ADG436BRZ1 [ADI]

Dual SPDT Switch; 双路SPDT开关
ADG436BRZ1
型号: ADG436BRZ1
厂家: ADI    ADI
描述:

Dual SPDT Switch
双路SPDT开关

开关 光电二极管
文件: 总12页 (文件大小:323K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Dual SPDT Switch  
ADG436  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
44 V supply maximum ratings  
VSS to VDD analog signal range  
Low on resistance (12 Ω typ)  
Low ∆RON (3 Ω max)  
ADG436  
S1A  
D1  
S2A  
D2  
S1B  
S2B  
Low RON match (2.5 Ω max)  
Low power dissipation  
Fast switching times  
IN1  
IN2  
Figure 1.  
tON < 175 ns  
tOFF < 145 ns  
Low leakage currents (5 nA max)  
Low charge injection (10 pC)  
Break-before-make switching action  
APPLICATIONS  
Audio and video switching  
Battery-powered systems  
Test equipment  
Communications systems  
GENERAL DESCRIPTION  
PRODUCT HIGHLIGHTS  
1. Extended signal range.  
The ADG436 is a monolithic CMOS device comprising two  
independently selectable SPDT switches. It is designed on an  
LC2MOS process, which provides low power dissipation yet  
gives high switching speed and low on resistance.  
The ADG436 is fabricated on an enhanced LC2MOS  
process, giving an increased signal range that extends to  
the supply rails.  
2. Low power dissipation.  
The on resistance profile is very flat over the full analog input  
range, ensuring good linearity and low distortion when  
switching audio signals. High switching speed also makes the  
part suitable for video signal switching. CMOS construction  
ensures ultralow power dissipation, making the part ideally  
suited for portable and battery-powered instruments.  
3. Low RON  
.
4. Single-supply operation.  
For applications where the analog signal is unipolar, the  
ADG436 can be operated from a single rail power supply.  
Each switch conducts equally well in both directions when on  
and has an input signal range which extends to the power  
supplies. In the off condition, signal levels up to the supplies  
are blocked. All switches exhibit break-before-make switching  
action for use in multiplexer applications. Inherent in the  
design is low charge injection for minimum transients when  
switching the digital inputs.  
Rev. B  
Information furnished by Analog Devices is believed to be accurate and reliable.  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its use.  
Specifications subject to change without notice. No license is granted by implication  
or otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
© 2005 Analog Devices, Inc. All rights reserved.  
ADG436  
TABLE OF CONTENTS  
Specifications..................................................................................... 3  
Typical Performance Characteristics ..............................................8  
Test Circuits..................................................................................... 10  
Applications Information.............................................................. 11  
ADG436 Supply Voltages.......................................................... 11  
Power-Supply Sequencing......................................................... 11  
Outline Dimensions....................................................................... 12  
Ordering Guide .......................................................................... 12  
Dual Supply ................................................................................... 3  
Single Supply ................................................................................. 4  
Absolute Maximum Ratings............................................................ 5  
ESD Caution.................................................................................. 5  
Pin Configuration and Function Descriptions............................. 6  
Terminology ...................................................................................... 7  
REVISION HISTORY  
3/05—Rev. A to Rev. B  
Updated Format..................................................................Universal  
Changes to Specifications Tables.................................................... 3  
Changes to Figure 11........................................................................ 8  
Updated Outline Dimensions....................................................... 12  
Changes to Ordering Guide .......................................................... 12  
11/98—Rev. 0 to Rev. A  
1/96—Revision 0: Initial Version  
Rev. B | Page 2 of 12  
ADG436  
SPECIFICATIONS  
DUAL SUPPLY1  
VDD = +15 V, VSS = −15 V, GND = 0 V, unless otherwise noted.  
Table 1.  
Parameter  
+25°C  
−40°C to +85°C  
Unit  
Test Conditions/ Comments  
ANALOG SWITCH  
Analog Signal Range  
RON  
VSS to VDD  
V
12  
1
Ω typ  
Ω max  
Ω typ  
Ω max  
Ω typ  
Ω max  
VD = 1ꢀ Vꢁ IS = −1 mA  
VD = −5 Vꢁ 5 Vꢁ IS = −1ꢀ mA  
VD = 1ꢀ Vꢁ IS = −1ꢀ mA  
25  
3
∆RON  
RONMatch  
1
2.5  
LEAKAGE CURRENTS  
Source OFF Leakage IS (OFF)  
VDD = 16.5 Vꢁ VSS = −16.5 V  
VD = 15.5 Vꢁ VS = 15.5 V  
Figure 13  
VS = VD = 15.5 V  
Figure 1ꢂ  
ꢀ.ꢀꢀ5  
ꢀ.25  
ꢀ.ꢀ5  
ꢀ.ꢂ  
nA typ  
nA max  
nA typ  
nA max  
5
5
Channel ON Leakage IDꢁ IS (ON)  
DIGITAL INPUTS  
Input High Voltageꢁ VINH  
Input Low Voltageꢁ VINL  
Input Currentꢁ IINL or IINH  
2.ꢂ  
ꢀ.8  
ꢀ.ꢀꢀ5  
ꢀ.5  
V min  
V max  
µA typ  
µA max  
VIN = ꢀ V or VDD  
DYNAMIC CHARACTERISTICS2  
tON  
7ꢀ  
6ꢀ  
1ꢀ  
1ꢀ  
72  
9ꢀ  
ns typ  
ns max  
ns typ  
ns max  
ns min  
RL = 3ꢀꢀ Ω ꢁ CL = 35 pF;  
VS = 1ꢀ V; Figure 15  
RL = 3ꢀꢀ Ω ꢁ CL = 35 pF;  
VS = 1ꢀ V; Figure 15  
RL = 3ꢀꢀ Ω ꢁ CL = 35 pF;  
VS = +5 V; Figure 16  
VD = ꢀ Vꢁ RD = ꢀ Ωꢁ CL = 1ꢀ nF;  
Figure 17  
RL = 75 Ω ꢁ CL = 5 pFꢁ f = 1 MHz;  
VS = 2.3 V rmsꢁ Figure 18  
RL = 75 Ωꢁ CL = 5 pFꢁ f = 1 MHz;  
VS = 2.3 V rmsꢁ Figure 19  
125  
12ꢀ  
tOFF  
Break-Before-Make Delayꢁ tOPEN  
Charge Injection  
pC typ  
dB typ  
dB typ  
OFF Isolation  
Channel-to-Channel Crosstalk  
CS (OFF)  
CDꢁ CS (ON)  
13  
ꢂ9  
pF typ  
pF typ  
POWER REQUIREMENTS  
IDD  
ꢀ.ꢀ5  
mA typ  
Digital inputs = ꢀ V or 5 V  
ꢀ.35  
mA max  
µA typ  
ISS  
ꢀ.ꢀ1  
1
5
µA max  
VDD/VSS  
3/ 2ꢀ  
V min/V max  
|VDD| = |VSS|  
1 Temperature range is as follows: B versionꢁ −ꢂꢀ°C to +85°C.  
2 Guaranteed by design; not subject to production test.  
Rev. B | Page 3 of 12  
 
 
ADG436  
SINGLE SUPPLY1  
VDD = 12 V, VSS = 0 V, GND = 0 V, unless otherwise noted.  
Table 2.  
Parameter  
+25°C  
−40°C to +85°C  
Unit  
Test Conditions/ Comments  
ANALOG SWITCH  
Analog Signal Range  
RON  
ꢀ to VDD  
V
2ꢀ  
Ω typ  
Ω max  
Ω max  
VD = 1 Vꢁ 1ꢀ Vꢁ IS = −1 mA  
ꢂꢀ  
2.5  
RONMatch  
LEAKAGE CURRENTS  
Source OFF Leakage IS (OFF)  
VDD = 13.2 V  
VD = 12.2 V/1 Vꢁ VS = 1 V/12.2 V  
Figure 13  
VS = VD = 12.2 V/1 V  
Figure 1ꢂ  
ꢀ.ꢀꢀ5  
ꢀ.25  
ꢀ.ꢀ5  
nA typ  
nA max  
nA typ  
nA max  
5
5
Channel ON Leakage IDꢁ IS (ON)  
DIGITAL INPUTS  
Input High Voltageꢁ VINH  
Input Low Voltageꢁ VINL  
Input Currentꢁ IINL or IINH  
2.ꢂ  
ꢀ.8  
ꢀ.ꢀꢀ5  
ꢀ.5  
V min  
V max  
µA typ  
µA max  
VIN = ꢀ V or VDD  
DYNAMIC CHARACTERISTICS2  
tON  
1ꢀꢀ  
9ꢀ  
ns typ  
ns max  
ns typ  
ns max  
ns typ  
RL = 3ꢀꢀ Ω ꢁ CL = 35 pF;  
VS = 8 V; Figure 15  
RL = 3ꢀꢀ Ω ꢁ CL = 35 pF;  
VS = 8 V; Figure 15  
RL = 3ꢀꢀ Ω ꢁ CL = 35 pF;  
2ꢀꢀ  
18ꢀ  
tOFF  
Break-Before-Make Delayꢁ tOPEN  
1ꢀ  
VS = 5 V; Figure 16  
Charge Injection  
OFF Isolation  
1ꢀ  
72  
pC typ  
dB typ  
VD = 6 Vꢁ RD = ꢀ Ω ꢁ CL = 1ꢀ nF; Figure 17  
RL = 75 Ω ꢁ CL = 5 pFꢁ f = 1 MHz;  
VS = 1.15 V rms; Figure 18  
RL = 75 Ω ꢁ CL = 5 pFꢁ f = 1 MHz;  
VS = 1.15 V rmsꢁ Figure 19  
Channel-to-Channel Crosstalk  
9ꢀ  
dB typ  
CS (OFF)  
CDꢁ CS (ON)  
22  
ꢂ6  
pF typ  
pF typ  
POWER REQUIREMENTS  
IDD  
VDD = 13.5 V  
Digital inputs = ꢀ V or 5 V  
ꢀ.ꢀ5  
mA typ  
ꢀ.35  
mA max  
VDD  
+3/+3ꢀ  
V min/V max  
1 Temperature range is as follows: B versionꢁ −ꢂꢀ°C to +85°C.  
2 Guaranteed by design; not subject to production test.  
Rev. B | Page ꢂ of 12  
 
 
ADG436  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C unless otherwise noted.  
Table 3.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those listed in the operational sections  
of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability. Only one absolute maximum rating may be  
applied at any one time.  
Parameter  
Rating  
VDD to VSS  
+ꢂꢂ V  
VDD to GND  
VSS to GND  
Analogꢁ Digital Inputs1  
−ꢀ.3 V to +3ꢀ V  
+ꢀ.3 V to −3ꢀ V  
VSS − 2 V to VDD + 2V or 2ꢀ mAꢁ  
whichever occurs first  
Continuous Currentꢁ S or D  
Peak Currentꢁ S or D (pulsed at  
1 msꢁ 1ꢀ% Duty Cycle max)  
2ꢀ mA  
ꢂꢀ mA  
Table 4. Truth Table  
Operating Temperature Range  
Industrial (B Version)  
Storage Temperature Range  
Junction Temperature  
θJAꢁ Thermal Impedance  
PDIP Package  
SOIC Package  
Lead Temperatureꢁ Soldering  
(1ꢀ sec)  
Logic  
Switch A  
Switch B  
On  
Off  
−ꢂꢀ°C to +85°C  
−65°C to +125°C  
15ꢀ°C  
1
Off  
On  
117°C/W  
77°C/W  
26ꢀ°C  
Lead Temperatureꢁ Soldering  
Vapor Phase (6ꢀ sec)  
Infrared (15 sec)  
215°C  
22ꢀ°C  
1 Overvoltages at INꢁ Sꢁ or D are clamped by internal diodes. Current should be  
limited to the maximum ratings given.  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as ꢂꢀꢀꢀ V readily accumulate on  
the human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitryꢁ permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Thereforeꢁ proper ESD precautions are recommended to avoid performance degrada-  
tion or loss of functionality.  
Rev. B | Page 5 of 12  
 
 
ADG436  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
IN1  
S1A  
D1  
1
2
3
4
5
6
7
8
16 NC  
15 NC  
14 NC  
ADG436  
S1B  
13 V  
DD  
TOP VIEW  
V
12 S2B  
11 D2  
(Not to Scale)  
SS  
GND  
NC  
10 S2A  
NC  
9 IN2  
NC = NO CONNECT  
Figure 2. Pin Configuration  
Table 5. Pin Function Descriptions  
Pin No.  
Mnemonic  
Descriptions  
1ꢁ 9  
IN1ꢁ IN2  
Logic Control Input.  
2ꢁ ꢂꢁ 1ꢀꢁ 12  
3ꢁ 11  
S1Aꢁ S1Bꢁ S2Aꢁ S2B  
Source Terminal. Can be an input or output.  
Drain Terminal. C be an input or output.  
5
VSS  
Most Negative Power Supply Potential in Dual Supplies. In single-supply applicationsꢁ it can be  
connected to ground.  
6
GND  
Ground (ꢀ V) Reference.  
No Connect.  
Most Positive Power Supply Potential.  
7ꢁ 8ꢁ 1ꢂꢁ 15ꢁ 16 NC  
13 VDD  
Rev. B | Page 6 of 12  
 
ADG436  
TERMINOLOGY  
Table 6.  
Mnemonic  
Descriptions  
RON  
Ohmic resistance between D and S.  
∆RON  
RON variation due to a change in the analog input voltage with a constant load current.  
Difference between the RON of any two channels.  
Source leakage current with the switch off.  
Channel leakage current with the switch on.  
Analog voltage on terminals Dꢁ S.  
OFF switch source capacitance.  
ON switch capacitance.  
Delay between applying the digital control input and the output switching on.  
Delay between applying the digital control input and the output switching off.  
Break-before-make delay when switches are configured as a multiplexer.  
Maximum input voltage for Logic ꢀ.  
RONMatch  
IS (OFF)  
IDꢁ IS (ON)  
VD (VS)  
CS (OFF)  
CDꢁ CS (ON)  
tON  
tOFF  
tOPEN  
VINL  
VINH  
Minimum input voltage for Logic 1.  
IINL (IINH  
)
Input current of the digital input.  
Crosstalk  
Off Isolation  
A measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.  
A measure of unwanted signal coupling through an OFF switch.  
Charge Injection A measure of the glitch impulse transferred from the digital input to the analog output during switching.  
IDD  
ISS  
Positive supply current.  
Negative supply current.  
Rev. B | Page 7 of 12  
 
ADG436  
TYPICAL PERFORMANCE CHARACTERISTICS  
26  
20  
18  
16  
14  
12  
10  
V
V
= 16.5V  
= 0V  
T
= 25°C  
DD  
SS  
A
V
V
= +5V  
= –5V  
22  
18  
14  
10  
6
DD  
SS  
+85°C  
V
V
= +10V  
= –10V  
DD  
SS  
+25°C  
–40°C  
V
V
= +15V  
= –15V  
DD  
SS  
–15  
–10  
–5  
0
5
10  
15  
15  
15  
0
3
6
9
12  
15  
V
, V (V)  
V , V (V)  
D S  
D
S
Figure 3. RON as a Function of VD (VS):  
Dual Supply  
Figure 6. RON as a Function of VD (VS) for Different Temperatures:  
Single Supply  
50  
45  
40  
35  
30  
25  
20  
15  
10  
0.01  
V
V
= +16.5V  
= –16.5V  
DD  
SS  
= 25°C  
T
A
V
V
= 5V  
= 0V  
DD  
SS  
0
–0.01  
–0.02  
–0.03  
V
V
= 10V  
= 0V  
DD  
SS  
V
V
= 15V  
= 0V  
DD  
SS  
0
3
6
9
12  
–15  
–10  
–5  
0
5
10  
15  
V
, V (V)  
V , V (V)  
D S  
D
S
Figure 4. RON as a Function of VD (VS):  
Single Power Supply  
Figure 7. ID (ON) Leakage Current as a Function of VD (VS):  
Dual Supply  
16  
14  
12  
10  
8
0.01  
V
= +16.5V  
= –16.5V  
V
V
= +16.5V  
= –16.5V  
DD  
DD  
SS  
V
SS  
T
= 25°C  
A
0
–0.01  
–0.02  
–0.03  
+85°C  
+25°C  
–40°C  
6
–15  
–10  
–5  
0
5
10  
–15  
–10  
–5  
0
5
10  
15  
V
, V (V)  
V , V (V)  
D S  
D
S
Figure 5. RON as a Function of VD (VS) for Different Temperatures:  
Dual Supply  
Figure 8. IS (OFF) Leakage Current as a Function of VD (VS):  
Dual Supply  
Rev. B | Page 8 of 12  
 
 
ADG436  
0.01  
0
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
V
= +16.5V  
= –16.5V  
= 25°C  
DD  
SS  
V
V
= +16.5V  
= –16.5V  
= 25°C  
DD  
SS  
T
A
T
A
–0.01  
–0.02  
–0.03  
0
100 200 300 400 500 600 700 800 900 1000  
SWITCHING FREQUENCY (kHz)  
–15  
–10  
–5  
0
5
10  
15  
V
, V (V)  
S
D
Figure 11. IDD as a Function of Switching Frequency:  
Dual Supply  
Figure 9. IS (ON) Leakage Current as a Function of VD (VS):  
Dual Supply  
160  
140  
120  
100  
80  
V
V
= +2V  
= –2V  
D
S
60  
0
5
10  
, V (V)  
15  
20  
V
D
S
Figure 10. Switching Time as a Function of VD (VS):  
Dual Supply  
Rev. B | Page 9 of 12  
ADG436  
TEST CIRCUITS  
I
DS  
V
1
I
(OFF)  
A
I
(ON)  
A
S
D
S
D
S
D
S
D
NC  
V
V
V
D
V
S
D
D
NC = NO CONNECT  
R
= V /I  
DS  
ON  
1
Figure 12. On Resistance  
Figure 13. Off Leakage  
Figure 14. On Leakage  
V
DD  
0.1µF  
+3V  
0V  
V
DD  
50%  
50%  
–10V  
SB  
V
V
IN  
D
V
S
V
OUT  
SA  
+10V  
R
300Ω  
C
L
L
+10V  
0V  
tOFF  
35pF  
IN  
S
V
V
GND  
SS  
50%  
50%  
tON  
–10V  
0.1µF  
SS  
Figure 15. Switching Times  
V
DD  
0.1µF  
3V  
V
DD  
V
V
IN  
V
S
SB  
SA  
D
0V  
V
OUT  
R
300Ω  
C
L
L
V
S
35pF  
IN  
50%  
50%  
OUT  
V
V
GND  
SS  
SS  
tOPEN  
0.1µF  
Figure 16. Break-Before-Make Delay, topen  
V
V
DD  
DD  
3V  
R
D
V
V
IN  
V
OUT  
V
D
0V  
0V  
D
SA  
IN  
C
10nF  
L
OUT  
Q
INJ  
= C  
×
V  
V  
OUT  
L
OUT  
V
GND  
SS  
SS  
V
Figure 17. Charge Injection  
V
V
DD  
DD  
0.1µF  
V
DD  
0.1µF  
75Ω  
S
D
V
DD  
V
V
IN2  
IN1  
V
V
S
OUT  
S
D
R
L
75Ω  
V
S
D
IN  
V
OUT  
NC  
V
GND  
SS  
R
V
L
75Ω  
GND  
SS  
V
S
CHANNEL-TO-CHANNEL  
CROSSTALK  
0.1µF  
0.1µF  
20 × LOG |V /V  
|
V
V
S
OUT  
SS  
SS  
Figure 18. Off Isolation  
Figure 19. Channel-to Channel Crosstalk  
Rev. B | Page 1ꢀ of 12  
 
ADG436  
POWER-SUPPLY SEQUENCING  
APPLICATIONS INFORMATION  
When using CMOS devices, care must be taken to ensure  
correct power-supply sequencing. Incorrect power-supply  
sequencing can result in the device being subjected to stresses  
beyond those listed in the Absolute Maximum Ratings. Always  
sequence VDD on first followed by VSS and the logic signals. An  
external signal can then be safely presented to the source or  
drain of the switch.  
ADG436 SUPPLY VOLTAGES  
The ADG436 can operate from a dual or single supply. VSS  
should be connected to GND when operating with a single  
supply. When using a dual supply, the ADG436 can also operate  
with unbalanced supplies, for example VDD = 20 V and VSS  
=
−5 V. The only restrictions are that VDD to GND must not exceed  
30 V, VSS to GND must not drop below −30 V, and VDD to VSS  
must not exceed +44 V. It is important to remember that the  
ADG436 supply voltage directly affects the input signal range,  
the switch on resistance and the switching times of the part. The  
effects of the power supplies on these characteristics can be  
clearly seen from the Typical Performance Characteristics  
curves.  
Rev. B | Page 11 of 12  
 
ADG436  
OUTLINE DIMENSIONS  
0.800 (20.32)  
0.790 (20.07)  
0.780 (19.81)  
16  
1
9
8
0.280 (7.11)  
0.250 (6.35)  
0.240 (6.10)  
0.325 (8.26)  
0.310 (7.87)  
0.300 (7.62)  
PIN 1  
0.100 (2.54)  
BSC  
10.00 (0.3937)  
9.80 (0.3858)  
0.060 (1.52)  
MAX  
0.195 (4.95)  
0.130 (3.30)  
0.115 (2.92)  
0.210  
(5.33)  
MAX  
16  
1
9
8
6.20 (0.2441)  
5.80 (0.2283)  
4.00 (0.1575)  
3.80 (0.1496)  
0.015  
(0.38)  
MIN  
0.150 (3.81)  
0.130 (3.30)  
0.115 (2.92)  
0.015 (0.38)  
GAUGE  
0.014 (0.36)  
0.010 (0.25)  
0.008 (0.20)  
PLANE  
SEATING  
PLANE  
1.75 (0.0689)  
1.35 (0.0531)  
1.27 (0.0500)  
BSC  
0.50 (0.0197)  
0.25 (0.0098)  
× 45°  
0.022 (0.56)  
0.018 (0.46)  
0.014 (0.36)  
0.430 (10.92)  
MAX  
0.005 (0.13)  
MIN  
0.25 (0.0098)  
0.10 (0.0039)  
0.070 (1.78)  
0.060 (1.52)  
0.045 (1.14)  
8°  
0°  
0.51 (0.0201)  
0.31 (0.0122)  
SEATING  
PLANE  
1.27 (0.0500)  
0.40 (0.0157)  
COPLANARITY  
0.10  
0.25 (0.0098)  
0.17 (0.0067)  
COMPLIANT TO JEDEC STANDARDS MS-001-AB  
COMPLIANT TO JEDEC STANDARDS MS-012-AC  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
CORNER LEADS MAY BE CONFIGURED AS WHOLE OR HALF LEADS.  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
Figure 20. 16-Lead Plastic Dual In-Line Package [PDIP]  
(N-16)  
Figure 21. 16-Lead Narrow Body Standard Small Outline Package [SOIC]  
(R-16)  
Dimensions are shown in inches and (millimeters)  
Dimensions are shown in millimeters and (inches)  
ORDERING GUIDE  
Model  
ADGꢂ36BN  
ADGꢂ36BNZ1  
ADGꢂ36BR  
ADGꢂ36BR-REEL  
Temperature Range  
−ꢂꢀ°C to +85°C  
−ꢂꢀ°C to +85°C  
−ꢂꢀ°C to +85°C  
−ꢂꢀ°C to +85°C  
−ꢂꢀ°C to +85°C  
−ꢂꢀ°C to +85°C  
Package Description  
Package Option  
16-Lead PDIP  
16-Lead PDIP  
16-Lead ꢀ.15" Narrow Body SOIC  
16-Lead ꢀ.15" Narrow Body SOIC  
16-Lead ꢀ.15" Narrow Body SOIC  
16-Lead ꢀ.15" Narrow Body SOIC  
N-16  
N-16  
R-16  
R-16  
R-16  
R-16  
ADGꢂ36BRZ  
1
ADGꢂ36BRZ-REEL  
1
1 Z = Pb-free part.  
©
2005 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
C00030–0–3/05(B)  
Rev. B | Page 12 of 12  
 
 
 

相关型号:

ADG436_05

Dual SPDT Switch
ADI

ADG438

High Performance 4/8 Channel Fault-Protected Analog Multiplexers
ADI

ADG438F

High Performance 4/8 Channel Fault-Protected Analog Multiplexers
ADI

ADG438FBN

High Performance 4/8 Channel Fault-Protected Analog Multiplexers
ADI

ADG438FBNZ

8-CHANNEL, SGL ENDED MULTIPLEXER, PDIP16, PLASTIC, DIP-16
ROCHESTER

ADG438FBR

High Performance 4/8 Channel Fault-Protected Analog Multiplexers
ADI

ADG438FBRN

8-Channel Analog Multiplexer
ETC

ADG438FBRZ

High Performance, 8-Channel, Fault-Protected Analog Multiplexer
ADI

ADG438FBRZ-REEL

High Performance, 8-Channel, Fault-Protected Analog Multiplexer
ADI

ADG438F_15

High Performance, 4-/8-Channel, Fault-Protected Analog Multiplexers
ADI

ADG439F

High Performance 4/8 Channel Fault-Protected Analog Multiplexers
ADI

ADG439F*

High Performance 4/8 Channel Fault-Protected Analog Multiplexers
ADI