ADG431TQ [ADI]

LC2MOS Precision Quad SPST Switches; LC2MOS精密四通道SPST开关
ADG431TQ
型号: ADG431TQ
厂家: ADI    ADI
描述:

LC2MOS Precision Quad SPST Switches
LC2MOS精密四通道SPST开关

复用器 开关 复用器或开关 信号电路 输出元件
文件: 总8页 (文件大小:123K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LC2MOS  
a
Precision Quad SPST Switches  
ADG431/ADG432/ADG433  
FUNCTIONAL BLOCK DIAGRAMS  
FEATURES  
44 V Supply Maximum Ratings  
؎15 V Analog Signal Range  
Low On Resistance (<24 )  
Ultralow Power Dissipation (3.9 W)  
Low Leakage (<0.25 nA)  
Fast Switching Times  
tON <165 ns  
tOFF <130 ns  
Break-Before-Make Switching Action  
TTL/CMOS Compatible  
Plug-in Replacement for DG411/DG412/DG413  
S1  
S1  
IN1  
IN2  
IN3  
IN4  
IN1  
IN2  
IN3  
IN4  
D1  
S2  
D1  
S2  
D2  
S3  
D2  
S3  
ADG431  
ADG432  
D3  
S4  
D3  
S4  
D4  
D4  
S1  
APPLICATIONS  
IN1  
Audio and Video Switching  
Automatic Test Equipment  
Precision Data Acquisition  
Battery Powered Systems  
Sample Hold Systems  
Communication Systems  
D1  
S2  
IN2  
IN3  
IN4  
D2  
S3  
ADG433  
D3  
S4  
D4  
GENERAL DESCRIPTION  
SWITCHES SHOWN FOR A LOGIC "1" INPUT  
The ADG431, ADG432 and ADG433 are monolithic CMOS  
devices comprising four independently selectable switches. They  
are designed on an enhanced LC2MOS process which provides  
low power dissipation yet gives high switching speed and low on  
resistance.  
PRODUCT HIGHLIGHTS  
1. Extended Signal Range  
The ADG431, ADG432 and ADG433 are fabricated on an  
enhanced LC2MOS process giving an increased signal range  
which extends fully to the supply rails.  
The on resistance profile is very flat over the full analog input  
range ensuring excellent linearity and low distortion when  
switching audio signals. Fast switching speed coupled with high  
signal bandwidth also make the parts suitable for video signal  
switching. CMOS construction ensures ultralow power dissipa-  
tion making the parts ideally suited for portable and battery  
powered instruments.  
2. Ultralow Power Dissipation  
3. Low RON  
4. Break-Before-Make Switching  
This prevents channel shorting when the switches are config-  
ured as a multiplexer.  
The ADG431, ADG432 and ADG433 contain four indepen-  
dent SPST switches. The ADG431 and ADG432 differ only in  
that the digital control logic is inverted. The ADG431 switches  
are turned on with a logic low on the appropriate control input,  
while a logic high is required for the ADG432. The ADG433  
has two switches with digital control logic similar to that of the  
ADG431 while the logic is inverted on the other two switches.  
5. Single Supply Operation  
For applications where the analog signal is unipolar, the  
ADG431, ADG432 and ADG433 can be operated from a  
single rail power supply. The parts are fully specified with a  
single +12 V power supply and will remain functional with  
single supplies as low as +5 V.  
Each switch conducts equally well in both directions when ON  
and has an input signal range which extends to the supplies. In  
the OFF condition, signal levels up to the supplies are blocked.  
All switches exhibit break before make switching action for use  
in multiplexer applications. Inherent in the design is low charge  
injection for minimum transients when switching the digital inputs.  
REV. B  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, nor for any infringements of patents or other rights of third parties  
which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
World Wide Web Site: http://www.analog.com  
© Analog Devices, Inc., 1998  
ADG431/ADG432/ADG433–SPECIFICATIONS1  
(V = +15 V ؎ 10%, V = –15 V ؎ 10%, V = +5 V ؎ 10%, GND = O V, unless otherwise noted)  
Dual Supply  
DD  
SS  
L
B Versions  
T Versions  
–55؇C to  
–40؇C to  
Parameter  
+25؇C +85؇C  
+25؇C +125؇C  
Units  
Test Conditions/Comments  
ANALOG SWITCH  
Analog Signal Range  
RON  
V
DD to VSS  
VDD to VSS  
27  
V
17  
24  
15  
0.5  
5
17  
typ  
max  
% typ  
%/°C typ  
% typ  
VD = ±8.5 V, IS = –10 mA;  
VDD = +13.5 V, VSS = –13.5 V  
26  
24  
15  
0.5  
5
RON vs. VD (VS)  
RON Drift  
RON Match  
VD = 0 V, IS = –10 mA  
LEAKAGE CURRENTS  
Source OFF Leakage IS (OFF)  
VDD = +16.5 V, VSS = –16.5 V  
VD = ±15.5 V, VS = ϯ15.5 V;  
Test Circuit 2  
VD = ±15.5 V, VS = ϯ15.5 V;  
Test Circuit 2  
VD = VS = ±15.5 V;  
Test Circuit 3  
±0.05  
±0.25 ±2  
±0.05  
±0.25 ±2  
±0.1  
±0.35 ±3  
±0.05  
±0.25 ±15  
±0.05  
±0.25 ±15  
±0.1  
±0.35 ±17  
nA typ  
nA max  
nA typ  
nA max  
nA typ  
nA max  
Drain OFF Leakage ID (OFF)  
Channel ON Leakage ID, IS (ON)  
DIGITAL INPUTS  
Input High Voltage, VINH  
Input Low Voltage, VINL  
Input Current  
2.4  
0.8  
2.4  
0.8  
V min  
V max  
IINL or IINH  
0.005  
0.005  
µA typ  
µA max  
pF typ  
VIN = VINL or VINH  
±0.02  
±0.02  
CIN Digital Input Capacitance  
9
9
DYNAMIC CHARACTERISTICS2  
tON  
VDD = +15 V, VSS = –15 V  
RL = 300 , CL = 35 pF;  
VS = ±10 V; Test Circuit 4  
RL = 300 , CL = 35 pF;  
VS = ±10 V; Test Circuit 4  
RL = 300 , CL = 35 pF;  
VS1 = VS2 = +10 V;  
90  
60  
90  
60  
25  
ns typ  
ns max  
ns typ  
ns max  
ns typ  
165  
130  
175  
145  
tOFF  
Break-Before-Make Time Delay, tD 25  
(ADG433 Only)  
Test Circuit 5  
VS = 0 V, RS = 0 , CL = 10 nF;  
Test Circuit 6  
RL = 50 , CL = 5 pF, f = 1 MHz;  
Test Circuit 7  
RL = 50 , CL = 5 pF, f = 1 MHz;  
Test Circuit 8  
Charge Injection  
5
5
pC typ  
dB typ  
dB typ  
OFF Isolation  
68  
85  
68  
85  
Channel-to-Channel Crosstalk  
CS (OFF)  
CD (OFF)  
CD, CS (ON)  
9
9
35  
9
9
35  
pF typ  
pF typ  
pF typ  
f = 1 MHz  
f = 1 MHz  
f = 1 MHz  
POWER REQUIREMENTS  
V
DD = +16.5 V, VSS = –16.5 V  
Digital Inputs = 0 V or 5 V  
IDD  
ISS  
IL  
0.0001  
0.1  
0.0001  
0.1  
0.0001  
0.1  
0.0001  
0.1  
0.0001  
0.1  
0.0001  
0.1  
µA typ  
µA max  
µA typ  
µA max  
µA typ  
µA max  
µW max  
0.2  
0.2  
0.2  
0.2  
0.2  
7.7  
0.2  
7.7  
Power Dissipation  
NOTES  
1Temperature ranges are as follows: B Versions: –40°C to +85°C; T Versions: –55°C to +125°C.  
2Guaranteed by design, not subject to production test.  
Specifications subject to change without notice.  
–2–  
REV. B  
ADG431/ADG432/ADG433  
(VDD = +12 V ؎ 10%, VSS = O V, VL = +5 V ؎ 10%, GND = O V, unless otherwise noted)  
Single Supply  
B Versions  
–40؇C to  
T Versions  
–55؇C to  
Parameter  
+25؇C +85؇C  
+25؇C +125؇C  
Units  
Test Conditions/Comments  
ANALOG SWITCH  
Analog Signal Range  
RON  
0 V to VDD  
28  
0 V to VDD  
28  
V
typ  
max  
% typ  
%/°C typ  
% typ  
0 < VD < 8.5 V, IS = –10 mA;  
VDD = +10.8 V  
42  
20  
0.5  
5
45  
42  
20  
0.5  
5
45  
RON vs. VD (VS)  
RON Drift  
RON Match  
VD = 0 V, IS = –10 mA  
DD = +13.2 V  
LEAKAGE CURRENTS  
V
Source OFF Leakage IS (OFF)  
±0.04  
±0.25 ±2  
±0.04  
±0.25 ±2  
±0.01  
±0.3  
±0.04  
±0.25 ±15  
±0.04  
±0.25 ±15  
±0.01  
±0.3  
nA typ  
nA max  
nA typ  
nA max  
nA typ  
nA max  
VD = 12.2/1 V, VS = 1/12.2 V;  
Test Circuit 2  
VD = 12.2/1 V, VS = 1/12.2 V;  
Test Circuit 2  
VD = VS = +12.2 V/+1 V;  
Test Circuit 3  
Drain OFF Leakage ID (OFF)  
Channel ON Leakage ID, Is (ON)  
±3  
±17  
DIGITAL INPUTS  
Input High Voltage, VINH  
Input Low Voltage, VINL  
Input Current  
2.4  
0.8  
2.4  
0.8  
V min  
V max  
IINL or IINH  
0.005  
9
0.005  
9
µA typ  
µA max  
pF typ  
VIN = VINL or VINH  
±0.01  
±0.01  
CIN Digital Input Capacitance  
DYNAMIC CHARACTERISTICS2  
tON  
VDD = +12 V, VSS = 0 V  
RL = 300 , CL = 35 pF;  
VS = +8 V; Test Circuit 4  
RL = 300 , CL = 35 pF;  
VS = +8 V; Test Circuit 4  
RL = 300 , CL = 35 pF;  
VS1 = VS2 = +10 V;  
Test Circuit 5  
165  
60  
165  
60  
ns typ  
ns max  
ns typ  
ns max  
ns typ  
240  
115  
240  
115  
tOFF  
Break-Before-Make Time Delay, tD 25  
(ADG433 Only)  
25  
Charge Injection  
25  
68  
85  
25  
68  
85  
pC typ  
dB typ  
dB typ  
VS = 0 V, RS = 0 , CL = 10 nF;  
Test Circuit 6  
RL = 50 , CL = 5 pF, f = 1 MHz;  
Test Circuit 7  
RL = 50 , CL = 5 pF, f = 1 MHz;  
Test Circuit 8  
OFF Isolation  
Channel-to-Channel Crosstalk  
CS (OFF)  
CD (OFF)  
CD, CS (ON)  
9
9
35  
9
9
35  
pF typ  
pF typ  
pF typ  
f = 1 MHz  
f = 1 MHz  
f = 1 MHz  
POWER REQUIREMENTS  
VDD = +13.2 V  
Digital Inputs = 0 V or 5 V  
IDD  
IL  
0.0001  
0.03  
0.0001  
0.03  
0.0001  
0.03  
0.0001  
0.03  
µA typ  
µA max  
µA typ  
µA max  
µW max  
0.1  
0.1  
0.1  
1.9  
0.1  
1.9  
VL = +5.25 V  
Power Dissipation  
NOTES  
1Temperature ranges are as follows: B Versions: –40°C to +85°C; T Versions: –55°C to +125°C.  
2Guaranteed by design, not subject to production test.  
Specifications subject to change without notice.  
Truth Table (ADG431/ADG432)  
Truth Table (ADG433)  
Switch 1, 4  
ADG431 In  
ADG432 In  
Switch Condition  
Logic  
Switch 2, 3  
0
1
1
0
ON  
OFF  
0
1
OFF  
ON  
ON  
OFF  
REV. B  
–3–  
ADG431/ADG432/ADG433  
ABSOLUTE MAXIMUM RATINGS  
(TA = +25°C unless otherwise noted)  
θJA, Thermal Impedance . . . . . . . . . . . . . . . . . . . . . 76°C/W  
Lead Temperature, Soldering (10 sec) . . . . . . . . . . . +300°C  
Plastic Package, Power Dissipation . . . . . . . . . . . . . . . 470 mW  
θJA, Thermal Impedance . . . . . . . . . . . . . . . . . . . . 117°C/W  
Lead Temperature, Soldering (10 sec) . . . . . . . . . . . +260°C  
SOIC Package, Power Dissipation . . . . . . . . . . . . . . . . 600 mW  
θJA, Thermal Impedance . . . . . . . . . . . . . . . . . . . . . 77°C/W  
Lead Temperature, Soldering  
VDD to VSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .+44 V  
VDD to GND . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to +25 V  
VSS to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . +0.3 V to –25 V  
VL to GND . . . . . . . . . . . . . . . . . . . . . . –0.3 V to VDD + 0.3 V  
Analog, Digital Inputs2 . . . . . . . . . . VSS – 2 V to VDD + 2 V or  
30 mA, Whichever Occurs First  
Continuous Current, S or D . . . . . . . . . . . . . . . . . . . . . 30 mA  
Peak Current, S or D . . . . . . . . . . . . . . . . . . . . . . . . . . 100 mA  
(Pulsed at 1 ms, 10% Duty Cycle max)  
Vapor Phase (60 sec) . . . . . . . . . . . . . . . . . . . . . . +215°C  
Infrared (15 sec) . . . . . . . . . . . . . . . . . . . . . . . . . . +220°C  
NOTES  
1Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions above those listed in the operational  
sections of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device reliability. Only one absolute  
maximum rating may be applied at any one time.  
Operating Temperature Range  
Industrial (B Version) . . . . . . . . . . . . . . . . . –40°C to +85°C  
Extended (T Version) . . . . . . . . . . . . . . . . –55°C to +125°C  
Storage Temperature Range . . . . . . . . . . . . . –65°C to +150°C  
Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . +150°C  
Cerdip Package, Power Dissipation . . . . . . . . . . . . . . . 900 mW  
2Overvoltages at IN, S or D will be clamped by internal diodes. Current should be  
limited to the maximum ratings given.  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection.  
Although the ADG431/ADG432/ADG433 features proprietary ESD protection circuitry, perma-  
nent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper  
ESD precautions are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
ORDERING GUIDE  
PIN CONFIGURATION  
(DIP/SOIC)  
Model1  
Temperature Range  
Package Options2  
ADG431BN  
ADG431BR  
ADG431TQ  
ADG431ABR  
ADG432BN  
ADG432BR  
ADG432TQ  
ADG432ABR  
–40°C to +85°C  
–40°C to +85°C  
–55°C to +125°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–55°C to +125°C  
–40°C to +85°C  
N-16  
IN1  
D1  
S1  
IN2  
D2  
S2  
V
1
2
3
4
5
6
7
8
16  
15  
14  
R-16A  
Q-16  
ADG431  
ADG432  
R-16A3  
V
ADG433 13  
TOP VIEW  
SS  
DD  
N-16  
GND  
V
L
12  
R-16A  
Q-16  
(Not to Scale)  
S4  
D4  
S3  
11  
10  
9
R-16A3  
D3  
IN3  
ADG433BN  
ADG433BR  
ADG433ABR  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
N-16  
IN4  
R-16A  
R-16A3  
NOTES  
1To order MIL-STD-883, Class B processed parts, add /883B to T grade part numbers.  
2N = Plastic DIP; R = 0.15" Small Outline IC (SOIC); Q = Cerdip.  
3Trench isolated, latch-up proof parts. See Trench Isolation section.  
TERMINOLOGY  
CS (OFF)  
VDD  
VSS  
Most positive power supply potential.  
Most negative power supply potential in dual  
supplies. In single supply applications, it may be  
connected to GND.  
Logic power supply (+5 V).  
Ground (0 V) reference.  
“OFF” switch source capacitance.  
“OFF” switch drain capacitance.  
“ON” switch capacitance.  
CD (OFF)  
CD, CS (ON)  
CIN  
Input Capacitance to ground of a digital input.  
Delay between applying the digital control input  
and the output switching on.  
Delay between applying the digital control input  
and the output switching off.  
“OFF” time or “ON” time measured between the  
90% points of both switches, when switching  
from one address state to another.  
A measure of unwanted signal which is coupled  
through from one channel to another as a result  
of parasitic capacitance.  
VL  
GND  
S
D
IN  
tON  
Source terminal. May be an input or output.  
Drain terminal. May be an input or output.  
Logic control input.  
tOFF  
tD  
RON  
Ohmic resistance between D and S.  
RON vs. VD (VS) The variation in RON due to a change in the ana-  
log input voltage with a constant load current.  
Crosstalk  
RON Drift  
RON Match  
IS (OFF)  
ID (OFF)  
ID, IS (ON)  
VD (VS)  
Change in RON vs. temperature.  
Difference between the RON of any two switches.  
Source leakage current with the switch “OFF.”  
Drain leakage current with the switch “OFF.”  
Channel leakage current with the switch “ON.”  
Analog voltage on terminals D, S.  
Off Isolation  
A measure of unwanted signal coupling through an  
“OFF” switch.  
A measure of the glitch impulse transferred from the  
digital input to the analog output during switching.  
Charge  
Injection  
–4–  
REV. B  
ADG431/ADG432/ADG433  
Typical Performance Graphs  
50  
50  
40  
30  
20  
T
V
= +25؇C  
= +5V  
T
= +25؇C  
A
A
V
= +5V  
L
L
40  
V
V
= +5V  
= 0V  
DD  
SS  
V
V
= +5V  
= –5V  
DD  
SS  
30  
20  
V
V
= +10V  
= 0V  
DD  
SS  
V
V
= +12V  
= 0V  
V
V
= +10V  
= –10V  
DD  
SS  
DD  
SS  
V
V
= +12V  
= –12V  
DD  
SS  
10  
0
10  
0
V
V
= +15V  
= 0V  
V
V
= +15V  
= –15V  
DD  
SS  
DD  
SS  
–20  
–10  
0
10  
20  
0
5
10  
15  
20  
V
OR V – DRAIN OR SOURCE VOLTAGE – V  
S
V
OR V – DRAIN OR SOURCE VOLTAGE – V  
D
D
S
Figure 1. On Resistance as a Function of VD (VS) Dual  
Supplies  
Figure 4. On Resistance as a Function of VD (VS) Single  
Supply  
100mA  
50  
V
V
V
= +15V  
= –15V  
= +5V  
4 SW  
1 SW  
V
V
V
= +15V  
= –15V  
= +5V  
DD  
SS  
DD  
SS  
10mA  
1mA  
L
L
40  
30  
20  
I+, I–  
100A  
10A  
+125؇C  
+85؇C  
+25؇C  
I
L
10  
0
1A  
100nA  
100  
1k  
10k  
100k  
1M  
10M  
10  
–20  
–10  
0
10  
20  
FREQUENCY – Hz  
V
OR V – DRAIN OR SOURCE VOLTAGE – V  
D
S
Figure 2. On Resistance as a Function of  
VD (VS) for Different Temperatures  
Figure 5. Supply Current vs. Input Switching Frequency  
0.04  
10  
V
V
= +15V  
= –15V  
DD  
SS  
V
V
V
= +15V  
= –15V  
= +5V  
DD  
SS  
T
= +25؇C  
= +5V  
A
I
(ON)  
D
L
V
L
0.02  
1
0.1  
V
V
= ؎15V  
= ؎15V  
I (OFF)  
S
S
I
(OFF)  
S
D
0.00  
–0.02  
–0.04  
I
(OFF)  
D
I
(OFF)  
D
0.01  
0.001  
I
(ON)  
D
20  
40  
60  
80  
100  
120  
140  
–20  
–10  
0
10  
20  
TEMPERATURE – ؇C  
V
OR V – DRAIN OR SOURCE VOLTAGE – V  
D
S
Figure 3. Leakage Currents as a Function of Temperature  
Figure 6. Leakage Currents as a Function of VD (VS)  
REV. B  
–5–  
ADG431/ADG432/ADG433  
120  
V
V
G
G
V
V
V
V
D
S
D
S
V
V
V
= +15V  
= –15V  
= +5V  
DD  
SS  
L
P-CHANNEL  
N-CHANNEL  
T
T
T
+
+
+
+
P
N
P
N
N
100  
80  
R
E
N
C
H
R
E
N
C
H
R
E
N
C
H
P
BURIED OXIDE LAYER  
SUBSTRATE (BACKGATE)  
60  
Figure 9. Trench Isolation  
APPLICATION  
40  
Figure 10 illustrates a precise, fast sample-and-hold circuit. An  
AD845 is used as the input buffer while the output operational  
amplifier is an AD711. During the track mode, SW1 is closed  
and the output VOUT follows the input signal VIN. In the hold  
mode, SW1 is opened and the signal is held by the hold capaci-  
tor CH.  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY – Hz  
Figure 7. Off Isolation vs. Frequency  
110  
Due to switch and capacitor leakage, the voltage on the hold  
capacitor will decrease with time. The ADG431/ADG432/  
ADG433 minimizes this droop due to its low leakage specifica-  
tions. The droop rate is further minimized by the use of a poly-  
styrene hold capacitor. The droop rate for the circuit shown is  
typically 30 µV/µs.  
V
V
V
= +15V  
= –15V  
= +5V  
DD  
SS  
100  
90  
80  
70  
60  
L
A second switch SW2, which operates in parallel with SW1, is  
included in this circuit to reduce pedestal error. Since both  
switches will be at the same potential, they will have a differen-  
tial effect on the op amp AD711 which will minimize charge  
injection effects. Pedestal error is also reduced by the compensa-  
tion network RC and CC. This compensation network also  
reduces the hold time glitch while optimizing the acquisition  
time. Using the illustrated op amps and component values, the  
pedestal error has a maximum value of 5 mV over the ±10 V  
input range. Both the acquisition and settling times are 850 ns.  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY – Hz  
Figure 8. Crosstalk vs. Frequency  
TRENCH ISOLATION  
+15V  
+5V  
2200pF  
In the ADG431A, ADG432A and ADG433A, an insulating  
oxide layer (trench) is placed between the NMOS and PMOS  
transistors of each CMOS switch. Parasitic junctions, which  
occur between the transistors in junction isolated switches, are  
eliminated, the result being a completely latch-up proof switch.  
+15V  
AD711  
–15V  
SW2  
SW1  
+15V  
S
S
D
D
C
C
R
C
V
V
OUT  
1000pF  
IN  
75⍀  
AD845  
C
H
2200pF  
In junction isolation, the N and P wells of the PMOS and  
NMOS transistors from a diode that is reverse-biased under  
normal operation. However, during overvoltage conditions, this  
diode becomes forward biased. A silicon-controlled rectifier  
(SCR) type circuit is formed by the two transistors causing a  
significant amplification of the current which, in turn, leads to  
latch up. With trench isolation, this diode is removed, the result  
being a latch-up proof switch.  
–15V  
ADG431  
ADG432  
ADG433  
–15V  
Figure 10. Fast, Accurate Sample-and-Hold  
–6–  
REV. B  
ADG431/ADG432/ADG433  
Test Circuits  
I
DS  
V1  
I
(ON)  
A
I
(OFF)  
A
I
(OFF)  
A
D
D
S
S
D
S
D
S
D
V
V
D
V
V
V
S
S
D
S
R
= V1/I  
DS  
ON  
Test Circuit 3. On Leakage  
Test Circuit 1. On Resistance  
Test Circuit 2. Off Leakage  
+15V  
0.1F  
+5V  
0.1F  
3V  
V
V
L
DD  
V
V
50%  
50%  
50%  
50%  
ADG431  
IN  
S
D
V
OUT  
3V  
ADG432  
R
C
L
IN  
L
V
S
35pF  
300⍀  
IN  
90%  
90%  
V
V
OUT  
GND  
SS  
0.1F  
–15V  
tON  
tOFF  
Test Circuit 4. Switching Times  
+15V  
+5V  
0.1F  
0.1F  
3V  
V
IN  
50%  
50%  
V
V
L
DD  
0V  
0V  
S1  
S2  
D1  
D2  
V
V
S1  
OUT1  
90%  
90%  
V
V
OUT1  
R
C
L1  
35pF  
L1  
V
OUT2  
300⍀  
V
S2  
R
C
L2  
35pF  
IN1, IN2  
L2  
300⍀  
90%  
V
90%  
GND  
SS  
V
OUT2  
IN  
0V  
tD  
tD  
0.1F  
–15V  
Test Circuit 5. Break-Before-Make Time Delay  
+15V  
+5V  
3V  
V
V
DD  
L
V
R
OUT  
S
S
D
V
IN  
C
10nF  
L
V
S
IN  
V
OUT  
V  
OUT  
V
GND  
SS  
Q
= C 
؋
 V  
L OUT  
INJ  
–15V  
Test Circuit 6. Charge Injection  
REV. B  
–7–  
ADG431/ADG432/ADG433  
+15V  
0.1F  
+5V  
+15V  
+5V  
0.1F  
0.1F  
0.1F  
V
V
L
DD  
V
V
L
50⍀  
DD  
S
D
S
D
V
OUT  
V
IN1  
R
V
L
S
V
IN2  
50⍀  
IN  
V
V
S
S
IN  
D
V
OUT  
NC  
V
V
GND  
R
SS  
GND  
SS  
L
50⍀  
CHANNEL TO CHANNEL  
CROSSTALK = 20 
؋
 LOG V /V  
0.1F  
–15V  
0.1F  
–15V  
S
OUT  
Test Circuit 7. Off Isolation  
Test Circuit 8. Channel-to-Channel Crosstalk  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
16-Lead Cerdip  
(Q-16)  
16-Lead SOIC  
(R-16A)  
0.005 (0.13) MIN  
16  
0.080 (2.03) MAX  
0.3937 (10.00)  
0.3859 (9.80)  
9
0.310 (7.87)  
16  
1
9
8
0.1574 (4.00)  
0.1497 (3.80)  
0.220 (5.59)  
0.2440 (6.20)  
0.2284 (5.80)  
1
8
0.320 (8.13)  
0.290 (7.37)  
PIN 1  
0.840 (21.34) MAX  
0.060 (1.52)  
0.015 (0.38)  
0.0688 (1.75)  
0.0532 (1.35)  
PIN 1  
0.0196 (0.50)  
0.0099 (0.25)  
x 45؇  
0.200 (5.08)  
MAX  
0.0098 (0.25)  
0.0040 (0.10)  
0.150  
(3.81)  
MIN  
SEATING  
PLANE  
0.200 (5.08)  
0.125 (3.18)  
8؇  
0؇  
0.015 (0.38)  
0.008 (0.20)  
0.0500  
(1.27)  
BSC  
0.0192 (0.49)  
0.0138 (0.35)  
0.023 (0.58)  
0.014 (0.36)  
0.100  
(2.54)  
BSC  
0.070 (1.78)  
0.030 (0.76)  
SEATING  
PLANE  
15°  
0°  
0.0500 (1.27)  
0.0160 (0.41)  
0.0099 (0.25)  
0.0075 (0.19)  
16-Lead Plastic DIP (Narrow)  
(N-16)  
0.840 (21.34)  
0.745 (18.92)  
16  
1
9
0.280 (7.11)  
0.240 (6.10)  
8
0.325 (8.26)  
0.195 (4.95)  
0.115 (2.93)  
0.300 (7.62)  
PIN 1  
0.060 (1.52)  
0.015 (0.38)  
0.210 (5.33)  
MAX  
0.130  
(3.30)  
MIN  
0.160 (4.06)  
0.115 (2.93)  
0.015 (0.381)  
0.008 (0.204)  
0.070 (1.77) SEATING  
0.100  
(2.54)  
BSC  
0.022 (0.558)  
0.014 (0.356)  
PLANE  
0.045 (1.15)  
–8–  
REV. B  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY