting affects the RF frequency and the minimum and maximum INT  
value.  
0: 4/5 prescaler.  
1: 8/9 prescaler.  
Reserved.  
[4:0]  
RESERVED  
R
Address: 0x14, Default: 0x00, Name: REG0014  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] FRAC1WORD[7:0] (R/W)  
25-Bit FRAC1 Value.  
Table 18. Bit Descriptions for REG0014  
Bit(s)  
[7:0]  
Bit Name  
FRAC1WORD[7:0]  
Description  
±5-Bit FRAC1 Value. Sets the FRAC1 value.  
Default  
0x0  
Access  
R/W  
Address: 0x15, Default: 0x00, Name: REG0015  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] FRAC1WORD[15:8] (R/W)  
25-Bit FRAC1 Value.  
Table 19. Bit Descriptions for REG0015  
Bit(s)  
Bit Name  
Description  
Default  
Access  
[7:0]  
FRAC1WORD[15:8]  
±5-Bit FRAC1 Value. Sets the FRAC1 value.  
0x0  
R/W  
Rev. 0 | Page ±8 of 47  
Data Sheet  
ADF4372  
Address: 0x16, Default: 0x00, Name: REG0016  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] FRAC1WORD[23:16] (R/W)  
25-Bit FRAC1 Value.  
Table 20. Bit Descriptions for REG0016  
Bit(s)  
Bit Name  
Description  
Default  
Access  
[7:0]  
FRAC1WORD[±3:16]  
±5-Bit FRAC1 Value. Sets the FRAC1 value.  
0x0  
R/W  
Address: 0x17, Default: 0x00, Name: REG0017  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:1] FRAC2WORD[6:0] (R/W)  
14-Bit FRAC2 Value.  
[0] FRAC1WORD[24] (R/W)  
25-Bit FRAC1 Value.  
Table 21. Bit Descriptions for REG0017  
Bit(s)  
[7:1]  
0
Bit Name  
FRAC±WORD[6:0]  
FRAC1WORD[±4:±4]  
Description  
14-Bit FRAC± Value. Sets the FRAC± value.  
±5-Bit FRAC1 Value. Sets the FRAC1 value.  
Default  
0x0  
0x0  
Access  
R/W  
R/W  
Address: 0x18, Default: 0x00, Name: REG0018  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7] RESERVED  
[6:0] FRAC2WORD[13:7] (R/W)  
14-Bit FRAC2 Value.  
Table 22. Bit Descriptions for REG0018  
Bit(s) Bit Name  
Description  
Default Access  
7
RESERVED  
Reserved.  
0x0  
0x0  
R
[6:0]  
FRAC±WORD[13:7]  
14-Bit FRAC± Value. Sets the FRAC± value.  
R/W  
Address: 0x19, Default: 0xE8, Name: REG0019  
7
6
5
4
3
2
1
0
1
1
1
0
1
0
0
0
[7:0] MOD2WORD[7:0] (R/W)  
14-Bit MOD2 Value.  
Table 23. Bit Descriptions for REG0019  
Bit(s)  
[7:0]  
Bit Name  
MOD±WORD[7:0]  
Description  
14-Bit MOD± Value. Sets the MOD± value.  
Default  
0xE8  
Access  
R/W  
Rev. 0 | Page ±9 of 47  
ADF4372  
Data Sheet  
Address: 0x1A, Default: 0x03, Name: REG001A  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
1
1
[7] RESERVED  
[5:0] MOD2WORD[13:8] (R/W)  
14-Bit MOD2 Value.  
[6] PHASE_ADJ (R/W)  
Phase Adjust Enable.  
Table 24. Bit Descriptions for REG001A  
Bit(s) Bit Name Description  
Reserved.  
Default Access  
7
6
RESERVED  
0x0  
0x0  
R
PHASE_ADJ  
Phase Adjust Enable. Set to 1 to enable phase adjust. Phase adjust increases the phase  
of the output relative to the current phase.  
R/W  
0: phase adjust disabled.  
1: phase adjust enabled.  
[5:0]  
MOD±WORD[13:8] 14-Bit MOD± Value. Sets the MOD± value.  
0x3  
R/W  
Address: 0x1B, Default: 0x00, Name: REG001B  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] PHASE_WORD[7:0] (R/W)  
24-Bit Phase Value.  
Table 25. Bit Descriptions for REG001B  
Bit(s) Bit Name Description  
[7:0]  
Default Access  
0x0 R/W  
PHASE_WORD[7:0] ±4-Bit Phase Value. Sets the phase word for phase adjust. If phase adjust is not used, set  
phase value to 0. The phase of the RF output frequency can be adjusted in ±4-bit steps.  
Phase step = phase word ÷ 16,777,±16 × 360.  
Address: 0x1C, Default: 0x00, Name: REG001C  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] PHASE_WORD[15:8] (R/W)  
24-Bit Phase Value.  
Table 26. Bit Descriptions for REG001C  
Bit(s) Bit Name Description  
[7:0]  
Default Access  
0x0 R/W  
PHASE_WORD[15:8] ±4-Bit Phase Value. Sets the phase word for phase adjust. If phase adjust is not used,  
set phase value to 0. The phase of the RF output frequency can be adjusted in ±4-bit  
steps. Phase step = phase word ÷ 16,777,±16 × 360°.  
Address: 0x1D, Default: 0x00, Name: REG001D  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] PHASE_WORD[23:16] (R/W)  
24-Bit Phase Value.  
Table 27. Bit Descriptions for REG001D  
Bit(s) Bit Name Description  
[7:0]  
Default Access  
0x0 R/W  
PHASE_WORD[±3:16] ±4-Bit Phase Value. Sets the phase word for phase adjust. If phase adjust is not used,  
set phase value to 0. The phase of the RF output frequency can be adjusted in ±4-bit  
steps. Phase step = phase word ÷ 16,777,±16 × 360°.  
Rev. 0 | Page 30 of 47  
Data Sheet  
ADF4372  
Address: 0x1E, Default: 0x48, Name: REG001E  
7
6
5
4
3
2
1
0
0
1
0
0
1
0
0
0
[7:4] CP_CURRENT (R/W)  
[0] CNTR_RESET (R/W)  
Charge Pump Current Setting.  
Counter Reset.  
[3] PD_POL (R/W)  
[1] RESERVED  
Phase Detector Polarity.  
[2] PD (R/W)  
Power-Down.  
Table 28. Bit Descriptions for REG001E  
Bit(s) Bit Name Description  
Default Access  
[7:4]  
CP_CURRENT Charge Pump Current Setting. Sets the charge pump current. Set these bits to the charge  
pump current that the loop filter is designed for.  
0x4  
R/W  
0: 0.35 mA.  
1: 0.70 mA.  
10: 1.05 mA.  
11: 1.4 mA.  
100: 1.75 mA.  
101: ±.8 mA.  
110: ±.45 mA.  
111: ±.8 mA.  
1000: 3.15 mA.  
1001: 3.5 mA.  
1010: 3.85 mA.  
1011: 4.± mA.  
1100: 4.55 mA.  
1101: 4.9 mA.  
1110: 5.±5 mA.  
1111: 5.6 mA.  
3
±
PD_POL  
Phase Detector Polarity. If using a noninverting loop filter and a VCO with positive tuning  
slope, set phase detector polarity to positive. If using an inverting loop filter and a VCO with a  
negative tuning slope, set phase detector polarity to positive. If using a noninverting loop  
filter and a VCO with a negative tuning slope, set phase detector polarity to negative. If using  
an inverting loop filter and a VCO with a positive tuning slope, set phase detector polarity to  
negative.  
0x1  
0x0  
R/W  
R/W  
0: negative phase detector polarity.  
1: positive phase detector polarity.  
PD  
Power-Down. Setting to 1 powers down all internal PLL blocks of the ADF437±. The VCO and  
multipliers remain powered up. The registers do not lose their values. After bringing the  
ADF437± out of power-down (setting to 0) a write to Address 0x10 is required to relock the  
loop.  
0: normal operation.  
1: power-down.  
Reserved.  
1
0
RESERVED  
0x0  
0x0  
R
CNTR_RESET  
Counter Reset. Setting to 1 holds the N divider and R counter in reset. There are no signals  
entering the PFD.  
R/W  
0: normal operation.  
1: counter reset.  
Rev. 0 | Page 31 of 47  
ADF4372  
Data Sheet  
Address: 0x1F, Default: 0x01, Name: REG001F  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
1
[7:5] RESERVED  
[4:0] R_WORD (R/W)  
5-Bit R Counter.  
Table 29. Bit Descriptions for REG001F  
Bit(s)  
[7:5]  
[4:0]  
Bit Name  
RESERVED  
R_WORD  
Description  
Reserved.  
Default  
0x0  
Access  
R
5-Bit R Counter. b'00000 corresponds to 0x1  
divide by 3±.  
R/W  
Address: 0x20, Default: 0x14, Name: REG0020  
7
6
5
4
3
2
1
0
0
0
0
1
0
1
0
0
[7:4] MUXOUT (R/W)  
[1:0] RESERVED  
Mux Out.  
[2] LEV_SEL (R/W)  
[3] MUXOUT_EN (R/W)  
Mux Out Level Select.  
Mux Out Enable.  
Table 30. Bit Descriptions for REG0020  
Bit(s)  
Bit Name  
Description  
Default  
Access  
[7:4]  
MUXOUT  
Mux Out. This bit is used to set the mux out signal when MUXOUT_EN = 1.  
0x1  
R/W  
0: tristate, high impedance output (only works when MUXOUT_EN = 0).  
1: digital lock detect.  
10: charge pump up.  
11: charge pump down.  
100: RDIV±.  
101: N divider output.  
110: VCO test modes.  
111: reserved.  
1000: high.  
1001: VCO calibration R band/±.  
1010: VCO calibration N band/±.  
Mux Out Enable. Set to 0 if using the SDIO pin for register readback.  
0: data pin used for readback.  
1: mux out pin used for readback.  
Mux Out Level Select. Select the voltage level of the logic at the mux out.  
0: 1.8 V logic.  
3
MUXOUT_EN  
LEV_SEL  
0x0  
0x1  
0x0  
R/W  
R/W  
R
±
1: 3.3 V logic.  
[1:0]  
RESERVED  
Reserved.  
Rev. 0 | Page 3± of 47  
Data Sheet  
ADF4372  
Address: 0x22, Default: 0x00, Name: REG0022  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7] RESERVED  
[6] REFIN_MODE (R/W)  
[3:0] RESERVED  
[4] RDIV2 (R/W)  
Choose Between Single-Ended or  
Differential REFin.  
RDIV2.  
[5] REF_DOUB (R/W)  
Reference Doubler.  
Table 31. Bit Descriptions for REG0022  
Bit(s) Bit Name  
Description  
Default Access  
7
6
RESERVED  
Reserved.  
0x0  
0x0  
R
REFIN_MODE Choose Between Single-Ended or Differential REFIN.  
0: single-ended REFIN.  
R/W  
1: differential REFIN.  
5
4
REF_DOUB  
RDIV±  
Reference Doubler. Controls the reference doubler block.  
0: doubler disabled.  
1: doubler enabled.  
0x0  
0x0  
R/W  
R/W  
RDIV±. Controls the reference divide by ± clock. This feature can be used to provide a 50%  
duty cycle signal to the PFD.  
0: RDIV± disabled.  
1: RDIV± enabled.  
Reserved.  
[3:0]  
RESERVED  
0x0  
R
Address: 0x23, Default: 0x00, Name: REG0023  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:6] RESERVED  
[0] RESERVED  
[5:4] CLK_DIV_MODE (R/W)  
[1] TRACKING_FILTER_MUX_SEL (R/W)  
Clock Divide Mode.  
Tracking Filter Mux Select.  
[3:2] RESERVED  
Table 32. Bit Descriptions for REG0023  
Bit(s) Bit Name  
Description  
Default Access  
[7:6]  
[5:4]  
RESERVED  
CLK_DIV_MODE  
Reserved.  
0x0  
0x0  
R
R/W  
Clock Divide Mode. Set to 10 to enable phase resynchronization. When not  
using phase resynchronization, set to 00.  
0: clock divider off (normal operation).  
10: resynchronization enabled.  
Reserved.  
[3:±]  
1
RESERVED  
0x0  
0x0  
R
R/W  
TRACKING_FILTER_MUX_SEL Tracking Filter Mux Select.  
0: normal, tracking filter coefficients set automatically.  
1: tracking filter coefficients set manually from SPI (Address 0x70 and  
Address 0x71).  
0
RESERVED  
Reserved.  
0x0  
R
Rev. 0 | Page 33 of 47  
ADF4372  
Data Sheet  
Address: 0x24, Default: 0x80, Name: REG0024  
7
6
5
4
3
2
1
0
1
0
0
0
0
0
0
0
[7] FB_SEL (R/W)  
[3:0] RESERVED  
Feedback.  
[6:4] DIV_SEL (R/W)  
Division Selection.  
Table 33. Bit Descriptions for REG0024  
Bit(s)  
7
Bit Name  
FB_SEL  
Description  
Feedback.  
0: divider feedback to N counter.  
Default  
0x1  
Access  
R/W  
1: fundamental feedback to N counter.  
Division Selection.  
0: divide 1.  
[6:4]  
DIV_SEL  
0x0  
R/W  
1: divide ±.  
10: divide 4.  
11: divide 8.  
100: divide 16.  
101: divide 3±.  
110: divide 64.  
111: reserved.  
[3:0]  
RESERVED  
Reserved.  
0x0  
R
Address: 0x25, Default: 0x07, Name: REG0025  
7
6
5
4
3
2
1
0
0
0
0
0
0
1
1
1
[7] MUTE_LD (R/W)  
[1:0] RF_OUT_POWER (R/W)  
Mute to Lock Detect.  
Select Output Power Level.  
[6] RESERVED  
[2] RF_EN (R/W)  
RFOUT Enable.  
[5] RF_DIVSEL_DB (R/W)  
Select if DIV_SEL is Double Buffered.  
[3] X2_EN (R/W)  
Doubler Path Enable.  
[4] X4_EN (R/W)  
Not Used.  
Table 34. Bit Descriptions for REG0025  
Bit(s) Bit Name Description  
Default Access  
7
MUTE_LD  
Mute to Lock Detect.  
0x0  
R/W  
0: mute to lock detect disabled.  
1: mute to lock detect enabled, RF output stage gated by digital lock detect asserting  
logic high.  
6
5
4
3
RESERVED  
RF_DIVSEL_DB  
X4_EN  
Reserved.  
Select if DIV_SEL is Double Buffered.  
Not Used.  
Doubler Path Enable.  
0: RF doubler off.  
1: RF doubler on.  
RFOUT Enable.  
0: RFOUT disabled.  
1: RFOUT enabled.  
0x0  
0x0  
0x0  
0x0  
R
R/W  
R/W  
R/W  
X±_EN  
±
RF_EN  
0x1  
0x3  
R/W  
R/W  
[1:0]  
RF_OUT_POWER Select Output Power Level.  
0: −4 dBm.  
1: −1 dBm.  
10: ± dBm.  
11: 5 dBm.  
Rev. 0 | Page 34 of 47  
Data Sheet  
ADF4372  
Address: 0x26, Default: 0x32, Name: REG0026  
7
6
5
4
3
2
1
0
0
0
1
1
0
0
1
0
[7:0] BLEED_ICP (R/W)  
Bleed Current.  
Table 35. Bit Descriptions for REG0026  
Bit(s) Bit Name  
Description  
Default Access  
[7:0]  
BLEED_ICP Bleed Current. Sets the bleed current. The optimum bleed current is set by ((4/N) × ICP)/3.75,  
where ICP is the charge pump current in μA.  
0x3±  
R/W  
Address: 0x27, Default: 0xC5, Name: REG0027  
7
6
5
4
3
2
1
0
1
1
0
0
0
1
0
1
[7:6] LD_BIAS (R/W)  
[1:0] RF_PBS (R/W)  
Lock Detect Bias.  
Reserved.  
[5] LDP (R/W)  
[2] VCOLDO_PD (R/W)  
Lock Detect Precision.  
VCO LDO Enable.  
[4] BLEED_GATE (R/W)  
[3] BLEED_EN (R/W)  
Gated Bleed.  
Bleed Enable.  
Table 36. Bit Descriptions for REG0027  
Bit(s) Bit Name Description  
[7:6] LD_BIAS  
Default Access  
Lock Detect Bias. The lock detector window size is set by adjusting the lock detector bias in  
conjunction with the lock detector precision.  
0x3  
R/W  
0: 5 ns lock detect delay if LDP = 0.  
1: 6 ns.  
10: 8 ns.  
11: 1± ns lock detect delay (for large values of bleed)  
5
LDP  
Lock Detect Precision. Controls the sensitivity of the digital lock detector, depending on INT  
or FRAC operation selected.  
0x0  
R/W  
0: FRAC Mode (5 ns).  
1: INT Mode (±.4 ns).  
4
3
BLEED_GATE Gated Bleed.  
0: gate bleed disabled.  
0x0  
0x0  
R/W  
R/W  
1: gate bleed on, digital lock detect (digital lock detect must be enabled)  
BLEED_EN  
Bleed Enable. Bleed current applies to a current inside the charge pump to improve the  
linearity of the charge pump. This current leads to lower phase noise and improved spurious  
performance. Set to 1 to enable negative bleed.  
0: negative bleed disabled.  
1: negative bleed enabled.  
±
VCOLDO_PD VCO LDO Enable. For optimal spurious and phase noise performance, disable VCO LDO.  
0x1  
0x1  
R/W  
R/W  
0: VCO LDO enabled.  
1: VCO LDO disabled.  
[1:0]  
RF_PBS  
Reserved.  
Rev. 0 | Page 35 of 47  
ADF4372  
Data Sheet  
Address: 0x28, Default: 0x03, Name: REG0028  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
1
1
[7:3] RESERVED  
[0] LOL_EN (R/W)  
Loss of Lock Enable.  
[2:1] LD_COUNT (R/W)  
Lock Detector Count.  
Table 37. Bit Descriptions for REG0028  
Bits Bit Name  
Description  
Reset Access  
[7:3] RESERVED  
Reserved.  
0x0  
0x1  
R
[±:1] LD_COUNT Lock Detector Count. Initial value of the lock detector. This field sets the number of counts of PFD  
within lock window before asserting digital lock detect high.  
R/W  
0: 10±4 cycles.  
1: ±048 cycles.  
10: 4096 cycles.  
11: 819± cycles.  
0
LOL_EN  
Loss of Lock Enable. When loss of lock is enabled, if digital lock detect is asserted, and the  
reference signal is removed, digital lock detect goes low. It is recommended to set this bit to 1 to  
enable loss of lock.  
0x1  
R/W  
0: loss of lock disabled  
1: loss of lock enabled.  
Address: 0x2A, Default: 0x00, Name: REG002A  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:6] RESERVED  
[0] READ_SEL (R/W)  
Readback Select.  
[5] BLEED_POL (R/W)  
Bleed Polarity.  
[2:1] RESERVED  
[4] RESERVED  
[3] LE_SEL (R/W)  
CSB from Pin, Synchronized with  
REFN  
Table 38. Bit Descriptions for REG002A  
Bit(s)  
[7:6]  
5
Bit Name  
RESERVED  
BLEED_POL  
Description  
Reserved.  
Default  
0x0  
Access  
R
Bleed Polarity. Controls the polarity of the bleed current. Negative is typical usage.  
0: negative bleed.  
0x0  
R/W  
1: positive bleed (not recommended).  
Reserved.  
CS from Pin, Synchronized with REFN.  
0: CS synchronization disabled.  
4
3
RESERVED  
LE_SEL  
0x0  
0x0  
R
R/W  
1: CS synchronization enabled.  
[±:1]  
0
RESERVED  
READ_SEL  
Reserved.  
0x0  
0x0  
R
R/W  
Readback Select. Selects the value to be read back.  
0: readback VCO, band, and bias compensation data.  
1: readback device version ID.  
Rev. 0 | Page 36 of 47  
Data Sheet  
ADF4372  
Address: 0x2B, Default: 0x01, Name: REG002B  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
1
[7:6] RESERVED  
[5] LSB_P1 (R/W)  
[0] SD_EN_FRAC0 (R/W)  
ΣΔ Enable.  
Adds 1/2 bit to FRAC1 when auxiliary  
SDM is off (VAR_MOD_EN=0) .  
[1] RESERVED  
[2] SD_LOAD_ENB (R/W)  
Mask ΣΔ Reset when REG0010 is  
updated.  
[4] VAR_MOD_EN (R/W)  
Enable Auxiliary SDM.  
[3] RESERVED  
Table 39. Bit Descriptions for REG002B  
Bit(s) Bit Name Description  
Reserved.  
Default Access  
[7:6]  
5
RESERVED  
LSB_P1  
0x0  
0x0  
R
R/W  
Adds a half bit to FRAC1 when auxiliary SDM is off (VAR_MOD_EN = 0). Set to 0 for normal  
operation.  
4
VAR_MOD_EN  
Enable Auxiliary SDM. If FRAC± is different than 0, this bit is programmed to 1.  
0x1  
R/W  
0: normal operation.  
1: enable auxiliary SDM.  
Reserved.  
3
±
1
0
RESERVED  
0x0  
0x0  
0x0  
0x1  
R
SD_LOAD_ENB Mask Σ-Δ Reset when Address 0x10 is Updated.  
R/W  
R
R/W  
RESERVED  
SD_EN_FRAC0  
Reserved.  
Σ-Δ Enable. Set to 1 when in integer mode (when FRAC1 = FRAC± = 0), and set to 0 when in  
fractional mode.  
0: Σ-Δ enabled (for fractional mode).  
1: Σ-Δ disabled (for integer mode).  
Address: 0x2C, Default: 0x44, Name: REG002C  
7
6
5
4
3
2
1
0
0
1
0
0
0
1
0
0
[7] RESERVED  
[0] DISABLE_ALC (R/W)  
Automatic VCO Bias Control (ALC).  
[6] ALC_RECT_SELECT_VCO1 (R/W)  
Select ALC Rectifier DC Bias (Core  
D).  
[1] VTUNE_CALSET_EN (R/W)  
Temperature Dependent VCO Calibration  
Voltage.  
[5] ALC_REF_DAC_LO_VCO1 (R/W)  
Select ALC Threshold Voltage (Core  
D).  
[4:2] ALC_REF_DAC_NOM_VCO1 (R/W)  
Select VCO ALC Threshold (Core  
D).  
Table 40. Bit Descriptions for REG002C  
Bit(s)  
7
6
Bit Name  
RESERVED  
Description  
Reserved.  
Default  
0x0  
Access  
R
ALC_RECT_SELECT_VCO1  
Select ALC Rectifier DC Bias (Core D).  
0: 3.3 V VCO operation.  
0x1  
R/W  
1: 5 V VCO operation.  
5
ALC_REF_DAC_LO_VCO1  
Select ALC Threshold Voltage (Core D).  
0: 5 V VCO operation.  
0x0  
R/W  
1: 3.3 V VCO operation.  
[4:±]  
1
ALC_REF_DAC_NOM_VCO1  
VTUNE_CALSET_EN  
Select VCO ALC Threshold (Core D).  
001: 3.3 V and 5 V VCO operation.  
Temperature Dependent VCO Calibration Voltage.  
0: disable temperature dependent VCO calibration voltage.  
1: enable temperature dependent VCO calibration voltage.  
Automatic VCO Bias Control (ALC).  
0: ALC enabled.  
0x1  
0x0  
R/W  
R/W  
0
DISABLE_ALC  
0x0  
R/W  
1: ALC disabled.  
Rev. 0 | Page 37 of 47  
ADF4372  
Data Sheet  
Address: 0x2D, Default: 0x11, Name: REG002D  
7
6
5
4
3
2
1
0
0
0
0
1
0
0
0
1
[7:5] RESERVED  
[2:0] ALC_REF_DAC_NOM_VCO2 (R/W)  
Select VCO ALC Threshold (Core  
C).  
[4] ALC_RECT_SELECT_VCO2 (R/W)  
Sets ALC Rectifier DC Bias (Core  
C).  
[3] ALC_REF_DAC_LO_VCO2 (R/W)  
Select ALC Threshold Voltage (Core  
C).  
Table 41. Bit Descriptions for REG002D  
Bit(s)  
[7:5]  
4
Bit Name  
RESERVED  
ALC_RECT_SELECT_VCO±  
Description  
Reserved.  
Sets ALC Rectifier DC Bias (Core C).  
0: 3.3 V VCO operation.  
Default  
0x0  
0x1  
Access  
R
R/W  
1: 5 V VCO operation.  
3
ALC_REF_DAC_LO_VCO±  
ALC_REF_DAC_NOM_VCO±  
Select ALC Threshold Voltage (Core C).  
0: 5 V VCO operation.  
1: 3.3 V VCO operation.  
Select VCO ALC Threshold (Core C).  
001: 3.3 V and 5 V VCO operation.  
0x0  
0x1  
R/W  
R/W  
[±:0]  
Address: 0x2E, Default: 0x12, Name: REG002E  
7
6
5
4
3
2
1
0
0
0
0
1
0
0
1
0
[7:5] RESERVED  
[2:0] ALC_REF_DAC_NOM_VCO3 (R/W)  
Select VCO ALC Threshold (Core  
B).  
[4] ALC_RECT_SELECT_VCO3 (R/W)  
Sets ALC Rectifier DC Bias (Core  
B).  
[3] ALC_REF_DAC_LO_VCO3 (R/W)  
Sets ALC Threshold Voltage (Core  
B).  
Table 42. Bit Descriptions for REG002E  
Bit(s)  
[7:5]  
4
Bit Name  
RESERVED  
ALC_RECT_SELECT_VCO3  
Description  
Reserved.  
Sets ALC Rectifier DC Bias (Core B).  
0: 3.3 V VCO operation.  
Default  
0x0  
0x1  
Access  
R
R/W  
1: 5 V VCO operation.  
3
ALC_REF_DAC_LO_VCO3  
ALC_REF_DAC_NOM_VCO3  
Sets ALC Threshold Voltage (Core B).  
0: 5 V VCO operation.  
1: 3.3 V VCO operation.  
0x0  
0x±  
R/W  
R/W  
[±:0]  
Select VCO ALC Threshold (Core B).  
010: 3.3 V and 5 V VCO operation.  
Rev. 0 | Page 38 of 47  
Data Sheet  
ADF4372  
Address: 0x2F, Default: 0x94, Name: REG002F  
7
6
5
4
3
2
1
0
1
0
0
1
0
1
0
0
[7] SWITCH_LDO_3P3V_5V (R/W)  
Switch LDO Operation Between 3.3  
V and 5 V.  
[2:0] ALC_REF_DAC_NOM_VCO4 (R/W)  
Select VCO ALC Threshold (Core  
A).  
[6:5] RESERVED  
[3] ALC_REF_DAC_LO_VCO4 (R/W)  
Select ALC Lower Threshold Voltage  
Range (Core A).  
[4] ALC_RECT_SELECT_VCO4 (R/W)  
Sets ALC Rectifier DC Bias (Core  
A).  
Table 43. Bit Descriptions for REG002F  
Bit(s)  
Bit Name  
Description  
Default  
Access  
7
SWITCH_LDO_3P3V_5V  
Switch LDO Operation Between 3.3 V and 5 V.  
0: 3.3 V VCO operation.  
0x1  
R/W  
1: 5 V VCO operation.  
[6:5]  
4
RESERVED  
Reserved.  
0x0  
0x1  
R
ALC_RECT_SELECT_VCO4  
Sets ALC Rectifier DC Bias (Core A).  
0: 3.3 V VCO operation.  
R/W  
1: 5 V VCO operation.  
3
ALC_REF_DAC_LO_VCO4  
ALC_REF_DAC_NOM_VCO4  
Select ALC Lower Threshold Voltage Range (Core A).  
0: 5 V VCO operation.  
1: 3.3 V VCO operation.  
0x0  
0x4  
R/W  
R/W  
[±:0]  
Select VCO ALC Threshold (Core A).  
010: 3.3 V VCO operation.  
100: 5 V VCO operation.  
Address: 0x30, Default: 0x3F, Name: REG0030  
7
6
5
4
3
2
1
0
0
0
1
1
1
1
1
1
[7:0] VCO_BAND_DIV (R/W)  
Sets the Autocalibration Time per  
Stage.  
Table 44. Bit Descriptions for REG0030  
Bit(s) Bit Name  
[7:0] VCO_BAND_DIV  
Description  
Sets the Autocalibration Time per Stage. See the Lock Time section for details.  
Default  
0x3F  
Access  
R/W  
Address: 0x31, Default: 0xA7, Name: REG0031  
7
6
5
4
3
2
1
0
1
0
1
0
0
1
1
1
[7:0] TIMEOUT[7:0] (R/W)  
Used as Part of the ALC Wait Time  
and Synthetic Lock Time.  
Table 45. Bit Descriptions for REG0031  
Bit(s) Bit Name  
Description  
Default Access  
0xA7 R/W  
[7:0] TIMEOUT[7:0] Used as Part of the ALC Wait Time and Synthetic Lock Time. See the Lock Time section for details.  
Rev. 0 | Page 39 of 47  
ADF4372  
Data Sheet  
Address: 0x32, Default: 0x04, Name: REG0032  
7
6
5
4
3
2
1
0
0
0
0
0
0
1
0
0
[7] ADC_MUX_SEL (R/W)  
[1:0] TIMEOUT[9:8] (R/W)  
ADC Mux Select.  
Used as Part of the ALC Wait Time  
and Synthetic Lock Time.  
[6] RESERVED  
[2] ADC_ENABLE (R/W)  
ADC Enable.  
[5] ADC_FAST_CONV (R/W)  
ADC Fast Conversion.  
[3] ADC_CONVERSION (R/W)  
Enables ADC Conversion.  
[4] ADC_CTS_CONV (R/W)  
ADC Continuous Conversion.  
Table 46. Bit Descriptions for REG0032  
Bit(s) Bit Name Description  
Analog-to-Digital Converter (ADC) Mux Select.  
Default Access  
7
ADC_MUX_SEL  
0x0  
R/W  
0: proportional to absolute temperature (PTAT) voltage muxed to ADC input.  
1: scaled VTUNE voltage muxed to ADC input.  
Reserved.  
6
5
RESERVED  
0x0  
0x0  
R
ADC_FAST_CONV  
ADC Fast Conversion.  
0: disabled.  
R/W  
1: enabled.  
4
ADC_CTS_CONV  
ADC Continuous Conversion.  
0: disabled.  
1: enabled.  
0x0  
0x0  
0x1  
0x0  
R/W  
R/W  
R/W  
R/W  
3
ADC_CONVERSION Enables ADC Conversion.  
0: no ADC conversion.  
1: performs ADC conversion.  
±
ADC_ENABLE  
TIMEOUT[9:8]  
ADC Enable.  
0: disabled.  
1: enabled.  
[1:0]  
Used as Part of the ALC Wait Time and Synthetic Lock Time. See the Lock Time section  
for details.  
Address: 0x33, Default: 0x0C, Name: REG0033  
7
6
5
4
3
2
1
0
0
0
0
0
1
1
0
0
[7:5] RESERVED  
[4:0] SYNTH_LOCK_TIMEOUT (R/W)  
Part of VCO Calibration Routine.  
Table 47. Bit Descriptions for REG0033  
Bit(s) Bit Name  
Description  
Reserved.  
Default  
0x0  
0xC  
Access  
R
R/W  
[7:5]  
[4:0]  
RESERVED  
SYNTH_LOCK_TIMEOUT  
Part of VCO Calibration Routine. See the Lock Time section for details.  
Address: 0x34, Default: 0x9E, Name: REG0034  
7
6
5
4
3
2
1
0
1
0
0
1
1
1
1
0
[7:5] VCO_FSM_TEST_MODES (R/W)  
[4:0] VCO_ALC_TIMEOUT (R/W)  
Reserved.  
Wait Time for ALC Loop to Settle.  
Table 48. Bit Descriptions for REG0034  
Bit(s) Bit Name  
[7:5]  
[4:0]  
Description  
VCO_FSM_TEST_MODES Reserved.  
VCO_ALC_TIMEOUT Wait Time for ALC Loop to Settle. See the Lock Time section for details.  
Default Access  
0x4  
R/W  
R/W  
0x1E  
Rev. 0 | Page 40 of 47  
Data Sheet  
ADF4372  
Address: 0x35, Default: 0x4C, Name: REG0035  
7
6
5
4
3
2
1
0
0
1
0
0
1
1
0
0
[7:0] ADC_CLK_DIVIDER (R/W)  
ADC Clock Divider.  
Table 49. Bit Descriptions for REG0035  
Bit(s)  
Bit Name  
Description  
Default  
Access  
[7:0]  
ADC_CLK_DIVIDER  
ADC Clock Divider. ADC_CLK = fPFD/((ADC_CLK_DIV × 4) + ±).  
0x4C  
R/W  
Address: 0x36, Default: 0x30, Name: REG0036  
7
6
5
4
3
2
1
0
0
0
1
1
0
0
0
0
[7:0] ICP_ADJUST_OFFSET (R/W)  
Reserved.  
Table 50. Bit Descriptions for REG0036  
Bit(s)  
[7:0]  
Bit Name  
ICP_ADJUST_OFFSET  
Description  
Reserved.  
Default  
0x30  
Access  
R/W  
Address: 0x37, Default: 0x00, Name: REG0037  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] SI_BAND_SEL (R/W)  
Selects Band in Core when Test Mode  
is Enabled.  
Table 51. Bit Descriptions for REG0037  
Bit(s)  
[7:0]  
Bit Name  
SI_BAND_SEL  
Description  
Selects Band in Core when Test Mode is Enabled.  
Default  
0x0  
Access  
R/W  
Address: 0x38, Default: 0x00, Name: REG0038  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:4] SI_VCO_SEL (R/W)  
Selects Core when Test Mode is  
Enabled.  
[3:0] SI_VCO_BIAS_CODE (R/W)  
Sets VCO Bias when Test Mode is  
Enabled.  
Table 52. Bit Descriptions for REG0038  
Bit(s)  
Bit Name  
Description  
Default  
Access  
[7:4]  
SI_VCO_SEL  
Selects Core when Test Mode is Enabled.  
0: all cores off.  
0x0  
R/W  
1: VCO Core D.  
10: VCO Core C.  
100: VCO Core B.  
1000: VCO Core A.  
[3:0]  
SI_VCO_BIAS_CODE  
Sets VCO Bias when Test Mode is Enabled.  
0000: maximum VCO bias (approximately 3.± V).  
1111: minimum VCO bias (approximately 1.8 V).  
0x0  
R/W  
Rev. 0 | Page 41 of 47  
ADF4372  
Data Sheet  
Address: 0x39, Default: 0x07, Name: REG0039  
7
6
5
4
3
2
1
0
0
0
0
0
0
1
1
1
[7] RESERVED  
[3:0] SI_VTUNE_CAL_SET (R/W)  
Select VCO VTUNE Target Voltage  
when Test Mode is Enabled.  
[6:4] VCO_FSM_TEST_MUX_SEL (R/W)  
VCO Test Mux Select.  
Table 53. Bit Descriptions for REG0039  
Bit(s) Bit Name  
Description  
Reserved.  
Default  
0x0  
0x0  
Access  
R
7
RESERVED  
[6:4]  
VCO_FSM_TEST_MUX_SEL  
VCO Test Mux Select.  
0: busy.  
R/W  
1: N band.  
10: R band.  
11: reserved.  
100: timeout clock.  
101: bias minimum.  
110: ADC busy.  
111: logic low.  
[3:0]  
SI_VTUNE_CAL_SET  
Select VCO VTUNE Target Voltage when Test Mode is Enabled.  
0x7  
R/W  
0: 0.58 V.  
1: 0.73 V.  
10: 0.88 V.  
11: 1.03 V.  
100: 1.18 V.  
101: 1.33 V.  
110: 1.48 V.  
111: 1.63 V.  
1000: 1.78 V.  
1001: 1.93 V.  
1010: ±.08 V.  
1011: ±.±3 V.  
1100: ±.38 V.  
1101: ±.53 V.  
1110: ±.68 V.  
1111: ±.83 V.  
Address: 0x3A, Default: 0x55, Name: REG003A  
7
6
5
4
3
2
1
0
0
1
0
1
0
1
0
1
[7:0] ADC_OFFSET (R/W)  
VCO Calibration ADC Offset Correction.  
Table 54. Bit Descriptions for REG003A  
Bit(s)  
[7:0]  
Bit Name  
ADC_OFFSET  
Description  
VCO Calibration ADC Offset Correction.  
Default  
0x55  
Access  
R/W  
Rev. 0 | Page 4± of 47  
Data Sheet  
ADF4372  
Address: 0x3D, Default: 0x00, Name: REG003D  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7] RESERVED  
[5:0] RESERVED  
[6] SD_RESET (R/W)  
Reserved.  
Table 55. Bit Descriptions for REG003D  
Bit(s)  
7
Bit Name  
RESERVED  
SD_RESET  
RESERVED  
Description  
Reserved.  
Reserved.  
Reserved.  
Default  
Access  
R
0x0  
0x0  
0x0  
6
R/W  
R
[5:0]  
Address: 0x3E, Default: 0x0C, Name: REG003E  
7
6
5
4
3
2
1
0
0
0
0
0
1
1
0
0
[7:4] RESERVED  
[3:2] CP_TMODE (R/W)  
[1:0] RESERVED  
Charge Pump Test Modes.  
Table 56. Bit Descriptions for REG003E  
Bit(s)  
[7:4]  
[3:±]  
Bit Name  
RESERVED  
CP_TMODE  
Description  
Reserved.  
Default  
0x0  
0x3  
Access  
R
CP Test Modes  
0: CP tristate  
R/W  
11: normal operation  
Reserved.  
[1:0]  
RESERVED  
0x0  
R
Address: 0x3F, Default: 0x80, Name: REG003F  
7
6
5
4
3
2
1
0
1
0
0
0
0
0
0
0
[7:0] CLK1_DIV[7:0] (R/W)  
Reserved.  
Table 57. Bit Descriptions for REG003F  
Bit(s)  
[7:0]  
Bit Name  
CLK1_DIV[7:0]  
Description  
Reserved.  
Default  
0x80  
Access  
R/W  
Address: 0x40, Default: 0x50, Name: REG0040  
7
6
5
4
3
2
1
0
0
1
0
1
0
0
0
0
[7] RESERVED  
[3:0] CLK1_DIV[11:8] (R/W)  
Reserved.  
[6:4] TRM_IB_VCO_BUF (R/W)  
Reserved.  
Table 58. Bit Descriptions for REG0040  
Bit(s)  
7
Bit Name  
RESERVED  
Description  
Reserved.  
Reserved.  
Reserved.  
Default  
Access  
R
0x0  
0x5  
0x0  
[6:4]  
[3:0]  
TRM_IB_VCO_BUF  
CLK1_DIV[11:8]  
R/W  
R/W  
Rev. 0 | Page 43 of 47  
ADF4372  
Data Sheet  
Address: 0x41, Default: 0x28, Name: REG0041  
7
6
5
4
3
2
1
0
0
0
1
0
1
0
0
0
[7:0] CLK2_DIVIDER_1[7:0] (R/W)  
Reserved.  
Table 59. Bit Descriptions for REG0041  
Bit(s)  
Bit Name  
Description  
Default  
Access  
[7:0]  
CLK±_DIVIDER_1[7:0]  
Reserved.  
0x±8  
R/W  
Address: 0x47, Default: 0xC0, Name: REG0047  
7
6
5
4
3
2
1
0
1
1
0
0
0
0
0
0
[7:5] TRM_RESD_VCO_MUX (R/W)  
Reserved.  
[4:0] RESERVED  
Table 60. Bit Descriptions for REG0047  
Bit(s) Bit Name Description  
TRM_RESD_VCO_MUX Reserved.  
RESERVED Reserved.  
Default Access  
[7:5]  
[4:0]  
0x6  
0x0  
R/W  
R
Address: 0x52, Default: 0xF4, Name: REG0052  
7
6
5
4
3
2
1
0
1
1
1
1
0
1
0
0
[7:5] TRM_RESD_VCO_BUF (R/W)  
[1:0] RESERVED  
Reserved.  
[4:2] TRM_RESCI_VCO_BUF (R/W)  
Reserved.  
Table 61. Bit Descriptions for REG0052  
Bit(s)  
[7:5]  
[4:±]  
[1:0]  
Bit Name  
Description  
Reserved. VCO buffer trim.  
Reserved.  
Default  
0x7  
0x5  
Access  
TRM_RESD_VCO_BUF  
TRM_RESCI_VCO_BUF  
RESERVED  
R/W  
R/W  
R
Reserved.  
0x0  
Address: 0x6E, Default: 0x00, Name: REG006E  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] VCO_DATA_READBACK[7:0] (R)  
Open-Loop VCO Counter Readback.  
Table 62. Bit Descriptions for REG006E  
Bit(s)  
Bit Name  
Description  
Default  
Access  
[7:0]  
VCO_DATA_READBACK[7:0]  
Open-Loop VCO Counter Readback.  
0x0  
R
Address: 0x6F, Default: 0x00, Name: REG006F  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] VCO_DATA_READBACK[15:8] (R)  
Open-Loop VCO Counter Readback.  
Table 63. Bit Descriptions for REG006F  
Bit(s)  
Bit Name  
Description  
Default  
Access  
[7:0]  
VCO_DATA_READBACK[15:8]  
Open-Loop VCO Counter Readback.  
0x0  
R
Rev. 0 | Page 44 of 47  
Data Sheet  
ADF4372  
Address: 0x70, Default: 0x03, Name: REG0070  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
1
1
[7:5] BAND_SEL_X2 (R/W)  
Filter Select for Doubler Output Tracking  
Filter.  
[1:0] BIAS_SEL_X2 (R/W)  
Bias Select for Doubler Output Tracking  
Filter.  
[4:2] RESERVED  
Table 64. Bit Descriptions for REG0070  
Bit(s)  
Bit Name  
Description  
Default  
Access  
[7:5]  
BAND_SEL_X±  
Filter Select for Doubler Output  
Tracking Filter.  
0x0  
R/W  
[4:±]  
[1:0]  
RESERVED  
Reserved.  
0x0  
0x3  
R
BIAS_SEL_X±  
Bias Select for Doubler Output  
Tracking Bias.  
R/W  
Address: 0x71, Default: 0x60, Name: REG0071  
7
6
5
4
3
2
1
0
0
1
1
0
0
0
0
0
[7:5] BAND_SEL_X4 (R/W)  
[1:0] BIAS_SEL_X4 (R/W)  
Not Used.  
Not Used.  
[4:2] RESERVED  
Table 65. Bit Descriptions for REG0071  
Bit(s)  
[7:5]  
[4:±]  
[1:0]  
Bit Name  
BAND_SEL_X4  
RESERVED  
Description  
Not Used.  
Reserved.  
Not Used.  
Default  
Access  
R/W  
R
0x3  
0x0  
0x0  
BIAS_SEL_X4  
R/W  
Address: 0x72, Default: 0x32, Name: REG0072  
7
6
5
4
3
2
1
0
0
0
1
1
0
0
1
0
[7] RESERVED  
[0] RESERVED  
[6] AUX_FREQ_SEL (R/W)  
[1] COUPLED_VCO (R/W)  
Auxillary RF Output Frequency Select.  
Reserved.  
[5:4] POUT_AUX (R/W)  
[2] RESERVED  
Auxiliary RF Output Power.  
[3] PDB_AUX (R/W)  
Power-Down Auxiliary RF Output.  
Table 66. Bit Descriptions for REG0072  
Bit(s) Bit Name Description  
Reserved.  
Default  
0x0  
Access  
R
7
6
RESERVED  
AUX_FREQ_SEL  
Auxiliary RF Output Frequency Select.  
0: divided output.  
0x0  
R/W  
1: VCO output.  
[5:4]  
POUT_AUX  
PDB_AUX  
Auxiliary RF Output Power. Sets the output power at the auxiliary RF output ports.  
0: −4.5 dBm single-ended ÷ −1.5 dBm differential.  
1: 1 dBm single-ended ÷ 4 dBm differential.  
10: 4 dBm single-ended ÷ 7 dBm differential.  
11: 6 dBm single-ended ÷ 9 dBm differential.  
Power-Down Auxiliary RF Output.  
0: auxiliary RF off.  
0x3  
0x0  
R/W  
R/W  
3
1: auxiliary RF on.  
±
1
0
RESERVED  
Reserved.  
0x0  
0x1  
0x0  
R
COUPLED_VCO  
RESERVED  
Reserved.  
Reserved.  
R/W  
R
Rev. 0 | Page 45 of 47  
ADF4372  
Data Sheet  
Address: 0x73, Default: 0x00, Name: REG0073  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:3] RESERVED  
[0] LD_DIV (R/W)  
Lock Detector Count Divider.  
[2] ADC_CLK_DISABLE (R/W)  
Disable ADC clock.  
[1] PD_NDIV (R/W)  
Power-Down N divider.  
Table 67. Bit Descriptions for REG0073  
Bits Bit Name  
Description  
Default Access  
[7:3] RESERVED  
Reserved.  
0x0  
0x0  
0x0  
0x0  
R
±
1
0
ADC_CLK_DISABLE Disable ADC Clock. ADC_ENABLE setting overwrites this bit.  
R/W  
R/W  
R/W  
PD_NDIV  
LD_DIV  
Power-Down N Divider.  
Lock Detector Count Divider. Divides the lock detector count cycles by 3± so that the  
LD_COUNT bits in Address 0x±8 can be selected as 3±, 64, 1±8, and ±56.  
Address: 0x7C, Default: 0x00, Name: REG007C  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:1] RESERVED  
[0] LOCK_DETECT_READBACK (R)  
Readback of the Lock Detect Bit.  
Table 68. Bit Descriptions for REG007C  
Bit(s)  
[7:1]  
0
Bit Name  
RESERVED  
Description  
Reserved.  
Default  
0x0  
Access  
R
R
LOCK_DETECT_READBACK  
Readback of the Lock Detect Bit.  
0x0  
Rev. 0 | Page 46 of 47  
Data Sheet  
ADF4372  
OUTLINE DIMENSIONS  
7.10  
7.00  
6.90  
0.30  
0.25  
0.20  
PIN 1  
INDICATOR  
AREA  
PIN 1  
INDICATOR  
C 0.30 × 0.45°  
37  
36  
48  
1
5.50 REF  
SQ  
5.00 BSC  
SQ  
EXPOSED  
PAD  
25  
24  
12  
13  
0.45  
0.40  
0.30  
0.50  
BSC  
TOP VIEW  
SIDE VIEW  
BOTTOM VIEW  
0.10  
BSC  
1.158  
1.058  
0.958  
0.70 REF  
FOR PROPER CONNECTION OF  
THE EXPOSED PADS, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.398  
0.358  
0.318  
SEATING  
PLANE  
SECTION OF THIS DATA SHEET.  
Figure 38. 48-Terminal Land Grid Array Package [LGA]  
(CC-48-4)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
ADF4372BCCZ  
ADF4372BCCZ-RL7  
EV-ADF4372SD2Z  
Temperature Range  
−40°C to +105°C  
−40°C to +105°C  
Package Description  
Package Option  
48-Terminal Land Grid Array Package [LGA]  
48-Terminal Land Grid Array Package [LGA]  
Evaluation Board  
CC-48-4  
CC-48-4  
1 Z = RoHS Compliant Part.  
©2019 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D16984-0-8/19(0)  
Rev. 0 | Page 47 of 47  
 
 

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY