ADG3304BRUZ [ADI]

Low Voltage, 1.15 V to 5.5 V, 4-Channel, Bidirectional Logic Level Translator; 低电压, 1.15 V至5.5 V , 4通道,双向逻辑电平转换器
ADG3304BRUZ
型号: ADG3304BRUZ
厂家: ADI    ADI
描述:

Low Voltage, 1.15 V to 5.5 V, 4-Channel, Bidirectional Logic Level Translator
低电压, 1.15 V至5.5 V , 4通道,双向逻辑电平转换器

转换器 电平转换器
文件: 总20页 (文件大小:618K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low Voltage, 1.15 V to 5.5 V, 4-Channel,  
Bidirectional Logic Level Translator  
Data Sheet  
ADG3304  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
Bidirectional level translation  
Operates from 1.15 V to 5.5 V  
Low quiescent current < 5 µA  
No direction pin  
V
V
CCY  
CCA  
A1  
A2  
A3  
A4  
EN  
Y1  
Y2  
Y3  
Y4  
Qualified for automotive applications  
APPLICATIONS  
SPI®, MICROWIRE™ level translation  
Low voltage ASIC level translation  
Smart card readers  
Cell phones and cell phone cradles  
Portable communications devices  
Telecommunications equipment  
Network switches and routers  
Storage systems (SAN/NAS)  
Computing/server applications  
GPS  
GND  
Figure 1.  
Portable POS systems  
Low cost serial interfaces  
GENERAL DESCRIPTION  
The ADG3304 is a bidirectional logic level translator that con-  
tains four bidirectional channels. It can be used in multivoltage  
digital system applications, such as data transfer, between a low  
voltage digital signal processing controller and a higher voltage  
device using SPI and MICROWIRE interfaces. The internal  
architecture allows the device to perform bidirectional logic  
level translation without an additional signal to set the direction  
in which the translation takes place.  
The enable pin (EN) provides three-state operation on both the  
A side and the Y side pins. When the EN pin is pulled low, the  
terminals on both sides of the device are in the high impedance  
state. The EN pin is referred to the VCCA supply voltage and  
driven high for normal operation.  
The ADG3304 is available in compact 14-lead TSSOP, 12-ball  
WLCSP, and 20-lead LFCSP. It is guaranteed to operate over  
the 1.15 V to 5.5 V supply voltage range.  
The voltage applied to VCCA sets the logic levels on the A side of  
the device, while VCCY sets the levels on the Y side. For proper  
operation, VCCA must always be less than VCCY. The VCCA-com-  
patible logic signals applied to the A side of the device appear as  
PRODUCT HIGHLIGHTS  
1. Bidirectional level translation.  
2. Fully guaranteed over the 1.15 V to 5.5 V supply range.  
3. No direction pin.  
V
CCY-compatible levels on the Y side. Similarly, VCCY-compatible  
logic levels applied to the Y side of the device appear as VCCA  
compatible logic levels on the A side.  
-
4. Available in 14-lead TSSOP, 12-ball WLCSP, and 20-lead  
LFCSP.  
Rev. D  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2005–2013 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
 
ADG3304  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description ......................................................................... 1  
Product Highlights ........................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 6  
ESD Caution.................................................................................. 6  
Pin Configurations and Function Descriptions ........................... 7  
Typical Performance Characteristics ............................................. 8  
Test Circuits..................................................................................... 12  
Terminology .................................................................................... 15  
Theory of Operation ...................................................................... 16  
Level Translator Architecture ................................................... 16  
Input Driving Requirements..................................................... 16  
Output Load Requirements ...................................................... 16  
Enable Operation ....................................................................... 16  
Power Supplies............................................................................ 16  
Data Rate ..................................................................................... 17  
Applications..................................................................................... 18  
Layout Guidelines....................................................................... 18  
Outline Dimensions....................................................................... 19  
Ordering Guide .......................................................................... 20  
Automotive Products................................................................. 20  
REVISION HISTORY  
4/13—Rev. C to Rev. D  
12/05—Rev. A to Rev. B  
Changes to Figure 3 and Table 4..................................................... 7  
Changes to Table 1.............................................................................3  
Changes to Table 2.............................................................................6  
Changes to Figure 3 and Table 4......................................................7  
Updated Outline Dimensions....................................................... 19  
Changes to Ordering Guide.......................................................... 21  
12/12—Rev. B to Rev. C  
Changes to Table 1............................................................................ 3  
Changes to Table 2............................................................................ 6  
Changes to VCCY Description, Table 3 and Table 4....................... 7  
Changes to Ordering Guide .......................................................... 20  
Added Automotive Products Section........................................... 20  
6/05—Rev. 0 to Rev. A  
Added LFCSP Package.......................................................Universal  
1/05—Revision 0: Initial Version  
Rev. D | Page 2 of 20  
 
Data Sheet  
ADG3304  
SPECIFICATIONS  
VCCY = 1.65 V to 5.5 V, VCCA = 1.15 V to VCCY, GND = 0 V, TA = 25°C. All specifications TMIN to TMAX, unless otherwise noted.  
Table 1.  
B Version1  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ Max  
Unit  
LOGIC INPUTS/OUTPUTS  
A Side  
Input High Voltage2  
VIHA  
VCCA = 1.2 V + 0.1 V/−0.05 V  
VCCA = 1.8 V 0.15 V  
VCCA = 2.5 V 0.2 V  
VCCA × 0.88  
VCCA × 0.72  
1.7  
V
V
V
VCCA = 3.3 V 0.3 V  
2.2  
V
VCCA = 5 V 0.5 V  
VCCA = 1.2 V + 0.1 V/−0.05 V  
VCCA = 1.8 V 0.15 V  
VCCA × 0.7  
V
V
Input Low Voltage2  
VILA  
VCCA × 0.35  
VCCA × 0.35  
0.7  
V
V
VCCA = 2.5 V 0.2 V  
VCCA = 3.3 V 0.3 V  
0.8  
V
VCCA = 5 V 0.5 V  
VCCA × 0.3  
V
Output High Voltage  
Output Low Voltage  
Capacitance2  
VOHA  
VOLA  
CA  
VCCA − 0.4  
V
VY = VCCY, IOH = 20 µA, see Figure 29  
VY = 0 V, IOL = 20 µA, see Figure 29  
f = 1 MHz, EN = 0, see Figure 34  
VA = 0 V/VCCA, EN = 0, see Figure 31  
0.4  
1
V
9
pF  
µA  
Leakage Current  
ILA, Hi-Z  
Y Side  
Input High Voltage2  
VIHY  
VCCY = 1.8 V 0.15 V  
VCCY × 0.67  
V
VCCY = 2.5 V 0.2 V  
1.7  
V
VCCY = 3.3 V 0.3 V  
2
V
VCCY = 5 V 0.5 V  
VCCY = 1.8 V 0.15 V  
VCCY × 0.7  
V
V
Input Low Voltage2  
VILY  
VCCY × 0.35  
0.7  
VCCY = 2.5 V 0.2 V  
V
VCCY = 3.3 V 0.3 V  
0.8  
V
VCCY = 5 V 0.5 V  
VCCY × 0.25  
V
Output High Voltage  
Output Low Voltage  
Capacitance2  
VOHY  
VOLY  
CY  
VCCY − 0.4  
V
VA = VCCA, IOH = 20 µA, see Figure 30  
VA = 0 V, IOL = 20 µA, see Figure 30  
f = 1 MHz, EN = 0, see Figure 35  
VY = 0 V/VCCY, EN = 0, see Figure 32  
0.4  
1
V
6
pF  
µA  
Leakage Current  
ILY, Hi-Z  
Enable (EN)  
Input High Voltage2  
VIHEN  
VCCA = 1.2 V + 0.1 V/−0.05 V  
VCCA = 1.8 V 0.15 V  
VCCA = 2.5 V 0.2 V  
VCCA = 3.3 V 0.3 V  
VCCA = 5 V 0.5 V  
VCCA × 0.88  
VCCA × 0.72  
1.7  
2.2  
VCCA × 0.7  
V
V
V
V
V
Input Low Voltage2  
VILEN  
VCCA = 1.2 V + 0.1 V/−0.05 V  
VCCA = 1.8 V 0.15 V  
VCCA = 2.5 V 0.2 V  
VCCA = 3.3 V 0.3 V  
VCCA = 5 V 0.5 V  
VCCA × 0.35  
VCCA × 0.35  
0.7  
0.8  
VCCA × 0.3  
1
V
V
V
V
V
µA  
pF  
µs  
Leakage Current  
Capacitance2  
Enable Time2  
ILEN  
CEN  
tEN  
V
EN = 0 V/VCCA, VA = 0 V, see Figure 33  
3
1
1.8  
RS = RT = 50 Ω, VA = 0 V/VCCA (AY),  
VY = 0 V/VCCY (YA), see Figure 36  
Rev. D | Page 3 of 20  
 
 
ADG3304  
Data Sheet  
B Version1  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ Max  
Unit  
SWITCHING CHARACTERISTICS2  
3.3 V 0.3 V ≤ VCCA ≤ VCCY, VCCY = 5 V 0.5 V  
AY Level Translation  
Propagation Delay  
RS = RT = 50 Ω, CL = 50 pF, see Figure 37  
6
2
2
10  
ns  
tP, AY  
Rise Time  
3.5  
3.5  
ns  
tR, AY  
Fall Time  
ns  
tF, AY  
Maximum Data Rate  
Channel-to-Channel Skew  
Part-to-Part Skew  
50  
Mbps  
ns  
DMAX, AY  
tSKEW, AY  
tPPSKEW, AY  
2
4
3
ns  
YA Level Translation  
Propagation Delay  
Rise Time  
RS = RT = 50 Ω, CL = 15 pF, see Figure 38  
4
1
3
7
3
7
ns  
tP, YA  
ns  
tR, YA  
Fall Time  
ns  
tF, YA  
Maximum Data Rate  
Channel-to-Channel Skew  
Part-to-Part Skew  
50  
Mbps  
ns  
DMAX, YA  
tSKEW, YA  
tPPSKEW, YA  
2
3.5  
2
ns  
1.8 V 0.15 V ≤ VCCA ≤ VCCY, VCCY = 3.3 V 0.3 V  
AY Translation  
RS = RT = 50 Ω, CL = 50 pF, see Figure 37  
Propagation Delay  
8
2
2
11  
5
ns  
tP, AY  
Rise Time  
ns  
tR, AY  
Fall Time  
5
ns  
tF, AY  
Maximum Data Rate  
Channel-to-Channel Skew  
Part-to-Part Skew  
50  
Mbps  
ns  
DMAX, AY  
tSKEW, AY  
tPPSKEW, AY  
2
4
4
ns  
YA Translation  
Propagation Delay  
Rise Time  
RS = RT = 50 Ω, CL = 15 pF, see Figure 38  
5
2
2
8
ns  
tP, YA  
3.5  
3.5  
ns  
tR, YA  
Fall Time  
ns  
tF, YA  
Maximum Data Rate  
Channel-to-Channel Skew  
Part-to-Part Skew  
1.15 V to 1.3 V ≤ VCCA ≤ VCCY, VCCY = 3.3 V 0.3 V  
AY Translation  
50  
Mbps  
ns  
DMAX, YA  
tSKEW, YA  
tPPSKEW, YA  
2
3
3
ns  
RS = RT = 50 Ω, CL = 50 pF, see Figure 37  
Propagation Delay  
Rise Time  
9
3
2
18  
5
ns  
tP, AY  
ns  
tR, AY  
Fall Time  
5
ns  
tF, AY  
Maximum Data Rate  
Channel-to-Channel Skew  
Part-to-Part Skew  
40  
Mbps  
ns  
DMAX, AY  
tSKEW, AY  
tPPSKEW, AY  
2
5
10  
ns  
YA Translation  
Propagation Delay  
Rise Time  
RS = RT = 50 Ω, CL = 15 pF, see Figure 38  
5
2
2
9
4
4
ns  
tP, YA  
ns  
tR, YA  
Fall Time  
ns  
tF, YA  
Maximum Data Rate  
Channel-to-Channel Skew  
Part-to-Part Skew  
40  
Mbps  
ns  
DMAX, YA  
tSKEW, YA  
tPPSKEW, YA  
2
4
4
ns  
Rev. D | Page 4 of 20  
Data Sheet  
ADG3304  
B Version1  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ Max  
Unit  
1.15 V to 1.3 V ≤ VCCA ≤ VCCY, VCCY = 1.8 V 0.3 V  
AY Translation  
RS = RT = 50 Ω, CL = 50 pF, see Figure 37  
Propagation Delay  
12  
7
25  
12  
5
ns  
tP, AY  
Rise Time  
ns  
tR, AY  
Fall Time  
3
ns  
tF, AY  
Maximum Data Rate  
Channel-to-Channel Skew  
Part-to-Part Skew  
25  
Mbps  
ns  
DMAX, AY  
tSKEW, AY  
tPPSKEW, AY  
2
5
15  
ns  
YA Translation  
Propagation Delay  
Rise Time  
RS = RT = 50 Ω, CL = 15 pF, see Figure 38  
14  
5
35  
16  
6.5  
ns  
tP, YA  
ns  
tR, YA  
Fall Time  
2.5  
ns  
tF, YA  
Maximum Data Rate  
Channel-to-Channel Skew  
Part-to-Part Skew  
2.5 V 0.2 V ≤ VCCA ≤ VCCY, VCCY = 3.3 V 0.3 V  
AY Translation  
25  
Mbps  
ns  
DMAX, YA  
tSKEW, YA  
tPPSKEW, YA  
3
6.5  
23.5  
ns  
RS = RT = 50 Ω, CL = 50 pF, see Figure 37  
Propagation Delay  
7
10  
4
ns  
tP, AY  
Rise Time  
2.5  
2
ns  
tR, AY  
Fall Time  
5
ns  
tF, AY  
Maximum Data Rate  
Channel-to-Channel Skew  
Part-to-Part Skew  
YA Translation  
Propagation Delay  
Rise Time  
60  
Mbps  
ns  
DMAX, AY  
tSKEW, AY  
tPPSKEW, AY  
1.5  
2
4
ns  
RS = RT = 50 Ω, CL = 15 pF, see Figure 38  
5
1
3
8
4
5
ns  
tP, YA  
ns  
tR, YA  
Fall Time  
ns  
tF, YA  
Maximum Data Rate  
Channel-to-Channel Skew  
Part-to-Part Skew  
60  
Mbps  
ns  
DMAX, YA  
tSKEW, YA  
tPPSKEW, YA  
2
3
3
ns  
POWER REQUIREMENTS  
Power Supply Voltages  
VCCA  
VCCY  
ICCA  
VCCA ≤ VCCY  
1.15  
1.65  
5.5  
5.5  
5
V
V
µA  
Quiescent Power Supply Current  
VA = 0 V/VCCA, VY = 0 V/VCCY  
VCCA = VCCY = 5.5 V, EN = 1  
VA = 0 V/VCCA, VY = 0 V/VCCY  
VCCA = VCCY = 5.5 V, EN = 1  
,
,
0.17  
0.27  
ICCY  
5
µA  
Three-State Mode Power Supply Current  
IHi-Z, A  
IHi-Z, Y  
VCCA = VCCY = 5.5 V, EN = 0  
VCCA = VCCY = 5.5 V, EN = 0  
0.1  
0.1  
5
5
µA  
µA  
1 TA for typical specifications is 25°C.  
2 Guaranteed by design, not production tested.  
Rev. D | Page 5 of 20  
 
ADG3304  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
Table 2.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those listed in the operational sections  
of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Parameter  
Rating  
VCCA to GND  
VCCY to GND  
−0.3 V to +7 V  
VCCA to +7 V  
Digital Inputs (A)  
Digital Inputs (Y)  
EN to GND  
Operating Temperature Range  
Storage Temperature Range  
Junction Temperature  
θJA Thermal Impedance (4-Layer Board)  
14-Lead TSSOP  
−0.3 V to (VCCA + 0.3 V)  
−0.3 V to (VCCY + 0.3 V)  
−0.3 V to +7 V  
−40°C to +85°C  
−65°C to +150°C  
150°C  
Only one absolute maximum rating can be applied at any one  
time.  
ESD CAUTION  
89.21°C/W  
12-Ball WLCSP  
120°C/W  
20-Lead LFCSP  
30.4°C/W  
Lead Temperature, Soldering  
As per JEDEC J-STD-020  
Rev. D | Page 6 of 20  
 
 
Data Sheet  
ADG3304  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
BALL A1  
INDICATOR  
1
2
3
PIN 1  
INDICATOR  
NC  
A2  
A3  
A4  
NC  
1
2
3
4
5
15 NC  
1
2
3
4
5
6
7
V
14  
13  
12  
11  
V
CCA  
CCY  
V
V
Y1  
A1  
CCY  
14 Y2  
13 Y3  
12 Y4  
11 NC  
ADG3304  
TOP VIEW  
(Not to Scale)  
A1  
A2  
Y1  
Y2  
Y3  
A
B
C
D
ADG3304  
TOP VIEW  
(Not to Scale)  
Y2  
Y3  
Y4  
A2  
A3  
A4  
CCA  
A3  
EN  
A4  
10 Y4  
9
8
NC  
NC  
EN  
GND  
NC = NO CONNECT  
GND  
NOTES  
1. THE EXPOSED PADDLE CAN BE TIED TO GND  
OR LEFT FLOATING. DO NOT TIE IT TO V or V  
TOP VIEW  
(BALLS AT THE BOTTOM)  
Not to Scale  
CCA CCY.  
NC = NO CONNECT  
Figure 2. 14-Lead TSSOP  
Pin Configuration  
Figure 3. 12-Ball WLCSP  
Pin Configuration  
Figure 4. 20-Lead LFCSP_VQ  
Pin Configuration  
Table 3. 14-Lead TSSOP and 20-lead LFCSP Pin Function Descriptions  
Pin No.  
TSSOP  
LFCSP  
Mnemonic  
VCCA  
A1  
A2  
A3  
A4  
NC  
GND  
EN  
Description  
Power Supply Voltage Input for the A1 to A4 I/O Pins (1.15 V ≤ VCCA ≤ VCCY).  
1
2
3
4
5
6, 9  
7
19  
20  
2
3
Input/Output A1. Referenced to VCCA  
Input/Output A2. Referenced to VCCA  
Input/Output A3. Referenced to VCCA  
Input/Output A4. Referenced to VCCA  
No Connect.  
.
.
.
.
4
1, 5, 6, 7, 10, 11, 15, 16  
8
9
Ground.  
Active High Enable Input.  
8
10  
11  
12  
13  
14  
12  
13  
14  
17  
18  
Y4  
Y3  
Y2  
Y1  
Input/Output Y4. Referenced to VCCY  
Input/Output Y3. Referenced to VCCY  
Input/Output Y2. Referenced to VCCY  
Input/Output Y1. Referenced to VCCY  
Power Supply Voltage Input for the Y1 to Y4 I/O Pins (1.65 V ≤ VCCY ≤ 5.5 V).  
.
.
.
.
VCCY  
Table 4. 12-Ball WLCSP Pin Function Descriptions  
Bump No.  
Mnemonic  
Description  
Input/Output Y1. Referenced to VCCY  
Input/Output Y2. Referenced to VCCY  
Input/Output Y3. Referenced to VCCY  
Input/Output Y4. Referenced to VCCY.  
A1  
B1  
C1  
D1  
Y1  
Y2  
Y3  
Y4  
.
.
.
A2  
B2  
C2  
VCCY  
VCCA  
EN  
Power Supply Voltage Input for the Y1 to Y4 I/O Pins (1.65 V ≤ VCCY ≤ 5.5 V).  
Power Supply Voltage Input for the A1 to A4 I/O Pins (1.15 V ≤ VCCA ≤ VCCY).  
Active High Enable Input.  
D2  
A3  
GND  
A1  
Ground.  
Input/Output A1. Referenced to VCCA  
Input/Output A2. Referenced to VCCA  
Input/Output A3. Referenced to VCCA  
Input/Output A4. Referenced to VCCA  
.
.
.
.
B3  
C3  
D3  
A2  
A3  
A4  
Rev. D | Page 7 of 20  
 
ADG3304  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
1.0  
T
= 25°C  
T
= 25°C  
A
A
1 CHANNEL  
C
1 CHANNEL  
= 15pF  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
= 50pF  
C
L
L
V
= 3.3V, V  
CCY  
= 5V  
CCA  
V
= 3.3V, V = 5V  
CCY  
CCA  
V
= 1.8V, V  
= 3.3V  
CCA  
CCY  
V
= 1.8V, V  
= 3.3V  
CCA  
CCY  
V
= 1.2V, V  
= 1.8V  
40  
V
= 1.2V, V  
CCY  
= 1.8V  
CCA  
CCY  
CCA  
25  
DATA RATE (Mbps)  
0
5
10  
15  
20  
30  
35  
40  
45  
50  
0
5
10  
15  
20  
25  
30  
35  
45  
50  
DATA RATE (Mbps)  
Figure 5. ICCA vs. Data Rate (AY Level Translation)  
Figure 8. ICCY vs. Data Rate (YA Level Translation)  
10  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
T
= 25°C  
A
T
= 25°C  
A
1 CHANNEL  
C
1 CHANNEL  
V
V
9
8
7
6
5
4
3
2
1
0
= 50pF  
L
= 1.2V  
= 1.8V  
CCA  
CCY  
20Mbps  
V
= 3.3V, V = 5V  
CCY  
CCA  
10Mbps  
5Mbps  
V
= 1.8V, V = 3.3V  
CCY  
CCA  
V
= 1.2V, V = 1.8V  
CCY  
CCA  
1Mbps  
53  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
13  
23  
33  
43  
63  
73  
DATA RATE (Mbps)  
CAPACITIVE LOAD (pF)  
Figure 9. ICCY vs. Capacitive Load at Pin Y for AY (1.2 V1.8 V)  
Figure 6. ICCY vs. Data Rate (AY Level Translation)  
Level Translation  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
1.0  
T
= 25°C  
A
T
= 25°C  
A
1 CHANNEL  
= 15pF  
1 CHANNEL  
V
V
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
C
L
= 1.2V  
=1.8V  
CCA  
CCY  
V
= 3.3V, V = 5V  
CCY  
CCA  
20Mbps  
V
= 1.8V, V  
= 3.3V  
CCA  
CCY  
10Mbps  
5Mbps  
V
= 1.2V, V  
CCY  
= 1.8V  
CCA  
1Mbps  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
13  
23  
33  
CAPACITIVE LOAD (pF)  
43  
53  
DATA RATE (Mbps)  
Figure 10. ICCA vs. Capacitive Load at Pin A for YA (1.8 V1.2 V)  
Figure 7. ICCA vs. Data Rate (YA Level Translation)  
Level Translation  
Rev. D | Page 8 of 20  
 
Data Sheet  
ADG3304  
9
7
6
5
4
3
2
1
0
T
= 25°C  
A
T
= 25°C  
A
1 CHANNEL  
V
V
1 CHANNEL  
V
V
8
7
6
5
4
3
2
1
0
= 1.8V  
= 3.3V  
CCA  
CCY  
= 3.3V  
= 5V  
CCA  
CCY  
50Mbps  
50Mbps  
30Mbps  
20Mbps  
30Mbps  
20Mbps  
10Mbps  
5Mbps  
10Mbps  
5Mbps  
63  
13  
23  
33  
43  
53  
73  
13  
23  
33  
43  
53  
CAPACITIVE LOAD (pF)  
CAPACITIVE LOAD (pF)  
Figure 11. ICCY vs. Capacitive Load at Pin Y for AY (1.8 V3.3 V)  
Figure 14. ICCA vs. Capacitive Load at Pin A for YA (5 V3.3 V)  
Level Translation  
Level Translation  
5.0  
10  
T
= 25°C  
T = 25°C  
A
A
1 CHANNEL  
1 CHANNEL  
DATA RATE = 50kbps  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
9
8
7
6
5
4
3
2
1
0
V
V
= 1.8V  
= 3.3V  
V
= 1.2V, V = 1.8V  
CCY  
CCA  
CCY  
CCA  
50Mbps  
30Mbps  
V
= 1.8V, V  
= 3.3V, V  
= 3.3V  
= 5V  
CCA  
CCY  
20Mbps  
10Mbps  
V
CCA  
CCY  
5Mbps  
13  
23  
33  
43  
53  
13  
23  
33  
43  
53  
63  
73  
CAPACITIVE LOAD (pF)  
CAPACITIVE LOAD (pF)  
Figure 12. ICCA vs. Capacitive Load at Pin A for YA (3.3 V1.8 V)  
Figure 15. Rise Time vs. Capacitive Load at Pin Y (AY Level Translation)  
Level Translation  
4.0  
12  
T
= 25°C  
T
= 25°C  
A
A
1 CHANNEL  
DATA RATE = 50kbps  
1 CHANNEL  
V
V
50Mbps  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
= 3.3V  
= 5V  
CCA  
CCY  
V
= 1.2V, V = 1.8V  
CCY  
10  
8
CCA  
30Mbps  
20Mbps  
V
= 1.8V, V = 3.3V  
CCY  
CCA  
6
4
V
= 3.3V, V = 5V  
CCY  
CCA  
10Mbps  
5Mbps  
2
0
13  
13  
23  
33  
43  
53  
63  
73  
23  
33  
43  
53  
63  
73  
CAPACITIVE LOAD (pF)  
CAPACITIVE LOAD (pF)  
Figure 13. ICCY vs. Capacitive Load at Pin Y for AY (3.3 V5 V)  
Figure 16. Fall Time vs. Capacitive Load at Pin Y (AY Level Translation)  
Level Translation  
Rev. D | Page 9 of 20  
ADG3304  
Data Sheet  
10  
12  
10  
8
DATA RATE = 50kbps  
T
= 25°C  
A
V
= 1.2V, V = 1.8V  
CCY  
A
T
= 25°C  
CCA  
1 CHANNEL  
DATA RATE = 50kbps  
9
8
7
6
5
4
3
2
1
0
1 CHANNEL  
V
= 1.2V, V = 1.8V  
CCY  
CCA  
6
V
= 1.8V, V = 3.3V  
CCY  
CCA  
4
V
= 1.8V, V = 3.3V  
CCY  
CCA  
2
V
= 3.3V, V  
63  
= 5V  
73  
CCA  
CCY  
V
= 3.3V, V  
CCY  
= 5V  
53  
CCA  
0
13  
23  
33  
43  
53  
13  
18  
23  
28  
33  
38  
43  
48  
CAPACITIVE LOAD (pF)  
CAPACITIVE LOAD (pF)  
Figure 20. Propagation Delay (tPHL) vs.  
Capacitive Load at Pin Y (AY Level Translation)  
Figure 17. Rise Time vs. Capacitive Load at Pin A (YA Level Translation)  
9
8
7
6
5
4
3
2
1
0
4.0  
T = 25°C  
A
1 CHANNEL  
DATA RATE = 50kbps  
T
= 25°C  
A
1 CHANNEL  
DATA RATE = 50kbps  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
= 1.2V, V = 1.8V  
CCY  
CCA  
V
= 1.2V, V = 1.8V  
CCY  
CCA  
V
= 1.8V, V  
CCY  
= 3.3V  
= 5V  
CCA  
V
V
= 1.8V, V = 3.3V  
CCY  
= 3.3V, V  
CCY  
CCA  
CCA  
V
= 3.3V, V  
43  
= 5V  
CCA  
CCY  
13  
18  
23  
28  
33  
38  
48  
53  
13  
18  
23  
28  
33  
38  
43  
48  
53  
CAPACITIVE LOAD (pF)  
CAPACITIVE LOAD (pF)  
Figure 21. Propagation Delay (tPLH) vs.  
Capacitive Load at Pin A (YA Level Translation)  
Figure 18. Fall Time vs. Capacitive Load at Pin A (YA Level Translation)  
9
8
7
6
5
4
3
2
1
0
T
= 25°C  
A
14  
1 CHANNEL  
DATA RATE = 50kbps  
T
= 25°C  
A
1 CHANNEL  
DATA RATE = 50kbps  
V
= 1.2V, V = 1.8V  
CCY  
CCA  
12  
10  
8
V
= 1.2V, V = 1.8V  
CCY  
CCA  
6
V
= 1.8V, V = 3.3V  
CCY  
CCA  
V
= 1.8V, V = 3.3V  
CCY  
CCA  
V
= 3.3V, V = 5V  
CCY  
4
CCA  
V
= 3.3V, V = 5V  
CCY  
CCA  
2
13  
18  
23  
28  
33  
38  
43  
48  
53  
0
13  
23  
33  
43  
53  
63  
CAPACITIVE LOAD (pF)  
73  
CAPACITIVE LOAD (pF)  
Figure 19. Propagation Delay (tPLH) vs.  
Capacitive Load at Pin Y (AY Level Translation)  
Figure 22. Propagation Delay (tPHL) vs.  
Capacitive Load at Pin A (YA Level Translation)  
Rev. D | Page 10 of 20  
Data Sheet  
ADG3304  
T
= 25°C  
A
T
= 25°C  
A
DATA RATE = 25Mbps  
C
1 CHANNEL  
DATA RATE = 50Mbps  
= 15pF  
= 50pF  
L
C
L
1 CHANNEL  
400mV/DIV  
5ns/DIV  
400mV/DIV  
3ns/DIV  
Figure 26. Eye Diagram at A Output  
(3.3 V to 1.8 V Level Translation, 50 Mbps)  
Figure 23. Eye Diagram at Y Output  
(1.2 V to 1.8 V Level Translation, 25 Mbps)  
T
= 25°C  
C
= 50pF  
A
L
T
= 25°C  
A
DATA RATE = 25Mbps  
1 CHANNEL  
DATA RATE = 50Mbps  
CL = 50pF  
1 CHANNEL  
200mV/DIV  
5ns/DIV  
1V/DIV  
3ns/DIV  
Figure 27. Eye Diagram at Y Output  
(3.3 V to 5 V Level Translation, 50 Mbps)  
Figure 24. Eye Diagram at A Output  
(1.8 V to 1.2 V Level Translation, 25 Mbps)  
T
= 25°C  
T
= 25°C  
C = 50pF  
L
A
A
DATA RATE = 50Mbps  
C
DATA RATE = 50Mbps 1 CHANNEL  
= 15pF  
L
1 CHANNEL  
500mV/DIV  
3ns/DIV  
3ns/DIV  
800mV/DIV  
Figure 25. Eye Diagram at Y Output  
Figure 28. Eye Diagram at A Output  
(1.8 V to 3.3 V Level Translation, 50 Mbps)  
(5 V to 3.3 V Level Translation, 50 Mbps)  
Rev. D | Page 11 of 20  
ADG3304  
Data Sheet  
TEST CIRCUITS  
EN  
V
ADG3304  
CCY  
V
CCA  
0.1µF  
0.1µF  
EN  
V
Y
ADG3304  
CCY  
V
CCA  
A
Y
0.1µF  
0.1µF  
K2  
K1  
K
A
GND  
A
I
I
OH  
OL  
GND  
Figure 29. VOH/VOL Voltages at Pin A  
Figure 32. Three-State Leakage Current at Pin Y  
EN  
ADG3304  
V
CCA  
V
Y
CCY  
0.1µF  
0.1µF  
V
ADG3304  
CCY  
V
CCA  
0.1µF  
K2  
A
0.1µF  
K1  
Y
A
GND  
EN  
A
I
I
OH  
GND  
OL  
K
Figure 33. EN Pin Leakage Current  
Figure 30. VOH/VOL Voltages at Pin Y  
EN  
EN  
V
ADG3304  
CCY  
V
ADG3304  
CCY  
V
CCA  
V
CCA  
0.1µF  
0.1µF  
A
Y
Y
A
A
K
CAPACITANCE  
METER  
GND  
GND  
Figure 34. Capacitance at Pin A  
Figure 31. Three-State Leakage Current at Pin A  
Rev. D | Page 12 of 20  
 
 
 
 
 
 
 
Data Sheet  
ADG3304  
EN  
V
Y
ADG3304  
CCY  
V
CCA  
A
CAPACITANCE  
METER  
GND  
Figure 35. Capacitance at Pin Y  
AY DIRECTION  
V
V
CCA  
CCY  
ADG3304  
+
+
0.1F  
10F  
0.1F  
10F  
1M  
A
Y
V
A
V
Y
K1  
K2  
50pF  
1M  
SIGNAL SOURCE  
EN  
GND  
Z
= 50  
R
0
V
S
EN  
50  
R
50  
T
YA DIRECTION  
V
V
CCA  
CCY  
ADG3304  
+
+
0.1F  
10F  
0.1F  
10F  
1M  
A
Y
V
V
A
Y
K1  
1M  
K2  
15pF  
SIGNAL SOURCE  
EN  
GND  
Z
= 50  
0
R
S
V
EN  
50  
R
50  
T
V
CCA  
tEN1  
V
EN  
0V  
V
/V  
CCA CCY  
V
/V  
A
Y
0V  
V
/V  
CCY CCA  
90%  
V
/V  
Y
A
0V  
V
CCA  
tEN2  
V
EN  
0V  
V
/V  
A
Y
V
/V  
CCA CCY  
0V  
V
/V  
CCY CCA  
V
/V  
A
Y
10%  
0V  
NOTES  
1. tEN IS WHICHEVER IS LARGER BETWEEN tEN1 AND tEN2  
IN BOTH AY AND YA DIRECTIONS.  
Figure 36. Enable Time  
Rev. D | Page 13 of 20  
 
 
ADG3304  
Data Sheet  
V
V
CCY  
CCY  
EN  
EN  
ADG3304  
ADG3304  
+
+
V
V
+
CCA  
CCA  
0.1µF  
10µF  
0.1µF  
10µF  
+
SIGNAL  
SOURCE  
SIGNAL  
SOURCE  
0.1µF  
10µF  
0.1µF  
= 50Ω  
10µF  
Z
0
= 50Ω  
R
S
Z
A
Y
V
R
R
S
0
V
A
V
V
A
Y
Y
A
Y
50Ω  
R
50Ω  
T
T
15pF  
50pF  
50Ω  
50Ω  
GND  
GND  
V
Y
V
A
50%  
90%  
50%  
90%  
tP,YA  
tP,YA  
tP,AY  
tP,AY  
V
A
V
Y
50%  
10%  
50%  
10%  
tF,YA  
tR,YA  
tF,AY  
tR,AY  
Figure 38. Switching Characteristics (YA Level Translation)  
Figure 37. Switching Characteristics (AY Level Translation)  
Rev. D | Page 14 of 20  
 
 
Data Sheet  
ADG3304  
TERMINOLOGY  
VIHA  
TF, A→Y  
Logic input high voltage at Pin A1 to Pin A4.  
Fall time when translating logic levels in the A→Y direction.  
VILA  
DMAX, A→Y  
Logic input low voltage at Pin A1 to Pin A4.  
Guaranteed data rate when translating logic levels in the A→Y  
direction under the driving and loading conditions specified in  
Table 1.  
VOHA  
Logic output high voltage at Pin A1 to Pin A4.  
TSKE W, A→Y  
VOLA  
Difference between propagation delays on any two channels  
when translating logic levels in the A→Y direction.  
Logic output low voltage at Pin A1 to Pin A4.  
CA  
tPPSKEW, A→Y  
Capacitance measured at Pin A1 to Pin A4 (EN = 0).  
Difference in propagation delay between any one channel and  
the same channel on a different part (under same driving/  
loading conditions) when translating in the A→Y direction.  
ILA, Hi-Z  
Leakage current at Pin A1 to Pin A4 when EN = 0 (high  
impedance state at Pin A1 to Pin A4).  
tP, Y → A  
VIHY  
Propagation delay when translating logic levels in the Y→A  
direction.  
Logic input high voltage at Pin Y1 to Pin Y4.  
VILY  
tR, Y→A  
Logic input low voltage at Pin Y1 to Pin Y4.  
Rise time when translating logic levels in the Y→A direction.  
VOHY  
tF, Y→A  
Logic output high voltage at Pin Y1 to Pin Y4.  
Fall time when translating logic levels in the Y→A direction.  
VOLY  
DMAX, Y→A  
Logic output low voltage at Pin Y1 to Pin Y4.  
Guaranteed data rate when translating logic levels in the Y→A  
direction under the driving and loading conditions specified in  
Table 1.  
CY  
Capacitance measured at Pin Y1 to Pin Y4 (EN = 0).  
ILY, Hi-Z  
tSKE W, Y→ A  
Leakage current at Pin Y1 to Pin Y4 when EN = 0 (high  
impedance state at Pin Y1 to Pin Y4).  
Difference between propagation delays on any two channels  
when translating logic levels in the Y→A direction.  
VIHEN  
tPPSKEW, Y→A  
Logic input high voltage at the EN pin.  
Difference in propagation delay between any one channel and  
the same channel on a different part (under the same driving/  
loading conditions) when translating in the Y→A direction.  
VILEN  
Logic input low voltage at the EN pin.  
VCCA  
CEN  
V
CCA supply voltage.  
Capacitance measured at EN pin.  
VCCY  
ILEN  
VCCY supply voltage.  
Enable (EN) pin leakage current.  
ICCA  
tEN  
V
CCA supply current.  
Three-state enable time for Pin A1 to Pin A4 and Pin Y1 to  
Pin Y4.  
ICCY  
VCCY supply current.  
tP, A Y  
Propagation delay when translating logic levels in the A→Y  
direction.  
IHi-Z, A  
V
CCA supply current during three-state mode (EN = 0).  
tR, A→Y  
IHi-Z, Y  
Rise time when translating logic levels in the A→Y direction.  
V
CCY supply current during three-state mode (EN = 0).  
Rev. D | Page 15 of 20  
 
ADG3304  
Data Sheet  
THEORY OF OPERATION  
The ADG3304 level translator allows the level shifting  
necessary for data transfer in a system where multiple supply  
voltages are used. The device requires two supplies, VCCA and  
INPUT DRIVING REQUIREMENTS  
To ensure correct operation of the ADG3304, the circuit that  
drives the input of the ADG3304 channels should have an  
output impedance of less than or equal to 150 Ω and a  
minimum peak current driving capability of 36 mA.  
V
CCY (VCCA ≤ VCCY). These supplies set the logic levels on each  
side of the device. When driving the A pins, the device translates  
the VCCA-compatible logic levels to VCCY-compatible logic levels  
available at the Y pins. Similarly, because the device is capable of  
OUTPUT LOAD REQUIREMENTS  
bidirectional translation, when driving the Y pins, the VCCY  
-
The ADG3304 level translator is designed to drive CMOS-  
compatible loads. If current-driving capability is required, it is  
recommended to use buffers between the ADG3304 outputs  
and the load.  
compatible logic levels are translated to VCCA-compatible logic  
levels available at the A pins. When EN = 0, Pin A1 to Pin A4  
and Pin Y1 to Pin Y4 are three-stated. When EN is driven high,  
the ADG3304 goes into normal operation mode and performs  
level translation.  
ENABLE OPERATION  
The ADG3304 provides three-state operation at the A and Y  
I/O pins by using the enable pin (EN), as shown in Table 5.  
LEVEL TRANSLATOR ARCHITECTURE  
The ADG3304 consists of four bidirectional channels. Each  
channel can translate logic levels in either the A→Y or the Y→A  
direction. It uses a one-shot accelerator architecture, which  
ensures excellent switching characteristics. Figure 39 shows a  
simplified block diagram of a bidirectional channel.  
Table 5. Truth Table  
EN  
Y I/O Pins  
A I/O Pins  
Hi-Z1  
Normal operation2  
0
1
Hi-Z1  
Normal operation2  
1 High impedance state.  
V
V
CCY  
2 In normal operation, the ADG3304 performs level translation.  
CCA  
While EN = 0, the ADG3304 enters into three-state mode. In this  
mode, the current consumption from both the VCCA and VCCY  
supplies is reduced, allowing the user to save power, which is  
critical, especially on battery-operated systems. The EN input pin  
can be driven with either VCCA-compatible or VCCY-compatible  
logic levels.  
T1  
T2  
6k  
U1  
U2  
P
A
ONE-SHOT GENERATOR  
Y
N
POWER SUPPLIES  
For proper operation of the ADG3304, the voltage applied to  
the VCCA must be less than or equal to the voltage applied to VCCY  
To meet this condition, the recommended power-up sequence  
is VCCY first and then VCCA. The ADG3304 operates properly  
only after both supply voltages reach their nominal values. It is  
not recommended to use the part in a system where, during  
power-up, VCCA can be greater than VCCY due to a significant  
increase in the current taken from the VCCA supply. For  
optimum performance, the VCCA pin and VCCY pin should be  
decoupled to GND as close as possible to the device.  
.
U4  
U3  
6kΩ  
T4  
T3  
Figure 39. Simplified Block Diagram of an ADG3304 Channel  
The logic level translation in the A→Y direction is performed  
using a level translator (U1) and an inverter (U2), while the  
translation in the Y→A direction is performed using Inverter U3  
and Inverter U4. The one-shot generator detects a rising or  
falling edge present on either the A side or the Y side of the  
channel. It sends a short pulse that turns on the PMOS  
transistors (T1 to T2) for a rising edge, or the NMOS transistors  
(T3 to T4) for a falling edge. This charges/discharges the  
capacitive load faster, which results in faster rise and fall times.  
The inputs of the unused channels (A or Y) should be tied to  
their corresponding VCC rail (VCCA or VCCY) or to GND.  
Rev. D | Page 16 of 20  
 
 
 
 
 
 
 
 
Data Sheet  
ADG3304  
DATA RATE  
The maximum data rate at which the device is guaranteed to  
operate is a function of the VCCA and VCCY supply voltage  
combination and the load capacitance. It is given by the  
maximum frequency of a square wave that can be applied to the  
device, which meets the VOH and VOL levels at the output and  
does not exceed the maximum junction temperature (see the  
Absolute Maximum Ratings section). Table 6 shows the  
guaranteed data rates at which the ADG3304 can operate in  
both directions (A→Y or Y→A level translation) for various VCCA  
and VCCY supply combinations.  
Table 6. Guaranteed Data Rate (Mbps)1  
VCCY  
1.8 V  
(1.65 V to 1.95 V)  
2.5 V  
(2.3 V to 2.7 V)  
3.3 V  
(3.0 V to 3.6 V)  
5 V  
VCCA  
(4.5 V to 5.5 V)  
1.2 V (1.15 V to 1.3 V)  
1.8 V (1.65 V to 1.95 V)  
2.5 V (2.3 V to 2.7 V)  
3.3 V (3.0 V to 3.6 V)  
5 V (4.5 V to 5.5 V)  
25  
-
-
-
-
30  
45  
-
-
-
40  
50  
60  
-
40  
50  
50  
50  
-
-
1 The load capacitance used is 50 pF when translating in the AY direction and 15 pF when translating in the YA direction.  
Rev. D | Page 17 of 20  
 
 
ADG3304  
Data Sheet  
APPLICATIONS  
The ADG3304 is designed for digital circuits that operate at  
different supply voltages; therefore, logic level translation is  
required. The lower voltage logic signals are connected to the  
A pins, and the higher voltage logic signals are connected to the  
Y pins. The ADG3304 can provide level translation in both  
directions from A→Y or Y→A on all four channels, eliminating  
the need for a level translator IC for each direction. The internal  
architecture allows the ADG3304 to perform bidirectional level  
translation without an additional signal to set the direction in  
which the translation is made. It also allows simultaneous data  
flow in both directions on the same part, for example, when two  
channels translate in A→Y direction while the other two translate  
in Y→A direction. This simplifies the design by eliminating the  
timing requirements for the direction signal and reducing the  
number of ICs used for level translation.  
100nF  
100nF  
V
V
CCA  
CCY  
Y1  
1.8V  
3.3V  
I/O  
H1  
A1  
A2  
A3  
I/O  
I/O  
I/O  
I/O  
L1  
ADG3304  
I/O  
H2  
Y2  
L2  
L3  
L4  
MICROPROCESSOR/  
MICROCONTROLLER/  
DSP  
PERIPHERAL  
DEVICE 1  
Y3  
I/O  
H3  
A4  
EN  
Y4  
I/O  
H4  
GND  
CS  
GND  
GND  
100nF  
100nF  
V
V
CCA  
CCY  
3.3V  
A1  
A2  
A3  
Y1  
I/O  
I/O  
I/O  
I/O  
H1  
H2  
H3  
H4  
ADG3304  
Y2  
PERIPHERAL  
DEVICE 2  
Figure 40 shows an application where two microprocessors  
operating at 1.8 V and 3.3 V, respectively, can transfer data  
simultaneously using two full-duplex serial links, TX1/RX1  
and TX2/RX2.  
Y3  
A4  
EN  
Y4  
GND  
GND  
Figure 41. 1.8 V to 3.3 V Level Translation Circuit  
Using the Three-State Feature  
100nF  
100nF  
LAYOUT GUIDELINES  
V
V
CCA  
CCY  
1.8V  
3.3V  
As with any high speed digital IC, the printed circuit board  
layout is important for the overall performance of the circuit.  
Care should be taken to ensure proper power supply bypass and  
return paths for the high speed signals. Each VCC pin (VCCA and  
RX1  
TX1  
RX2  
A1  
A2  
A3  
Y1  
TX1  
RX1  
TX2  
RX2  
ADG3304  
Y2  
MICROPROCESSOR/  
MICROCONTROLLER/  
DSP  
MICROPROCESSOR/  
MICROCONTROLLER/  
DSP  
Y3  
V
CCY) should be bypassed using low effective series resistance  
A4  
EN  
Y4  
TX2  
GND  
GND  
GND  
(ESR) and effective series inductance (ESI) capacitors placed as  
close as possible to the VCCA pin and the VCCY pin. The parasitic  
inductance of the high speed signal track may cause significant  
overshoot. This effect can be reduced by keeping the length of  
the tracks as short as possible. A solid copper plane for the  
return path (GND) is also recommended.  
Figure 40. 1.8 V to 3.3 V Level Translation Circuit on  
Two Full-Duplex Serial Links  
When the application requires level translation between a micro-  
processor and multiple peripheral devices, the ADG3304 I/O  
pins can be three-stated by setting EN = 0. This feature allows  
the ADG3304 to share the data buses with other devices without  
causing contention issues. Figure 41 shows an application where  
a 1.8 V microprocessor is connected to a 3.3 V peripheral  
device using the three-state feature.  
Rev. D | Page 18 of 20  
 
 
 
 
Data Sheet  
ADG3304  
OUTLINE DIMENSIONS  
5.10  
5.00  
4.90  
14  
8
7
4.50  
4.40  
4.30  
6.40  
BSC  
1
PIN 1  
0.65 BSC  
1.05  
1.00  
0.80  
1.20  
MAX  
0.20  
0.09  
0.75  
0.60  
0.45  
8°  
0°  
0.15  
0.05  
COPLANARITY  
0.10  
SEATING  
PLANE  
0.30  
0.19  
COMPLIANT TO JEDEC STANDARDS MO-153-AB-1  
Figure 42. 14-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-14)  
Dimensions shown in millimeters  
1.670  
1.610  
1.550  
BOTTOM VIEW  
(BALL SIDE UP)  
3
2
1
A
BALL A1  
IDENTIFIER  
2.070  
2.010  
1.950  
1.50  
REF  
B
C
D
0.50  
BSC  
TOP VIEW  
(BALL SIDE DOWN)  
0.17  
1.00  
REF  
0.15  
0.13  
0.370  
0.350  
0.330  
0.650  
0.590  
0.530  
END VIEW  
COPLANARITY  
0.10  
SEATING  
PLANE  
0.280  
0.240  
0.220  
0.360  
0.320  
0.280  
Figure 43. 12-Ball Wafer Level Chip Scale Package [WLCSP]  
(CB-12-1)  
Dimensions shown in millimeters  
Rev. D | Page 19 of 20  
 
ADG3304  
Data Sheet  
4.10  
4.00 SQ  
3.90  
0.60 MAX  
0.60 MAX  
PIN 1  
INDICATOR  
15  
16  
20  
1
5
0.50  
BSC  
PIN 1  
INDICATOR  
2.25  
2.10 SQ  
1.95  
EXPOSED  
PAD  
3.75  
BCS SQ  
10  
11  
6
0.75  
0.60  
0.50  
0.25 MIN  
BOTTOM VIEW  
TOP VIEW  
0.80 MAX  
0.65 TYP  
12° MAX  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
1.00  
0.85  
0.80  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
0.20 REF  
SECTION OF THIS DATA SHEET.  
0.30  
0.23  
0.18  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-220-VGGD-1  
Figure 44. 20-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
4 mm × 4 mm Body, Very Thin Quad  
(CP-20-1)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Package  
Model1, 2  
Temperature Range  
−40°C to +85°C  
Package Description  
Branding3 Option  
ADG3304BRUZ  
14-Lead Thin Shrink Small Outline Package [TSSOP]  
14-Lead Thin Shrink Small Outline Package [TSSOP]  
14-Lead Thin Shrink Small Outline Package [TSSOP]  
20-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
20-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
12-Ball Wafer Level Chip Scale Package [WLCSP]  
12-Ball Wafer Level Chip Scale Package [WLCSP]  
14-Lead Thin Shrink Small Outline Package [TSSOP]  
RU-14  
RU-14  
RU-14  
CP-20-1  
CP-20-1  
CB-12-1  
CB-12-1  
RU-14  
ADG3304BRUZ-REEL  
ADG3304BRUZ-REEL7  
ADG3304BCPZ-REEL  
ADG3304BCPZ-REEL7  
ADG3304BCBZ-REEL  
ADG3304BCBZ-REEL7  
ADG3304WBRUZ-REEL  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
SDC  
SDC  
1 Z = RoHS Compliant Part.  
2 W = Qualified for Automotive Applications.  
3 Branding on these packages is limited to three characters due to space constraints.  
AUTOMOTIVE PRODUCTS  
The ADG3304W model is available with controlled manufacturing to support the quality and reliability requirements of automotive  
applications. Note that this automotive model may have specifications that differ from the commercial models; therefore, designers  
should review the Specifications section of this data sheet carefully. Only the automotive grade products shown are available for use in  
automotive applications. Contact your local Analog Devices account representative for specific product ordering information and to  
obtain the specific Automotive Reliability reports for these models.  
© 2005–2013 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D04860-0-4/13(D)  
Rev. D | Page 20 of 20  
 
 
 
 
 

相关型号:

ADG3304BRUZ-REEL

Low Voltage, 1.15 V to 5.5 V, 4-Channel, Bidirectional Logic Level Translator
ADI

ADG3304BRUZ-REEL7

Low Voltage, 1.15 V to 5.5 V, 4-Channel, Bidirectional Logic Level Translator
ADI

ADG3304SRU-EP-RL7

Low Voltage 1.15 V to 5.5 V, 4 Channel, Bidirectional, Logic Level Translator
ADI

ADG3304SRU-EP-RL7

SPECIALTY INTERFACE CIRCUIT, PDSO14, MO-153AB-1, TSSOP-14
ROCHESTER

ADG3304SRUZ-EP-RL7

Low Voltage 1.15 V to 5.5 V, 4 Channel, Bidirectional, Logic Level Translator
ADI

ADG3304WBRUZ-REEL

Low Voltage, 1.15 V to 5.5 V, 4-Channel, Bidirectional Logic Level Translator
ADI

ADG3304_13

Low Voltage, 1.15 V to 5.5 V, 4-Channel, Bidirectional Logic Level Translator
ADI

ADG3308

Low Voltage 1.2 V to 5.5 V, Bidirectional, Logic Level Translators
ADI

ADG3308-1

1.15 V至5.5 V低压、8通道双向逻辑电平转换器
ADI

ADG3308-1_15

Low Voltage, 1.15 V to 5.5 V, 8-Channel Bidirectional Logic Level Translators
ADI

ADG3308BCBZ-1-R2

IC SPECIALTY INTERFACE CIRCUIT, PBGA20, LEAD FREE, WLCSP-20, Interface IC:Other
ADI

ADG3308BCBZ-1-REEL

Low Voltage, 1.15 V to 5.5 V, 8-Channel Bidirectional Logic Level Translators
ADI