ADG739BRUZ-REEL7 [ADI]

CMOS, Low-Voltage, 3-Wire Serially-Controlled, Matrix Switch;
ADG739BRUZ-REEL7
型号: ADG739BRUZ-REEL7
厂家: ADI    ADI
描述:

CMOS, Low-Voltage, 3-Wire Serially-Controlled, Matrix Switch

光电二极管
文件: 总12页 (文件大小:153K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CMOS, Low-Voltage, 3-Wire  
Serially-Controlled, Matrix Switches  
a
ADG738/ADG739  
FEATURES  
FUNCTIONAL BLOCK DIAGRAMS  
3-Wire Serial Interface  
2.7 V to 5.5 V Single Supply  
2.5 On Resistance  
ADG738  
ADG739  
0.75 On-Resistance Flatness  
100 pA Leakage Currents  
Single 8-to-1 Multiplexer ADG738  
Dual 4-to-1 Multiplexer ADG739  
Power-On Reset  
S1  
S1A  
S4A  
DA  
D
TTL/CMOS-Compatible  
S1B  
S4B  
DB  
APPLICATIONS  
S8  
Data Acquisition Systems  
Communication Systems  
Relay Replacement  
INPUT SHIFT  
REGISTER  
INPUT SHIFT  
REGISTER  
DOUT  
DOUT  
Audio and Video Switching  
SCLK  
SYNC  
DIN  
SCLK DIN SYNC RESET  
GENERAL DESCRIPTION  
PRODUCT HIGHLIGHTS  
The ADG738 and ADG739 are CMOS analog matrix switches  
with a serially-controlled 3-wire interface. The ADG738 is an  
8-channel matrix switch, while the ADG739 is a dual 4-channel  
matrix switch. On resistance is closely matched between switches  
and very flat over the full signal range.  
1. 3-Wire Serial Interface.  
2. Single Supply Operation. The ADG738 and ADG739 are  
fully specified and guaranteed with 3 V and 5 V supply rails.  
3. Low On Resistance, 2.5 typical.  
4. Any configuration of switches may be on or off at any one time.  
5. Guaranteed Break-Before-Make Switching Action.  
6. Small 16-lead TSSOP Package.  
The ADG738 and ADG739 utilize a 3-wire serial interface that  
is compatible with SPI™, QSPI™, MICROWIRE™, and some  
DSP interface standards. The output of the shift register DOUT  
enables a number of these parts to be daisy-chained. On power-up,  
the internal shift register contains all zeros and all switches  
are in the OFF state.  
Each switch conducts equally well in both directions when on,  
making these parts suitable for both multiplexing and demulti-  
plexing applications. As each switch is turned on or off by a  
separate bit, these parts can also be configured as a type of switch  
array, where any, all, or none of the eight switches may be closed  
at any time. The input signal range extends to the supply rails.  
All channels exhibit break-before-make switching action,  
preventing momentary shorting when switching channels.  
The ADG738 and ADG739 are available in 16-lead TSSOP  
packages.  
SPI and QSPI are trademarks of Motorola, Inc.  
MICROWIRE is a trademark of National Semiconductor Corporation.  
REV. 0  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, nor for any infringements of patents or other rights of third parties  
which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
World Wide Web Site: http://www.analog.com  
© Analog Devices, Inc., 2000  
ADG738/ADG739–SPECIFICATIONS1  
(VDD = 5 V ؎ 10%, GND = 0 V, unless otherwise noted.)  
B Version  
–40؇C  
to +85؇C  
Parameter  
25؇C  
Unit  
Test Conditions/Comments  
ANALOG SWITCH  
Analog Signal Range  
0 V to VDD  
V
On Resistance (RON  
)
2.5  
4.5  
typ  
max  
typ  
max  
typ  
max  
VS = 0 V to VDD, IS = 10 mA;  
Test Circuit 1  
VS = 0 V to VDD, IS = 10 mA  
5
0.4  
0.8  
On-Resistance Match Between  
Channels (RON  
)
On-Resistance Flatness (RFLAT(ON)  
)
0.75  
VS = 0 V to VDD, IS = 10 mA  
1.2  
LEAKAGE CURRENTS  
VDD = 5.5 V  
Source OFF Leakage IS (OFF)  
0.01  
0.1  
0.01  
0.1  
0.01  
0.1  
nA typ  
nA max  
nA typ  
nA max  
nA typ  
nA max  
VD = 4.5 V/1 V, VS = 1 V/4.5 V;  
Test Circuit 2  
VD = 4.5 V/1 V, VS = 1 V/4.5 V;  
Test Circuit 3  
VD = VS = 1 V/4.5 V, Test Circuit 4  
0.3  
1
Drain OFF Leakage ID (OFF)  
Channel ON Leakage ID, IS (ON)  
1
DIGITAL INPUTS  
Input High Voltage, VINH  
Input Low Voltage, VINL  
Input Current, IINL or IINH  
2.4  
0.8  
V min  
V max  
µA typ  
µA max  
pF typ  
0.005  
3
VIN = VINL or VINH  
0.1  
CIN, Digital Input Capacitance  
DIGITAL OUTPUT  
Output Low Voltage  
COUT, Digital Output Capacitance  
0.4  
max  
pF typ  
ISINK = 6 mA  
4
DYNAMIC CHARACTERISTICS2  
tON  
20  
10  
9
ns typ  
ns max  
ns typ  
ns max  
ns typ  
ns min  
pC typ  
RL = 300 , CL = 35 pF, Test Circuit 5;  
32  
17  
1
VS1 = 3 V  
tOFF  
RL = 300 , CL = 35 pF, Test Circuit 5;  
V
S1 = 3 V  
Break-Before-Make Time Delay, tD  
Charge Injection  
RL = 300 , CL = 35 pF;  
VS1 = VS8 = 3 V, Test Circuit 5  
VS = 2.5 V, RS = 0 , CL = 1 nF;  
Test Circuit 6  
3
Off Isolation  
–55  
–75  
dB typ  
dB typ  
RL = 50 , CL = 5 pF, f = 10 MHz;  
RL = 50 , CL = 5 pF, f = 1 MHz;  
Test Circuit 8  
Channel-to-Channel Crosstalk  
–55  
–75  
dB typ  
dB typ  
RL = 50 , CL = 5 pF, f = 10 MHz;  
RL = 50 , CL = 5 pF, f = 1 MHz;  
Test Circuit 7  
–3 dB Bandwidth  
ADG738  
ADG739  
65  
100  
13  
MHz typ  
MHz typ  
pF typ  
RL = 50 , CL = 5 pF, Test Circuit 8  
CS (OFF)  
C
D (OFF)  
ADG738  
ADG739  
85  
42  
pF typ  
pF typ  
CD, CS (ON)  
ADG738  
ADG739  
96  
48  
pF typ  
pF typ  
POWER REQUIREMENTS  
IDD  
VDD = 5.5 V  
Digital Inputs = 0 V or 5.5 V  
10  
µA typ  
µA max  
20  
NOTES  
1Temperature range is as follows: B Version: –40°C to +85°C.  
2Guaranteed by design, not subject to production test.  
Specifications subject to change without notice.  
–2–  
REV. 0  
ADG738/ADG739  
SPECIFICATIONS1  
(VDD = 3 V ؎ 10%, GND = 0 V, unless otherwise noted.)  
B Version  
–40؇C  
Parameter  
25؇C  
to +85؇C  
Unit  
Test Conditions/Comments  
ANALOG SWITCH  
Analog Signal Range  
0 V to VDD  
V
On Resistance (RON  
)
6
11  
typ  
max  
typ  
max  
typ  
VS = 0 V to VDD, IS = 10 mA;  
Test Circuit 1  
VS = 0 V to VDD, IS = 10 mA  
12  
On-Resistance Match Between  
0.4  
1.2  
3.5  
Channels (RON  
)
On-Resistance Flatness (RFLAT(ON)  
)
VS = 0 V to VDD, IS = 10 mA  
LEAKAGE CURRENTS  
VDD = 3.3 V  
Source OFF Leakage IS (OFF)  
0.01  
0.1  
0.01  
0.1  
0.01  
0.1  
nA typ  
nA max  
nA typ  
nA max  
nA typ  
nA max  
VS = 3 V/1 V, VD = 1 V/3 V;  
Test Circuit 2  
VD = 3 V/1 V, VD = 1 V/3 V;  
Test Circuit 3  
0.3  
1
Drain OFF Leakage ID (OFF)  
Channel ON Leakage ID, IS (ON)  
VD = VS = 3 V/1 V, Test Circuit 4  
1
DIGITAL INPUTS  
Input High Voltage, VINH  
Input Low Voltage, VINL  
Input Current, IINL or IINH  
2.0  
0.4  
V min  
V max  
µA typ  
µA max  
pF typ  
0.005  
3
VIN = VINL or VINH  
0.1  
CIN, Digital Input Capacitance  
DIGITAL OUTPUT  
Output Low Voltage  
COUT, Digital Output Capacitance  
0.4  
max  
pF typ  
ISINK = 6 mA  
4
DYNAMIC CHARACTERISTICS2  
tON  
40  
14  
12  
3
ns typ  
ns max  
ns typ  
ns max  
ns typ  
ns min  
pC typ  
RL = 300 , CL = 35 pF, Test Circuit 5;  
70  
25  
1
VS1 = 2 V  
tOFF  
RL = 300 , CL = 35 pF, Test Circuit 5;  
VS1 = 2 V  
RL = 300 , CL = 35 pF;  
VS = 2 V, Test Circuit 5  
VS = 1.5 V, RS = 0 , CL = 1 nF;  
Test Circuit 6  
Break-Before-Make Time Delay, tD  
Charge Injection  
Off Isolation  
–55  
–75  
dB typ  
dB typ  
RL = 50 , CL = 5 pF, f = 10 MHz;  
RL = 50 , CL = 5 pF, f = 1 MHz;  
Test Circuit 8  
Channel-to-Channel Crosstalk  
–55  
–75  
dB typ  
dB typ  
RL = 50 , CL = 5 pF, f = 10 MHz;  
RL = 50 , CL = 5 pF, f = 1 MHz;  
Test Circuit 7  
–3 dB Bandwidth  
ADG738  
ADG739  
CS (OFF)  
CD (OFF)  
ADG738  
65  
100  
13  
MHz typ  
MHz typ  
pF typ  
RL = 50 , CL = 5 pF, Test Circuit 8  
85  
42  
pF typ  
pF typ  
ADG739  
CD, CS (ON)  
ADG738  
ADG739  
96  
48  
pF typ  
pF typ  
POWER REQUIREMENTS  
IDD  
VDD = 3.3 V  
Digital Inputs = 0 V or 3.3 V  
10  
µA typ  
µA max  
20  
NOTES  
1Temperature ranges are as follows: B Versions: –40°C to +85°C.  
2Guaranteed by design, not subject to production test.  
Specifications subject to change without notice.  
REV. 0  
–3–  
ADG738/ADG739  
TIMING CHARACTERISTICS1, 2  
(VDD = 2.7 V to 5.5 V. All specifications –40؇C to +85؇C, unless otherwise noted.)  
Parameter  
Limit at TMIN, TMAX  
Unit  
Conditions/Comments  
fSCLK  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
30  
33  
13  
13  
0
5
4.5  
0
33  
20  
MHz max  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
SCLK Cycle Frequency  
SCLK Cycle Time  
SCLK High Time  
SCLK Low Time  
SYNC to SCLK Active Edge Setup Time  
Data Setup Time  
Data Hold Time  
SCLK Falling Edge to SYNC Rising Edge  
Minimum SYNC High Time  
SCLK Rising Edge to DOUT Valid  
t83  
t9  
NOTES  
1See Figure 1.  
2All input signals are specified with tr = tf = 5 ns (10% to 90% of VDD) and timed from a voltage level of (VIL + VIH)/2.  
3CL = 20 pF, RL = 1 k.  
Specifications subject to change without notice.  
t1  
SCLK  
t2  
t3  
t8  
t7  
t4  
SYNC  
t6  
t5  
DIN  
DB7  
t9  
DB0  
1
1
DOUT  
DB7  
DB0  
NOTE  
1
DATA FROM LAST WRITE CYCLE  
Figure 1. 3-Wire Serial Interface Timing Diagram  
–4–  
REV. 0  
ADG738/ADG739  
PIN FUNCTION DESCRIPTIONS  
Mnemonic Function  
ADG738  
ADG739  
1
1
SCLK  
RESET  
DIN  
Serial Clock Input. Data is clocked into the input shift register on the falling edge of the  
serial clock input. These devices can accommodate serial input rates of up to 30 MHz.  
Active low control input that clears the input register and turns all switches to the OFF  
condition.  
Serial Data Input. Data is clocked into the 8-bit input register on the falling edge of the  
serial clock input.  
2
3
3
4, 5, 6, 7  
8
4, 5, 6, 7  
8, 9  
Sxx  
Dx  
Source. May be an input or output.  
Drain. May be an input or output.  
9, 10, 11, 12 10, 11, 12, 13 Sxx  
Source. May be an input or output.  
13  
14  
15  
14  
15  
16  
VDD  
GND  
DOUT  
Power Supply Input. These parts can be operated from a supply of 2.7 V to 5.5 V.  
Ground Reference.  
Data Output. This allows a number a parts to be daisy-chained. Data is clocked out of  
the input shift register on the rising edge of SCLK. This is an open drain output which  
should be pulled to the supply with an external resistor.  
16  
2
SYNC  
Active Low Control Input. This is the frame synchronization signal for the input data.  
When SYNC goes low, it powers on the SCLK and DIN buffers and the input shift  
register is enabled. Data is transferred on the falling edges of the following clocks.  
Taking SYNC high updates the switch conditions.  
PIN CONFIGURATIONS  
SCLK  
16  
1
2
3
SYNC  
SCLK  
16  
15  
14  
13  
12  
11  
10  
9
1
2
3
4
5
6
7
8
DOUT  
GND  
RESET  
15 DOUT  
14 GND  
SYNC  
DIN  
DIN  
V
ADG738  
DD  
ADG739  
V
13  
12  
11  
10  
9
S1  
S2  
S3  
S4  
4
5
6
7
8
S1A  
S2A  
S3A  
S4A  
DA  
DD  
S1B  
S2B  
S3B  
S4B  
DB  
TOP VIEW  
(Not to Scale)  
TOP VIEW  
(Not to Scale)  
S5  
S6  
S7  
S8  
D
ORDERING GUIDE  
Package Description  
Model  
Temperature Range  
Package Option  
ADG738BRU  
ADG739BRU  
–40°C to +85°C  
–40°C to +85°C  
Thin Shrink Small Outline Package (TSSOP)  
Thin Shrink Small Outline Package (TSSOP)  
RU-16  
RU-16  
REV. 0  
–5–  
ADG738/ADG739  
ABSOLUTE MAXIMUM RATINGS1  
(TA = 25°C unless otherwise noted.)  
TSSOP Package  
θ
JA Thermal Impedance . . . . . . . . . . . . . . . . . . . 150.4°C/W  
VDD to GND . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to +7 V  
Analog, Digital Inputs2 . . . . . . . . . . –0.3 V to VDD + 0.3 V or  
30 mA, Whichever Occurs First  
Peak Current, S or D . . . . . . . . . . . . . . . . . . . . . . . . . . 100 mA  
(Pulsed at 1 ms, 10% Duty Cycle max)  
Continuous Current, Each S . . . . . . . . . . . . . . . . . . . . . 30 mA  
Continuous Current D, ADG739 . . . . . . . . . . . . . . . . . 80 mA  
Continuous Current D, ADG738 . . . . . . . . . . . . . . . . 120 mA  
Operating Temperature Range  
Industrial (B Version) . . . . . . . . . . . . . . . . –40°C to +85°C  
Storage Temperature Range . . . . . . . . . . . . –65°C to +150°C  
Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . 150°C  
θ
JC Thermal Impedance . . . . . . . . . . . . . . . . . . . . 27.6°C/W  
Lead Temperature, Soldering (10 seconds) . . . . . . . . . . 300°C  
IR Reflow, Peak Temperature . . . . . . . . . . . . . . . . . . . . 220°C  
NOTES  
1Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions above those listed in the operational  
sections of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device reliability. Only one absolute  
maximum rating may be applied at any one time.  
2Overvoltages at IN, S or D will be clamped by internal diodes. Current should be  
limited to the maximum ratings given.  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although  
the ADG738/ADG739 feature proprietary ESD protection circuitry, permanent damage may occur  
on devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions  
are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
TERMINOLOGY  
VDD  
IDD  
GND  
S
Most Positive Power Supply Potential.  
Positive Supply Current.  
CD, CS (ON) “ON” Switch Capacitance. Measured with refer-  
ence to ground.  
CIN  
tON  
Digital Input Capacitance.  
Ground (0 V) Reference.  
Delay time between the 50% and 90% points  
of the SYNC rising edge and the switch “ON”  
condition.  
Source Terminal. May be an input or output.  
Drain Terminal. May be an input or output.  
Analog Voltage on Terminals D, S.  
Ohmic Resistance between D and S.  
D
V
D (VS)  
tOFF  
Delay time between the 50% and 90% points  
of the SYNC rising edge and the switch “OFF”  
condition.  
RON  
RON  
On Resistance Match Between any Two Chan-  
nels, i.e., RONmax – RONmin.  
tD  
“OFF” time measured between the 80% points of  
both switches when switching from one switch to  
another.  
RFLAT(ON)  
Flatness is defined as the difference between the  
maximum and minimum value of on resistance  
as measured over the specified analog signal range.  
Charge  
Injection  
A measure of the glitch impulse transferred from  
the digital input to the analog output during  
switching.  
IS (OFF)  
Source Leakage Current with the Switch “OFF.”  
Drain Leakage Current with the Switch “OFF.”  
Channel Leakage Current with the Switch “ON.”  
Maximum Input Voltage for Logic “0.”  
Minimum Input Voltage for Logic “1.”  
Input Current of the Digital Input.  
I
D (OFF)  
Off Isolation A measure of unwanted signal coupling through  
an “OFF” switch.  
ID, IS (ON)  
VINL  
Crosstalk  
A measure of unwanted signal which is coupled  
through from one channel to another as a result  
of parasitic capacitance.  
VINH  
I
INL(IINH  
)
Bandwidth  
The frequency at which the output is attenuated  
by 3 dBs.  
CS (OFF)  
“OFF” Switch Source Capacitance. Measured  
with reference to ground.  
On Response The frequency response of the “ON” switch.  
C
D (OFF)  
“OFF” Switch Drain Capacitance. Measured  
with reference to ground.  
Insertion  
Loss  
The loss due to the ON resistance of the switch.  
–6–  
REV. 0  
Typical Performance CharacteristicsADG738/ADG739  
8
8
8
7
T
V
= 25؇C  
V
V
= 3V  
= 0V  
V
V
= 5V  
= 0V  
A
DD  
SS  
DD  
SS  
7
7
= 0V  
SS  
V
= 2.7V  
DD  
6
5
4
3
6
5
4
6
5
4
3
+85؇C  
V
= 3.3V  
DD  
V
= 4.5V  
DD  
+25؇C  
40؇C  
V
= 5.5V  
DD  
3
2
+85؇C  
2
+25؇C  
2
1
40؇C  
1
1
0
0
0
0
1
2
3
4
5
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0
1
2
3
4
5
V
OR V DRAIN OR SOURCE VOLTAGE V  
D
S
V
, V , DRAIN OR SOURCE VOLTAGE – V  
V
OR V DRAIN OR SOURCE VOLTAGE V  
S
D
S
D
Figure 2. On Resistance as a Function  
of VD (VS)  
Figure 3. On Resistance as a Function  
of VD (VS) for Different Temperatures  
Figure 4. On Resistance as a Function  
of VD (VS) for Different Temperatures  
0.12  
0.35  
0.12  
V
V
T
= 3V  
= 0V  
= 25؇C  
V
V
= 5V  
= 0V  
V
V
T
= 5V  
= 0V  
= 25؇C  
DD  
DD  
SS  
DD  
SS  
SS  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.08  
0.04  
0.00  
0.08  
A
A
I
(ON)  
D
I
(ON)  
D
0.04  
0.00  
I
(OFF)  
D
I
(OFF)  
S
I
(OFF)  
1.5  
0.04  
0.04  
0.08  
0.12  
I
(OFF)  
S
D
I
(ON)  
D
I
(OFF)  
4
D
0.08  
0.12  
0.00  
I
(OFF)  
65  
S
0.05  
0
1
2
3
5
0
0.5  
1.0  
V
2.0  
2.5  
3.0  
15  
25  
35  
45  
55  
75  
85  
V
(V Volts  
S)  
(V Volts  
TEMPERATURE ؇C  
D
D
S)  
Figure 5. Leakage Currents as a Func-  
tion of VD (VS)  
Figure 6. Leakage Currents as a Func-  
tion of VD (VS)  
Figure 7. Leakage Currents as a Func-  
tion of Temperature  
10m  
20  
0.35  
V
V
= 3V  
= 0V  
T = 25؇C  
A
T
= 25؇C  
DD  
SS  
A
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
10  
V
V
= 5V  
= 0V  
DD  
SS  
1m  
0
10  
20  
30  
40  
V
= 5V  
DD  
V
V
= 3V  
= 0V  
DD  
100␮  
SS  
V
= 3V  
DD  
I
(OFF)  
D
10␮  
1␮  
0.00  
I
(ON)  
I
(OFF)  
55  
D
S
0.05  
15  
25  
35  
45  
65  
75  
85  
10k  
100k  
1M  
10M  
100M  
0
1
2
3
4
5
TEMPERATURE ؇C  
FREQUENCY Hz  
VOLTAGE Volts  
Figure 8. Leakage Currents as a Func-  
tion of Temperature  
Figure 9. Input Currents vs. Switching  
Frequency  
Figure 10. Charge Injection vs. Source  
Voltage  
REV. 0  
–7–  
ADG738/ADG739  
0
20  
40  
0
20  
40  
50  
V
T
= 5V  
= 25؇C  
V
T
= 5V  
DD  
DD  
= 25؇C  
T
, V = 3V  
ON DD  
45  
40  
35  
30  
25  
20  
A
A
T
, V = 5V  
ON DD  
60  
80  
60  
80  
T
, V = 3V  
OFF DD  
15  
10  
5
100  
120  
100  
120  
T
, V = 5V  
OFF DD  
0
40  
30k 100k  
1M  
10M  
100M  
30k 100k  
1M  
10M  
100M  
20  
0
20  
40  
60  
80  
FREQUENCY Hz  
FREQUENCY Hz  
TEMPERATURE ؇C  
Figure 11. TON /TOFF Times vs.  
Temperature  
Figure 12. Off Isolation vs. Frequency  
Figure 13. Crosstalk vs. Frequency  
0
V
= 5V  
DD  
= 25؇C  
T
A
ADG738  
ADG739  
5  
10  
15  
20  
30k 100k  
1M  
10M  
100M  
FREQUENCY Hz  
Figure 14. On Response vs. Frequency  
–8–  
REV. 0  
ADG738/ADG739  
MICROPROCESSOR INTERFACING  
GENERAL DESCRIPTION  
The ADG738 and ADG739 are serially controlled, 8-channel  
and dual 4-channel Matrix Switches respectively. While provid-  
ing the normal multiplexing and demultiplexing functions, these  
parts also provide the user with more flexibility as to where their  
signal may be routed. Each bit of the 8-bit serial word corresponds  
to one switch of the part. A Logic 1 in the particular bit position  
turns on the switch, while a Logic 0 turns the switch off. Because  
each switch is independently controlled by an individual bit, this  
provides the option of having any, all, or none of the switches ON.  
This feature may be particularly useful in the demultiplexing  
application where the user may wish to direct one signal from  
the drain to a number of outputs (sources). Care must be taken,  
however, in the multiplexing situation where a number of inputs  
may be shorted together (separated only by the small on resis-  
tance of the switch).  
Microprocessor interfacing to the ADG738/ADG739 is via a  
serial bus that uses standard protocol compatible with micro-  
controllers and DSP processors. The communications channel  
is a 3-wire (minimum) interface consisting of a clock signal, a data  
signal, and a synchronization signal. The ADG738/ADG739 requires  
an 8-bit data word with data valid on the falling edge of SCLK.  
Data from the previous write cycle is available on the DOUT  
pin. The following figures illustrate simple 3-wire interfaces  
with popular microcontrollers and DSPs.  
ADSP-21xx to ADG738/ADG739  
An interface between the ADG738/ADG739 and the ADSP-  
21xx is shown in Figure 16. In the interface example shown,  
SPORT0 is used to transfer data to the Matrix Switch. The  
SPORT control register should be configured as follows: internal  
Clock operation, alternate framing mode; active low framing signal.  
When changing the switch conditions, a new 8-bit word is writ-  
ten to the input shift register. Some of the bits may be the same  
as the previous write cycle, as the user may not wish to change  
the state of some switches. In order to minimize glitches on the  
output of these switches, the part cleverly compares the state of  
switches from the previous write cycle. If the switch is already  
in the ON condition, and is required to stay ON, there will  
be minimal glitches on the output of the switch.  
Transmission is initiated by writing a word to the Tx register  
after the SPORT has been enabled. As the data is clocked out of  
the DSP on the rising edge of SCLK, no glue logic is required  
to interface the DSP to the Matrix Switch. The update of each  
switch condition takes place automatically when TFS is taken high.  
TFS  
DT  
SYNC  
DIN  
ADG738/  
ADG739  
POWER-ON RESET  
ADSP-21xx*  
On power-up of the device, all switches will be in the OFF con-  
dition and the internal shift register is filled with zeros and will  
remain so until a valid write takes place.  
SCLK  
SCLK  
*ADDITIONAL PINS OMITTED FOR CLARITY.  
SERIAL INTERFACE  
Figure 16. ADSP-21xx to ADG738/ADG739 Interface  
The ADG738 and ADG739 have a 3-wire serial interface  
(SYNC, SCLK, and DIN), which is compatible with SPI,  
QSPI, MICROWIRE interface standards and most DSPs. Fig-  
ure 1 shows the timing diagram of a typical write sequence.  
8051 Interface to ADG738/ADG739  
A serial interface between the ADG738/ADG739 and the 8051  
is shown in Figure 17. TXD of the 8051 drives SCLK of the  
ADG738/ADG739, while RXD drives the serial data line, DIN.  
P3.3 is a bit-programmable pin on the serial port and is used to  
drive SYNC.  
Data is written to the 8-bit shift register via DIN under the  
control of the SYNC and SCLK signals. Data may be written to  
the shift register in more or less than eight bits. In each case  
the shift register retains the last eight bits that were written.  
The 8051 provides the LSB of its SBUF register as the first bit  
in the data stream. The user will have to ensure that the data in  
the SBUF register is arranged correctly as the switch expects  
MSB first.  
When SYNC goes low, the input shift register is enabled. Data  
from DIN is clocked into the shift register on each falling edge  
of SCLK. Each bit of the 8-bit word corresponds to one of the  
eight switches. Figure 15 shows the contents of the input shift  
register. Data appears on the DOUT pin on the rising edge of  
SCLK suitable for daisy-chaining, delayed, of course, by eight  
bits. When all eight bits have been written into the shift register,  
the SYNC line is brought high again. The switches are updated  
with the new configuration and the input shift register is  
disabled. With SYNC held high, any further data or noise on  
the DIN line will have no effect on the shift register.  
When data is to be transmitted to the Matrix Switch, P3.3 is  
taken low. Data on RXD is clocked out of the microcontroller  
on the rising edge of TXD and is valid on the falling edge. As a  
result no glue logic is required between the ADG738/ADG739  
and microcontroller interface.  
P3.3  
RXD  
SYNC  
DIN  
ADG738/  
ADG739  
80C51/80L51*  
DB0 (LSB)  
S2 S1  
DB7 (MSB)  
S8 S7  
SCLK  
TXD  
S6  
S5  
S4  
S3  
DATA BITS  
*ADDITIONAL PINS OMITTED FOR CLARITY.  
Figure 15. Input Shift Register Contents  
Figure 17. 8051 Interface to ADG738/ADG739  
REV. 0  
–9–  
ADG738/ADG739  
MC68HC11 Interface to ADG738/ADG739  
allows for different combinations of the four serial devices to  
be addressed at any one time. If more devices need to be addressed  
via one chip select line, the ADG738 is an 8-channel device and  
would allow further expansion of the chip select scheme. There  
may be some digital feedthrough from the digital input lines  
because SCLK and DIN are permanently connected to each  
device. Using a burst clock will minimize the effects of digital  
feedthrough on the analog channels.  
Figure 18 shows an example of a serial interface between the  
ADG738/ADG739 and the MC68HC11 microcontroller. SCK  
of the 68HC11 drives the SCLK of the Matrix Switch, while the  
MOSI output drives the serial data line, DIN. SYNC is driven  
from one of the port lines, in this case PC7.  
PC7  
SYNC  
ADG739  
ADG738/  
ADG739  
MC68HC11*  
MOSI  
SCK  
DIN  
SYNC  
DIN  
SCLK  
SCLK  
*ADDITIONAL PINS OMITTED FOR CLARITY.  
V
ADG738  
SYNC  
DD  
Figure 18. MC68HC11 Interface to ADG738/ADG739  
1/2 OF ADG739  
DIN  
The 68HC11 is configured for master mode; MSTR = 1, CPOL  
= 0 and CPHA = 1. When data is transferred to the part, PC7 is  
taken low, data is transmitted MSB first. Data appearing on the  
MOSI output is valid on the falling edge of SCK.  
SCLK  
S1A  
S2A  
S3A  
OTHER SPI  
DEVICE  
DA  
SYNC1  
SYNC  
If the user wishes to verify the data previously written to the input  
shift register, the DOUT line could be connected to MISO of  
the MC68HC11, and with SYNC low, the shift register would  
clock data out on the rising edges of SCLK.  
DIN  
S4A  
FROM  
CONTROLLER  
OR DSP  
SCLK  
SYNC  
SCLK DIN  
OTHER SPI  
DEVICE  
SYNC2  
APPLICATIONS  
SYNC  
Expand the Number of Selectable Serial Devices Using an  
ADG739  
SCLK  
DIN  
DIN  
SCLK  
The dual 4-channel ADG739 multiplexer can be used to multiplex  
a single chip select line in order to provide chip selects for up to  
four devices on the SPI bus. Figure 19 illustrates the ADG739 in  
such a typical configuration. All devices receive the same serial  
clock and serial data, but only one device will receive the  
SYNC signal at any one time. The ADG739 is a serially controlled  
device also. One bit programmable pin of the microcontroller is  
used to enable the ADG739 via SYNC2, while another bit  
programmable pin is used as the chip select for the other serial  
devices, SYNC1. Driving SYNC2 low enables changes to be  
made to the addressed serial devices. By bringing SYNC1 low,  
the selected serial device hanging from the SPI bus will be enabled  
and data will be clocked into its shift register on the falling  
edges of SCLK. The convenient design of the matrix switch  
Figure 19. Addressing Multiple Serial Devices Using an  
ADG739  
Daisy-Chaining Multiple ADG738s  
A number of ADG738 matrix switches may be daisy-chained  
simply by using the DOUT pin. DOUT is an open drain output  
that should be pulled to the supply with an external resistor.  
Figure 20 shows a typical implementation. The SYNC pin of all  
three parts in the example are tied together. When SYNC is  
brought low, the input shift registers of all parts are enabled,  
data is written to the parts via DIN, and clocked through the  
shift registers. When the transfer is complete, SYNC is brought  
high and all switches are updated simultaneously. Further shift  
registers may be added in series.  
V
DD  
R
R
R
SCLK  
SCLK  
SCLK  
DIN  
SCLK  
DIN  
ADG739  
ADG739  
ADG739  
DOUT  
DOUT  
DOUT  
DIN  
DIN  
TO OTHER  
SERIAL DEVICES  
SYNC  
SYNC  
SYNC  
SYNC  
Figure 20. Multiple ADG739 Devices in a Daisy-Chained Configuration  
–10–  
REV. 0  
ADG738/ADG739  
TEST CIRCUITS  
I
DS  
V
DD  
V
1
V
DD  
I
(OFF)  
A
S
S1  
S2  
S8  
V
S
S
D
S
D
V
GND  
D
V
R
= V /I  
DS  
1
ON  
Test Circuit 3. IS (OFF)  
Test Circuit 1. On Resistance  
V
V
DD  
DD  
V
V
DD  
DD  
S1  
S8  
S1  
I
(ON)  
A
I
(OFF)  
A
D
D
S2  
S8  
D
D
V
V
D
D
GND  
GND  
V
V
S
S
Test Circuit 2. ID (OFF)  
Test Circuit 4. ID (ON)  
V
V
DD  
DD  
SYNC  
SYNC  
50%  
50%  
ADG738*  
V
S1  
S1  
S2 THRU S7  
S8  
V
S1  
V
R
S8  
V
= V  
S8  
S1  
90%  
V
D
80%  
OUT  
V
80%  
V
OUT  
OUT  
C
35pF  
GND  
L
L
300  
90%  
tOPEN  
tOFF  
tON  
* SIMILAR CONNECTION FOR ADG739  
Test Circuit 5. Switching Times and Break-Before-Make Times  
V
SYNC  
DD  
ADG738*  
SWITCH ON  
R
S
D
SWITCH OFF  
S
V  
OUT  
V
OUT  
Q
= C x V  
OUT  
L
C
INJ  
L
V
1nF  
S
INPUT LOGIC  
GND  
* SIMILAR CONNECTION FOR ADG739  
Test Circuit 6. Charge Injection  
REV. 0  
–11–  
ADG738/ADG739  
V
V
V
V
DD  
DD  
DD  
DD  
S1  
S8  
ADG738*  
V
S
50  
S1  
D
V
ADG738*  
OUT  
R
50⍀  
L
S2  
S8  
D
V
OUT  
R
50  
V
L
S
GND  
GND  
*SIMILAR CONNECTION FOR ADG739  
* SIMILAR CONNECTION FOR ADG739  
CHANNEL-TO-CHANNEL CROSSTALK = 20LOG (V  
S1 IS SWITCHED OFF FOR OFF ISOLATION MEASUREMENTS  
AND ON FOR BANDWIDTH MEASUREMENTS  
/V )  
10 OUT  
S
OFF ISOLATION = 20LOG (V  
/V )  
S
10  
OUT  
V
WITH SWITCH  
OUT  
INSERTION LOSS = 20LOG  
10  
V
WITHOUT SWITCH  
OUT  
Test Circuit 7. Channel-to-Channel Crosstalk  
Test Circuit 8. Off Isolation and Bandwidth  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
16-Lead TSSOP  
(RU-16)  
0.201 (5.10)  
0.193 (4.90)  
16  
9
0.177 (4.50)  
0.169 (4.30)  
0.256 (6.50)  
0.246 (6.25)  
1
8
PIN 1  
0.006 (0.15)  
0.002 (0.05)  
0.0433 (1.10)  
MAX  
8؇  
0؇  
0.0118 (0.30)  
0.0075 (0.19)  
0.0256 (0.65)  
0.028 (0.70)  
0.020 (0.50)  
0.0079 (0.20)  
0.0035 (0.090)  
SEATING  
PLANE  
BSC  
REV .0  
–12–  

相关型号:

ADG739_15

Serially-Controlled, Matrix Switches
ADI

ADG741

CMOS Low Voltage 2ohm SPST Switches in SC70 Packages
ADI

ADG741BKS

CMOS Low Voltage 2ohm SPST Switches in SC70 Packages
ADI

ADG741BKS-R2

1-CHANNEL, SGL POLE SGL THROW SWITCH, PDSO6, MO-203AB, SC-70, 6 PIN
ROCHESTER

ADG741BKS-REEL

1-CHANNEL, SGL POLE SGL THROW SWITCH, PDSO6, MO-203AB, SC-70, 6 PIN
ADI

ADG741BKS-REEL7

1-CHANNEL, SGL POLE SGL THROW SWITCH, PDSO6, MO-203AB, SC-70, 6 PIN
ROCHESTER

ADG741BKSZ-REEL

暂无描述
ADI

ADG741BKSZ-REEL7

CMOS Low Voltage SPST (NO) Switch in SC-70 Package
ADI

ADG741BKSZ-REEL7

1-CHANNEL, SGL POLE SGL THROW SWITCH, PDSO6, MO-203AB, SC-70, 6 PIN
ROCHESTER

ADG741BKSZ5-REEL

1-CHANNEL, SGL POLE SGL THROW SWITCH, PDSO5, LEAD FREE, MO-203AA, SC-70, 5 PIN
ADI

ADG741BKSZ5-REEL7

1-CHANNEL, SGL POLE SGL THROW SWITCH, PDSO5, LEAD FREE, MO-203AA, SC-70, 5 PIN
ROCHESTER

ADG741_15

CMOS Low Voltage
ADI