ADG509FBNZ [ADI]

8-Channel/4-Channel Fault-Protected Analog Multiplexers; 8通道/ 4通道故障保护模拟多路复用器
ADG509FBNZ
型号: ADG509FBNZ
厂家: ADI    ADI
描述:

8-Channel/4-Channel Fault-Protected Analog Multiplexers
8通道/ 4通道故障保护模拟多路复用器

复用器 开关 复用器或开关 信号电路 光电二极管 PC
文件: 总20页 (文件大小:288K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
8-Channel/4-Channel  
Fault-Protected Analog Multiplexers  
ADG508F/ADG509F  
FEATURES  
FUNCTIONAL BLOCK DIAGRAMS  
All switches off with power supply off  
Analog output of on channel clamped within power  
supplies if an overvoltage occurs  
Latch-up proof construction  
ADG508F  
S1  
Low on resistance (270 Ω typical)  
Fast switching times  
D
t
t
ON: 230 ns maximum  
OFF: 130 ns maximum  
Low power dissipation (3.3 mW maximum)  
Fault and overvoltage protection (−40 V to +55 V)  
Break-before-make construction  
S8  
1 OF 8  
DECODER  
TTL and CMOS compatible inputs  
A0 A1 A2 EN  
APPLICATIONS  
Figure 1.  
Existing multiplexer applications (both fault-protected and  
nonfault-protected)  
New designs requiring multiplexer functions  
ADG509F  
S1A  
GENERAL DESCRIPTION  
DA  
S4A  
The ADG508F and ADG509F are CMOS analog multi-  
plexers, with the ADG508F comprising eight single channels  
and the ADG509F comprising four differential channels. These  
multiplexers provide fault protection. Using a series n-channel,  
p-channel, n-channel MOSFET structure, both device and signal  
source protection is provided in the event of an overvoltage or  
power loss. The multiplexer can withstand continuous overvolt-  
age inputs from −40 V to +55 V. During fault conditions with  
power supplies off, the multiplexer input (or output) appears as  
an open circuit and only a few nanoamperes of leakage current  
will flow. This protects not only the multiplexer and the circuitry  
driven by the multiplexer, but also protects the sensors or signal  
sources that drive the multiplexer.  
S1B  
S4B  
DB  
1 OF 4  
DECODER  
A1  
A0  
EN  
Figure 2.  
PRODUCT HIGHLIGHTS  
1. Fault protection. The ADG508F/ADG509F can withstand  
continuous voltage inputs from −40 V to +55 V. When a  
fault occurs due to the power supplies being turned off, all  
the channels are turned off and only a leakage current of a  
few nanoamperes flows.  
The ADG508F switches one of eight inputs to a common output  
as determined by the 3-bit binary address lines A0, A1, and A2.  
The ADG509F switches one of four differential inputs to a  
common differential output as determined by the 2-bit binary  
address lines A0 and A1. An EN input on each device is used  
to enable or disable the device. When disabled, all channels are  
switched off.  
2. On channel saturates while fault exists.  
3. Low RON  
.
4. Fast switching times.  
5. Break-before-make switching. Switches are guaranteed  
break-before-make so that input signals are protected  
against momentary shorting.  
6. Trench isolation eliminates latch-up. A dielectric trench  
separates the p and n-channel MOSFETs thereby  
preventing latch-up.  
Rev. F  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
www.analog.com  
Fax: 781.461.3113 ©2001–2011 Analog Devices, Inc. All rights reserved.  
 
 
 
 
ADG508F/ADG509F  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Absolute Maximum Ratings ............................................................5  
ESD Caution...................................................................................5  
Pin Configuration and Function Descriptions..............................6  
Typical Performance Characteristics ..............................................8  
Terminology.................................................................................... 10  
Theory of Operation ...................................................................... 11  
Test Circuits..................................................................................... 12  
Outline Dimensions....................................................................... 15  
Ordering Guide .......................................................................... 17  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagrams............................................................. 1  
Product Highlights ........................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Dual Supply................................................................................... 3  
Truth Tables................................................................................... 4  
REVISION HISTORY  
7/11—Rev. E to Rev. F  
Deleted ADG528F..............................................................Universal  
Changes to Features Section and General Description Section. 1  
Changes to Specifications Section.................................................. 3  
Deleted Timing Diagrams Section................................................. 4  
Changes to Table 4............................................................................ 5  
Added Table 5.................................................................................... 6  
Added Table 6.................................................................................... 7  
Replaced Typical Performance Characteristics Section .............. 8  
Changes to Terminology Section.................................................. 10  
Changes to Figure 27 and Figure 28............................................. 13  
Changes to Figure 31...................................................................... 14  
Changes to Theory of Operation Section.................................... 11  
Updated Outline Dimensions....................................................... 15  
Changes to Ordering Guide .......................................................... 17  
7/09—Rev. D: Rev. E  
Updated Format..................................................................Universal  
Added TSSOP .....................................................................Universal  
Updated Outline Dimensions....................................................... 15  
Changes to Ordering Guide .......................................................... 18  
4/01—Data Sheet Changed from Rev. C to Rev. D.  
Changes to Ordering Guide ............................................................ 1  
Changes to Specifications Table...................................................... 2  
Max Ratings Changed...................................................................... 4  
Deleted 16-Lead Cerdip from Outline Dimensions .................. 11  
Deleted 18-Lead Cerdip from Outline Dimensions .................. 12  
Rev. F | Page 2 of 20  
 
ADG508F/ADG509F  
SPECIFICATIONS  
DUAL SUPPLY  
VDD = +15 V 10%, VSS = −15 V 10%, GND = 0 V, unless otherwise noted.  
Table 1.  
B Version  
Parameter  
+25°C  
−40°C to +85°C  
Unit  
Test Conditions/Comments  
ANALOG SWITCH  
Analog Signal Range  
VSS + 1.4  
VDD − 1.4  
VSS + 2.2  
VDD – 2.2  
270  
V typ  
V typ  
V typ  
V typ  
Ω typ  
Ω max  
Output open circuit  
Output loaded, 1 mA  
RON  
350  
390  
−10 V ≤ VS ≤ +10 V, IS = 1 mA;  
VDD = +15 V 10ꢀ, VSS = −15 V 10ꢀ  
See Figure 21  
RON Drift  
On-Resistance Match Between  
Channels, ∆RON  
0.6  
3
ꢀ/°C typ  
ꢀ max  
VS = 0 V, IS = 1 mA  
VS = 10 V, IS = −1 mA  
LEAKAGE CURRENTS  
Source Off Leakage IS (Off)  
0.02  
1
nA typ  
nA max  
nA typ  
nA max  
nA max  
nA typ  
nA max  
nA max  
VD = 10 V, VS = +10 V;  
See Figure 22  
VD = 10 V, VS = +10 V;  
See Figure 23  
50  
0.04  
1
1
0.04  
1
1
Drain Off Leakage ID (Off)  
ADG508F  
ADG509F  
Channel On Leakage ID, IS (On)  
ADG508F  
ADG509F  
60  
30  
VS = VD = 10 V;  
See Figure 24  
60  
30  
FAULT  
Source Leakage Current IS (Fault)  
(With Overvoltage)  
Drain Leakage Current ID (Fault)  
(With Overvoltage)  
0.02  
nA typ  
μA max  
nA typ  
μA max  
VS = +55 V or −40 V, VD = 0 V, see Figure 25  
VS = 25 V, VD = +10 V, see Figure 23  
2
5
2
2
Source Leakage Current IS (Fault)  
(Power Supplies Off)  
1
2
nA typ  
μA max  
VS = 25 V, VD = VEN = A0, A1, A2 = 0 V  
See Figure 26  
DIGITAL INPUTS  
Input High Voltage, VINH  
Input Low Voltage, VINL  
Input Current, IINL or IINH  
CIN, Digital Input Capacitance  
DYNAMIC CHARACTERISTICS1  
tTRANSITION  
2.4  
0.8  
1
V min  
V max  
μA max  
pF typ  
VIN = 0 or VDD  
5
175  
220  
90  
ns typ  
ns max  
ns typ  
ns min  
ns typ  
ns max  
ns typ  
RL = 1 MΩ, CL = 35 pF;  
VS1 = 10 V, VS8 = +10 V; see Figure 27  
RL = 1 kΩ, CL = 35 pF;  
VS = 5 V; see Figure 28  
RL = 1 kΩ, CL = 35 pF;  
300  
40  
tOPEN  
60  
tON (EN)  
tOFF (EN)  
180  
230  
100  
130  
300  
150  
VS = 5 V; see Figure 29  
RL = 1 kΩ, CL = 35 pF  
tSETT, Settling Time  
0.1ꢀ  
0.01ꢀ  
ns max  
μs typ  
μs typ  
VS = 5 V; see Figure 29  
RL = 1 kΩ, CL = 35 pF;  
VS = 5 V  
1
2.5  
Rev. F | Page 3 of 20  
 
ADG508F/ADG509F  
B Version  
Parameter  
+25°C  
15  
93  
−40°C to +85°C  
Unit  
Test Conditions/Comments  
Charge Injection  
Off Isolation  
pC typ  
dB typ  
VS = 0 V, RS = 0 Ω, CL= 1 nF; see Figure 30  
RL = 1 kΩ, CL = 15 pF, f = 100 kHz; VS = 7 V rms;  
see Figure 31  
CS (Off)  
3
pF typ  
CD (Off)  
ADG508F  
ADG509F  
22  
12  
pF typ  
pF typ  
POWER REQUIREMENTS  
IDD  
ISS  
0.05  
0.1  
0.2  
1
mA max  
ꢁA max  
VIN = 0 V or 5 V  
1 Guaranteed by design, not subject to production test.  
TRUTH TABLES  
Table 2. ADG508F Truth Table1  
A2  
X
0
0
0
0
1
1
1
A1  
X
0
0
1
1
0
0
1
A0  
X
0
1
0
1
0
1
0
EN  
0
1
1
1
1
1
1
1
On Switch  
None  
1
2
3
4
5
6
7
8
1
1
1
1
1 X = don’t care.  
Table 3. ADG509F Truth Table1  
A1  
A0  
EN  
0
On Switch Pair  
X
X
None  
0
0
1
1
0
1
0
1
1
1
1
1
1
2
3
4
1 X = don’t care.  
Rev. F | Page 4 of 20  
 
 
 
 
ADG508F/ADG509F  
ABSOLUTE MAXIMUM RATINGS  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
TA = 25°C unless otherwise noted.  
Table 4.  
Parameter  
Rating  
VDD to VSS  
48 V  
VDD to GND  
VSS to GND  
−0.3 V to +48 V  
+0.3 V to −48 V  
Digital Input, EN, Ax  
−0.3 V to VDD + 0.3 V or  
20 mA, whichever occurs first  
VS, Analog Input Overvoltage with  
Power On (VDD = +15 V, VSS = −15 V)  
VS, Analog Input Overvoltage with  
Power Off (VDD = 0 V, VSS = 0 V)  
Continuous Current, S or D  
Peak Current, S or D  
(Pulsed at 1 ms, 10ꢀ Duty Cycle Max)  
Operating Temperature Range  
Industrial (B Version)  
Storage Temperature Range  
Junction Temperature  
TSSOP  
VSS − 25 V to VDD + 40 V  
−40 V to +55 V  
20 mA  
ESD CAUTION  
40 mA  
−40°C to +85°C  
−65°C to +150°C  
150°C  
θJA, Thermal Impedance  
Plastic DIP Package  
θJA, Thermal Impedance  
16-Lead  
112°C/W  
117°C/W  
SOIC Package  
θJA, Thermal Impedance  
Narrow Body  
Wide Body  
77°C/W  
75°C/W  
Rev. F | Page 5 of 20  
 
 
ADG508F/ADG509F  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
A0  
EN  
1
2
3
4
5
6
7
8
16 A1  
15 A2  
V
14 GND  
SS  
ADG508F  
TOP VIEW  
(Not to Scale)  
S1  
13  
V
DD  
S2  
S3  
S4  
D
12 S5  
11 S6  
10 S7  
9
S8  
Figure 3. ADG508F Pin Configuration  
Table 5. ADG508F Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
2
A0  
EN  
Logic Control Input.  
Active High Digital Input. When low, the device is disabled and all switches are off. When high,  
Ax logic inputs determine on switches.  
3
VSS  
Most Negative Power Supply Potential. In single-supply applications, this pin can be connected  
to ground.  
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
S1  
S2  
S3  
S4  
D
S8  
S7  
S6  
S5  
VDD  
GND  
A2  
A1  
Source Terminal 1. This pin can be an input or an output.  
Source Terminal 2. This pin can be an input or an output.  
Source Terminal 3. This pin can be an input or an output.  
Source Terminal 4. This pin can be an input or an output.  
Drain Terminal. This pin can be an input or an output.  
Source Terminal 8. This pin can be an input or an output.  
Source Terminal 7. This pin can be an input or an output.  
Source Terminal 6. This pin can be an input or an output.  
Source Terminal 5. This pin can be an input or an output.  
Most Positive Power Supply Potential.  
Ground (0 V) Reference.  
Logic Control Input.  
Logic Control Input.  
Rev. F | Page 6 of 20  
 
ADG508F/ADG509F  
A0  
EN  
1
2
3
4
5
6
7
8
16 A1  
15 GND  
V
14  
V
DD  
SS  
ADG509F  
TOP VIEW  
(Not to Scale)  
S1A  
13 S1B  
12 S2B  
11 S3B  
10 S4B  
S2A  
S3A  
S4A  
DA  
9
DB  
Figure 4. ADG509F Pin Configuration  
Table 6. ADG509F Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
2
A0  
EN  
Logic Control Input.  
Active High Digital Input. When low, the device is disabled and all switches are off. When high,  
Ax logic inputs determine on switches.  
3
VSS  
Most Negative Power Supply Potential. In single-supply applications, this pin can be connected  
to ground.  
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
S1A  
S2A  
S3A  
S4A  
DA  
Source Terminal 1A. This pin can be an input or an output.  
Source Terminal 2A. This pin can be an input or an output.  
Source Terminal 3A. This pin can be an input or an output.  
Source Terminal 4A. This pin can be an input or an output.  
Drain Terminal A. This pin can be an input or an output.  
Drain Terminal B. This pin can be an input or an output.  
Source Terminal 4B. This pin can be an input or an output.  
Source Terminal 3B. This pin can be an input or an output.  
Source Terminal 2B. This pin can be an input or an output.  
Source Terminal 1B. This pin can be an input or an output.  
Most Positive Power Supply Potential.  
DB  
S4B  
S3B  
S2B  
S1B  
VDD  
GND  
A1  
Ground (0 V) Reference.  
Logic Control Input.  
Rev. F | Page 7 of 20  
ADG508F/ADG509F  
TYPICAL PERFORMANCE CHARACTERISTICS  
2000  
2000  
1750  
1500  
1250  
1000  
750  
T
= 25°C  
A
V
V
= +15V  
= –15V  
DD  
SS  
1750  
1500  
1250  
1000  
750  
500  
250  
0
V
= +5V  
= –5V  
DD  
SS  
T
T
T
T
= 125°C  
= 105°C  
= 85°C  
= 25°C  
V
A
A
A
A
V
V
= +10V  
= –10V  
DD  
SS  
V
V
= +15V  
= –15V  
DD  
SS  
500  
250  
0
–15  
–10  
–5  
0
5
10  
15  
–15  
–10  
–5  
0
5
10  
15  
V
, V (V)  
S
V
, V (V)  
S
D
D
Figure 5. On Resistance as a Function of VD (VS)  
Figure 8. On Resistance as a Function of VD (VS) for Different Temperatures  
1m  
100µ  
10µ  
1µ  
1m  
100µ  
V
V
V
= 0V  
= 0V  
= 0V  
DD  
V
V
V
= +15V  
= –15V  
= 0V  
DD  
SS  
SS  
10µ  
1µ  
D
D
OPERATING RANGE  
100n  
10n  
1n  
100n  
10n  
1n  
OPERATING RANGE  
100p  
10p  
1p  
100p  
10p  
1p  
–50 –40 –30 –20 –10  
0
10  
20  
30  
40  
50  
60  
–50 –40 –30 –20 –10  
0
10  
20  
30  
40  
50  
60  
V
SOURCE VOLTAGE (V)  
V
SOURCE VOLTAGE (V)  
S
S
Figure 6. Source Input Leakage Current as a Function of VS (Power Supplies  
Off) During Overvoltage Conditions  
Figure 9. Source Input Leakage Current as a Function of VS (Power Supplies  
On) During Overvoltage Conditions  
0.3  
1m  
V
V
V
T
= +15V  
= –15V  
DD  
SS  
100µ  
V
V
V
= +15V  
= –15V  
= 0V  
DD  
0.2  
0.1  
(V ) = ±10V  
SS  
S
D
10µ  
1µ  
= 25°C  
D
A
100n  
10n  
1n  
I
(OFF)  
D
0.0  
I
(OFF)  
S
–0.1  
–0.2  
–0.3  
OPERATING RANGE  
100p  
10p  
1p  
I
, I (ON)  
S
D
–14  
–10  
–6  
–2  
2
6
10  
14  
–50 –40 –30 –20 –10  
0
10  
20  
30  
40  
50  
60  
V , V (V)  
V
SOURCE VOLTAGE (V)  
S
D
S
Figure 10. Leakage Currents as a Function of VD (VS)  
Figure 7. Drain Output Leakage Current as a Function of VS (Power Supplies  
On) During Overvoltage Conditions  
Rev. F | Page 8 of 20  
 
ADG508F/ADG509F  
0
–20  
100  
10  
T
V
V
= 25°C  
A
= +15V  
= –15V  
DD  
SS  
V
V
V
V
= +15V  
= –15V  
= +10V  
= –10V  
DD  
SS  
D
S
–40  
I
(OFF)  
D
–60  
1
I
(ON)  
D
–80  
I
(OFF)  
0.1  
0.01  
S
–100  
–120  
1k  
10k  
100k  
1M  
10M  
100M  
1G  
25  
35  
45  
55  
65  
75  
85  
95  
105 115 125  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
Figure 11. Leakage Currents as a Function of Temperature  
Figure 14. Off Isolation vs. Frequency, 15 V Dual Supply  
40  
260  
T
V
V
= 25°C  
= +15V  
A
35  
30  
25  
20  
15  
10  
5
DD  
240  
220  
200  
180  
160  
140  
120  
100  
= –15V  
SS  
tTRANSITION  
tON (EN)  
DRAIN OFF  
tOFF (EN)  
SOURCE OFF  
0
–15  
–10  
–5  
0
5
10  
15  
10  
11  
12  
13  
14  
15  
V
(V)  
POWER SUPPLY (V)  
S
Figure 12. Switching Time vs. Dual Power Supply  
Figure 15. Capacitance vs. Source Voltage  
30  
20  
300  
250  
200  
150  
100  
50  
V
V
T
= +15V  
V
V
= +15V  
= –15V  
DD  
DD  
SS  
= –15V  
SS  
= 25°C  
A
tON (EN)  
10  
tTRANSITION  
0
–10  
–20  
–30  
tOFF (EN)  
0
–40  
–15  
–10  
–5  
0
5
10  
15  
–20  
0
20  
40  
60  
80  
100  
120  
V
(V)  
S
TEMPERATURE (°C)  
Figure 16. Charge Injection vs. Source Voltage  
Figure 13. Switching Time vs. Temperature  
Rev. F | Page 9 of 20  
ADG508F/ADG509F  
TERMINOLOGY  
CD (Off)  
VDD  
Channel output capacitance for off condition.  
Most positive power supply potential.  
CIN  
VSS  
Digital input capacitance.  
Most negative power supply potential.  
t
ON (EN)  
GND  
Delay time between the 50% and 90% points of the digital input  
and switch on condition.  
Ground (0 V) reference.  
RON  
t
OFF (EN)  
Ohmic resistance between D and S.  
Delay time between the 50% and 90% points of the digital input  
and switch off condition.  
RON Drift  
Percentage change in RON when temperature changes by one  
degree Celsius.  
tTRANSITION  
Delay time between the 50% and 90% points of the digital  
inputs and the switch on condition when switching from  
one address state to another.  
ΔRON  
ΔRON represents the difference between the RON of any two  
channels as a percentage of the maximum RON of those two  
channels.  
tOPEN  
Off time measured between 80% points of both switches when  
switching from one address state to another.  
IS (Off)  
Source leakage current when the switch is off.  
VINL  
ID (Off)  
Maximum input voltage for Logic 0.  
Drain leakage current when the switch is off.  
VINH  
ID, IS (On)  
Minimum input voltage for Logic 1.  
Channel leakage current when the switch is on.  
I
INL (IINH)  
IS (Fault—Power Supplies On)  
Source leakage current when exposed to an overvoltage  
condition.  
Input current of the digital input.  
Off Isolation  
A measure of unwanted signal coupling through an off channel.  
ID (Fault—Power Supplies On)  
Drain leakage current when exposed to an overvoltage  
condition.  
Charge Injection  
A measure of the glitch impulse transferred from the digital  
input to the analog output during switching.  
IS (Fault—Power Supplies Off)  
Source leakage current with power supplies off.  
IDD  
Positive supply current.  
VD (VS)  
ISS  
Analog Voltage on Terminals D, S.  
Negative supply current.  
CS (Off)  
Channel input capacitance for off condition.  
Rev. F | Page 10 of 20  
 
ADG508F/ADG509F  
THEORY OF OPERATION  
The ADG508F/ADG509F multiplexers are capable of withstand-  
ing overvoltages from −40 V to +55 V, irrespective of whether the  
power supplies are present or not. Each channel of the multiplexer  
consists of an n-channel MOSFET, a p-channel MOSFET, and an  
n-channel MOSFET, connected in series. When the analog input  
exceeds the power supplies, one of the MOSFETs will saturate  
limiting the current. The current during a fault condition is  
determined by the load on the output. Figure 17 illustrates  
the channel architecture that enables these multiplexers to  
withstand continuous overvoltages.  
During fault conditions (power supplies off), the leakage  
current into and out of the ADG508F/ADG509F is limited to  
a few microamps. This protects the multiplexer and succeeding  
circuitry from over stresses as well as protecting the signal  
sources which drive the multiplexer. Also, the other channels  
of the multiplexer will be undisturbed by the overvoltage and  
will continue to operate normally.  
Q1  
Q2  
Q3  
+55V  
OVERVOLTAGE  
n-CHANNEL  
MOSFET  
SATURATES  
When an analog input of VSS + 2.2 V to VDD − 2.2 V (output  
loaded, 1 mA) is applied to the ADG508F/ADG509F, the  
multiplexer behaves as a standard multiplexer, with spec-  
ifications similar to a standard multiplexer, for example,  
the on-resistance is 390 Ω maximum. However, when an  
overvoltage is applied to the device, one of the three  
MOSFETs saturate.  
V
V
SS  
DD  
Figure 17. +55 V Overvoltage Input to the On Channel  
Q1  
Q2  
Q3  
–40V  
OVERVOLTAGE  
n-CHANNEL  
MOSFET  
IS ON  
p-CHANNEL  
MOSFET  
SATURATES  
Figure 17 to Figure 20 show the conditions of the three MOSFETs  
for the various overvoltage situations. When the analog input  
applied to an on channel approaches the positive power supply  
line, the n-channel MOSFET saturates because the voltage on  
the analog input exceeds the difference between VDD and the  
n-channel threshold voltage (VTN). When a voltage more nega-  
tive than VSS is applied to the multiplexer, the p-channel  
MOSFET will saturate because the analog input is more  
negative than the difference between VSS and the p-channel  
threshold voltage (VTP). Because VTN is nominally 1.4 V and  
V
V
DD  
SS  
Figure 18. −40 V Overvoltage on an Off Channel with  
Multiplexer Power On  
Q1  
Q2  
Q3  
+55V  
OVERVOLTAGE  
n-CHANNEL  
MOSFET IS  
OFF  
Figure 19. +55 V Overvoltage with Power Off  
VTP −1.4 V, the analog input range to the multiplexer is limited  
to VSS + 1.4 V to VDD – 1.4 V (output open circuit) when a  
15 V power supply is used.  
Q1  
Q2  
Q3  
–40V  
OVERVOLTAGE  
When the power supplies are present but the channel is off,  
again either the p-channel MOSFET or one of the n-channel  
MOSFETs will remain off when an overvoltage occurs.  
n-CHANNEL  
MOSFET IS  
ON  
p-CHANNEL  
MOSFET IS  
OFF  
Finally, when the power supplies are off, the gate of each  
MOSFET will be at ground. A negative overvoltage switches  
on the first n-channel MOSFET but the bias produced by the  
overvoltage causes the p-channel MOSFET to remain turned  
off. With a positive overvoltage, the first MOSFET in the series  
will remain off because the gate to source voltage applied to this  
MOSFET is negative.  
Figure 20. −40 V Overvoltage with Power Off  
Rev. F | Page 11 of 20  
 
 
 
ADG508F/ADG509F  
TEST CIRCUITS  
I
DS  
V1  
I
(ON)  
A
D
D
S
S
D
NC  
V
S
V
D
NC = NO CONNECT  
R
= V /I  
1 DS  
ON  
Figure 24. ID (On)  
Figure 21. On Resistance  
V
V
V
V
DD  
DD  
SS  
SS  
V
V
V
V
DD  
DD  
SS  
I
(OFF)  
A
S
SS  
S1  
S2  
S1  
S2  
A
D
D
V
S8  
S
S8  
EN  
0.8V  
EN  
0.8V  
V
D
V
V
D
S
Figure 22. IS (Off)  
Figure 25. Input Leakage Current (with Overvoltage)  
0V  
0V  
V
V
V
V
DD  
DD  
SS  
SS  
V
V
SS  
DD  
0V  
A2  
A
V
S
S1  
A1ADG508F  
S1  
S2  
I
(OFF)  
A
A0  
D
D
S8  
D
EN  
S8  
V
D
EN  
0.8V  
GND  
V
S
Figure 23. ID (Off)  
Figure 26. Input Leakage Current (with Power Supplies Off)  
Rev. F | Page 12 of 20  
 
 
 
 
 
 
ADG508F/ADG509F  
V
V
V
V
DD  
SS  
SS  
3V  
DD  
A2  
V
V
S1  
S2 TO S7  
ADDRESS  
DRIVE (V  
S1  
S8  
50%  
50%  
A1  
A0  
)
V
50  
IN  
IN  
ADG508F*S8  
2.4V  
EN  
D
V
OUT  
R
1MΩ  
C
L
35pF  
90%  
L
GND  
V
OUT  
90%  
*SIMILAR CONNECTION FOR ADG509F.  
tTRANSITION  
tTRANSITION  
Figure 27. Switching Time of Multiplexer, tTRANSITION  
V
V
V
V
DD  
SS  
3V  
ADDRESS  
SS  
DRIVE (V  
)
DD  
IN  
A2  
V
S1  
S2 TO S7  
S
A1  
V
50  
IN  
A0  
ADG508F*S8  
D
V
OUT  
80%  
2.4V  
EN  
GND  
V
80%  
OUT  
R
1kΩ  
C
L
35pF  
L
tOPEN  
*
SIMILAR CONNECTION FOR ADG509F.  
Figure 28. Break-Before-Make Delay, tOPEN  
V
V
V
V
DD  
SS  
SS  
3V  
ENABLE  
50%  
50%  
DRIVE (V  
)
DD  
IN  
A2  
V
S1  
S2 TO S8  
S
0V  
A1  
A0  
ADG508F*  
V
OUT  
0.9V  
OUT  
D
V
OUT  
EN  
GND  
OUTPUT  
0V  
R
1k  
C
L
35pF  
L
V
50Ω  
IN  
0.1V  
OUT  
tOFF (EN)  
tON (EN)  
*SIMILAR CONNECTION FOR ADG509F.  
Figure 29. Enable Delay, tON (EN), tOFF (EN)  
Rev. F | Page 13 of 20  
 
 
 
ADG508F/ADG509F  
V
V
V
V
DD  
DD  
SS  
3V  
SS  
A2  
LOGIC  
INPUT (V  
)
A1  
A0  
S
IN  
ADG508F*  
0V  
R
S
D
V
OUT  
EN  
C
1nF  
V
L
S
V  
V
OUT  
OUT  
GND  
V
IN  
Q
= C × V  
OUT  
INJ  
L
*SIMILAR CONNECTION FOR ADG509F.  
Figure 30. Charge Injection  
V
V
DD  
SS  
0.1µF  
0.1µF  
NETWORK  
ANALYZER  
V
V
SS  
DD  
NC  
50  
SA  
SB  
50Ω  
IN  
V
S
D
V
OUT  
V
IN  
R
L
50Ω  
GND  
V
V
OUT  
OFF ISOLATION = 20 log  
S
Figure 31. Off Isolation  
Rev. F | Page 14 of 20  
 
 
ADG508F/ADG509F  
OUTLINE DIMENSIONS  
0.800 (20.32)  
0.790 (20.07)  
0.780 (19.81)  
16  
1
9
8
0.280 (7.11)  
0.250 (6.35)  
0.240 (6.10)  
0.325 (8.26)  
0.310 (7.87)  
0.300 (7.62)  
0.100 (2.54)  
BSC  
0.060 (1.52)  
MAX  
0.195 (4.95)  
0.130 (3.30)  
0.115 (2.92)  
0.210 (5.33)  
MAX  
0.015  
(0.38)  
MIN  
0.150 (3.81)  
0.130 (3.30)  
0.115 (2.92)  
0.015 (0.38)  
GAUGE  
0.014 (0.36)  
0.010 (0.25)  
0.008 (0.20)  
PLANE  
SEATING  
PLANE  
0.022 (0.56)  
0.018 (0.46)  
0.014 (0.36)  
0.430 (10.92)  
MAX  
0.005 (0.13)  
MIN  
0.070 (1.78)  
0.060 (1.52)  
0.045 (1.14)  
COMPLIANT TO JEDEC STANDARDS MS-001-AB  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
CORNER LEADS MAY BE CONFIGURED AS WHOLE OR HALF LEADS.  
Figure 32. 16-Lead Plastic Dual In-Line Package [PDIP] Narrow Body  
(N-16)  
Dimensions shown in inches and (millimeters)  
10.00 (0.3937)  
9.80 (0.3858)  
9
8
16  
1
6.20 (0.2441)  
5.80 (0.2283)  
4.00 (0.1575)  
3.80 (0.1496)  
1.27 (0.0500)  
0.50 (0.0197)  
0.25 (0.0098)  
45°  
BSC  
1.75 (0.0689)  
1.35 (0.0531)  
0.25 (0.0098)  
0.10 (0.0039)  
8°  
0°  
COPLANARITY  
0.10  
SEATING  
PLANE  
1.27 (0.0500)  
0.40 (0.0157)  
0.51 (0.0201)  
0.31 (0.0122)  
0.25 (0.0098)  
0.17 (0.0067)  
COMPLIANT TO JEDEC STANDARDS MS-012-AC  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 33. 16-Lead Standard Small Outline Package [SOIC_N] Narrow Body  
(R-16)  
Dimensions shown in millimeters and (inches)  
Rev. F | Page 15 of 20  
 
ADG508F/ADG509F  
10.50 (0.4134)  
10.10 (0.3976)  
16  
1
9
8
7.60 (0.2992)  
7.40 (0.2913)  
10.65 (0.4193)  
10.00 (0.3937)  
0.75 (0.0295)  
0.25 (0  
.0098)  
1.27 (0.0500)  
BSC  
45°  
2.65 (0.1043)  
2.35 (0.0925)  
0.30 (0.0118)  
0.10 (0.0039)  
8°  
0°  
COPLANARITY  
0.10  
SEATING  
PLANE  
0.51 (0.0201)  
0.31 (0.0122)  
1.27 (0.0500)  
0.40 (0.0157)  
0.33 (0.0130)  
0.20 (0.0079)  
COMPLIANT TO JEDEC STANDARDS MS-013-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 34. 16-Lead Standard Small Outline Package [SOIC_W] Wide Body  
(RW-16)  
Dimensions shown in millimeters and (inches)  
5.10  
5.00  
4.90  
16  
9
8
4.50  
4.40  
4.30  
6.40  
BSC  
1
PIN 1  
1.20  
MAX  
0.15  
0.05  
0.20  
0.09  
0.75  
0.60  
0.45  
8°  
0°  
0.30  
0.19  
0.65  
BSC  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-153-AB  
Figure 35. 16-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-16)  
Dimensions shown in millimeters  
Rev. F | Page 16 of 20  
ADG508F/ADG509F  
ORDERING GUIDE  
Model1  
ADG508FBNZ  
ADG508FBRN  
ADG508FBRNZ  
ADG508FBRNZ–REEL7  
ADG508FBRWZ  
ADG508FBRWZ-REEL  
ADG508FBRUZ  
ADG508FBRUZ-REEL7  
ADG509FBNZ  
ADG509FBRN  
ADG509FBRNZ  
ADG509FBRNZ–REEL7  
ADG509FBRWZ  
ADG509FBRWZ-REEL  
ADG509FBRUZ  
ADG509FBRUZ-REEL7  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
Package Description  
16-Lead PDIP  
Package Option  
N-16  
R-16  
R-16  
R-16  
RW-16  
RW-16  
RU-16  
RU-16  
N-16  
R-16  
R-16  
R-16  
RW-16  
RW-16  
RU-16  
RU-16  
16-Lead SOIC_N  
16-Lead SOIC_N  
16-Lead SOIC_N  
16-Lead SOIC_W  
16-Lead SOIC_W  
16-Lead TSSOP  
16-Lead TSSOP  
16-Lead PDIP  
16-Lead SOIC_N  
16-Lead SOIC_N  
16-Lead SOIC_N  
16-Lead SOIC_W  
16-Lead SOIC_W  
16-Lead TSSOP  
16-Lead TSSOP  
1 Z = RoHS Compliant Part.  
Rev. F | Page 17 of 20  
 
 
ADG508F/ADG509F  
NOTES  
Rev. F | Page 18 of 20  
ADG508F/ADG509F  
NOTES  
Rev. F | Page 19 of 20  
ADG508F/ADG509F  
NOTES  
©2001–2011 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D00035-0-7/11(F)  
Rev. F | Page 20 of 20  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY