ADG426 [ADI]

LC2MOS 8-/16-Channel High Performance Analog Multiplexers; LC2MOS 8位/ 16通道高性能模拟多路复用器
ADG426
型号: ADG426
厂家: ADI    ADI
描述:

LC2MOS 8-/16-Channel High Performance Analog Multiplexers
LC2MOS 8位/ 16通道高性能模拟多路复用器

复用器
文件: 总12页 (文件大小:381K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LC2MOS 8-/16-Channel  
a
High Performance Analog Multiplexers  
ADG406/ADG407/ADG426  
FEATURES  
FUNCTIONAL BLOCK DIAGRAMS  
44 V Supply Maximum Ratings  
VSS to VDD Analog Signal Range  
Low On Resistance (80 max)  
Low Power  
Fast Switching  
tON < 160 ns  
ADG406  
ADG407  
S1  
S1A  
S8A  
DA  
DB  
D
S1B  
S8B  
tOFF < 150 ns  
S16  
Break Before Make Switching Action  
Plug-In Upgrade for  
1 OF 16  
DECODER  
1 OF 8  
DECODER  
DG506A/ADG506A, DG507A/ADG507A,  
DG526/ADG526A  
A0 A1 A2 A3 EN  
A0 A1 A2 EN  
ADG406/ADG407 are Plug-In Replacements for  
DG406/DG407  
ADG426  
S1  
APPLICATIONS  
Audio and Video Routing  
Automatic Test Equipment  
Data Acquisition Systems  
Battery Powered Systems  
Sample Hold Systems  
Communication Systems  
Avionics  
D
S16  
WR  
DECODER/  
LATCHES  
A0 A1 A2 A3 EN RS  
PRODUCT HIGHLIGHTS  
GENERAL DESCRIPTION  
1. Extended Signal Range  
The ADG406, ADG407 and ADG426 are monolithic CMOS  
analog multiplexers. The ADG406 and ADG426 switch one of  
sixteen inputs to a common output as determined by the 4-bit  
binary address lines A0, A1, A2 and A3. The ADG426 has on-  
chip address and control latches that facilitate microprocessor  
interfacing. The ADG407 switches one of eight differential  
inputs to a common differential output as determined by the 3-  
bit binary address lines A0, A1 and A2. An EN input on all  
devices is used to enable or disable the device. When disabled,  
all channels are switched OFF.  
The ADG406/ADG407/ADG426 are fabricated on an  
enhanced LC2MOS process giving an increased signal range  
which extends to the supply rails  
2. Low Power Dissipation  
3. Low RON  
4. Single/Dual Supply Operation  
5. Single Supply Operation  
For applications where the analog signal is unipolar, the  
ADG406/ADG407/ADG426 can be operated from a single  
rail power supply. The parts are fully specified with a single  
+12 V power supply and will remain functional with single  
supplies as low as +5 V.  
The ADG406/ADG407/ADG426 are designed on an enhanced  
LC2MOS process that provides low power dissipation yet gives  
high switching speed and low on resistance. These features  
make the parts suitable for high speed data acquisition systems  
and audio signal switching. Low power dissipation makes the  
parts suitable for battery powered systems. Each channel  
conducts equally well in both directions when ON and has an  
input signal range which extends to the supplies. In the OFF  
condition, signal levels up to the supplies are blocked. All  
channels exhibit break before make switching action preventing  
momentary shorting when switching channels. Inherent in the  
design is low charge injection for minimum transients when  
switching the digital inputs.  
REV. 0  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, nor for any infringements of patents or other rights of third parties  
which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood. MA 02062-9106, U.S.A.  
Tel: 617/329-4700  
Fax: 617/326-8703  
ADG406/ADG407/ADG426–SPECIFICATIONS1  
(VDD = +15 V ± 10%, VSS = –15 V ± 10%, GND = 0 V, unless otherwise noted)  
DUAL SUPPLY  
B Version  
–40°C to  
+85°C  
T Version  
–55°C to  
Parameter  
+25°C  
+25°C  
+125°C  
Units  
Test Conditions/Comments  
ANALOG SWITCH  
Analog Signal Range  
RON  
V
SS to VDD  
VSS to VDD  
125  
V
50  
80  
4
50  
80  
4
typ  
max  
typ  
VD = ±10 V, IS = –1 mA  
125  
V
DD = +13.5 V, VSS = –13.5 V  
RON Match  
VD = 0 V, IS = –1 mA  
LEAKAGE CURRENTS  
Source OFF Leakage IS (OFF)  
Drain OFF Leakage ID (OFF)  
ADG406, ADG426  
VDD = +16.5 V, VSS = –16.5 V  
±0.5  
±20  
±0.5  
±50  
nA max  
VD = ±10 V, VS = ϯ10 V, Test Circuit 2  
VD = ±10 V, VS = ϯ10 V;  
Test Circuit 3  
±1  
±1  
±20  
±20  
±1  
±1  
±200  
±100  
nA max  
nA max  
ADG407  
Channel ON Leakage ID, IS (ON)  
ADG406, ADG426  
ADG407  
VS = VD = ±10 V;  
Test Circuit 4  
±1  
±1  
±20  
±20  
±1  
±1  
±200  
±100  
nA max  
nA max  
DIGITAL INPUTS  
Input High Voltage, VINH  
Input Low Voltage, VINL  
Input Current  
2.4  
0.8  
2.4  
0.8  
V min  
V max  
IINL or IINH  
CIN, Digital Input Capacitance  
±1  
±1  
µA max  
pF typ  
VIN = 0 or VDD  
f = 1 MHz  
8
8
DYNAMIC CHARACTERISTICS2  
tTRANSITION  
120  
150  
120  
150  
ns typ  
ns max  
RL = 300 , CL = 35 pF;  
V1 = ±10 V, V2 = ϯ10 V;  
Test Circuit 5  
RL = 300 , CL = 35 pF;  
VS = +5 V, Test Circuit 6  
RL = 300 , CL = 35 pF;  
VS = +5 V, Test Circuit 7  
RL = 300 , CL = 35 pF;  
VS = +5 V, Test Circuit 7  
250  
10  
250  
10  
Break Before Make Delay, tOPEN  
tON (EN, WR)  
10  
10  
ns min  
120  
160  
110  
150  
175  
225  
130  
180  
120  
160  
110  
150  
175  
225  
130  
180  
ns typ  
ns max  
ns typ  
ns max  
tOFF (EN, RS)  
ADG426 Only  
tW, Write Pulse Width  
tS, Address, Enable Setup Time  
tH, Address, Enable Hold Time  
tRS, Reset Pulse Width  
Charge Injection  
100  
100  
10  
100  
100  
10  
ns min  
ns min  
ns min  
ns min  
pC typ  
100  
100  
VS = +5 V  
VS = 0 V, RS = 0 , CL = 1 nF;  
Test Circuit 10  
8
8
OFF Isolation  
–75  
–75  
dB typ  
RL = 1 k, f = 100 kHz;  
VEN = 0 V, Test Circuit 11  
RL = 1 k, f = 100 kHz, Test Circuit 12  
f = 1 MHz  
Channel-to-Channel Crosstalk  
CS (OFF)  
85  
5
85  
5
dB typ  
pF typ  
CD (OFF)  
f = 1 MHz  
ADG406, ADG426  
ADG407  
50  
25  
50  
25  
pF typ  
pF typ  
CD, CS (ON)  
f = 1 MHz  
ADG406, ADG426  
ADG407  
60  
40  
60  
40  
pF typ  
pF typ  
POWER REQUIREMENTS  
IDD  
VDD = +16.5 V, VSS = –16.5 V  
VIN = 0 V, VEN = 0 V  
1
5
1
5
1
5
1
5
µA typ  
µA max  
µA typ  
µA max  
µA typ  
µA max  
µA typ  
µA max  
ISS  
IDD  
ISS  
100  
200  
100  
200  
VIN = 0 V, VEN = 2.4 V  
500  
1
5
500  
1
5
N
OTES  
1 Temperature ranges are as follows: B Versions: –40°C to +85°C; T Versions: –55°C to +125°C.  
2Guaranteed by design, not subject to production test.  
Specifications subject to change without notice.  
REV. 0  
–2–  
ADG406/ADG407/ADG426  
(VDD = +12 V ± 10%, VSS = 0 V, GND = 0 V, unless otherwise noted)  
SINGLE SUPPLY  
B Version  
–40°C to  
T Version  
–55°C to  
Parameter  
+25°C  
+85°C  
+25°C  
+125°C  
Units  
Test Conditions/Comments  
ANALOG SWITCH  
Analog Signal Range  
RON  
0 to VDD  
200  
0 to VDD  
200  
V
90  
125  
90  
125  
typ  
max  
VD = +3 V, +8.5 V, IS = –1 mA;  
VDD = +10.8 V  
LEAKAGE CURRENTS  
VDD = +13.2 V  
Source OFF Leakage IS (OFF)  
±0.5  
±20  
±0.5  
±50  
nA max  
VD = 8 V/0.1 V, VS = 0.1 V/8 V;  
Test Circuit 2  
Drain OFF Leakage ID (OFF)  
ADG406, ADG426  
ADG407  
VD = 8 V/0.1 V, VS = 0.1 V/8 V;  
Test Circuit 3  
±1  
±1  
±20  
±20  
±1  
±1  
±200  
±100  
nA max  
nA max  
Channel ON Leakage ID, IS (ON)  
ADG406, ADG426  
ADG407  
VS = VD = 8 V/0.1 V, Test Circuit 4  
±1  
±1  
±20  
±20  
±1  
±1  
±200  
±100  
nA max  
nA max  
DIGITAL INPUTS  
Input High Voltage, VINH  
Input Low Voltage, VINL  
Input Current  
2.4  
0.8  
2.4  
0.8  
V min  
V max  
IINL or IINH  
CIN, Digital Input Capacitance  
±1  
±1  
µA max  
pF typ  
VIN = 0 or VDD  
f = 1 MHz  
8
8
DYNAMIC CHARACTERISTICS2  
tTRANSITION  
180  
220  
180  
220  
ns typ  
ns max  
RL = 300 , CL = 35 pF;  
V1 = 8 V/0 V, V2 = 0 V/8 V;  
Test Circuit 5  
350  
350  
Break Before Make Delay, tOPEN  
tON (EN, WR)  
10  
10  
ns typ  
RL = 300 , CL = 35 pF;  
VS = +5 V, Test Circuit 6  
RL = 300 , CL = 35 pF;  
VS = +5 V, Test Circuit 7  
RL = 300 , CL = 35 pF;  
VS = +5 V, Test Circuit 7  
180  
240  
135  
180  
180  
240  
135  
180  
ns typ  
ns max  
ns typ  
ns max  
350  
220  
350  
220  
tOFF (EN, RS)  
ADG426 Only  
tW, Write Pulse Width  
tS, Address, Enable Setup Time  
tH, Address, Enable Hold Time  
tRS, Reset Pulse Width  
Charge Injection  
100  
100  
10  
100  
100  
10  
ns min  
ns min  
ns min  
ns min  
pC typ  
100  
100  
VS = +5 V  
VS = 6 V, RS = 0 , CL = 1 nF;  
Test Circuit 10  
5
5
OFF Isolation  
–75  
85  
8
–75  
85  
8
dB typ  
dB typ  
pF typ  
RL = 1 k, f = 100 kHz;  
Test Circuit 11  
RL = 1 k, f = 100 kHz;  
Test Circuit 12  
Channel-to-Channel Crosstalk  
CS (OFF)  
f = 1 MHz  
CD (OFF)  
f = 1 MHz  
ADG406, ADG426  
ADG407  
80  
40  
80  
40  
pF typ  
pF typ  
CD, CS (ON)  
ADG406, ADG426  
ADG407  
f = 1 MHz  
100  
50  
100  
50  
pF typ  
pF typ  
POWER REQUIREMENTS  
IDD  
VDD = +13.2 V  
VIN = 0 V, VEN = 0 V  
1
5
1
5
µA typ  
µA max  
µA typ  
µA max  
IDD  
100  
200  
100  
200  
VIN = 0 V, VEN = 2.4 V  
500  
500  
NOTES  
1Temperature ranges are as follows: B Versions: –40°C to +85°C; T Versions: –55°C to +125°C.  
2Guaranteed by design, not subject to production test.  
Specifications subject to change without notice.  
REV. 0  
–3–  
ADG406/ADG407/ADG426  
ABSOLUTE MAXIMUM RATINGS1  
(TA = +25°C unless otherwise noted)  
ORDERING GUIDE  
Temperature Range  
Model  
Package Option*  
VDD to VSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .+44 V  
V
V
DD to GND . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to +25 V  
SS to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . +0.3 V to –25 V  
ADG406BN  
ADG406BP  
–40°C to +85°C  
–40°C to +85°C  
N-28  
P-28A  
Analog, Digital Inputs2. . . . . . . . . . . . . VSS – 2 V to VDD + 2 V  
or 20 mA, Whichever Occurs First  
ADG407BN  
ADG407BP  
ADG426BN  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
N-28  
P-28A  
N-28  
Continuous Current, S or D . . . . . . . . . . . . . . . . . . . . . 20 mA  
Peak Current, S or D . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 mA  
(Pulsed at 1 ms, 10% Duty Cycle Max)  
ADG426BRS –40°C to +85°C  
RS-28  
Operating Temperature Range  
*N = Plastic DIP, P = Plastic Leaded Chip Carrier (PLCC), RS = Shrink Small  
Outline Package (SSOP).  
Industrial (B Version) . . . . . . . . . . . . . . . . . –40°C to +85°C  
Extended (T Version) . . . . . . . . . . . . . . . . . –55°C to +125°C  
Storage Temperature Range . . . . . . . . . . . . . –65°C to +150°C  
Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . +150°C  
Plastic Package  
θJA, Thermal Impedance . . . . . . . . . . . . . . . . . . . . . . 75°C/W  
Lead Temperature, Soldering (10 sec) . . . . . . . . . . . +260°C  
PLCC Package  
θJA, Thermal Impedance . . . . . . . . . . . . . . . . . . . . . . 80°C/W  
Lead Temperature, Soldering  
Vapor Phase (60 sec) . . . . . . . . . . . . . . . . . . . . . . +215°C  
Infrared (15 sec) . . . . . . . . . . . . . . . . . . . . . . . . . . +220°C  
SSOP Package  
θJA, Thermal Impedance . . . . . . . . . . . . . . . . . . . . . 122°C/W  
Lead Temperature, Soldering  
Vapor Phase (60 sec) . . . . . . . . . . . . . . . . . . . . . . +215°C  
Infrared (15 sec) . . . . . . . . . . . . . . . . . . . . . . . . . . +220°C  
NOTES  
1Stresses above those listed under “Absolute Maximum Ratings” may cause  
permanent damage to the device. This is a stress rating only and functional  
operation of the device at these or any other conditions above those listed in the  
operational sections of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability. Only  
one absolute maximum rating may be applied at any one time.  
2Overvoltages at A, S, D, WR or RS will be clamped by internal diodes. Current  
should be limited to the maximum ratings given.  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection.  
Although these devices feature proprietary ESD protection circuitry, permanent damage may  
occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD  
precautions are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
REV. 0  
–4–  
ADG406/ADG407/ADG426  
Table I. Truth Table (ADG406)  
PIN CONFIGURATIONS  
DIP  
PLCC  
A3 A2 A1 A0 EN ON SWITCH  
X
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
X
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
X
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
X
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
NONE  
1
2
3
4
5
6
7
V
1
2
3
4
5
6
7
8
9
28  
27  
D
DD  
NC  
NC  
V
SS  
4
3
2
1
28 27 26  
26 S8  
25 S7  
24 S6  
23 S5  
22 S4  
21 S3  
20 S2  
19 S1  
18 EN  
17 A0  
16 A1  
15 A2  
S16  
S15  
S14  
S13  
S12  
S11  
S15  
S14  
S13  
S12  
S11  
5
6
7
8
9
25 S7  
24 S6  
23 S5  
22 S4  
21 S3  
20 S2  
19 S1  
ADG406  
TOP VIEW  
(Not to Scale)  
ADG406  
TOP VIEW  
(Not to Scale)  
8
9
S10 10  
S9 11  
10  
11  
12  
13  
14  
15  
16  
S10 10  
S9 11  
12 13 14 15 16 17 18  
GND 12  
NC 13  
A3 14  
NC = NO CONNECT  
Table II. Truth Table (ADG407)  
A2 A1 A0 EN ON SWITCH PAIR  
VDD  
DB  
1
2
3
4
5
6
7
8
9
28 DA  
27  
26 S8A  
25  
VSS  
4
3
2
1
28 27 26  
NC  
X
0
0
0
0
1
1
1
1
X
0
0
1
1
0
0
1
1
X
0
1
0
1
0
1
0
1
0
1
1
1
1
1
1
1
1
NONE  
25  
24  
23  
22  
21  
S7B  
S6B  
S5B  
S4B  
S3B  
5
6
7
8
9
S7A  
S6A  
S5A  
S4A  
S3A  
S2A  
S1A  
S8B  
S7B  
S6B  
S5B  
S7A  
1
2
3
4
5
6
7
8
24 S6A  
23 S5A  
22 S4A  
21 S3A  
20 S2A  
19 S1A  
18 EN  
17 A0  
ADG407  
TOP VIEW  
(Not to Scale)  
ADG407  
TOP VIEW  
(Not to Scale)  
S4B  
S3B  
20  
19  
S2B 10  
S1B 11  
S2B 10  
S1B 11  
GND 12  
NC 13  
12 13 14 15 16 17 18  
Table III. Truth Table (ADG426)  
A3 A2 A1 A0 EN WR RS ON SWITCH  
16 A1  
NC = NO CONNECT  
NC 14  
15 A2  
X
X
X
X
X
X
X
X
X
X
1
0
Retains Previous  
Switch Condition  
NONE (Address  
and Enable  
X
PIN CONFIGURATION  
DIP/SSOP  
Latches Cleared)  
X
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
X
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
X
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
X
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
NONE  
1
2
3
4
5
6
7
VDD  
NC  
1
2
28  
27  
D
VSS  
RS  
3
26 S8  
25  
24 S6  
23  
22 S4  
21  
4
S16  
S15  
S14  
S13  
S12  
S11  
S10  
S7  
5
6
S5  
ADG426  
TOP VIEW  
(Not to Scale)  
7
8
9
8
S3  
20 S2  
19  
18 EN  
17  
9
10  
11  
12  
13  
14  
15  
16  
10  
S1  
S9 11  
12  
GND  
WR 13  
14  
A0  
16 A1  
15 A2  
A3  
NC = NO CONNECT  
REV. 0  
–5–  
ADG406/ADG407/ADG426  
TIMING DIAGRAMS (ADG426)  
TERMINOLOGY  
VDD  
VSS  
Most positive power supply potential.  
Most negative power supply potential in dual  
supplies. In single supply applications, it may  
be connected to ground.  
3V  
WR  
50%  
50%  
0V  
tW  
GND  
RON  
Ground (0 V) reference.  
tS  
tH  
3V  
Ohmic resistance between D and S.  
Difference between the RON of any two  
channels.  
2V  
A0, A1, A2, (A3)  
R
ON Match  
0.8V  
EN  
0V  
IS (OFF)  
ID (OFF)  
ID, IS (ON)  
Source leakage current when the switch is off.  
Drain leakage current when the switch is off.  
Figure 1.  
Figure 1 shows the timing sequence for latching the switch  
address and enable inputs. The latches are level sensitive;  
therefore, while WR is held low, the latches are transparent and  
the switches respond to the address and enable inputs. This  
input data is latched on the rising edge of  WR.  
Channel leakage current when the switch  
is on.  
Analog voltage on terminals D, S.  
Channel input capacitance for “OFF”  
condition.  
VD (VS)  
CS (OFF)  
CD (OFF)  
Channel output capacitance for “OFF”  
condition.  
“ON” switch capacitance.  
Digital input capacitance.  
3V  
RS  
50%  
50%  
CD, CS (ON)  
CIN  
0V  
tRS  
tON (EN)  
Delay time between the 50% and 90%  
points of the digital input and switch “ON”  
condition.  
tOFF (RS)  
V0  
0V  
0.8V0  
SWITCH  
OUTPUT  
t
OFF (EN)  
Delay time between the 50% and 90%  
points of the digital input and switch “OFF”  
condition.  
Delay time between the 50% and 90%  
points of the digital inputs and the switch  
“ON” condition when switching from one  
address state to another.  
“OFF” time measured between 80% points of  
both switches when switching from one  
address state to another.  
Figure 2.  
tTRANSITION  
Figure 2 shows the Reset Pulse Width, tRS, and the Reset Turn  
Off Time, tOFF (RS).  
Note: All digital input signals rise and fall times are measured  
from 10% to 90% of 3 V. tR = tF = 20 ns.  
tOPEN  
VINL  
VINH  
Maximum input voltage for logic “0.”  
Minimum input voltage for logic “1.”  
Input current of the digital input.  
IINL (IINH  
)
Crosstalk  
A measure of unwanted signal which is  
coupled through from one channel to another  
as a result of parasitic capacitance.  
Off Isolation  
A measure of unwanted signal coupling  
through an “OFF” channel.  
Charge  
Injection  
A measure of the glitch impulse  
transferred from the digital input to the analog  
output during switching.  
IDD  
ISS  
Positive supply current.  
Negative supply current.  
REV. 0  
–6–  
ADG406/ADG407/ADG426  
Typical Performance Graphs  
150  
400  
350  
300  
250  
200  
150  
100  
50  
T
= +25°C  
T
= +25°C  
A
A
V
V
= +5V  
= 0V  
DD  
SS  
120  
V
= +5V  
DD  
V
= –5V  
SS  
V
V
= +10V  
= –10V  
90  
60  
30  
0
DD  
SS  
V
V
= +10V  
= 0V  
DD  
SS  
V
V
= +12V  
DD  
= 0V  
SS  
V
= +12V  
= –12V  
DD  
V
= +15V  
= –15V  
DD  
V
SS  
V
SS  
V
V
= +15V  
= 0V  
DD  
SS  
0
–15  
–10  
–5  
0
5
10  
15  
0
2.5  
5
7.5  
10  
12.5  
15  
V
(V ) – Volts  
S
V
(V ) – Volts  
S
D
D
Figure 6. RON as a Function of VD (VS): Single Supplies  
Figure 3. RON as a Function of VD (VS): Dual Supplies  
100  
150  
VDD = +15V  
VSS = –15V  
VDD = +12V  
VSS = 0V  
80  
120  
+125°C  
+125°C  
60  
90  
+85°C  
+25°C  
+85°C  
40  
60  
+25°C  
20  
30  
0
0
–15  
–10  
–5  
0
5
10  
15  
0
2
4
6
8
10  
12  
VD (VS) – Volts  
VD (VS) – Volts  
Figure 7. RON as a Function of VD (VS) for Different  
Temperatures  
Figure 4. RON as a Function of VD (VS) for Different  
Temperatures  
0.10  
0.02  
V
= +15V  
= –15V  
VDD = +12V  
DD  
V
T
V
SS = 0V  
SS  
0.08  
0.06  
0.04  
0.02  
0.00  
–0.02  
= +25°C  
T
A = +25°C  
A
0.01  
0.00  
I
(ON)  
D
IS(OFF)  
I
(OFF)  
D
ID(OFF)  
ID(ON)  
–0.01  
–0.02  
I
(OFF)  
5
S
–15  
–10  
–5  
0
10  
15  
0
2
4
6
8
10  
12  
VD (VS) – Volts  
V
(V ) – Volts  
S
D
Figure 8. Leakage Currents as a Function of VD (VS)  
Figure 5. Leakage Currents as a Function of VD (VS)  
REV. 0  
–7–  
ADG406/ADG407/ADG426  
100  
100  
V
V
= +15V  
= –15V  
DD  
SS  
VDD = +15V  
SS = –15V  
V
10  
1
10  
EN = 2.4V  
0.1  
EN = 0V  
EN = 2.4V  
EN = 0V  
1
0.01  
0.001  
0.0001  
0.1  
10  
2
3
4
5
6
7
102  
103  
104  
FREQUENCY – Hz  
105  
106  
107  
10  
10  
10  
10  
10  
FREQUENCY – Hz  
Figure 9. Positive Supply Current vs. Switching  
Frequency  
Figure 12. Negative Supply Current vs. Switching  
Frequency  
160  
220  
V
V
= +15V  
= –15V  
DD  
SS  
VDD = +12V  
VSS = 0V  
tON  
200  
140  
120  
100  
80  
tON  
tTRANSITION  
180  
tTRANSITION  
160  
140  
120  
tOFF  
tOFF  
100  
60  
80  
1
3
5
7
9
11  
13  
15  
2
4
6
8
10  
12  
V
– V  
IN  
VIN – V  
Figure 10. Switching Time vs. VIN (Bipolar Supply)  
Figure 13. Switching Time vs. VIN (Single Supply)  
300  
500  
V
= +5V  
V
= +5V  
IN  
IN  
400  
300  
200  
100  
0
tTRANSITION  
tON  
200  
100  
0
tON  
tTRANSITION  
tOFF  
tOFF  
5
7
9
11  
13  
15  
±5  
±7  
±9  
±11  
±13  
±15  
±17  
±19  
±21  
SUPPLY VOLTAGE – Volts  
SUPPLY VOLTAGE – Volts  
Figure 11. Switching Time vs. Bipolar Supply  
Figure 14. Switching Time vs. Single Supply  
REV. 0  
–8–  
ADG406/ADG407/ADG426  
140  
120  
100  
80  
140  
120  
100  
80  
V
V
= +15V  
= –15V  
DD  
V
V
= +15V  
= –15V  
DD  
SS  
SS  
60  
60  
40  
40  
2
4
5
3
6
7
2
4
5
3
6
7
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
FREQUENCY – Hz  
FREQUENCY – Hz  
Figure 16. Crosstalk vs. Frequency  
Figure 15. OFF Isolation vs. Frequency  
Test Circuits  
I
DS  
VDD  
VSS  
V1  
VDD  
VSS  
S1  
S2  
ID (OFF)  
A
D
S
D
VD  
S16  
V
S
+0.8V  
EN  
VS  
R
= V1/I  
ON  
DS  
Test Circuit 3. ID (OFF)  
Test Circuit 1. On Resistance  
VDD  
VSS  
V
V
V
V
DD  
DD  
SS  
I
(OFF)  
A
S
SS  
VDD  
VSS  
S1  
S2  
ID (ON)  
A
D
D
S1  
VD  
S16  
S16  
V
S
+0.8V  
EN  
EN  
2.4V  
V
D
VS  
Test Circuit 4. ID (ON)  
Test Circuit 2. IS (OFF)  
REV. 0  
–9–  
ADG406/ADG407/ADG426  
VDD  
VSS  
3V  
VDD  
A3  
VSS  
S1  
V1  
V2  
ADDRESS  
DRIVE – VIN  
50%  
50%  
VIN  
S2 THRU S15  
S16  
A2  
A1  
A0  
EN  
RS  
50Ω  
ADG426*  
D
VOUT  
2.4V  
90%  
RL  
300Ω  
VOUT  
CL  
35pF  
GND  
WR  
90%  
tTRANSITION  
tTRANSITION  
*SIMILAR CONNECTION FOR ADG406/ADG407  
Test Circuit 5. Switching Time of Multiplexer, tTRANSITION  
VDD  
VSS  
VDD  
A3  
VSS  
S1  
3V  
VS  
ADDRESS  
VIN  
DRIVE – VIN  
A2  
A1  
S2 THRU S15  
50Ω  
ADG426*  
A0  
RS  
S16  
D
VOUT  
EN  
2.4V  
OUTPUT  
0V  
80%  
80%  
RL  
300Ω  
CL  
35pF  
GND  
WR  
tOPEN  
*SIMILAR CONNECTION FOR ADG406/ADG407  
Test Circuit 6. Break-Before-Make Delay, tOPEN  
V
V
SS  
DD  
V
V
SS  
DD  
3V  
0V  
A3  
S1  
V
S
ENABLE  
A2  
A1  
A0  
RS  
EN  
50%  
50%  
S2 THRU S16  
DRIVE–V  
IN  
ADG426*  
tOFF (EN)  
90%  
V
2.4V  
O
90%  
D
V
OUT  
OUTPUT  
GND  
C
35pF  
V
WR  
R
300Ω  
L
IN  
L
0V  
50Ω  
tON (EN)  
*SIMILAR CONNECTION FOR ADG406/ADG407  
Test Circuit 7. Enable Delay, tON (EN), tOFF (EN)  
REV. 0  
–10–  
ADG406/ADG407/ADG426  
VDD  
VSS  
VDD  
VSS  
S1  
A3  
A2  
3V  
VS  
S2 THRU S16  
WR  
50%  
A1  
A0  
ADG426  
0V  
V0  
VOUT  
D
EN  
RS  
WR  
2.4V  
t
ON(WR)  
RL  
300Ω  
CL  
35pF  
OUTPUT  
0V  
0.2V0  
VRS  
GND  
VWR  
Test Circuit 8. Write Turn-On Time, tON (WR)  
V
V
V
DD  
DD  
SS  
V
3V  
SS  
A3  
V
S1  
S
50%  
RS  
0V  
A2  
A1  
A0  
S2 THRU S16  
ADG426  
tOFF (RS)  
V
0
2.4V  
EN  
RS  
0.8V  
0
D
V
OUT  
OUTPUT  
0V  
R
300Ω  
L
C
L
GND  
V
WR  
IN  
35pF  
Test Circuit 9. Reset Turn-Off Time, tOFF (RS)  
V
V
V
DD  
SS  
SS  
V
DD  
A3  
2.4V  
RS  
3V  
A2  
A1  
ADG426*  
LOGIC  
INPUT  
A0  
S
D
(V  
)
IN  
V
OUT  
R
S
C
L
V
S
EN  
V  
OUT  
1nF  
V
OUT  
Q
= C x V  
L OUT  
V
INJ  
IN  
GND  
WR  
*SIMILAR CONNECTION FOR ADG406/ADG407  
Test Circuit 10. Charge Injection  
REV. 0  
–11–  
ADG406/ADG407/ADG426  
V
DD  
V
DD  
V
DD  
S16  
S2  
V
DD  
D
V
OUT  
A3  
A2  
A1  
A0  
S1  
V
IN  
S1  
1kΩ  
1kΩ  
S16  
V
IN  
ADG426*  
A0  
A1  
A2  
A3  
EN  
ADG426*  
RS  
2.4V  
V
D
OUT  
EN  
R
1kΩ  
2.4V  
L
V
V
WR  
SS  
GND  
RS  
V
WR  
GND  
SS  
SS  
*SIMILAR CONNECTION FOR ADG406/407  
V
SS  
*SIMILAR CONNECTION FOR ADG406/407  
Test Circuit 11. OFF Isolation  
Test Circuit 12. Crosstalk  
OUTLINE DIMENSIONS  
Dimensions shown in inches an (mm).  
28-Pin Plastic (N-28)  
28-Pin PLCC (P-28A)  
0.180 (4.57)  
0.165 (4.19)  
0.056 (1.42)  
0.042 (1.07)  
0.048 (1.21)  
0.042 (1.07)  
0.025 (0.63)  
0.015 (0.38)  
15  
28  
1
0.048 (1.21)  
0.042 (1.07)  
4
26  
25  
PIN 1  
IDENTIFIER  
5
0.580 (14.73)  
0.485 (12.32)  
0.021 (0.53)  
0.013 (0.33)  
PIN 1  
0.050  
(1.27)  
BSC  
14  
0.430 (10.92)  
0.390 (9.91)  
TOP VIEW  
0.625 (15.87)  
0.600 (15.24)  
1.565 (39.70)  
1.380 (35.10)  
0.060 (1.52)  
0.015 (0.38)  
0.032 (0.81)  
0.250  
(6.35)  
MAX  
0.195 (4.95)  
0.125 (3.18)  
0.026 (0.66)  
19  
18  
11  
0.150  
(3.81)  
MIN  
12  
0.200 (5.05)  
0.125 (3.18)  
0.015 (0.381)  
0.020  
0.040 (1.01)  
0.025 (0.64)  
0.008 (0.204)  
(0.50)  
R
0.456 (11.58)  
SQ  
0.100  
(2.54)  
BSC  
0.022 (0.558)  
0.014 (0.356)  
0.070 (1.77)  
MAX  
0.450 (11.43)  
SEATING  
PLANE  
0.110 (2.79)  
0.085 (2.16)  
0.495 (12.57)  
0.485 (12.32)  
SQ  
28-Pin SSOP (RS-28)  
28  
15  
0.212 (5.38)  
0.205 (5.207)  
0.311 (7.9)  
0.301 (7.64)  
PIN 1  
1
14  
0.07 (1.78)  
0.407 (10.34)  
0.397 (10.08)  
0.066 (1.67)  
0.03 (0.762)  
8
0
°
°
0.022 (0.558)  
0.008 (0.203)  
0.002 (0.050)  
0.0256 (0.65)  
BSC  
0.009 (0.229)  
0.005 (0.127)  
1. LEAD NO. 1 IDENTIFIED BY A DOT.  
2. LEADS WILL BE EITHER TIN PLATED OR SOLDER DIPPED  
IN ACCORDANCE WITH MIL-M-38510 REQUIREMENTS  
REV. 0  
–12–  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY