ADF5901 [ADI]

24 GHz to 24.25 GHz voltage controlled oscillator;
ADF5901
型号: ADF5901
厂家: ADI    ADI
描述:

24 GHz to 24.25 GHz voltage controlled oscillator

文件: 总27页 (文件大小:518K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
24 GHz VCO and PGA  
with 2-Channel PA Output  
ADF5901  
Data Sheet  
Industrial sensors  
FEATURES  
Precision instrumentation  
Tank level sensors  
Smart sensors  
Door opening  
Energy saving  
24 GHz to 24.25 GHz voltage controlled oscillator (VCO)  
2-channel 24 GHz power amplifier (PA) with 8 dBm output  
Single-ended outputs  
2-channel muxed outputs with mute function  
Programmable output power  
Commercial sensors: object detection and tracking  
Cars, boats, aircraft, and UAVs (drones): collision avoidance  
Intelligent transportation systems: intelligent traffic  
monitoring and control  
N divider output (frequency discriminator)  
24 GHz local oscillator (LO) output buffer  
250 MHz signal bandwidth  
Power control detector  
Auxiliary 8-bit ADC  
Surveillance and security  
5°C temperature sensor  
GENERAL DESCRIPTION  
4-wire serial peripheral interface (SPI)  
Electrostatic discharge (ESD) performance  
Human body model (HBM): 2000 V  
Charged device model (CDM): 250 V  
Qualified for automotive applications  
The ADF5901 is a 24 GHz Tx monolithic microwave integrated  
circuit (MMIC) with an on-chip, 24 GHz VCO with PGA and  
dual Tx channels for radar systems. The on-chip, 24 GHz VCO  
generates the 24 GHz signal for the two Tx channels and the LO  
output. Each Tx channel contains a power control circuit. There  
is also an on-chip temperature sensor.  
APPLICATIONS  
Automotive radars  
Industrial radars  
Microwave radar sensors  
Control of all the on-chip registers is through a simple 4-wire  
interface.  
The ADF5901 comes in a compact 32-lead, 5 mm × 5 mm  
LFCSP package.  
FUNCTIONAL BLOCK DIAGRAM  
TX_AHI RF_AHI  
DVDD  
AHI  
VCO_AHI  
VREG  
C1  
C2  
R
SET  
REGULATOR  
R-DIVIDER  
REFERENCE  
REF  
IN  
ADF5901  
MUXOUT  
ADC  
VCO  
CAL  
TX  
TX  
1
OUT  
2
OUT  
÷2  
÷2  
N-DIVIDER  
ADC  
CLK  
DATA  
LE  
ATEST  
TEMPERATURE  
SENSOR  
32-BIT  
DATA  
REGISTER  
DOUT  
ADC  
CE  
V
AUX  
AUX  
GND  
LO  
TUNE  
OUT  
Figure 1.  
Rev. A  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2015–2016 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
ADF5901* Product Page Quick Links  
Last Content Update: 11/01/2016  
Comparable Parts  
Reference Materials  
View a parametric search of comparable parts  
Technical Articles  
• High Performance Integrated 24 GHz FMCW Radar  
Transceiver Chipset for Auto and Industrial Sensor  
Applications  
Evaluation Kits  
• ADF5901 Evaluation Board  
• Evaluation Board for ADF5901, ADF5904, and ADF4159  
Chipset for a 24 GHz FMC Radar  
Design Resources  
• ADF5901 Material Declaration  
• PCN-PDN Information  
• Quality And Reliability  
• Symbols and Footprints  
Documentation  
Data Sheet  
• ADF5901: 24 GHz VCO and PGA with 2-Channel PA  
Output Data Sheet  
Discussions  
User Guides  
• UG-864: Evaluating the ADF5901 24 GHz Voltage  
Controlled Oscillator (VCO) and Programmable Gain  
Amplifier (PGA) with a 2-Channel Power Amplifier (PA)  
Output  
View all ADF5901 EngineerZone Discussions  
Sample and Buy  
Visit the product page to see pricing options  
• UG-866: Evaluation Board for the ADF5901, ADF5904,  
and ADF4159 Chipset for a 24 GHz FMCW Radar  
Technical Support  
Submit a technical question or find your regional support  
number  
Software and Systems Requirements  
• ADF5901 and ADF4159 Evaluation Board Software  
• EV-RADAR-MMIC Evaluation Software  
* This page was dynamically generated by Analog Devices, Inc. and inserted into this data sheet. Note: Dynamic changes to  
the content on this page does not constitute a change to the revision number of the product data sheet. This content may be  
frequently modified.  
ADF5901  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Register 2 ..................................................................................... 17  
Register 3 ..................................................................................... 18  
Register 4 ..................................................................................... 19  
Register 5 ..................................................................................... 19  
Register 6 ..................................................................................... 20  
Register 7 ..................................................................................... 21  
Register 8 ..................................................................................... 22  
Register 9 ..................................................................................... 22  
Register 10................................................................................... 23  
Register 11................................................................................... 23  
Initialization Sequence .............................................................. 23  
Recalibration Sequence ............................................................. 23  
Temperature Sensor ................................................................... 24  
RF Synthesis: a Worked Example............................................. 24  
Applications Information .............................................................. 25  
Application of the ADF5901 in FMCW Radar ...................... 25  
Outline Dimensions....................................................................... 26  
Ordering Guide .......................................................................... 26  
Automotive Products................................................................. 26  
Applications....................................................................................... 1  
General Description ......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Timing Specifications .................................................................. 4  
Absolute Maximum Ratings............................................................ 6  
ESD Caution.................................................................................. 6  
Pin Configuration and Function Descriptions............................. 7  
Typical Performance Characteristics ............................................. 9  
Theory of Operation ...................................................................... 11  
Reference Input Section............................................................. 11  
RF INT Divider........................................................................... 11  
INT, FRAC, and R Relationship ............................................... 11  
R Counter .................................................................................... 11  
Input Shift Register..................................................................... 11  
Program Modes .......................................................................... 11  
Register Maps.................................................................................. 13  
Register 0 ..................................................................................... 15  
Register 1 ..................................................................................... 16  
REVISION HISTORY  
7/2016—Rev. 0 to Rev. A  
Changes to Applications Section.................................................... 1  
Changes to Initialization Sequence Section and Recalibration  
Sequence Section ............................................................................ 23  
12/2015—Revision 0: Initial Version  
Rev. A | Page 2 of 26  
 
Data Sheet  
ADF5901  
SPECIFICATIONS  
AHI = TX_AHI = RF_AHI = VCO_AHI = DVDD = 3.3 V 5%, AGND = 0 V, dBm referred to 50 Ω, TA = TMAX to TMIN, unless otherwise  
noted. Operating temperature range is −40°C to +105°C.  
Table 1.  
Parameter  
Min  
24  
1
Typ  
Max  
24.25  
2.8  
Unit  
Test Conditions/Comments  
OPERATING CONDITIONS  
RF Frequency Range  
VCO CHARACTERISITICS  
VTUNE  
GHz  
V
VTUNE Impedance  
100  
kΩ  
VCO Phase Noise Performance  
At 100 kHz Offset  
At 1 MHz Offset  
At 10 MHz Offset  
Amplitude Noise  
−88  
−108  
−128  
−150  
2
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz At 1 MHz offset  
MHz  
Static Pulling fVCO Change vs. Load  
Open-loop into 2:1 voltage standing wave ratio  
(VSWR) load  
Open-loop  
Open-loop  
Open-loop  
Dynamic Pulling Tx On/Off Switch Change  
Dynamic Pulling Tx to Tx Switch Change  
Pushing fVCO Change vs. AHI Change  
Spurious Level Harmonics  
10  
5
5
−30  
<−70  
MHz  
MHz  
MHz/V  
dBc  
Spurious Level Nonharmonics  
dBc  
POWER SUPPLIES  
AHI, TX_AHI, RF_AHI, VCO_AHI, DVDD  
3.135  
3.3  
3.465  
10  
V
1
Total Current, ITOTAL  
170  
500  
200  
mA  
µA  
µA  
Software Power-Down Mode  
Hardware Power-Down Mode  
Tx OUTPUT  
Output Power  
Output Impedance  
On/Off Isolation  
Tx to Tx Isolation  
Power-Up/Power-Down Time  
LO OUTPUT  
2
8
dBm  
Ω
dB  
dB  
ns  
50  
30  
25  
200  
Single Tx output switched on/off  
Output Power  
Output Impedance  
On/Off Isolation  
−7  
−9  
−1  
50  
30  
+5  
0
dBm  
Ω
dB  
AUX PIN OUTPUT  
Output Power  
−5  
dBm  
Single-ended  
Differential  
Output Frequency  
Divide by 2 Output  
Divide by 4 Output  
Output Impedance  
On/Off Isolation  
AUX to LO Isolation  
TEMPERATURE SENSOR  
Analog Accuracy  
Digital Accuracy  
12  
6
12.125 GHz  
6.0625 GHz  
200  
30  
30  
Ω
dB  
dB  
5
5
°C  
°C  
Following one-point calibration  
Following one-point calibration  
Sensitivity  
6.4  
mV/°C  
Rev. A | Page 3 of 26  
 
ADF5901  
Data Sheet  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
ADC  
Resolution  
8
Bits  
LSB  
LSB  
mV  
Integral Nonlinearity (INL)  
Differential Nonlinearity (DNL)  
Least Significant Bit (LSB)  
REFIN CHARACTERISITICS  
REFIN Input Frequency  
1
1
7.4  
10  
260  
MHz  
−5 dBm minimum to +9 dBm maximum biased  
at AHI/2 (ac coupling ensures 1.8/2 bias); for  
frequencies < 10 MHz, use a dc-coupled, CMOS-  
compatible square wave with a slew rate >  
25 V/µs  
REFIN Input Capacitance  
REFIN Input Current  
LOGIC INPUTS  
Input Voltage  
1.2  
100  
pF  
µA  
High (VIH)  
1.4  
V
Low (VIL)  
Input Current (IINH, IINL  
0.6  
1
10  
V
µA  
pF  
)
Input Capacitance (CIN)  
LOGIC OUTPUTS  
Output Voltage  
High (VOH)2  
VDD  
0.4  
V
V
Low (VOL)  
Output Current  
High (IOH)  
0.4  
500  
500  
µA  
µA  
Low (IOL)  
1 TA = 25°C; AHI = 3.3 V; fREFIN = 100 MHz; RF = 24.125 GHz following initialization sequence in the Initialization Sequence section.  
2 VDD selected from IO level bit (DB11 in Register 3).  
TIMING SPECIFICATIONS  
AHI = TX_AHI = RF_AHI = VCO_AHI = DVDD = 3.3 V 5%, AGND = 0 V, dBm referred to 50 Ω, TA = TMIN to TMAX, unless otherwise  
noted. Operating temperature range is −40°C to +105°C.  
Table 2. Write Timing  
Parameter  
Limit at TMIN to TMAX  
Unit  
Description  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
t9  
20  
10  
10  
25  
25  
10  
20  
10  
15  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns max  
ns max  
LE setup time  
DATA to CLK setup time  
DATA to CLK hold time  
CLK high duration  
CLK low duration  
CLK to LE setup time  
LE pulse width  
LE setup time to DOUT  
CLK setup time to DOUT  
Rev. A | Page 4 of 26  
 
Data Sheet  
ADF5901  
Write Timing Diagram  
t4  
t5  
CLK  
t2  
t3  
DB2  
(CONTROL BIT C3)  
DB1  
DB0 (LSB)  
(CONTRO BIT C1)  
DB30  
DATA  
LE  
DB31 (MSB)  
(CONTROL BIT C2)  
L
t7  
t1  
t6  
DB31  
(MSB)  
DOUT  
DB30  
DB1  
DB0  
t8  
t9  
Figure 2. Write Timing Diagram  
500µA  
I
OL  
TO DOUT AND  
MUXOUT PINS  
V
/2  
DD  
C
L
10pF  
500µA  
I
OH  
Figure 3. Load Circuit for DOUT/MUXOUT Timing, CL = 10 pF  
Rev. A | Page 5 of 26  
 
ADF5901  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
Table 3.  
Stresses at or above those listed under Absolute Maximum  
Parameter  
Rating  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
AHI to GND  
AHI to TX_AHI  
AHI to RF_AHI  
AHI to VCO_AHI  
AHI to DVDD  
VTUNE to GND  
Digital Input/Output Voltage to GND  
Operating Temperature Range  
Storage Temperature Range  
Maximum Junction Temperature  
−0.3 V to +3.9 V  
−0.3 V to +0.3 V  
−0.3 V to +0.3 V  
−0.3 V to +0.3 V  
−0.3 V to +0.3 V  
−0.3 V to +3.6 V  
−0.3 V to DVDD + 0.3 V  
−40°C to +105°C  
−65°C to +150°C  
150°C  
ESD CAUTION  
θJA Thermal Impedance1 (Paddle  
Soldered)  
40.83 °C/W  
Reflow Soldering  
Peak Temperature  
Time at Peak Temperature  
Transistor Count  
CMOS  
260°C  
40 sec  
177,381  
2315  
Bipolar  
ESD  
Charged Device Model  
Human Body Model  
250 V  
2000 V  
1 Two signal planes (that is, on top and bottom surfaces of the board), two  
buried planes, and nine vias.  
Rev. A | Page 6 of 26  
 
 
Data Sheet  
ADF5901  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
GND  
1
2
3
4
5
6
7
8
24 DOUT  
23  
22 DATA  
21 CLK  
TX  
1
LE  
OUT  
GND  
ADF5901  
TOP VIEW  
(Not to Scale)  
TX_AHI  
TX_AHI  
GND  
20  
19  
CE  
GND  
TX  
2
18 VREG  
17 DVDD  
OUT  
GND  
NOTES  
1. THE LFCSP HAS AN EXPOSED PAD  
THAT MUST BE CONNECTED TO GND.  
Figure 4. Pin Configuration  
Table 4. Pin Function Descriptions  
Pin No.  
Mnemonic Description  
1, 3, 6, 8,  
10, 12, 13,  
19  
GND  
RF Ground. Tie all ground pins together.  
2
TXOUT  
1
24 GHz Tx Output 1.  
4, 5  
TX_AHI  
Voltage Supply for the Tx Section. Connect decoupling capacitors (0.1 μF, 1 nF, and 10 pF) to the ground plane  
as close as possible to this pin. TX_AHI must be the same value as AHI.  
7
9
11  
14  
TXOUT  
ATEST  
LOOUT  
2
24 GHz Tx Output 2.  
Analog Test Pin.  
LO Output.  
RF_AHI  
Voltage Supply for the RF Section. Connect decoupling capacitors (0.1 μF, 1 nF, and 10 pF) to the ground plane  
as close as possible to this pin. RF_AHI must be the same value as AHI.  
15  
REFIN  
Reference Input. This pin is a CMOS input with a nominal threshold of DVDD/2 and a dc equivalent input  
resistance of 100 kΩ. See Figure 14. This input can be driven from a TTL or CMOS crystal oscillator, or it can be  
ac-coupled.  
16  
17  
AHI  
Voltage Supply for the Analog Section. Connect decoupling capacitors (0.1 μF, 1 nF, and 10 pF) to the ground  
plane as close as possible to this pin.  
Digital Power Supply. This supply may range from 3.135 V to 3.465 V. Place decoupling capacitors (0.1 μF, 1 nF,  
and 10 pF) to the ground plane as close as possible to this pin. DVDD must be the same value as AHI.  
DVDD  
18  
20  
VREG  
CE  
Internal 1.8 V Regulator Output. Connect a 220 nF capacitor to ground as close as possible to this pin.  
Chip Enable. A logic low on this pin powers down the device. Taking the pin high powers up the device,  
depending on the status of the power-down bit, PD1.  
21  
22  
23  
CLK  
DATA  
LE  
Serial Clock Input. This serial clock input clocks in the serial data to the registers. The data is latched into the  
32-bit shift register on the CLK rising edge. This input is a high impedance CMOS input.  
Serial Data Input. The serial data is loaded MSB first with the four LSBs as the control bits. This input is a high  
impedance CMOS input.  
Load Enable, CMOS Input. When LE goes high, the data stored in the shift registers is loaded into one of the  
16 latches with the latch selected via the control bits.  
24  
25  
DOUT  
MUXOUT  
Serial Data Output.  
Multiplexer Output. This multiplexer output allows either the scaled RF or the scaled reference frequency to be  
accessed externally.  
26  
RSET  
Resistor Setting Pin. Connecting a 5.1 kΩ resistor between this pin and GND sets an internal current. The  
nominal voltage potential at the RSET pin is 0.62 V.  
27  
28  
29  
30  
AUX  
AUX  
Auxiliary Output. The VCO/2 output or VCO/4 is available.  
Complementary Auxiliary Output. The VCO/2 output or VCO/4 is available.  
Control Input to the VCO. This voltage determines the output.  
Voltage Supply for the VCO Section. Connect decoupling capacitors (0.1 μF, 1 nF, and 10 pF) to the ground  
plane as close as possible to this pin. VCO_AHI must be the same value as AHI.  
VTUNE  
VCO_AHI  
Rev. A | Page 7 of 26  
 
ADF5901  
Data Sheet  
Pin No.  
31  
32  
Mnemonic Description  
C1  
C2  
EP  
Decoupling Capacitor 1. Place a 47 nF capacitor to ground as close as possible to this pin.  
Decoupling Capacitor 2. Place a 220 nF capacitor to ground as close as possible to this pin.  
Exposed Pad. The LFCSP has an exposed pad that must be connected to GND.  
Rev. A | Page 8 of 26  
Data Sheet  
ADF5901  
TYPICAL PERFORMANCE CHARACTERISTICS  
12  
6
4
10  
2
8
0
6
–2  
–4  
–6  
–8  
–40°C  
+25°C  
+105°C  
–40°C  
+25°C  
+105°C  
Tx1  
Tx2  
4
2
OUTSIDE OF SPECIFIED RANGE  
OUTSIDE OF SPECIFIED RANGE  
0
23.95  
24.00  
24.05  
24.10  
24.15  
24.20  
24.25  
24.30  
23.95  
24.00  
24.05  
24.10  
24.15  
24.20  
24.25  
24.30  
OUTPUT FREQUENCY (GHz)  
OUTPUT FREQUENCY (GHz)  
Figure 5. Tx Output Power vs. Output Frequency  
Figure 8. LO Output Power vs. Output Frequency  
12  
0
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
–9  
–10  
10  
8
6
–40°C  
AUX  
4
3.135V  
3.300V  
3.465V  
–40°C  
+25°C  
+105°C  
+25°C  
+105°C  
AUX  
OUTSIDE OF SPECIFIED RANGE  
2
OUTSIDE OF SPECIFIED RANGE  
0
23.95  
24.00  
24.05  
24.10  
24.15  
24.20  
24.25  
24.30  
11.99  
12.01  
12.03  
12.05  
12.07  
12.09  
12.11  
12.13  
OUTPUT FREQUENCY (GHz)  
OUTPUT FREQUENCY (GHz)  
Figure 6. Transmitter 1 (Tx1) Output Power Variation with Temperature and  
Supply vs. Output Frequency  
AUX  
Figure 9. AUX/  
Output Power vs. Output Frequency with Divide by 2  
Selected  
5
4
15  
–40°C  
10  
+25°C  
3
+105°C  
–40°C  
AUX  
5
2
+25°C  
AUX  
+105°C  
1
OUTSIDE OF SPECIFIED RANGE  
0
–5  
0
–1  
–2  
–3  
–4  
–5  
–10  
–15  
–20  
5.99  
6.00  
6.01  
6.02  
6.03  
6.04  
6.05  
6.06  
6.07  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
OUTPUT FREQUENCY (GHz)  
Tx AMPLITUDE CALIBRATION REFERENCE CODE  
Figure 7. Tx Output Power vs. Tx Amplitude Calibration Reference Code  
AUX  
Figure 10. AUX/  
Output Power vs. Output Frequency with Divide by 4  
Selected  
Rev. A | Page 9 of 26  
 
 
ADF5901  
Data Sheet  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
250  
200  
150  
100  
50  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
–40°C  
+25°C  
+105°C  
OUTSIDE OF SPECIFIED RANGE  
0
0
23.75  
23.88  
24.10  
24.13  
24.25  
24.38  
24.50  
OUTPUT FREQUENCY (GHz)  
TEMPERATURE (ºC)  
Figure 11. VTUNE Frequency Range  
Figure 13. ATEST Voltage and ADC Code vs. Temperature  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
–130  
–140  
–150  
1k  
10k  
100k  
1M  
10M  
FREQUENCY OFFSET (Hz)  
Figure 12. Open-Loop Phase Noise on Tx1 Output at 24.125 GHz  
Rev. A | Page 10 of 26  
Data Sheet  
ADF5901  
THEORY OF OPERATION  
REFERENCE INPUT SECTION  
R DIVIDER  
The reference input stage is shown in Figure 14. SW1 and SW2  
are normally closed switches. SW3 is normally open. When  
power-down is initiated, SW3 is closed and SW1 and SW2 are  
opened. This configuration ensures that there is no loading of  
the REFIN pin on power-down.  
5-BIT  
R COUNTER  
REF  
IN  
×2  
DOUBLER  
TO CAL  
BLOCK  
÷2  
DIVIDER  
POWER-DOWN  
CONTROL  
Figure 16. Reference Divider  
R COUNTER  
100k  
SW2  
NC  
The 5-bit R counter allows the input reference frequency (REFIN)  
to be divided down to supply the reference clock to the VCO  
calibration block. Division ratios from 1 to 32 are allowed.  
TO R COUNTER  
REF  
IN  
NC  
SW1  
BUFFER  
SW3  
NO  
INPUT SHIFT REGISTER  
Figure 14. Reference Input Stage  
The ADF5901 digital section includes a 5-bit RF R counter,  
a 12-bit RF N counter, and a 25-bit FRAC counter. Data is  
clocked into the 32-bit input shift register on each rising edge of  
CLK. The data is clocked in MSB first. Data is transferred from  
the input shift register to one of 12 latches on the rising edge of  
LE. The destination latch is determined by the state of the five  
control bits (C5, C4, C3, C2, and C1) in the input shift register.  
These are the five LSBs (DB4, DB3, DB2, DB1, and DB0,  
respectively), as shown in Figure 2. Table 5 shows the truth table  
for these bits. Figure 17 and Figure 18 show a summary of how  
the latches are programmed.  
RF INT DIVIDER  
The RF INT counter allows a division ratio in the RF feedback  
counter. Division ratios from 75 to 4095 are allowed.  
INT, FRAC, AND R RELATIONSHIP  
Generate the RF VCO frequency (RFOUT) using the INT and  
FRAC values in conjunction with the R counter, as follows:  
RFOUT = fREF × (INT + (FRAC/225)) × 2  
where:  
RFOUT is the output frequency of internal VCO.  
REF is the internal reference frequency.  
(1)  
PROGRAM MODES  
f
Table 5 and Figure 19 through Figure 30 show how to set up the  
program modes in the ADF5901.  
INT is the preset divide ratio of the binary 12-bit counter  
(75 to 4095).  
FRAC is the numerator of the fractional division (0 to 225 − 1).  
Several settings in the ADF5901 are double buffered. These  
include the LSB fractional value, R counter value (R divider),  
reference doubler, clock divider, RDIV2, and MUXOUT. This  
means that two events must occur before the device uses a new  
value for any of the double-buffered settings. First, the new  
value is latched into the device by writing to the appropriate  
register. Second, a new write must be performed on Register R5.  
f
REF = REFIN × ((1 + D)/(R × (1 + T)))  
(2)  
where:  
REFIN is the reference input frequency.  
D is the REFIN doubler bit (0 or 1).  
R is the preset divide ratio of the binary, 5-bit, programmable  
reference counter (1 to 32).  
For example, updating the fractional value can involve a write to  
the 13 LSB bits in Register R6 and the 12 MSB bits in Register R5.  
Write to Register R6 first, followed by the write to Register R5.  
The frequency change begins after the write to Register R0.  
Double buffering ensures that the bits written to in Register R6  
do not take effect until after the write to Register R5.  
T is the REFIN divide by 2 bit (0 or 1).  
25  
RF N DIVIDER  
N = INT + FRAC/2  
FROM RF  
INPUT STAGE  
TO CAL  
BLOCK  
N COUNTER  
THIRD-ORDER  
FRACTIONAL  
INTERPOLATOR  
INT  
REG  
FRAC  
VALUE  
Figure 15. RF N Divider  
Rev. A | Page 11 of 26  
 
 
 
 
 
 
 
 
ADF5901  
Data Sheet  
Table 5. C5, C4, C3, C2, and C1 Truth Table  
Control Bits  
C3 (DB2)  
C5 (DB4)  
C4 (DB3)  
C2 (DB1)  
C1 (DB0)  
Register  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
R0  
R1  
R2  
R3  
R4  
R5  
R6  
R7  
R8  
R9  
R10  
R11  
Rev. A | Page 12 of 26  
 
Data Sheet  
ADF5901  
REGISTER MAPS  
REGISTER 0 (R0)  
AUX BUFFER  
GAIN  
CONTROL  
BITS  
RESERVED  
RESERVED  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
1
PRC PNC  
1
Tx2C Tx1C PVCO VCAL PADC PTx2 PTx1 PLO C5(0)  
C4(0) C3(0) C2(0) C1(0)  
0
0
0
0
0
0
0
AG2 AG1 AG0  
AD  
1
1
1
1
REGISTER 1 (R1)  
CONTROL  
BITS  
RESERVED  
Tx AMP CAL REF CODE  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
TAR7 TAR6 TAR5 TAR4 TAR3 TAR2 TAR1 TAR0 C5(0) C4(0) C3(0) C2(0) C1(1)  
1
1
1
1
1
1
1
1
1
1
1
1
0
1
0
1
1
1
1
REGISTER 2 (R2)  
ADC  
AVERAGE  
CONTROL  
RESERVED  
ADC CLOCK DIVIDER  
BITS  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
AS  
AA0 AA0 AC7 AC6 AC5 AC4 AC3 AC2 AC1 AC0 C5(0) C4(0) C3(0) C2(1) C1(0)  
REGISTER 3 (R3)  
CONTROL  
BITS  
1
DBR  
RESERVED  
MUXOUT  
READBACK CONTROL  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
0
0
0
0
0
0
0
1
1
0
0
0
1
0
0
1
M3 M2  
M1  
M0  
IOL RC5 RC4 RC3 RC2 RC1 RC0 C5(0) C4(0) C3(0) C2(1) C1(1)  
REGISTER 4 (R4)  
CONTROL  
BITS  
RESERVED  
RESERVED  
ANALOG TEST BUS  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
0
0
0
0
0
0
0
0
0
0
NDM  
0
0
0
0
TBA TBP AB9 AB8 AB7 AB6 AB5 AB4 AB3 AB2 AB1 AB0 C5(0) C4(0) C3(1) C2(0) C1(0)  
REGISTER 5 (R5)  
CONTROL  
RESERVED  
INTEGER WORD  
FRAC MSB WORD  
BITS  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
0
0
0
N11 N10  
N9  
N8  
N7  
N6  
N5  
N4  
N3  
N2  
N1  
N0  
F24 F23  
F22 F21  
F20 F19  
F18 F17 F16 F15 F14 F13 C5(0) C4(0) C3(1) C2(0) C1(1)  
REGISTER 6 (R6)  
CONTROL  
BITS  
1
DBR  
RESERVED  
FRAC LSB WORD  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
F12 F11 F10 F9 F8 F7 F6 F5 F4 F3 F2 F1 F0 C5(0) C4(0) C3(1) C2(1) C1(0)  
DBR = DOUBLE BUFFERED REGISTER—BUFFERED BY THE WRITE TO REGISTER 5.  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
Figure 17. Register Summary (Register 0 to Register 6)  
Rev. A | Page 13 of 26  
 
 
ADF5901  
Data Sheet  
REGISTER 7 (R7)  
CONTROL  
BITS  
1
R DIVIDER DBR  
1
RESERVED  
CLOCK DIVIDER  
DBR  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
0
RD2 RD  
R4  
R3  
R2  
R1  
R0 C5(0)  
C4(0) C3(1) C2(1) C1(1)  
C1D3 C1D2 C1D1 C1D0  
0
0
0
0
0
MR  
1
C1D11C1D10 C1D9 C1D8 C1D7 C1D6 C1D5 C1D4  
REGISTER 8 (R8)  
CONTROL  
BITS  
FREQENCY CAL DIVIDER  
RESERVED  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
FC9 FC8 FC7 FC6 FC5 FC4 FC3 FC2 FC1 FC0 C5(0) C4(1) C3(0) C2(0) C1(0)  
REGISTER 9 (R9)  
CONTROL  
BITS  
RESERVED  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
0
0
1
0
1
0
1
0
0
0
1
0
0
0
0
0
1
0
1
1
1
0
0
1
0
0
1
C5(0) C4(1) C3(0) C2(0) C1(1)  
REGISTER 10 (R10)  
CONTROL  
BITS  
RESERVED  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
0
0
0
1
1
1
0
1
0
0
1
1
0
0
1
0
1
0
1
0
0
1
1
0
0
1
0
C5(0) C4(1) C3(0) C2(1) C1(0)  
REGISTER 11 (R11)  
CONTROL  
BITS  
RESERVED  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
CR C5(0) C4(1) C3(0) C2(1) C1(1)  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
DBR = DOUBLE BUFFERED REGISTER—BUFFERED BY THE WRITE TO REGISTER 5.  
Figure 18. Register Summary (Register 7 to Register 11)  
Rev. A | Page 14 of 26  
 
Data Sheet  
ADF5901  
AUX BUFFER  
GAIN  
CONTROL  
BITS  
RESERVED  
RESERVED  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
1
PRC PNC  
1
Tx2C Tx1C PVCO VCAL PADC PTx2 PTx1 PLO C5(0)  
C4(0) C3(0) C2(0) C1(0)  
0
0
0
0
0
0
0
AG2 AG1 AG0  
AD  
1
1
1
1
PLO PUP LO  
AD  
0
AUX DIV  
0
1
POWER DOWN LO  
POWER UP LO  
DIV 2  
DIV 1  
1
PTx1 PUP Tx1  
0
1
POWER DOWN Tx1  
POWER UP Tx1  
PNC  
PUP RCNTR  
0
1
POWER DOWN RCNTR  
POWER UP RCNTR  
PTx2 PUP Tx2  
0
1
POWER DOWN Tx2  
POWER UP Tx2  
PNC  
PUP NCNTR  
0
1
POWER DOWN NCNTR  
POWER UP NCNTR  
AG2 AG1 AG0  
AUX BUFFER GAIN  
BUFFER DISABLED  
GAIN SETTING 1  
GAIN SETTING 2  
GAIN SETTING 3  
GAIN SETTING 4  
GAIN SETTING 5  
GAIN SETTING 6  
GAIN SETTING 7  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
PADC PUP ADC  
0
1
POWER DOWN ADC  
POWER UP ADC  
Tx2C Tx2 AMP CAL  
0
1
NORMAL OPERATION  
Tx2 AMP CAL  
VCAL VCO CAL  
0
1
NORMAL OPERATION  
VCO FULL CAL  
Tx1C Tx1 AMP CAL  
0
1
NORMAL OPERATION  
Tx1 AMP CAL  
PVCO PUP VCO  
0
1
POWER DOWN VCO  
POWER UP VCO  
Figure 19. Register 0 (R0)  
block. Setting this bit to 1 returns the counter block to normal  
operation.  
REGISTER 0  
Control Bits  
Tx2 Amplitude Calibration  
With Bits[C5:C1] set to 00000, Register R0 is programmed.  
Figure 19 shows the input data format for programming this  
register.  
Bit DB12 provides the control bit for amplitude calibration of  
the Transmitter 2 (Tx2) output. Set this bit to 0 for normal  
operation. Setting this bit to 1 performs an amplitude  
calibration of the Tx2 output.  
Auxiliary Buffer Gain  
Bits[DB23:DB21] set the auxiliary output buffer gain (see  
Figure 19).  
Tx1 Amplitude Calibration  
Bit DB11 provides the control bit for amplitude calibration of  
the Tx1 output. Set this bit to 0 for normal operation. Setting  
this bit to 1 performs an amplitude calibration of the Tx1  
output.  
Auxiliary Divide by 2  
Bit DB20 selects the auxiliary output divider. Setting this bit to 0  
selects divide by 2 (6 GHz output). Setting the bit to 1 selects  
divide by 1 (12 GHz output).  
Power-Up VCO  
Power-Up R Counter  
Bit DB10 provides the power-up bit for the VCO. Setting this bit  
to 0 performs a power-down of the VCO. Setting this bit to 1  
performs a power-up of the VCO.  
Bit DB15 provides the power-up bit for the R counter block.  
Setting this bit to 0 performs a power-down of the counter block.  
Setting this bit to 1 returns the counter block to normal  
operation.  
VCO Calibration  
Bit DB9 provides the control bit for frequency calibration of the  
VCO. Set this bit to 0 for normal operation. Setting this bit to 1  
performs a VCO frequency and amplitude calibration.  
Power-Up N Counter  
Bit DB14 provides the power-up bit for the N counter block.  
Setting this bit to 0 performs a power-down of the counter  
Rev. A | Page 15 of 26  
 
 
ADF5901  
Data Sheet  
Power-Up ADC  
Power-Up LO Output  
Bit DB8 provides the power-up bit for the ADC. Setting this bit to  
0 performs a power-down of the ADC. Setting this bit to 1  
performs a power-up of the ADC.  
Bit DB5 provides the power-up bit for the LO output. Setting  
this bit to 0 performs a power-down of the LO output. Setting  
this bit to 1 performs a power-up of the LO output.  
Power-Up Tx2 Output  
REGISTER 1  
Bit DB7 provides the power-up bit for the Tx2 output. Setting  
this bit to 0 performs a power-down of the Tx2 output. Setting  
this bit to 1 performs a power-up of the Tx2 output. Only one  
Tx output can be powered up at any time, either Tx1 (DB6) or  
Tx2 (DB7).  
Control Bits  
With Bits[C5:C1] set to 00001, Register R1 is programmed.  
Figure 20 shows the input data format for programming this  
register.  
Tx Amplitude Calibration Reference Code  
Power-Up Tx1 Output  
Bits[DB12:DB5] set the Tx amplitude calibration reference code  
(see Figure 20) for the two Tx outputs during calibration.  
Calibrate the output power on the Tx outputs from −20 dBm to  
8 dBm by setting the Tx amplitude calibration reference code  
(see Figure 7).  
Bit DB6 provides the power-up bit for the Tx1 output. Setting  
this bit to 0 performs a power-down of the Tx1 output. Setting  
this bit to 1 performs a power-up of the Tx1 output. Only one  
Tx output can be powered up at any time, either Tx1 (DB6) or  
Tx2 (DB7).  
CONTROL  
BITS  
Tx AMP CAL REF CODE  
RESERVED  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
TAR7 TAR6 TAR5 TAR4 TAR3 TAR2 TAR1 TAR0 C5(0) C4(0) C3(0) C2(0) C1(1)  
1
1
1
1
1
1
1
1
1
1
1
1
0
1
0
1
1
1
1
TAR7 TAR6 .......... TAR1 TAR0  
Tx AMP CAL REF CODE  
0
0
0
0
.
0
0
0
0
.
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
.........  
0
0
1
1
.
0
1
0
1
.
0
1
2
3
.
.
.
.
.
.
.
.
.
.
.
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
252  
253  
254  
255  
Figure 20. Register 1 (R1)  
Rev. A | Page 16 of 26  
 
 
Data Sheet  
ADF5901  
ADC  
AVERAGE  
CONTROL  
BITS  
RESERVED  
ADC CLOCK DIVIDER  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
AS  
AA0 AA0 AC7 AC6 AC5 AC4 AC3 AC2 AC1 AC0 C5(0) C4(0) C3(0) C2(1) C1(0)  
AS  
0
ADC START  
AC7 AC6  
AC1  
AC0  
ADC CLOCK DIVIDER  
.
NORMAL OPERATION  
START ADC CONVERSION  
0
0
.
0
0
.
0
1
.
1
0
.
1
.
1
2
.
.
.
.
.
.
.
.
.
.
.
.
.
.
AA1 AA0  
ADC AVERAGE  
.
.
.
.
.
0
0
1
1
0
1
0
1
1
2
3
4
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
124  
125  
126  
127  
Figure 21. Register 2 (R2)  
ADC Average  
REGISTER 2  
Bits[DB14:DB13] program the ADC average, which is the  
number of averages of the ADC output (see Figure 21).  
Control Bits  
With Bits[C5:C1] set to 00010, Register R2 is programmed.  
Figure 21 shows the input data format for programming this  
register.  
ADC Clock Divider  
Bits[DB12:DB5] program the clock divider, which is used as the  
sampling clock for the ADC (see Figure 21). The output of the  
R divider block clocks the ADC clock divider. Program a  
divider value to ensure the ADC sampling clock is 1 MHz.  
ADC Start  
Bit DB15 starts the ADC conversion. Setting this bit to 1 starts  
an ADC conversion.  
Rev. A | Page 17 of 26  
 
 
ADF5901  
Data Sheet  
CONTROL  
BITS  
MUXOUT DBR1  
RESERVED  
READBACK CONTRO L  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
0
0
0
0
0
0
0
1
1
0
0
0
1
0
0
1
M3 M2  
M1  
M0  
IOL RC5 RC4 RC3 RC2 RC1 RC0 C5(0) C4(0) C3(0) C2(1) C1(1)  
M3 M2 M1 M0  
MUXOUT  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
TRISTATE OUTPUT  
LOGIC HIGH  
LOGIC LOW  
R-DIVIDER OUTPUT  
N-DIVIDER OUTPUT  
RESERVED  
READBACK CONTRO L  
RC5 RC4 RC3 RC2 RC1 RC0  
0
0
0
0
0
0
0
0
1
1
1
1
1
.
0
0
0
0
1
1
1
1
0
0
0
0
1
.
0
0
1
1
0
0
1
1
0
0
1
1
0
.
0
1
0
1
0
1
0
1
0
1
0
1
0
.
NONE  
0
0
0
0
0
0
0
0
0
0
0
0
0
.
0
0
0
0
0
0
0
0
0
0
0
0
0
.
REGISTER 0  
REGISTER 1  
REGISTER 2  
REGISTER 3  
REGISTER 4  
REGSITER 5  
REGISTER 6  
REGISTER 7  
REGISTER 8  
REGISTER 9  
REGISTER 10  
REGISTER11  
RESERVED  
RESERVED  
ADC READBACK  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
CAL BUSY  
RESERVED  
RESERVED  
RESERVED  
R-DIVIDER/2  
N-DIVIDER/2  
RESERVED  
RESERVED  
RESERVED  
0
0
0
.
1
1
1
.
0
1
1
.
1
0
1
.
0
0
0
.
1
1
1
.
1DBR = DOUBLE-BUFFERED REGISTER.  
IOL  
0
IO LEVEL  
.
.
.
.
.
.
1
1
1
1
1
1
1.8V LOGIC OUTPUTS  
3.3V LOGIC OUTPUTS  
1
Figure 22. Register 3 (R3)  
Input/Output (IO) Level  
REGISTER 3  
Bit DB11 controls the DOUT logic levels. Setting this bit to 0 sets  
the DOUT logic level to 1.8 V. Setting this bit to 1 sets the DOUT  
logic level to 3.3 V.  
Control Bits  
With Bits[C5:C1] set to 00011, Register R3 is programmed.  
Figure 22 shows the input data format for programming this  
register.  
Readback Control  
Bits[DB10:DB5] control the readback data to DOUT on the  
ADF5901. See Figure 22 for the truth table.  
MUXOUT Control  
Bits[DB15:DB12] control the on-chip multiplexer of the  
ADF5901. See Figure 22 for the truth table.  
Rev. A | Page 18 of 26  
 
 
Data Sheet  
ADF5901  
CONTROL  
BITS  
RESERVED  
RESERVED  
ANALOG TEST BUS  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
0
0
0
0
0
0
0
0
0
0
NDM  
0
0
0
0
TBA TBP AB9  
AB8 AB7 AB6 AB5 AB4 AB3 AB2 AB1 AB0 C5(0) C4(0) C3(1) C2(0) C1(0)  
TBA TEST BUS TO ADC  
0
1
NORMAL OPERATION  
TEST BUS TO ADC  
AB9 AB8 AB7 AB6 AB5 AB4 AB3 AB2 AB1 AB0  
ANALOG TEST BUS  
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
NONE  
259  
TEMPERATURE SENSOR  
NDM N DIV TO MUXOUT EN  
0
1
ENABLE NDIV TO MUXOUT  
NORMAL OPERATION  
TBP TEST BUS TO PIN  
0
1
NORMAL OPERATION  
TEST BUS TO PIN  
Figure 23. Register 4 (R4)  
CONTROL  
BITS  
RESERVED  
INTEGER WORD  
FRAC MSB WORD  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
0
0
0
N11 N10  
N9  
N8  
N7  
N6  
N5  
N4  
N3  
N2  
N1  
N0  
F24 F23  
F22 F21  
F20 F19  
F18 F17 F16 F15 F14 F13 C5(0) C4(0) C3(1) C2(0) C1(1)  
N11  
N10  
0
...  
N4  
N3  
N2  
0
0
0
.
N1  
0
0
1
.
N0  
0
1
0
.
INTEGER WORD  
FRAC MSB WORD  
(FRAC)*  
F24  
F23  
.......... F14  
F13  
0
0
0
.
...  
...  
...  
...  
...  
...  
...  
...  
...  
...  
...  
0
0
0
.
0
0
0
.
NOT ALLOWED  
0
NOT ALLOWED  
0
0
0
0
.
0
0
0
0
.
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
.........  
0
0
1
1
.
0
1
0
1
.
0
0
NOT ALLOWED  
1
.
...  
2
0
0
0
.
0
0
0
0
.
1
1
1
.
0
0
1
.
1
1
0
.
0
1
0
.
NOT ALLOWED  
3
0
75  
.
0
76  
.
.
.
.
.
.
...  
.
.
.
.
.
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
1
1
0
1
4093  
4094  
4095  
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
4092  
4093  
4094  
4095  
1
1
*THE FRAC VALUE IS MADE UP OF THE 12-BIT MSB STORED IN  
REGISTER R5, AND THE 13-BIT LSB REGISTER STORED IN  
REGISTER R6. FRAC VALUE = 13-BIT LSB + 12-BIT MSB × 2  
13  
.
Figure 24. Register 5 (R5)  
Test Bus to Pin  
REGISTER 4  
Bit DB15 controls the ATEST pin. Setting this bit to 0 sets the  
ATEST pin to high impedance. Setting this bit to 1 connects the  
analog test bus to the ATEST pin.  
Control Bits  
With Bits[C5:C1] set to 00100, Register R4 is programmed.  
Figure 23 shows the input data format for programming this  
register.  
Analog Test Bus  
Bits[DB14:DB5] control the analog test bus. This analog test bus  
allows access to internal test signals for the temperature sensor.  
See Figure 23 for the truth table.  
N Divider to MUXOUT Enable  
Bit DB21 controls the internal N divider signal for MUXOUT.  
Setting this bit to 0 enables the internal N divider signal to  
MUXOUT. Setting this bit to 1 returns the device to normal  
operation.  
REGISTER 5  
Control Bits  
Test Bus to ADC  
With Bits[C5:C1] set to 00101, Register R5 is programmed.  
Figure 24 shows the input data format for programming this  
register.  
Bit DB16 controls the ATEST pin. Set this bit to 0 for normal  
operation. Setting this bit to 1 connects the analog test bus to  
the ADC input.  
Rev. A | Page 19 of 26  
 
 
 
 
ADF5901  
Data Sheet  
12-Bit Integer Value (INT)  
REGISTER 6  
These 12 bits (Bits[DB28:DB17]) set the INT value, which  
determines the integer part of the RF division factor. This INT  
value is used in Equation 5. See the RF Synthesis: a Worked  
Example section for more information. All integer values from  
75 to 4095 are allowed.  
Control Bits  
With Bits[C5:C1] set to 00110, Register R6 is programmed.  
Figure 25 shows the input data format for programming  
this register.  
13-Bit LSB FRAC Value  
12-Bit MSB Fractional Value (FRAC)  
These 13 bits (Bits[DB17:DB5]), together with Bits[DB16:DB5]  
(FRAC MSB word) in Register R5, control what is loaded as the  
FRAC value into the fractional interpolator. This FRAC value  
partially determines the overall RF division factor. It is also used  
in Equation 1. These 13 bits are the least significant bits (LSB)  
of the 25-bit FRAC value, and Bits[DB14:DB3] (FRAC MSB  
word) in Register R5 are the most significant bits (MSB). See  
the RF Synthesis: a Worked Example section for more  
information.  
These 12 bits (Bits[DB16:DB5]), together with Bits[DB17:DB5]  
(FRAC LSB word) in Register R6, control what is loaded as the  
FRAC value into the fractional interpolator. This FRAC value  
partially determines the overall RF division factor. It is also used  
in Equation 1. These 12 bits are the most significant bits (MSB)  
of the 25-bit FRAC value, and Bits[DB17:DB5] (FRAC LSB  
word) in Register R6 are the least significant bits (LSB). See the  
RF Synthesis: a Worked Example section for more information.  
CONTROL  
BITS  
1
DBR  
RESERVED  
FRAC LSB WORD  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
F12  
F11 F10  
F9  
F8  
F7  
F6  
F5  
F4  
F3  
F2 F1  
F0 C5(0) C4(0) C3(1) C2(1) C1(0)  
FRAC LSB WORD  
(FRAC)*  
F12  
F11  
.......... F1  
F0  
0
0
0
0
.
0
0
0
0
.
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
.........  
0
0
1
1
.
0
1
0
1
.
0
1
2
3
.
.
.
.
.
.
.
.
.
.
.
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
8188  
8189  
8190  
8191  
*THE FRAC VALUE IS MADE UP OF THE 12-BIT MSB STORED IN  
REGISTER R5, AND THE 13-BIT LSB REGISTER STORED IN  
REGISTER R6. FRAC VALUE = 13-BIT LSB + 12-BIT MSB × 2  
1
13  
DBR = DOUBLE-BUFFERED REGISTER.  
.
Figure 25. Register 6 (R6)  
Rev. A | Page 20 of 26  
 
 
Data Sheet  
ADF5901  
CONTROL  
BITS  
1
R DIVIDER DBR  
1
RESERVED  
CLOCK DIVIDER  
DBR  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
RD2 RD R4 R3 R2 R1 R0 C5(0)  
C4(0) C3(1) C2(1) C1(1)  
0
C1D3 C1D2 C1D1 C1D0  
0
0
0
0
0
MR  
1
C1D11C1D10 C1D9 C1D8 C1D7 C1D6 C1D5 C1D4  
MR  
0
MASTER RESET  
RD2 RDIV2  
DISABLED  
ENABLED  
0
1
DISABLED  
ENABLED  
1
REF  
DOUBLER  
RD  
C1D11 C1D10 .......... C1D2 C1D0  
CLOCK DIVIDER  
0
1
DISABLED  
ENABLED  
0
0
0
0
.
0
0
0
0
.
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
.........  
0
0
1
1
.
0
1
0
1
.
0
1
2
R4  
R3  
R1  
R0  
R DIVIDER (R)  
R2  
3
.
0
0
.
0
0
.
0
1
.
1
0
.
1
0
0
.
.
.
.
.
.
2
.
.
.
.
.
.
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
4092  
4093  
4094  
4095  
.
.
.
.
.
.
.
.
.
.
.
.
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
28  
29  
30  
31  
1
1
1
1
1
DBR = DOUBLE-BUFFERED REGISTER.  
Figure 26. Register 7 (R7)  
Reference Doubler  
REGISTER 7  
Setting DB10 to 0 feeds the REFIN signal directly to the 5-bit  
R counter, disabling the doubler. Setting this bit to 1 multiplies  
the REFIN frequency by a factor of 2 before the REFIN signal is  
fed into the 5-bit R counter.  
Control Bits  
With Bits[C5:C1] set to 00111, Register R7 is programmed.  
Figure 26 shows the input data format for programming  
this register.  
The maximum allowable REFIN frequency when the doubler is  
enabled is 50 MHz.  
Master Reset  
Bit DB25 provides a master reset bit for the device. Setting this  
bit to 1 performs a reset of the device and all register maps.  
Setting this bit to 0 returns the device to normal operation.  
5-Bit R Divider  
The 5-bit R counter allows the input reference frequency  
(REFIN) to be divided down to produce the reference clock to  
the VCO calibration block. Division ratios from 1 to 31 are  
allowed.  
Clock Divider  
Bits[DB23:DB12] set a divider for the VCO frequency calibration.  
Load the divider such that the time base is 10 µs (see Figure 26).  
Divide by 2 (RDIV2)  
Setting the DB11 bit to 1 inserts a divide by 2 toggle flip flop  
between the R counter and VCO calibration block.  
Rev. A | Page 21 of 26  
 
 
ADF5901  
Data Sheet  
CONTROL  
BITS  
FREQENCY CAL DIVIDER  
RESERVED  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
FC9 FC8 FC7 FC6 FC5 FC4 FC3 FC2 FC1 FC0 C5(0) C4(1) C3(0) C2(0) C1(0)  
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
FREQUENCY CAL  
FC9 FC8  
...  
...  
...  
...  
...  
...  
...  
...  
...  
FC4 FC3 FC2 FC1 FC0  
DIVIDER  
0
0
0
.
0
0
0
.
0
0
0
.
0
0
0
.
0
0
0
.
0
0
1
.
0
1
0
.
0
1
2
...  
.
.
.
.
.
.
.
...  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
1
1
0
1
1021  
1023  
1024  
Figure 27. Register 8 (R8)  
CONTROL  
BITS  
RESERVED  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
C5(0) C4(1) C3(0) C2(0) C1(1)  
0
0
1
0
1
0
1
0
0
0
1
0
0
0
0
0
1
0
1
1
1
0
0
1
0
0
1
Figure 28. Register 9 (R9)  
REGISTER 8  
REGISTER 9  
Control Bits  
Control Bits  
With Bits[C5:C1] set to 01000, Register R8 is programmed.  
Figure 27 shows the input data format for programming this  
register.  
With Bits[C5:C1] set to 01001, Register R9 is programmed.  
Figure 28 shows the input data format for programming this  
register.  
Frequency Calibration Clock  
Bits[DB14:DB5] set a divider for the VCO frequency calibration  
clock. Load the divider such that the time base is 10 µs (see  
Figure 27).  
Rev. A | Page 22 of 26  
 
 
 
 
Data Sheet  
ADF5901  
CONTROL  
BITS  
RESERVED  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
0
0
0
1
1
1
0
1
0
0
1
1
0
0
1
0
1
0
1
0
0
1
1
0
0
1
0
C5(0) C4(1) C3(0) C2(1) C1(0)  
Figure 29. Register 10 (R10)  
CONTROL  
BITS  
RESERVED  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
CR C5(0) C4(1) C3(0) C2(1) C1(1)  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
CR CNTR RESET  
0
1
DISABLED  
ENABLED  
Figure 30. Register 11 (R11)  
11. Write 0x00200004 to Register R4 to set the ATEST pin to  
high impedance.  
12. Write 0x01890803 to Register R3 to set the IO level to  
REGISTER 10  
Control Bits  
With Bits[C5:C1] set to 01010, Register R10 is programmed.  
Figure 29 shows the input data format for programming this  
register.  
V
DD = 3.3 V.  
13. Write 0x00020642 to Register R2 to set the ADC clock to  
1 MHz.  
REGISTER 11  
Control Bits  
14. Write 0xFFF7FFE1 to Register R1 to set the Tx amplitude  
level.  
15. Write 0x809FE720 to Register R0 to set the VCO frequency  
calibration (800 µs).  
With Bits[C5:C1] set to 01011, Register R11 is programmed.  
Figure 30 shows the input data format for programming this  
register.  
16. Write 0x809FE560 to Register R0 to power Tx1 on, Tx2 off,  
and LO on.  
Counter Reset  
17. Write 0x809FED60 to Register R0 to set the Tx1 amplitude  
calibration (400 µs).  
18. Write 0x809FE5A0 to Register R0 to turn Tx1 off, Tx2 on,  
and LO on.  
Bit DB5 provides a counter reset bit for the counters. Setting  
this bit to 1 performs a counter reset of the device counters.  
Setting this bit to 0 returns the device to normal operation.  
19. Write 0x809FF5A0 to Register R0 to set the Tx2 amplitude  
calibration (400 µs).  
20. Write 0x2800B929 to Register R9.  
21. Write 0x809F25A0 to Register R0 to disable the R and N  
counters.  
INITIALIZATION SEQUENCE  
After powering up the device, administer the following  
programming sequence. The following sequence locks the VCO  
to 24.125 GHz with a 100 MHz reference and a 50 MHz  
reference divider frequency:  
RECALIBRATION SEQUENCE  
1. Write 0x02000007 to Register R7 to perform a master reset.  
2. Write 0x0000002B to Register R11 to reset the counters.  
3. Write 0x0000000B to Register R11 to enable the counters.  
4. Write 0x1D32A64A to Register R10.  
5. Write 0x2A20B929 to Register R9.  
6. Write 0x40003E88 to Register R8 to set the frequency  
calibration divider clock to 100 kHz.  
The ADF5901 can be recalibrated after the initialization  
sequence is complete and the device is powered up. The  
recalibration sequence must be run for every 10°C temperature  
change; the temperature can be monitored using the  
temperature sensor (see the Temperature Sensor section).  
1. Write 0x809FE520 to Register R0 to enable the counters.  
Tx1 and Tx2 are off, and LO is on.  
2. Write 0x2A20B929 to Register R9.  
3. Write 0xFFF7FFE1 to Register R1 to set the Tx amplitude  
level.  
7. Write 0x809FE520 to Register R0 to power up the device  
and LO (10 µs).  
8. Write 0x011F4827 to Register R7 to set the R counter clock  
to 50 MHz and the calibration clock to 100 kHz.  
9. Write 0x00000006 to Register R6 to set the LSB FRAC = 0.  
10. Write 0x01E28005 to Register R5 to set INT = 241 and  
MSB FRAC = 1024. Therefore, N = 240.25.  
4. Write 0x809FE720 to Register R0 to set the VCO frequency  
calibration (800 µs).  
Rev. A | Page 23 of 26  
 
 
 
 
 
 
ADF5901  
Data Sheet  
5. Write 0x809FE560 to Register R0 to power Tx1 on, Tx2 off,  
and LO on.  
6. Write 0x809FED60 to Register R0 to set the Tx1 amplitude  
calibration (400 µs).  
7. Write 0x89FE5A0 to Register R0 to power Tx1 off, Tx2 on,  
and LO on.  
Convert the DOUT word to temperature with the following  
equation:  
((ADC ×VLSB  
)
VOFF  
)
Temperature (C) =  
(4)  
VGAIN  
8. Write 0x809FF5A0 to Register R0 to set the Tx2 amplitude  
where:  
ADC is the ADC code read back on DOUT.  
calibration (400 µs).  
9. Write 0x2800B929 to Register R9.  
10. Write 0x809F25A0 to Register R0 to disable the R and N  
counters.  
VLSB = 7.33 mV, the ADC LSB voltage.  
VOFF = 0.699 V, the offset voltage.  
V
GAIN = 6.4 × 10−3, the voltage gain.  
TEMPERATURE SENSOR  
RF SYNTHESIS: A WORKED EXAMPLE  
The ADF5901 has an on-chip temperature sensor that can be  
accessed on the ATEST pin or as a digital word on DOUT  
following an ADC conversion. The temperature sensor operates  
over the full operating temperature range of −40°C to +105°C.  
The accuracy can be improved by performing a one-point  
calibration at room temperature and storing the result in  
memory.  
The following equation governs how to program the ADF5901:  
RFOUT = (INT + (FRAC/225)) × (fREF) × 2  
(5)  
where:  
RFOUT is the RF frequency output.  
INT is the integer division factor.  
FRAC is the fractionality.  
f
REF = REFIN × ((1 + D)/(R × (1 + T)))  
(6)  
With the temperature sensor on the analog test bus and test bus  
connected to the ATEST pin (Register 4 set to 0x0000A064) the  
ATEST voltage can be converted to temperature with the  
following equation:  
where:  
REFIN is the reference frequency input.  
D is the reference doubler bit, DB10 in Register R7 (0 or 1).  
R is the reference division factor.  
(
VATEST VOFF  
)
Temperature (C) =  
(3)  
T is the reference divide by 2 bit, DB11 in Register R7 (0 or 1).  
VGAIN  
For example, in a system where a 24.125 GHz RF frequency  
output (RFOUT) is required and a 100 MHz reference frequency  
input (REFIN) is available, fREF is set to 50 MHz.  
where:  
VATEST is the voltage on the ATEST pin.  
VOFF = 0.699 V, the offset voltage.  
V
GAIN = 6.4 × 10−3, the voltage gain.  
From Equation 6,  
f
REF = (100 MHz × (1 + 0)/(1 × (1 + 1)) = 50 MHz  
From Equation 5,  
24.125 GHz = 50 MHz × (N + FRAC/225) × 2  
The temperature sensor result can be converted to a digital  
word with the ADC and readback on DOUT with the following  
sequence:  
1. Write 0x809FA5A0 to Register R0 to enable the counters.  
2. Write 0x00012064 to Register R4 to connect the analog test  
bus to the ADC and VTEMP to the analog test bus.  
3. Write 0x00028C82 to Register R2 to start the ADC  
conversion.  
4. Write 0x018902C3 to Register R3 to set the output ADC  
data to DOUT.  
5. Read back DOUT.  
Calculating the N and FRAC values,  
N = int(RFOUT/(fREF × 2)) = 241  
FRAC = FMSB × 213 + FLSB  
F
F
MSB = int(((RFOUT/(fREF × 2)) − N) × 212) = 1024  
LSB = int(((((RFOUT/(fREF × 2)) − N) × 212) − FMSB) × 213) = 0  
where:  
F
F
MSB is the 12-bit MSB FRAC value in Register R5.  
LSB is the 13-bit LSB FRAC value in Register R6.  
6. Write 0x809F25A0 to Register R0 to disable R and N  
counters.  
int() makes an integer of the argument in parentheses.  
Rev. A | Page 24 of 26  
 
 
Data Sheet  
ADF5901  
APPLICATIONS INFORMATION  
The ADF5904 downconverts the signal from the four receiver  
antennas to baseband with the LO signal from the Tx MMIC.  
APPLICATION OF THE ADF5901 IN FMCW RADAR  
Figure 31 shows the application of the ADF5901 in a frequency  
modulated continuous wave (FMCW) radar system.  
The downconverted baseband signals from the four receiver  
channels on the ADF5904 are fed to the ADAR7251 4-channel,  
continuous time, Σ-Δ analog-to-digital converter (ADC).  
In the FMCW radar system, the ADF4159 generates the  
sawtooth or triangle ramps necessary for this type of radar to  
operate.  
A digital signal processor (DSP) follows the ADC to handle the  
target information processing.  
The ADF4159 controls the VTUNE pin on the ADF5901 (Tx)  
MMIC and thus the frequency of the VCO and the Tx output  
signal on TXOUT1 or TXOUT2. The LO signal from the ADF5901  
is fed to the LO input on the ADF5904.  
LOOP  
FILTER  
CP  
V
TUNE  
RF  
RF  
A
B
TX  
TX  
AUX  
AUX  
IN  
OUT1  
ADF5901  
ADF4159  
IN  
OUT2  
LO  
OUT  
LO_IN  
RX1_RF  
RX2_RF  
RX3_RF  
RX4_RF  
DSP  
ADAR7251  
RX BASEBAND  
ADF5904  
Figure 31. FMCW Radar with ADF5901  
Rev. A | Page 25 of 26  
 
 
 
ADF5901  
Data Sheet  
OUTLINE DIMENSIONS  
5.10  
5.00 SQ  
4.90  
0.30  
0.25  
0.18  
PIN 1  
INDICATOR  
PIN 1  
INDICATOR  
25  
32  
24  
1
0.50  
BSC  
3.75  
3.60 SQ  
3.55  
EXPOSED  
PAD  
17  
8
16  
9
0.50  
0.40  
0.30  
0.25 MIN  
TOP VIEW  
BOTTOM VIEW  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
SECTION OF THIS DATA SHEET.  
COPLANARITY  
0.08  
0.20 REF  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-220-WHHD-5.  
Figure 32. 32-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
5 mm × 5 mm Body, Very Very Thin Quad  
(CP-32-12)  
ORDERING GUIDE  
Model1  
Temperature Range  
−40°C to +105°C  
−40°C to +105°C  
Package Description  
Package Option  
CP-32-12  
CP-32-12  
ADF5901WCCPZ  
ADF5901WCCPZ-RL7  
EV-ADF5901SD2Z  
32-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
32-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
Evaluation Board  
1 Z = RoHS Compliant Part.  
AUTOMOTIVE PRODUCTS  
The ADF5901W models are available with controlled manufacturing to support the quality and reliability requirements of automotive  
applications. Note that these automotive models may have specifications that differ from the commercial models; therefore, designers  
should review the Specifications section of this data sheet carefully. Only the automotive grade products shown are available for use in  
automotive applications. Contact your local Analog Devices account representative for specific product ordering information and to  
obtain the specific Automotive Reliability reports for these models.  
©2015–2016 Analog Devices, Inc. All rights reserved. Trademarks  
and registered trademarks are the property of their respective  
owners.  
D13336-0-7/16(A)  
Rev. A | Page 26 of 26  
 
 
 

相关型号:

ADF5901WCCPZ

24 GHz to 24.25 GHz voltage controlled oscillator
ADI

ADF5901WCCPZ-RL7

24 GHz to 24.25 GHz voltage controlled oscillator
ADI

ADF5902

24 GHz, ISM Band, Multichannel FMCW Radar Transmitter
ADI

ADF5902WCCPZ

24 GHz, ISM Band, Multichannel FMCW Radar Transmitter
ADI

ADF5902WCCPZ-RL7

24 GHz, ISM Band, Multichannel FMCW Radar Transmitter
ADI

ADF5904

4-Channel, 24 GHz,Receiver Downconverter
ADI

ADF5904ACPZ

4-Channel, 24 GHz, Receiver Downconverter
ADI

ADF5904ACPZ-RL7

4-Channel, 24 GHz, Receiver Downconverter
ADI

ADF5904WCCPZ

4-Channel, 24 GHz,Receiver Downconverter
ADI

ADF5904WCCPZ-RL7

4-Channel, 24 GHz,Receiver Downconverter
ADI

ADF6-10-03.5-L-4-1

Board Stacking Connector, 40 Contact(s), 4 Row(s), Female, Straight, 0.025 inch Pitch, Surface Mount Terminal, Locking, Black Insulator, Socket,
SAMTEC

ADF6-10-03.5-LTL-4-1

Board Stacking Connector, 40 Contact(s), 4 Row(s), Female, Straight, 0.025 inch Pitch, Surface Mount Terminal, Locking, Black Insulator, Socket,
SAMTEC