ADG791GBCPZ-500RL7 [ADI]

IC-Compatible, Wide Bandwidth, Quad, 2:1 Multiplexer; IC兼容,宽带宽,四路, 2 : 1多路复用器
ADG791GBCPZ-500RL7
型号: ADG791GBCPZ-500RL7
厂家: ADI    ADI
描述:

IC-Compatible, Wide Bandwidth, Quad, 2:1 Multiplexer
IC兼容,宽带宽,四路, 2 : 1多路复用器

复用器 开关 复用器或开关 信号电路
文件: 总24页 (文件大小:427K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
I2C-Compatible, Wide Bandwidth,  
Quad, 2:1 Multiplexer  
ADG791A/ADG791G  
FUNCTIONAL BLOCK DIAGRAM  
FEATURES  
V
V
Bandwidth: 325 MHz  
DD  
GND  
DD  
GND  
Low insertion loss and on resistance: 2.6 Ω typical  
On resistance flatness: 0.3 Ω typical  
Single 3 V/5 V supply operation  
3.3 V analog signal range (5 V supply, 75 Ω load)  
Low quiescent supply current: 1 nA typical  
Fast switching times: tON = 186 ns, tOFF = 177 ns  
I2C®-compatible interface  
Compact 24-lead LFCSP  
ESD protection  
4 kV human body model (HBM)  
200 V machine model (MM)  
ADG791A  
ADG791G  
S1A  
S1A  
D1  
D2  
D3  
D4  
D1  
D2  
D3  
S1B  
S2A  
S1B  
S2A  
S2B  
S3A  
S2B  
S3A  
S3B  
S4A  
S3B  
S4A  
D4  
S4B  
S4B  
1 kV field-induced charged device model (FICDM)  
2
2
I C SERIAL  
I C SERIAL  
GPO1  
INTERFACE  
INTERFACE  
APPLICATIONS  
A0 A1 A2 SDA SCL  
A0 A1 A2 SDA SCL  
S-video RGB/YPbPr video switches  
HDTVs  
Figure 1.  
Projection TVs  
DVD-R/RW  
AV receivers  
GENERAL DESCRIPTION  
The ADG791A/ADG791G are monolithic CMOS devices  
comprising four 2:1 multiplexers/demultiplexers controllable  
via a standard I2C serial interface. The CMOS process provides  
ultralow power dissipation yet gives high switching speed and  
low on resistance.  
that allow up to eight devices on the same bus. This allows the  
user to expand the capability of the device by increasing the size  
of the switching array.  
The ADG791A/ADG791G operate from a single 3 V or 5 V  
supply voltage and is available in a compact 4 mm × 4 mm  
body, 24-lead LFCSP.  
The on-resistance profile is very flat over the full analog input  
range and wide bandwidth ensures excellent linearity and low  
distortion. These features, combined with a wide input signal  
range make the ADG791A/ADG791G the ideal switching  
solution for a wide range of TV applications including S-video,  
RGB, and YPbPr video switches.  
PRODUCT HIGHLIGHTS  
1. Wide bandwidth: 325 MHz.  
2. Ultralow power dissipation.  
3. Extended input signal range.  
The switches conduct equally well in both directions when on.  
In the off condition, signal levels up to the supplies are blocked.  
The ADG791A/ADG791G switches exhibit break-before-make  
switching action. The ADG791G has one general-purpose logic  
output pin controlled by the I2C interface that can also be used  
to control other non-I2C-compatible devices such as video filters.  
The integrated I2C interface provides a large degree of flexibility  
in the system design. It has three configurable I2C address pins  
4. Integrated I2C serial interface.  
5. Compact 4 mm × 4 mm, 24-lead, Pb-free LFCSP.  
6. ESD protection tested as per ESD association standards:  
4 kV HBM (ANSI/ESD STM5.1-2001)  
200 V MM (ANSI/ESD STM5.2-1999)  
1 kV FICDM (ANSI/ESDSTM5.3.1-1999)  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2006 Analog Devices, Inc. All rights reserved.  
 
ADG791A/ADG791G  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Terminology .................................................................................... 16  
Theory of Operation ...................................................................... 17  
I2C Serial Interface ..................................................................... 17  
I2C Address.................................................................................. 17  
Write Operation.......................................................................... 17  
LDSW Bit..................................................................................... 19  
Power On/Software Reset.......................................................... 19  
Read Operation........................................................................... 19  
Evaluation Board ............................................................................ 20  
Using the ADG791G Evaluation Board .................................. 20  
Outline Dimensions....................................................................... 23  
Ordering Guide .......................................................................... 23  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Product Highlights ........................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
I2C Timing Specifications............................................................ 7  
Timing Diagram ........................................................................... 8  
Absolute Maximum Ratings............................................................ 9  
ESD Caution.................................................................................. 9  
Pin Configurations and Function Descriptions ......................... 10  
Typical Performance Characteristics ........................................... 11  
Test Circuits ..................................................................................... 14  
REVISION HISTORY  
7/06—Revision 0: Initial Version  
Rev. 0 | Page 2 of 24  
 
