ADG721BRM [ADI]

CMOS Low Voltage 4 ohm Dual SPST Switches; CMOS低电压4欧姆双通道SPST开关
ADG721BRM
型号: ADG721BRM
厂家: ADI    ADI
描述:

CMOS Low Voltage 4 ohm Dual SPST Switches
CMOS低电压4欧姆双通道SPST开关

复用器 开关 复用器或开关 信号电路 光电二极管 输出元件 PC
文件: 总8页 (文件大小:208K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CMOS  
a
Low Voltage 4 Dual SPST Switches  
ADG721/ADG722/ADG723  
FUNCTIONAL BLOCK DIAGRAMS  
FEATURES  
+1.8 V to +5.5 V Single Supply  
4 (Max) On Resistance  
Low On-Resistance Flatness  
–3 dB Bandwidth >200 MHz  
Rail-to-Rail Operation  
8-Lead SOIC Package  
Fast Switching Times  
tON 20 ns  
ADG722  
ADG721  
S1  
D1  
S1  
D1  
IN1  
IN1  
D2  
S2  
D2  
S2  
IN2  
IN2  
tOFF 10 ns  
Low Power Consumption (<0.1 W)  
TTL/CMOS Compatible  
ADG723  
APPLICATIONS  
Battery Powered Systems  
Communication Systems  
Sample Hold Systems  
Audio Signal Routing  
Video Switching  
S1  
D1  
IN1  
D2  
S2  
IN2  
Mechanical Reed Relay Replacement  
SWITCHES SHOWN FOR A LOGIC "0" INPUT  
PRODUCT HIGHLIGHTS  
GENERAL DESCRIPTION  
1. +1.8 V to +5.5 V Single Supply Operation. The ADG721,  
ADG722 and ADG723 offers high performance, including  
low on resistance and fast switching times and is fully speci-  
fied and guaranteed with +3 V and +5 V supply rails.  
The ADG721, ADG722 and ADG723 are monolithic CMOS  
SPST switches. These switches are designed on an advanced  
submicron process that provides low power dissipation yet gives  
high switching speed, low On resistance and low leakage currents.  
2. Very Low RON (4 max at 5 V, 10 max at 3 V). At 1.8 V  
operation, RON is typically 40 over the temperature range.  
The ADG721, ADG722 and ADG723 are designed to operate  
from a single +1.8 V to +5.5 V supply, making them ideal for  
use in battery powered instruments and with the new generation  
of DACs and ADCs from Analog Devices.  
3. Low On-Resistance Flatness.  
4. –3 dB Bandwidth >200 MHz.  
The ADG721, ADG722 and ADG723 contain two independent  
single-pole/single-throw (SPST) switches. The ADG721 and  
ADG722 differ only in that both switches are normally open and  
normally closed respectively. While in the ADG723, Switch 1 is  
normally open and Switch 2 is normally closed.  
5. Low Power Dissipation. CMOS construction ensures low  
power dissipation.  
6. Fast tON/tOFF.  
7. 8-Lead µSOIC.  
Each switch of the ADG721, ADG722 and ADG723 conducts  
equally well in both directions when on. The ADG723 exhibits  
break-before-make switching action.  
REV. 0  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, nor for any infringements of patents or other rights of third parties  
which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
World Wide Web Site: http://www.analog.com  
© Analog Devices, Inc., 1998  
ADG721/ADG722/ADG723–SPECIFICATIONS1  
(VDD = +5 V ؎ 10%, GND = 0 V. All specifications –40؇C to +85؇C, unless otherwise noted.)  
B Version  
40؇C to  
+85؇C  
Parameter  
+25؇C  
Units  
Test Conditions/Comments  
ANALOG SWITCH  
Analog Signal Range  
0 V to VDD  
5
V
On Resistance (RON  
)
4
max  
VS = 0 V to VDD, IS = –10 mA,  
Test Circuit 1  
On Resistance Match Between  
Channels (RON  
)
0.3  
typ  
max  
typ  
max  
VS = 0 V to VDD, IS = –10 mA  
VS = 0 V to VDD, IS = –10 mA  
1.0  
1.5  
On-Resistance Flatness (RFLAT(ON)  
)
0.85  
LEAKAGE CURRENTS  
Source OFF Leakage IS (OFF)  
VDD = +5.5 V  
VS = 4.5 V/1 V, VD = 1 V/4.5 V  
Test Circuit 2  
VS = 4.5 V/1 V, VD = 1 V/4.5 V  
Test Circuit 2  
VS = VD = 1 V, or VS = VD = 4.5 V  
Test Circuit 3  
±0.01  
±0.25  
±0.01  
±0.25  
±0.01  
±0.25  
nA typ  
nA max  
nA typ  
nA max  
nA typ  
nA max  
±0.35  
±0.35  
±0.35  
Drain OFF Leakage ID (OFF)  
Channel ON Leakage ID, IS (ON)  
DIGITAL INPUTS  
Input High Voltage, VINH  
Input Low Voltage, VINL  
Input Current  
2.4  
0.8  
V min  
V max  
IINL or IINH  
0.005  
µA typ  
VIN = VINL or VINH  
±0.1  
µA max  
DYNAMIC CHARACTERISTICS2  
tON  
14  
6
ns typ  
ns max  
ns typ  
ns max  
ns typ  
ns min  
pC typ  
RL = 300 , CL = 35 pF  
VS = 3 V, Test Circuit 4  
RL = 300 , CL = 35 pF  
20  
10  
1
tOFF  
VS = 3 V, Test Circuit 4  
Break-Before-Make Time Delay, tD  
(ADG723 Only)  
Charge Injection  
7
RL = 300 , CL = 35 pF,  
VS1 = VS2 = 3 V, Test Circuit 5  
VS = 2 V; RS = 0 , CL = 1 nF,  
Test Circuit 6  
2
Off Isolation  
–60  
–80  
dB typ  
dB typ  
RL = 50 , CL = 5 pF, f = 10 MHz  
RL = 50 , CL = 5 pF, f = 1 MHz,  
Test Circuit 7  
Channel-to-Channel Crosstalk  
–77  
–97  
dB typ  
dB typ  
RL = 50 , CL = 5 pF, f = 10 MHz  
RL = 50 , CL = 5 pF, f = 1 MHz,  
Test Circuit 8  
Bandwidth –3 dB  
CS (OFF)  
CD (OFF)  
200  
7
7
MHz typ  
pF typ  
pF typ  
pF typ  
RL = 50 , CL = 5 pF, Test Circuit 9  
CD, CS (ON)  
18  
POWER REQUIREMENTS  
IDD  
VDD = +5.5 V  
Digital Inputs = 0 V or 5 V  
0.001  
µA typ  
µA max  
1.0  
NOTES  
1Temperature ranges are as follows: B Version, –40°C to +85°C.  
2Guaranteed by design, not subject to production test.  
Specifications subject to change without notice.  
–2–  
REV. 0  
ADG721/ADG722/ADG723  
SPECIFICATIONS1(VDD = +3 V ؎ 10%, GND = 0 V. All specifications –40؇C to +85؇C, unless otherwise noted.)  
B Version  
40؇C to  
Parameter  
+25؇C  
+85؇C  
Units  
Test Conditions/Comments  
ANALOG SWITCH  
Analog Signal Range  
0 V to VDD  
10  
V
On Resistance (RON  
)
6.5  
0.3  
typ  
max  
VS = 0 V to VDD, IS = –10 mA  
Test Circuit 1  
On Resistance Match Between  
Channels (RON  
)
typ  
max  
typ  
VS = 0 V to VDD, IS = –10 mA  
1.0  
3.5  
On-Resistance Flatness (RFLAT(ON)  
)
VS = 0 V to VDD, IS = –10 mA  
LEAKAGE CURRENTS  
Source OFF Leakage IS (OFF)  
VDD = +3.3 V  
VS = 3 V/1 V, VD = 1 V/3 V  
Test Circuit 2  
VS = 3 V/1 V, VD = 1 V/3 V  
Test Circuit 2  
VS = VD = 1 V, or 3 V  
Test Circuit 3  
±0.01  
±0.25  
±0.01  
±0.25  
±0.01  
±0.25  
nA typ  
nA max  
nA typ  
nA max  
nA typ  
nA max  
±0.35  
±0.35  
±0.35  
Drain OFF Leakage ID (OFF)  
Channel ON Leakage ID, IS (ON)  
DIGITAL INPUTS  
Input High Voltage, VINH  
Input Low Voltage, VINL  
Input Current  
2.0  
0.4  
V min  
V max  
IINL or IINH  
0.005  
µA typ  
VIN = VINL or VINH  
±0.1  
µA max  
DYNAMIC CHARACTERISTICS2  
tON  
16  
7
ns typ  
ns max  
ns typ  
ns max  
ns typ  
ns min  
pC typ  
RL = 300 , CL = 35 pF  
VS = 2 V, Test Circuit 4  
RL = 300 , CL = 35 pF  
VS = 2 V, Test Circuit 4  
RL = 300 , CL = 35 pF,  
VS1 = VS2 = 2 V, Test Circuit 5  
VS = 1.5 V; RS = 0 , CL = 1 nF,  
Test Circuit 6  
24  
11  
1
tOFF  
Break-Before-Make Time Delay, tD  
(ADG723 Only)  
Charge Injection  
7
2
Off Isolation  
–60  
–80  
dB typ  
dB typ  
RL = 50 , CL = 5 pF, f = 10 MHz  
RL = 50 , CL = 5 pF, f = 1 MHz,  
Test Circuit 7  
Channel-to-Channel Crosstalk  
Bandwidth –3 dB  
–77  
–97  
dB typ  
dB typ  
RL = 50 , CL = 5 pF, f = 10 MHz  
RL = 50 , CL = 5 pF, f = 1 MHz,  
Test Circuit 8  
RL = 50 , CL = 5 pF,  
Test Circuit 9  
200  
MHz typ  
CS (OFF)  
CD (OFF)  
CD, CS (ON)  
7
7
18  
pF typ  
pF typ  
pF typ  
POWER REQUIREMENTS  
IDD  
VDD = +3.3 V  
Digital Inputs = 0 V or 3 V  
0.001  
µA typ  
µA max  
1.0  
NOTES  
1Temperature ranges are as follows: B Version, –40°C to +85°C.  
2Guaranteed by design, not subject to production test.  
Specifications subject to change without notice.  
REV. 0  
–3–  
ADG721/ADG722/ADG723  
ABSOLUTE MAXIMUM RATINGS1  
TERMINOLOGY  
(TA = +25°C unless otherwise noted)  
VDD  
GND  
S
D
IN  
Most Positive Power Supply Potential.  
Ground (0 V) Reference.  
Source Terminal. May be an input or output.  
Drain Terminal. May be an input or output.  
Logic Control Input.  
Ohmic resistance between D and S.  
On resistance match between any two channels  
i.e., RON max – RON min.  
Flatness is defined as the difference between the  
maximum and minimum value of on resistance as  
measured over the specified analog signal range.  
Source leakage current with the switch “OFF.”  
Drain leakage current with the switch “OFF.”  
VDD to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to +7 V  
Analog, Digital Inputs2 . . . . . . . . . . . –0.3 V to VDD + 0.3 V or  
30 mA, Whichever Occurs First  
Continuous Current, S or D . . . . . . . . . . . . . . . . . . . . . 30 mA  
Operating Temperature Range  
Industrial (B Version) . . . . . . . . . . . . . . . . . –40°C to +85°C  
Storage Temperature Range . . . . . . . . . . . . . –65°C to +150°C  
Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . +150°C  
µSOIC Package, Power Dissipation . . . . . . . . . . . . . . . 450 mW  
θJA Thermal Impedance . . . . . . . . . . . . . . . . . . . . . 206°C/W  
θJC Thermal Impedance . . . . . . . . . . . . . . . . . . . . . . 44°C/W  
Lead Temperature, Soldering  
Vapor Phase (60 sec) . . . . . . . . . . . . . . . . . . . . . . . . +215°C  
Infrared (15 sec) . . . . . . . . . . . . . . . . . . . . . . . . . . . . +220°C  
ESD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 kV  
RON  
RON  
RFLAT(ON)  
IS (OFF)  
I
D (OFF)  
ID, IS (ON) Channel leakage current with the switch “ON.”  
VD (VS)  
CS (OFF)  
CD (OFF)  
Analog voltage on terminals D, S.  
“OFF” Switch Source Capacitance.  
“OFF” Switch Drain Capacitance.  
NOTES  
1Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions above those listed in the operational sections  
of this specification is not implied. Exposure to absolute maximum rating condi-  
tions for extended periods may affect device reliability. Only one absolute maxi-  
mum rating may be applied at any one time.  
CD, CS (ON) “ON” Switch Capacitance.  
tON  
tOFF  
tD  
Delay between applying the digital control input  
and the output switching on.  
Delay between applying the digital control input  
and the output switching off.  
“OFF” time or “ON” time measured between the  
90% points of both switches, When switching  
from one address state to another. (ADG723 Only)  
A measure of unwanted signal which is coupled  
through from one channel to another as a result  
of parasitic capacitance.  
2Overvoltages at IN, S or D will be clamped by internal diodes. Current should be  
limited to the maximum ratings given.  
Table I. Truth Table (ADG721/ADG722)  
Crosstalk  
ADG721 In  
ADG722 In  
Switch Condition  
0
1
1
0
OFF  
ON  
Off Isolation A measure of unwanted signal coupling through  
an “OFF” switch.  
Charge  
Injection  
A measure of the glitch impulse transferred  
during switching.  
Table II. Truth Table (ADG723)  
Switch 1  
Logic  
Switch 2  
PIN CONFIGURATION  
0
1
OFF  
ON  
ON  
OFF  
8-Lead SOIC (RM-8)  
1
2
3
4
8
7
6
5
V
DD  
S1  
D1  
ADG721/  
722/723  
IN1  
D2  
S2  
IN2  
TOP VIEW  
(Not to Scale)  
GND  
ORDERING GUIDE  
Model  
Temperature Range  
Brand*  
Package Description  
Package Option  
ADG721BRM  
ADG722BRM  
ADG723BRM  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
S6B  
S7B  
S8B  
µSOIC  
µSOIC  
µSOIC  
RM-8  
RM-8  
RM-8  
*Brand = Due to package size limitations, these three characters represent the part number.  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection.  
Although the ADG721/ADG722/ADG723 features proprietary ESD protection circuitry, per-  
manent damage may occur on devices subjected to high energy electrostatic discharges. There-  
fore, proper ESD precautions are recommended to avoid performance degradation or loss of  
functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
–4–  
REV. 0  
ADG721/ADG722/ADG723  
Typical Performance Characteristics–  
1m  
6.0  
5.5  
5.0  
T
= +25؇C  
A
V
= +5V  
DD  
V
= +2.7V  
DD  
100␮  
10␮  
1␮  
4.5  
4.0  
V
= +4.5V  
DD  
V
= +3.0V  
DD  
3.5  
3.0  
2.5  
2.0  
V
= +5.0V  
DD  
100n  
10n  
1n  
1.5  
1.0  
0.5  
0
10  
100  
1k  
10k  
100k  
1M  
10M  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
FREQUENCY – Hz  
V
OR V – DRAIN OR SOURCE VOLTAGE – V  
S
D
Figure 4. Supply Current vs. Input Switching Frequency  
Figure 1. On Resistance as a Function of VD (VS) Single  
Supplies  
6.0  
–30  
+85؇C  
V
= +3V  
V
= +3V, +5V  
DD  
DD  
–40  
–50  
–60  
–70  
5.0  
4.0  
3.0  
2.0  
+25؇C  
–40؇C  
–80  
–90  
1.0  
0
–100  
10k  
100k  
1M  
10M  
100M  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
FREQUENCY – Hz  
V
OR V – DRAIN OR SOURCE VOLTAGE – V  
D
S
Figure 2. On Resistance as a Function of VD (VS) for  
Different Temperatures VDD = +3 V  
Figure 5. Off Isolation vs. Frequency  
6.0  
–30  
–40  
V
= +3V, +5V  
V
= +5V  
DD  
DD  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
–50  
+25؇C  
+85؇C  
–40؇C  
–60  
–70  
–80  
1.5  
1.0  
0.5  
0
–90  
–100  
–110  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
10k  
100k  
1M  
10M  
100M  
FREQUENCY – Hz  
V
OR V – DRAIN OR SOURCE VOLTAGE – V  
S
D
Figure 3. On Resistance as a Function of VD (VS) for  
Different Temperatures VDD = +5 V  
Figure 6. Crosstalk vs. Frequency  
REV. 0  
–5–  
ADG721/ADG722/ADG723  
–6  
V
= +5V  
DD  
–7  
–8  
–9  
–10  
–11  
–12  
100  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY – Hz  
Figure 7. On Response vs. Frequency  
Test Circuits  
I
DS  
V1  
I
(OFF)  
A
I
(OFF)  
A
I
D
(ON)  
A
S
D
S
D
S
D
S
D
V
R
= V1/I  
V
V
V
V
D
S
ON  
DS  
S
D
S
Test Circuit 1. On Resistance  
Test Circuit 2. Off Leakage  
Test Circuit 3. On Leakage  
V
DD  
0.1F  
ADG721  
V
V
50%  
50%  
50%  
IN  
IN  
V
DD  
V
L
OUT  
S
D
50%  
90%  
ADG722  
R
C
L
V
S
35pF  
300⍀  
IN  
90%  
V
OUT  
GND  
tOFF  
tON  
Test Circuit 4. Switching Times  
V
V
DD  
0.1F  
V
IN  
50%  
50%  
90%  
DD  
0V  
0V  
S1  
D1  
V
V
S1  
OUT1  
90%  
V
V
OUT1  
R
C
L1  
35pF  
L1  
V
OUT2  
S2  
D2  
R
300⍀  
V
S2  
C
IN1, IN2  
L2  
300⍀  
L2  
35pF  
V
IN  
90%  
90%  
GND  
OUT2  
0V  
tD  
tD  
Test Circuit 5. Break-Before-Make Time Delay, tD (ADG723 Only)  
–6–  
REV. 0  
ADG721/ADG722/ADG723  
V
DD  
SW ON  
SW OFF  
V
DD  
V
R
IN  
S
S
D
V
OUT  
C
1nF  
L
V
S
IN  
V
OUT  
V  
OUT  
GND  
Q
= C 
؋
 V  
INJ  
L
OUT  
Test Circuit 6. Charge Injection  
V
V
DD  
DD  
V
V
DD  
DD  
0.1F  
0.1F  
S
D
S
D
V
OUT  
V
OUT  
R
50⍀  
L
R
50⍀  
L
IN  
IN  
V
V
S
V
IN  
V
S
IN  
GND  
GND  
Test Circuit 7. Off Isolation  
Test Circuit 9. Bandwidth  
V
V
DD  
DD  
0.1F  
50⍀  
S
D
D
V
IN1  
V
S
V
IN2  
S
NC  
V
OUT  
GND  
R
L
50⍀  
CHANNEL-TO-CHANNEL  
CROSSTALK  
= 20 
؋
 LOG V /V  
S
OUT  
Test Circuit 8. Channel-to-Channel Crosstalk  
REV. 0  
–7–  
ADG721/ADG722/ADG723  
APPLICATIONS INFORMATION  
Off Isolation  
The ADG721/ADG722/ADG723 belongs to Analog Devices’  
new family of CMOS switches. This series of general purpose  
switches have improved switching times, lower on resistance,  
higher bandwidths, low power consumption and low leakage  
currents.  
Off isolation is a measure of the input signal coupled through an  
off switch to the switch output. The capacitance, CDS, couples  
the input signal to the output load, when the switch is off as  
shown in Figure 9.  
C
DS  
ADG721/ADG722/ADG723 Supply Voltages  
Functionality of the ADG721/ADG722/ADG723 extends from  
+1.8 V to +5.5 V single supply, which makes it ideal for battery  
powered instruments, where important design parameters are  
power efficiency and performance.  
S
D
V
OUT  
V
IN  
R
LOAD  
C
C
D
LOAD  
It is important to note that the supply voltage effects the input  
signal range, the on resistance and the switching times of the  
part. By taking a look at the typical performance characteristics  
and the specifications, the effects of the power supplies can be  
clearly seen.  
Figure 9. Off Isolation Is Affected by External Load Resis-  
tance and Capacitance  
The larger the value of CDS, larger values of feedthrough will be  
produced. The typical performance characteristic graph of Fig-  
ure 5 illustrates the drop in off isolation as a function of fre-  
quency. From dc to roughly 1 MHz, the switch shows better  
than –80 dB isolation. Up to frequencies of 10 MHz, the off  
isolation remains better than –60 dB. As the frequency increases,  
more and more of the input signal is coupled through to the  
output. Off isolation can be maximized by choosing a switch  
with the smallest CDS as possible. The values of load resistance  
and capacitance also affect off isolation, as they contribute to  
the coefficients of the poles and zeros in the transfer function of  
the switch when open.  
For VDD = +1.8 V, on resistance is typically 40 over the tem-  
perature range.  
On Response vs. Frequency  
Figure 8 illustrates the parasitic components that affect the ac  
performance of CMOS switches (the switch is shown surrounded  
by a box). Additional external capacitances will further degrade  
some performance. These capacitances affect feedthrough,  
crosstalk and system bandwidth.  
C
DS  
s(RLOAD CDS  
)
S
D
A(s) =  
V
OUT  
R
s(RLOAD )(CLOAD + CD + CDS ) +1  
ON  
V
IN  
R
LOAD  
C
C
D
LOAD  
Figure 8. Switch Represented by Equivalent Parasitic  
Components  
The transfer function that describes the equivalent diagram of  
the switch (Figure 8) is of the form (A)s shown below.  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
8-Lead SOIC  
s(RON  
CDS ) +1  
A(s) = RT  
(RM-8)  
s(RON CT RT ) +1  
0.122 (3.10)  
0.114 (2.90)  
where:  
CT = CLOAD + CD + CDS  
RT = RLOAD/(RLOAD + RON  
5
4
8
1
)
0.122 (3.10)  
0.114 (2.90)  
0.199 (5.05)  
0.187 (4.75)  
The signal transfer characteristic is dependent on the switch  
channel capacitance, CDS. This capacitance creates a frequency  
zero in the numerator of the transfer function A(s). Because the  
switch on resistance is small, this zero usually occurs at high  
frequencies. The bandwidth is a function of the switch output  
capacitance combined with CDS and the load capacitance. The  
frequency pole corresponding to these capacitances appears in  
the denominator of A(s).  
PIN 1  
0.0256 (0.65) BSC  
0.120 (3.05)  
0.120 (3.05)  
0.112 (2.84)  
0.112 (2.84)  
0.043 (1.09)  
0.037 (0.94)  
0.006 (0.15)  
0.002 (0.05)  
33°  
27°  
0.018 (0.46)  
0.028 (0.71)  
0.016 (0.41)  
0.011 (0.28)  
0.003 (0.08)  
SEATING  
PLANE  
0.008 (0.20)  
The dominant effect of the output capacitance, CD, causes the  
pole breakpoint frequency to occur first. Therefore, in order to  
maximize bandwidth a switch must have a low input and  
output capacitance and low on resistance. The On Response  
vs. Frequency plot for the ADG721/ADG722/ADG723 can  
be seen in Figure 7.  
–8–  
REV. 0  

相关型号:

ADG721BRM-REEL

CMOS, Low Voltage, 4 Ω Dual SPST Switches in 3 mm × 2 mm LFCSP
ADI

ADG721BRM-REEL

DUAL 1-CHANNEL, SGL POLE SGL THROW SWITCH, PDSO8, MO-187AA, MSOP-8
ROCHESTER

ADG721BRM-REEL7

CMOS, Low Voltage, 4 Ω Dual SPST Switches in 3 mm × 2 mm LFCSP
ADI

ADG721BRM-REEL7

DUAL 1-CHANNEL, SGL POLE SGL THROW SWITCH, PDSO8, MO-187AA, MSOP-8
ROCHESTER

ADG721BRMZ

CMOS, Low Voltage, 4 Ω Dual SPST Switches in 3 mm × 2 mm LFCSP
ADI

ADG721BRMZ

DUAL 1-CHANNEL, SGL POLE SGL THROW SWITCH, PDSO8, ROHS COMPLIANT, MO-187AA, MSOP-8
ROCHESTER

ADG721BRMZ-REEL

CMOS, Low Voltage, 4 Ω Dual SPST Switches in 3 mm × 2 mm LFCSP
ADI

ADG721BRMZ-REEL

DUAL 1-CHANNEL, SGL POLE SGL THROW SWITCH, PDSO8, ROHS COMPLIANT, MO-187AA, MSOP-8
ROCHESTER

ADG721BRMZ-REEL7

CMOS, Low Voltage, 4 Ω Dual SPST Switches in 3 mm × 2 mm LFCSP
ADI

ADG721BRMZ-REEL7

DUAL 1-CHANNEL, SGL POLE SGL THROW SWITCH, PDSO8, ROHS COMPLIANT, MO-187AA, MSOP-8
ROCHESTER

ADG721_11

CMOS, Low Voltage, 4 Ω Dual SPST Switches in 3 mm × 2 mm LFCSP
ADI

ADG721_15

CMOS, Low Voltage
ADI