ADG3233BRM-REEL [ADI]

Low Voltage 1.65 V to 3.6 V, Bidirectional Logic Level Translation, Bypass Switch; 低电压1.65 V至3.6 V ,双向逻辑电平转换,旁路开关
ADG3233BRM-REEL
型号: ADG3233BRM-REEL
厂家: ADI    ADI
描述:

Low Voltage 1.65 V to 3.6 V, Bidirectional Logic Level Translation, Bypass Switch
低电压1.65 V至3.6 V ,双向逻辑电平转换,旁路开关

开关 接口集成电路 光电二极管
文件: 总12页 (文件大小:264K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low Voltage 1.65 V to 3.6 V, Bidirectional  
Logic Level Translation, Bypass Switch  
ADG3233*  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
Operates from 1.65 V to 3.6 V Supply Rails  
Bidirectional Level Translation, Unidirectional  
Signal Path  
8-Lead SOT-23 and MSOP Packages  
Bypass or Normal Operation  
Short Circuit Protection  
V
V
CC2  
CC1  
V
CC1  
A1  
Y1  
Y2  
V
V
V
V
CC2  
APPLICATIONS  
CC1  
CC1  
CC2  
JTAG Chain Bypassing  
Daisy-Chain Bypassing  
Digital Switching  
0
1
A2  
EN  
GND  
GENERAL DESCRIPTION  
PRODUCT HIGHLIGHTS  
The ADG3233 is a bypass switch designed on a submicron  
process that operates from supplies as low as 1.65 V. The device  
is guaranteed for operation over the supply range 1.65 V to 3.6 V.  
It operates from two supply voltages, allowing bidirectional level  
translation, i.e., it translates low voltages to higher voltages and  
vice versa. The signal path is unidirectional, meaning data may  
only flow from A to Y.  
1. Bidirectional level translation matches any voltage level from  
1.65 V to 3.6 V.  
2. The bypass switch offers high performance and is fully  
guaranteed across the supply range.  
3. Short circuit protection.  
4. Tiny 8-lead SOT-23 package, 8.26 mm ϫ 8.26 mm board area,  
or 8-lead MSOP.  
This type of device may be used in applications that require a  
bypassing function. It is ideally suited to bypassing devices in a  
JTAG chain or in a daisy-chain loop. One switch could be used for  
each device or a number of devices, thus allowing easy bypassing  
of one or more devices in a chain. This may be particularly  
useful in reducing the time overhead in testing devices in the  
JTAG chain or in daisy-chain applications where the user does  
not wish to change the settings of a particular device.  
Table I. Truth Table  
EN  
Signal Path  
Function  
L
H
A1Y2, Y1VCC1  
A1Y1, A2Y2  
Enable Bypass Mode  
Enable Normal Mode  
The bypass switch is packaged in two of the smallest footprints  
available for its required pin count. The 8-lead SOT-23 package  
requires only 8.26 mm ϫ 8.26 mm board space, while the MSOP  
package occupies approximately 15 mm ϫ 15 mm board area.  
*Patent Pending  
REV. 0  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, norforanyinfringementsofpatentsorotherrightsofthirdpartiesthat  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective companies.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
www.analog.com  
© 2003 Analog Devices, Inc. All rights reserved.  
(VCC1 = VCC2 = 1.65 V to 3.6 V, GND = 0 V, All specifications TMIN to TMAX, unless  
otherwise noted.)  
ADG3233–SPECIFICATIONS1  
Parameter  
Symbol  
Conditions  
Min  
Typ2  
Max  
Unit  
LOGIC INPUTS/OUTPUTS3  
(VCC2 = 1.65 V to 3.6 V, GND = 0 V)  
VCC1 = 3.0 V to 3.6 V  
Input High Voltage4  
VIH  
1.35  
1.35  
0.65 VCC  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
VCC1 = 2.3 V to 2.7 V  
VCC1 = 1.65 V to 1.95 V  
VCC1 = 3.0 V to 3.6 V  
Input Low Voltage4  
VIL  
0.8  
0.7  
0.35 VCC  
VCC1 = 2.3 V to 2.7 V  
VCC1 = 1.65 V to 1.95 V  
IOH = 100 µA, VCC1 = 3.0 V to 3.6 V  
VCC1 = 2.3 V to 2.7 V  
Output High Voltage (Y1)  
VOH  
2.4  
2.0  
VCC1 = 1.65 V to 1.95 V VCC 0.45  
VCC1 = 2.3 V to 2.7 V 2.0  
VCC1 = 1.65 V to 1.95 V VCC 0.45  
IOH = 4 mA,  
IOH = 8 mA,  
VCC1 = 3.0 V to 3.6 V  
2.4  
Output Low Voltage (Y1)  
VOL  
IOL = +100 µA, VCC1 = 3.0 V to 3.6 V  
0.40  
0.40  
0.45  
0.40  
0.45  
0.40  
VCC1 = 2.3 V to 2.7 V  
VCC1 = 1.65 V to 1.95 V  
IOL = +4 mA, VCC1 = 2.3 V to 2.7 V  
VCC1 = 1.65 V to 1.95 V  
IOL = +8 mA, VCC1 = 3.0 V to 3.6 V  
LOGIC OUTPUTS3  
Output High Voltage (Y2)  
(VCC1 = 1.65 V to 3.6 V, GND = 0 V)  
IOH = 100 µA, VCC2 = 3.0 V to 3.6 V  
VCC2 = 2.3 V to 2.7 V  
VOH  
2.4  
2.0  
V
V
V
V
V
V
V
V
V
V
V
V
VCC2 = 1.65 V to 1.95 V VCC 0.45  
VCC2 = 2.3 V to 2.7 V 2.0  
VCC2 = 1.65 V to 1.95 V VCC 0.45  
VCC2 = 3.0 V to 3.6 V 2.4  
IOH = 4 mA,  
IOH = 8 mA,  
IOL = +100 µA, VCC2 = 3.0 V to 3.6 V  
Output Low Voltage (Y2)  
VOL  
0.40  
0.40  
0.45  
0.40  
0.45  
0.40  
VCC2 = 2.3 V to 2.7 V  
VCC2 = 1.65 V to 1.95 V  
IOL = +4 mA, VCC2 = 2.3 V to 2.7 V  
VCC2 = 1.65 V to 1.95 V  
IOL = +8 mA, VCC2 = 3.0 V to 3.6 V  
SWITCHING CHARACTERISTICS4, 5  
VCC = VCC1 = VCC2 = 3.3 V 0.3 V  
Propagation Delay, tPD  
A1 to Y1 Normal Mode  
A2 to Y2 Normal Mode  
A1 to Y2 Bypass Mode  
tPHL, tPLH  
tPHL, tPLH  
tPHL, tPLH  
tEN  
tDIS  
tEN  
CL = 30 pF, VT = VCC/2  
CL = 30 pF, VT = VCC/2  
CL = 30 pF, VT = VCC/2  
CL = 30 pF, VT = VCC/2  
CL = 30 pF, VT = VCC/2  
CL = 30 pF, VT = VCC/2  
CL = 30 pF, VT = VCC/2  
3.5  
3.5  
4
5.4  
5.4  
6.5  
6
4
6.5  
6.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ENABLE Time EN to Y1  
DISABLE Time EN to Y1  
ENABLE Time EN to Y2  
DISABLE Time EN to Y2  
VCC = VCC1 = VCC2 = 2.5 V 0.2 V  
Propagation Delay, tPD  
4
2.8  
4.5  
4
tDIS  
A1 to Y1 Normal Mode  
A2 to Y2 Normal Mode  
A1 to Y2 Bypass Mode  
tPHL, tPLH  
tPHL, tPLH  
tPHL, tPLH  
tEN  
tDIS  
tEN  
CL = 30 pF, VT = VCC/2  
CL = 30 pF, VT = VCC/2  
CL = 30 pF, VT = VCC/2  
CL = 30 pF, VT = VCC/2  
CL = 30 pF, VT = VCC/2  
CL = 30 pF, VT = VCC/2  
CL = 30 pF, VT = VCC/2  
4.5  
4.5  
4.5  
5
3.2  
5
6.2  
6.2  
6.5  
7.2  
4.7  
7.7  
7.2  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ENABLE Time EN to Y1  
DISABLE Time EN to Y1  
ENABLE Time EN to Y2  
DISABLE Time EN to Y2  
VCC = VCC1 = VCC2 = 1.8 V 0.15 V  
Propagation Delay, tPD  
tDIS  
4.8  
A1 to Y1 Normal Mode  
A2 to Y2 Normal Mode  
A1 to Y2 Bypass Mode  
ENABLE Time EN to Y1  
DISABLE Time EN to Y1  
ENABLE Time EN to Y2  
DISABLE Time EN to Y2  
tPHL, tPLH  
tPHL, tPLH  
tPHL, tPLH  
tEN  
tDIS  
tEN  
CL = 30 pF, VT = VCC/2  
CL = 30 pF, VT = VCC/2  
CL = 30 pF, VT = VCC/2  
CL = 30 pF, VT = VCC/2  
CL = 30 pF, VT = VCC/2  
CL = 30 pF, VT = VCC/2  
CL = 30 pF, VT = VCC/2  
6.7  
6.5  
6.5  
7
4.4  
7
10  
10  
10.25  
10.5  
6.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
12  
10.5  
tDIS  
6.5  
–2–  
REV. 0  
ADG3233  
Parameter  
Symbol  
Conditions  
Min  
Typ2  
Max  
Unit  
SWITCHING CHARACTERISTICS4, 5 (continued)  
Input Leakage Current  
Output Leakage Current  
II  
IO  
0 Յ VIN Յ 3.6 V  
0 Յ VIN Յ 3.6 V  
1
1
µA  
µA  
POWER REQUIREMENTS  
Power Supply Voltages  
VCC1  
VCC2  
ICC1  
ICC2  
ICC1  
1.65  
1.65  
3.6  
3.6  
2
V
V
µA  
µA  
Quiescent Power Supply Current  
Increase in ICC per Input  
Digital Inputs = 0 V or VCC  
Digital Inputs = 0 V or VCC  
VCC = 3.6 V, One Input at 3.0 V;  
Others at VCC or GND  
2
0.75  
µA  
NOTES  
1 Temperature range is as follows: B Version: 40°C to +85°C.  
2 All typical values are at VCC = VCC1 = VCC2, TA = 25°C, unless otherwise stated.  
3 VIL and VIH levels are specified with respect to VCC1, VOH and VOL levels for Y1 are specified with respect to VCC1, and VOH and VOL levels are specified for Y2 with  
respect to VCC2  
.
4 Guaranteed by design, not subject to production test.  
5 See Test Circuits and Waveforms.  
Specifications subject to change without notice.  
REV. 0  
–3–  
ADG3233  
ABSOLUTE MAXIMUM RATINGS*  
(TA = 25°C, unless otherwise noted.)  
Lead Temperature, Soldering (10 sec) . . . . . . . . . . . . . 300°C  
IR Reflow, Peak Temperature (<20 sec) . . . . . . . . . . . . 235°C  
VCC to GND . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to +4.6 V  
Digital Inputs to GND . . . . . . . . . . . . . . . . . . –0.3 V to +4.6 V  
A1, EN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to +4.6 V  
A2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to VCC1 + 0.3V  
DC Output Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 mA  
Operating Temperature Range  
*Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions above those listed in the operational sections  
of this specification is not implied. Exposure to absolute maximum rating condi-  
tionsforextendedperiodsmayaffectdevicereliability. Onlyoneabsolutemaximum  
rating may be applied at any one time.  
Industrial (B Version) . . . . . . . . . . . . . . . . . –40°C to +85°C  
Storage Temperature Range . . . . . . . . . . . . . –65°C to +150°C  
Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . 150°C  
8-Lead MSOP  
JA Thermal Impedance . . . . . . . . . . . . . . . . . . . . . 206°C/W  
JC Thermal Impedance . . . . . . . . . . . . . . . . . . . . . . 43°C/W  
8-Lead SOT-23  
JA Thermal Impedance . . . . . . . . . . . . . . . . . . . . . 211°C/W  
ORDERING GUIDE  
Model  
Temperature Range  
Package Description  
Branding  
Package Option  
ADG3233BRJ-REEL  
ADG3233BRJ-REEL7  
ADG3233BRM  
ADG3233BRM-REEL  
ADG3233BRM-REEL7 –40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
SOT-23  
SOT-23  
MSOP  
MSOP  
MSOP  
W1B  
W1B  
W1B  
W1B  
W1B  
RJ-8  
RJ-8  
RM-8  
RM-8  
RM-8  
PIN CONFIGURATIONS  
8-Lead SOT-23 Package (RJ-8)  
8-Lead MSOP Package (RM-8)  
V
1
2
3
4
8
7
6
5
V
V
1
2
3
4
8
7
6
5
V
CC1  
CC1  
A1  
CC2  
CC2  
Y1  
Y1  
A1  
A2  
EN  
ADG3233  
ADG3233  
A2  
Y2  
Y2  
TOP VIEW  
TOP VIEW  
(Not to Scale)  
(Not to Scale)  
EN  
GND  
GND  
PIN FUNCTION DESCRIPTIONS  
Pin  
RJ-8 RM-8 Mnemonic Description  
1
8
2
3
7
6
8
1
7
6
2
3
VCC1  
VCC2  
A1  
A2  
Y1  
Supply Voltage 1, can be any supply voltage from 1.65 V to 3.6 V.  
Supply Voltage 2, can be any supply voltage from 1.65 V to 3.6 V.  
Input Referred to VCC1  
Input Referred to VCC2  
.
.
Output Referred to VCC1.  
Y2  
Output Referred to VCC2. Voltage levels appearing at Y2 will be translated from VCC1 voltage level to a  
VCC2 voltage level.  
4
5
5
4
EN  
GND  
Active Low Device Enable. When low, bypass mode is enabled; when high, the device is in normal mode.  
Device Ground.  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although the  
ADG3233 features proprietary ESD protection circuitry, permanent damage may occur on devices  
subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended  
to avoid performance degradation or loss of functionality.  
–4–  
REV. 0  
Typical Performance Characteristics–ADG3233  
5.0  
4.5  
4.0  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
30  
T
= 25؇C  
A
T = 25؇C  
A
V
= 3.3V  
CC2  
= 25؇C  
T
A
25  
3.5  
V
V
= 3.3V  
= 2.5V  
20  
15  
CC1  
3.0  
2.5  
2.0  
1.5  
CC1  
V
= 1.8V  
CC1  
10  
5
V
= 2.5V  
V
= 3.3V  
V
= 3.3V  
V = 2.5V  
CC1  
CC2  
2.0  
CC2  
CC1  
1.0  
0.5  
0
V
= 1.8V  
CC2  
V
= 1.8V  
CC1  
0
0
10 20 30  
40  
50 60  
70 80  
1.5  
2.5  
3.0  
3.5  
4.0  
1.5  
2.0  
2.5  
3.0  
– V  
3.5  
4.0  
V
CC2  
V
– V  
TEMPERATURE – ЊC  
CC1  
TPC 1. ICC1 vs. VCC1  
TPC 2. ICC2 vs. VCC2  
TPC 3. ICC1 vs. Temperature  
30  
25  
2000  
1800  
1600  
80  
70  
60  
50  
40  
30  
20  
V
= 3.3V  
= 25؇C  
T
=
25؇C  
T
= 25؇C  
CC1  
A
A
T
A
V
=
V
= 3.3V  
CC2  
CC1  
20  
15  
10  
5
1400  
1200  
V
= 3.3V  
CC2  
V
=
V
= 3.3V  
CC2  
CC1  
V
= 2.5V  
CC2  
1000  
800  
600  
400  
V
= 1.8V  
CC2  
V
=
V
= 1.8V  
CC2  
CC1  
V
=
V
= 1.8V  
1M  
CC1  
CC2  
0
10  
0
200  
0
–5  
10k  
100k  
1M  
10M  
100M  
10k  
100k  
10M  
100M  
0
10  
20 30 40 50  
60 70 80  
FREQUENCY – Hz  
FREQUENCY – Hz  
TEMPERATURE – ЊC  
TPC 4. ICC2 vs. Temperature  
TPC 5. ICC1 vs. Frequency,  
Normal Mode  
TPC 6. ICC1 vs. Frequency,  
Bypass Mode  
2000  
1800  
1600  
2000  
1800  
1600  
10  
T
= 25؇C  
T
=
25؇C  
A
A
8
6
4
2
0
V
=
V
= 3.3V  
CC2  
CC1  
1400  
1200  
1400  
1200  
V
=
V
= 3.3V  
CC2  
CC1  
tEN  
1000  
1000  
tDIS  
800  
600  
400  
800  
600  
400  
V
=
V
= 1.8V  
V
=
V
= 1.8V  
CC2  
CC1  
CC2  
CC1  
T
V
= 25؇C  
A
200  
0
200  
0
= V  
CC1  
CC2  
10k  
100k  
1M  
10M  
100M  
10k  
100k  
1M  
10M  
100M  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
FREQUENCY – Hz  
FREQUENCY – Hz  
SUPPLY – V  
TPC 8. ICC2 vs. Frequency,  
Bypass Mode  
TPC 9. Y1 Enable, Disable Time  
vs. Supply  
TPC 7. ICC2 vs. Frequency,  
Normal Mode  
REV. 0  
–5–  
ADG3233  
10  
6
5
4
3
2
1
0
6
5
4
3
2
1
0
8
6
4
2
tEN  
tEN  
tDIS  
tEN  
tDIS  
tDIS  
T
V
= 25؇C  
A
V
= V  
3.3V  
V
= V  
3.3V  
CC2 =  
= V  
CC1  
CC2 =  
CC1  
CC1  
CC2  
0
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
–40  
–20  
0
20  
40  
60  
80  
–40  
–20  
0
20  
40  
60  
80  
SUPPLY – V  
TEMPERATURE – ؇C  
TEMPERATURE – ؇C  
TPC 10. Y2 Enable, Disable  
Time vs. Supply  
TPC 11. Y1 Enable, Disable  
Time vs. Temperature  
TPC 12. Y2 Enable, Disable  
Time vs. Temperature  
16  
16  
10  
V
V
= 3.3V  
= 1.8V  
= 25؇C  
CC1  
CC2  
V
V
T
= 1.8V  
= 3.3V  
= 25؇C  
V
V
T
= 3.3V  
= 1.8V  
= 25؇C  
CC1  
CC2  
A
CC1  
CC2  
A
14  
12  
9
8
14  
12  
T
A
DATA RATE 10Mbps  
DATA RATE 10Mbps  
tPLH, LOW-TO-HIGH TRANSITION  
DATA RATE 10Mbps  
7
6
5
10  
8
10  
8
tPLH, LOW-TO-HIGH TRANSITION  
tPLH, LOW-TO-HIGH TRANSITION  
4
6
4
6
4
3
2
tPHL, HIGH-TO-LOW TRANSITION  
tPHL, HIGH-TO-LOW TRANSITION  
tPHL, HIGH-TO-LOW TRANSITION  
2
0
2
0
1
0
22 32 42 52 62 72 82 92 102  
CAPACITIVE LOAD – pF  
22 32  
42 52  
62 72  
82 92 102  
22 32 42 52  
62 72 82 92 102  
CAPACITIVE LOAD – pF  
CAPACITIVE LOAD – pF  
TPC 13. Rise/Fall Time vs.  
Capacitive Load, A1–Y1, A2–Y2  
TPC 14. Rise/Fall Time vs. Capacitive  
Load, A1–Y2, Bypass Mode  
TPC 15. Rise/Fall Time vs. Capacitive  
Load, A1–Y1, A2–Y2  
8
8
7
10  
V
V
T
= 3.3V  
= 3.3V  
= 25؇C  
V
V
T
= 1.8V  
= 3.3V  
= 25؇C  
CC1  
CC2  
A
CC1  
CC2  
A
9
8
7
6
5
4
3
tPLH, LOW-TO-HIGH TRANSITION  
6
DATA RATE 10Mbps  
DATA RATE 10Mbps  
tLH, LOW-TO-HIGH TRANSITION  
tPLH, LOW-TO-HIGH TRANSITION  
7
6
5
5
4
tPHL, HIGH-TO-LOW TRANSITION  
tPHL, HIGH-TO-LOW TRANSITION  
4
3
2
3
2
2
V
V
T
= 3.3V  
= 3.3V  
= 25؇C  
tHL, HIGH-TO-LOW TRANSITION  
CC1  
CC2  
A
1
0
1
0
1
0
DATA RATE 10Mbps  
22 32 42 52  
62 72 82 92 102  
22 32 42 52 62 72 82 92 102  
22 32 42 52  
62 72 82 92 102  
CAPACITIVE LOAD – pF  
CAPACITIVE LOAD – pF  
CAPACITIVE LOAD – pF  
TPC 17. Propagation Delay  
vs. Capacitive Load A1 to Y1  
TPC 18. Propagation Delay  
vs. Capacitive Load A2 to Y2  
TPC 16. Rise/Fall Time vs. Capacitive  
Load, A1–Y2, Bypass Mode  
–6–  
REV. 0  
ADG3233  
8.0  
6.0  
4.0  
2.0  
0
8
7
6
5
4
3
8.0  
7.0  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0
tPLH, LOW-TO-HIGH TRANSITION  
tPLH, A1–Y1  
tPHL, A2–Y2  
tPHL, A1–Y2  
tPHL, HIGH-TO-LOW TRANSITION  
tPLH , A1–Y2  
tPHL, A1–Y1  
2
V
V
= 3.3V  
= 3.3V  
= 25؇C  
CC1  
CC2  
tPLH, A2–Y2  
T
V
= 25؇C  
1
0
T
V
= 25؇C  
A
A
T
A
= V  
= V  
CC1  
CC2  
CC1  
CC2  
DATA RATE 10Mbps  
22 32 42 52  
62 72 82 92 102  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
CAPACITIVE LOAD – pF  
SUPPLY – V  
SUPPLY – V  
TPC 19. Propagation Delay vs.  
Capacitive Load A1 to Y2, Bypass Mode  
TPC 20. Propagation Delay  
vs. Supply, Normal Mode  
TPC 21. Propagation Delay  
vs. Supply, Bypass Mode  
4.0  
4.0  
tPHL, A2–Y2  
T
= 25؇C  
A
tPHL, A1–Y1  
tPHL, A1–Y2  
EN = HIGH  
3.5  
A1  
A2  
Y1  
Y2  
3.3V  
3.0  
3.0  
1.8V  
tPLH, A1–Y2  
2.5  
tPLH, A1–Y1  
2.0  
2.0  
1.0  
0
tPLH, A2–Y2  
1.5  
3.3V  
1.0  
2
4
DATA RATE = 10MHz  
0.5  
0
T
V
= 25؇C  
T
V
A
A
= V  
= 3.3V  
= 3.3V  
CC1  
CC2  
–40  
–20  
0
20  
40  
60  
80  
–40  
0
20  
40  
60  
80  
TEMPERATURE – ؇C  
TEMPERATURE – ؇C  
TPC 22. Propagation Delay  
vs. Temperature, Normal Mode  
TPC 23. Propagation Delay vs.  
Temperature, Bypass Mode  
TPC 24. Normal Mode VCC1 = 3.3 V,  
VCC2 = 1.8 V  
T
= 25؇C  
A
A1  
3.3V  
1.8V  
DATA RATE = 10MHz  
3.3V  
1.8V  
A1  
Y2  
1.8V  
3.3V  
A1  
Y1  
2
Y2  
3.3V  
1.8V  
A2  
1.8V  
Y1  
4
2
1
Y2  
T
= 25؇C  
A
T
= 25؇C  
A
DATA RATE = 10MHz  
DATA RATE = 10MHz  
TPC 25. Bypass Mode, VCC1 = 3.3 V,  
VCC2 = 1.8 V  
TPC 26. Normal Mode VCC1 = 1.8 V,  
VCC2 = 3.3 V  
TPC 27. Bypass Mode, VCC1 = 1.8 V,  
VCC2 = 3.3 V  
REV. 0  
–7–  
ADG3233  
3.5  
3
T
V
= 25؇C  
A
V
= V  
CC = CC1 CC2  
V
= 3.3V  
CC  
2.5  
2
SOURCE  
V
= 2.5V  
CC  
1.5  
1
V
= 1.8V  
CC  
V
= 3.3V  
CC  
V
= 2.5V  
CC  
V
= 1.8V  
CC  
0.5  
0
SINK  
0
5
10  
CURRENT – mA  
15  
20  
TPC 28. Y1 and Y2 Source and Sink Current  
V
V
CC1  
CC1  
INPUT  
V
T
V
T
EN  
0V  
V
0V  
tPHL  
tPLH  
tEN  
tDIS  
OH  
OUTPUT  
V
V
V
CC1  
T
A1  
A2  
OL  
0V  
Figure 1. Propagation Delay  
V
CC1  
0V  
V
OH  
V
Y2  
V
T
T
V
CC1  
V
OL  
V
T
EN  
0V  
Figure 3. Y2 Enable and Disable Times  
tEN  
tDIS  
V
OH  
Y1 (A1 @ GND)  
V
V
V
T
T
OL  
Figure 2. Y1 Enable and Disable Times  
–8–  
REV. 0  
ADG3233  
DESCRIPTION  
rail, there are no internal diodes to the supply rails, so the device  
can handle inputs above the supply but inside the absolute  
maximum ratings.  
The ADG3233 is a bypass switch designed on a submicron  
process that operates from supplies as low as 1.65 V. The device  
is guaranteed for operation over the supply range 1.65 V to 3.6 V.  
It operates from two supply voltages, allowing bidirectional level  
translation, i.e., it translates low voltages to higher voltages and  
vice versa. The signal path is unidirectional, meaning data may  
only flow from A to Y.  
Normal Operation  
Figure 4 shows the bypass switch being used in normal mode.  
In this mode, the signal paths are from A1 to Y1 and A2 to Y2.  
The device will level translate the signal applied to A1 to a VCC1  
logic level (this level translation can be either to a higher or  
lower supply) and route the signal to the Y1 output, which will  
have standard VOL/VOH levels for VCC1 supplies. The signal is  
then passed through Device 1 and back to the A2 input pin of  
the bypass switch.  
A1 and EN Input  
The A1 and enable (EN) inputs have VIL/VIH logic levels so that  
the part can accept logic levels of VOL/VOH from Device 0 or the  
controlling device independent of the value of the supply being  
used by the controlling device. These inputs (A1, EN) are capable  
of accepting inputs outside the VCC1 supply range. For example,  
the VCC1 supply applied to the bypass switch could be 1.8 V  
while Device 0 could be operating from a 2.5 V or 3.3 V supply  
The logic level inputs of A2 are with respect to the VCC1 supply.  
The signal will be level translated from VCC1 to VCC2 and routed  
to the Y2 output pin of the bypass switch. Y2 output logic levels  
are with respect to the VCC2 supply.  
V
V
V
CC0  
CC1  
CC2  
DEVICE 0  
DEVICE 1  
DEVICE 2  
SIGNAL INPUT  
SIGNAL OUTPUT  
V
V
CC2  
CC1  
A1  
A2  
Y1  
Y2  
LOGIC 1  
EN  
BYPASS SWITCH  
Figure 4. Bypass Switch in Normal Mode  
REV. 0  
–9–  
ADG3233  
V
V
V
CC2  
CC0  
CC1  
DEVICE 0  
DEVICE 1  
DEVICE 2  
SIGNAL INPUT  
SIGNAL OUTPUT  
V
V
CC2  
CC1  
A1  
A2  
Y1  
Y2  
LOGIC 0  
EN  
BYPASS SWITCH  
Figure 5. Bypass Switch in Bypass Mode  
Bypass Operation  
directly to the input of Device 2. In bypass mode, Y1 is pulled  
up to VCC1  
Figure 5 illustrates the device as used in bypass operation.  
The signal path is now from A1 directly to Y2, thus bypassing  
Device 1 completely. The signal will be level translated to a  
VCC2 logic level and available on Y2, where it may be applied  
.
The three supplies in Figures 4 and 5 may be any combination  
of supplies, i.e., VCC0, VCC1, and VCC2 may be any combination  
of supplies, for example, 1.8 V, 2.5 V, and 3.3 V.  
–10–  
REV. 0  
ADG3233  
OUTLINE DIMENSIONS  
8-Lead Mini Small Outline Package [MSOP]  
(RM-8)  
Dimensions shown in millimeters  
3.00  
BSC  
8
5
4
4.90  
BSC  
3.00  
BSC  
1
PIN 1  
0.65 BSC  
1.10 MAX  
0.15  
0.00  
0.80  
0.40  
8؇  
0؇  
0.38  
0.22  
0.23  
0.08  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187AA  
8-Lead Small Outline Transistor Package [SOT-23]  
(RJ-8)  
Dimensions shown in millimeters  
2.90 BSC  
8
1
7
2
6
3
5
4
1.60 BSC  
PIN 1  
2.80 BSC  
0.65 BSC  
1.95  
BSC  
1.30  
1.15  
0.90  
1.45 MAX  
0.22  
0.08  
0.60  
0.45  
0.30  
8؇  
4؇  
0؇  
0.38  
0.22  
0.15 MAX  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-178BA  
REV. 0  
–11–  
–12–  

相关型号:

ADG3233BRM-REEL7

Low Voltage 1.65 V to 3.6 V, Bidirectional Logic Level Translation, Bypass Switch
ADI

ADG3233BRMZ

Low Voltage 1.65 V to 3.6 V,Bidirectional Logic Level Translation, Bypass Switch
ADI

ADG3233BRMZ-REEL7

Low Voltage 1.65 V to 3.6 V,Bidirectional Logic Level Translation, Bypass Switch
ADI

ADG3241

2.5 V/3.3 V, 1-Bit, 2-Port Level Translator Bus Switch in SOT-66
ADI

ADG3241BKS-500RL7

2.5 V/3.3 V, 1-Bit, 2-Port Level Translator Bus Switch in SOT-66
ADI

ADG3241BKS-500RL7

3241 SERIES, 1-BIT DRIVER, TRUE OUTPUT, PDSO6, MO-203AB, SC-70, TSSOP-6
ROCHESTER

ADG3241BKS-REEL

2.5 V/3.3 V, 1-Bit, 2-Port Level Translator Bus Switch in SOT-66
ADI

ADG3241BKS-REEL7

2.5 V/3.3 V, 1-Bit, 2-Port Level Translator Bus Switch in SOT-66
ADI

ADG3241BKS-REEL7

3241 SERIES, 1-BIT DRIVER, TRUE OUTPUT, PDSO6, MO-203AB, SC-70, TSSOP-6
ROCHESTER

ADG3241BKSZ

3241 SERIES, 1-BIT DRIVER, TRUE OUTPUT, PDSO6
ADI

ADG3241BKSZ-500RL7

2.5 V/3.3 V, 1 - Bit, 2 - Port Level Translator Bus Switch
ADI

ADG3241BKSZ-500RL7

3241 SERIES, 1-BIT DRIVER, TRUE OUTPUT, PDSO6, LEAD FREE, MO-203AB, SC-70, TSSOP-6
ROCHESTER