ADG791A/ADG791G  
SPECIFICATIONS  
VDD = 5 V 10ꢀ, GND = 0 V, TA = −40°C to +85°C, unless otherwise noted.  
Table 1.  
Parameter  
Conditions  
Min  
Typ1  
Max  
Unit  
ANALOG SWITCH  
Analog Signal Range2  
VS = VDD, RL = 1 MΩ  
VS = VDD, RL = 75 Ω  
VD = 0 V, IDS = −10 mA, see Figure 22  
VD = 0 V to 1 V, IDS = −10 mA, see Figure 22  
0
0
4
V
V
Ω
Ω
3.3  
3.5  
4
On Resistance, RON  
2.6  
On-Resistance Matching Between  
Channels, ∆RON  
VD = 0 V, IDS = −10 mA  
VD = 1 V, IDS = −10 mA  
VD = 0 V to 1 V, IDS = −10 mA  
0.15  
0.3  
0.5  
0.6  
0.55  
Ω
Ω
Ω
On-Resistance Flatness, RFLAT (ON)  
LEAKAGE CURRENTS  
Source OFF Leakage (IS (OFF)  
)
VD = 4 V/1 V, VS = 1 V/4 V, see Figure 23  
VD = 4 V/1 V, VS = 1 V/4 V, see Figure 23  
VD = VS = 4 V/1 V, see Figure 24  
0.25  
0.25  
0.25  
nA  
nA  
nA  
Drain OFF Leakage (ID (OFF)  
)
Channel ON Leakage (ID (ON), IS (ON)  
DYNAMIC CHARACTERISTICS3  
tON, tENABLE  
)
CL = 35 pF, RL = 50 Ω, VS = 2 V, see Figure 28  
CL = 35 pF, RL = 50 Ω, VS = 2 V, see Figure 28  
CL = 35 pF, RL = 50 Ω, VS1 = VS2 = 2 V, see Figure 29  
(ADG791G only)  
f = 10 MHz, RL = 50 Ω, see Figure 26  
f = 10 MHz, RL = 50 Ω, see Figure 27  
186  
177  
3
250  
240  
ns  
ns  
ns  
ns  
dB  
tOFF, tDISABLE  
Break-Before-Make Time Delay, tD  
I2C to GPO Propagation Delay, tH, tL  
Off Isolation  
Channel-to-Channel Crosstalk  
Same Multiplexer  
Different Multiplexer  
−3 dB Bandwidth  
THD + N  
1
130  
−60  
−55  
−70  
325  
0.14  
5
dB  
dB  
MHz  
%
pC  
RL = 50 Ω, see Figure 25  
RL = 100 Ω  
CL = 1 nF, VS = 0 V, see Figure 30  
Charge Injection  
CS (OFF)  
10  
pF  
CD (OFF)  
13  
pF  
CD (ON), CS (ON)  
27  
pF  
Power Supply Rejection Ratio, PSRR  
Differential Gain Error  
Differential Phase Error  
LOGIC INPUTS3  
f = 20 kHz  
CCIR330 test signal  
CCIR330 test signal  
70  
0.32  
0.44  
dB  
%
Degrees  
A0, A1, A2  
Input High Voltage, VINH  
Input Low Voltage, VINL  
Input Current, IINL or IINH  
Input Capacitance, CIN  
SCL, SDA  
2.0  
V
V
μA  
pF  
0.8  
1
VIN = 0 V to VDD  
0.005  
3
Input High Voltage, VINH  
Input Low Voltage, VINL  
Input Leakage Current, IIN  
Input Hysteresis  
0.7 × VDD  
−0.3  
VDD + 0.3  
+0.3 × VDD  
1
V
V
μA  
V
pF  
VIN = 0 V to VDD  
0.005  
0.05 × VDD  
3
Input Capacitance, CIN  
Rev. 0 | Page 3 of 24  
 
 
ADG791A/ADG791G  
Parameter  
LOGIC OUTPUTS3  
Conditions  
Min  
Typ1  
Max  
Unit  
SDA Pin  
Output Low Voltage, VOL  
ISINK = 3 mA  
ISINK = 6 mA  
0.4  
0.6  
1
V
V
μA  
pF  
Floating-State Leakage Current  
Floating-State Output Capacitance  
GPO1 Pin and GPO2 Pin  
Output Low Voltage, VOL  
Output High Voltage, VOH  
POWER REQUIREMENTS  
IDD  
10  
ILOAD = +2 mA  
ILOAD = −2 mA  
0.4  
V
V
2.0  
Digital inputs = 0 V or VDD, I2C interface inactive  
I2C interface active, fSCL = 400 kHz  
I2C interface active, fSCL = 3.4 MHz  
0.001  
1
0.2  
0.7  
μA  
mA  
mA  
1All typical values are at TA = 25°C, unless otherwise stated.  
2 Guaranteed by initial characterization, not subject to production test.  
3 Guaranteed by design, not subject to production test.  
Rev. 0 | Page 4 of 24  
ADG791A/ADG791G  
VDD = 3 V 10ꢀ, GND = 0 V, TA = −40°C to +85°C, unless otherwise noted.  
Table 2.  
Parameter  
Conditions  
Min  
Typ1  
Max  
Unit  
ANALOG SWITCH  
Analog Signal Range2  
VS = VDD, RL = 1 MΩ  
VS = VDD, RL = 75 Ω  
VD = 0 V, IDS = −10 mA, see Figure 22  
VD = 0 V to 1 V, IDS = −10 mA, see Figure 22  
0
0
2.2  
1.7  
4
V
V
Ω
Ω
On Resistance, RON  
3
6
On-Resistance Matching Between  
Channels, ∆RON  
VD = 0 V, IDS = −10 mA  
VD = 1 V, IDS = −10 mA  
VD = 0 V to 1 V, IDS = −10 mA  
0.15  
0.8  
0.6  
1.1  
2.8  
Ω
Ω
Ω
On-Resistance Flatness, RFLAT (ON)  
LEAKAGE CURRENTS  
Source Off Leakage (IS (OFF)  
)
VD = 2 V/1 V, VS = 1 V/2 V, see Figure 23  
VD = 2 V/1 V, VS = 1 V/2 V, see Figure 23  
VD = VS = 2 V/1 V, see Figure 24  
0.25  
0.25  
0.25  
nA  
nA  
nA  
Drain Off Leakage (ID (OFF)  
)
Channel On Leakage (ID (ON), IS (ON)  
DYNAMIC CHARACTERISTICS3  
tON, tENABLE  
tOFF, tDISABLE  
Break-Before-Make Time Delay, tD  
)
CL = 35 pF, RL = 50 Ω, VS = 2 V, see Figure 28  
CL = 35 pF, RL = 50 Ω, VS = 2 V, see Figure 28  
CL = 35 pF, RL = 50 Ω, VS1 = VS2 = 2 V, see Figure 29  
198  
195  
3
270  
260  
ns  
ns  
ns  
ns  
1
I2C to GPO Propagation Delay, tH, tL  
(ADG791G only)  
121  
Off Isolation  
f = 10 MHz, RL = 50 Ω, see Figure 26  
f = 10 MHz, RL = 50 Ω, see Figure 27  
−60  
dB  
Channel-to-Channel Crosstalk  
Same Multiplexer  
Different Multiplexer  
−3 dB Bandwidth  
THD + N  
−55  
−70  
310  
0.14  
2.5  
dB  
dB  
MHz  
%
RL = 50 Ω, see Figure 25  
RL = 100 Ω  
CL = 1 nF, VS = 0 V, see Figure 30  
Charge Injection  
pC  
CS (OFF)  
10  
pF  
CD (OFF)  
13  
pF  
CD (ON), CS (ON)  
27  
pF  
Power Supply Rejection Ratio, PSRR  
Differential Gain Error  
Differential Phase Error  
LOGIC INPUTS3  
f = 20 kHz  
CCIR330 test signal  
CCIR330 test signal  
70  
0.28  
0.28  
dB  
%
Degrees  
A0, A1, A2  
Input High Voltage, VINH  
Input Low Voltage, VINL  
Input Current, IINL or IINH  
Input Capacitance, CIN  
SCL, SDA  
2.0  
V
V
μA  
pF  
0.8  
1
VIN = 0 V to VDD  
0.005  
3
Input High Voltage, VINH  
Input Low Voltage, VINL  
Input Leakage Current, IIN  
Input Hysteresis  
0.7 × VDD  
−0.3  
VDD + 0.3  
+0.3 × VDD  
1
V
V
μA  
V
pF  
VIN = 0 V to VDD  
0.005  
0.05 × VDD  
3
Input Capacitance, CIN  
Rev. 0 | Page 5 of 24  
ADG791A/ADG791G  
Parameter  
LOGIC OUTPUTS3  
Conditions  
Min  
Typ1  
Max  
Unit  
SDA Pin  
Output Low Voltage, VOL  
ISINK = 3 mA  
ISINK = 6 mA  
0.4  
0.6  
1
V
V
μA  
pF  
Floating-State Leakage Current  
Floating-State Output Capacitance  
GPO1 Pin and GPO2 Pin  
Output Low Voltage, VOL  
Output High Voltage, VOH  
POWER REQUIREMENTS  
IDD  
3
ILOAD = +2 mA  
ILOAD = −2 mA  
0.4  
V
V
2.0  
Digital inputs = 0 V or VDD, I2C interface inactive  
I2C interface active, fSCL = 400 kHz  
I2C interface active, fSCL = 3.4 MHz  
0.001  
1
0.1  
0.2  
μA  
mA  
mA  
1All typical values are at TA = 25°C, unless otherwise stated.  
2 Guaranteed by initial characterization, not subject to production test.  
3 Guaranteed by design, not subject to production test.  
Rev. 0 | Page 6 of 24  
ADG791A/ADG791G  
I2C TIMING SPECIFICATIONS  
VDD = 2.7 V to 5.5 V; GND = 0 V; TA = −40°C to +85°C, unless otherwise noted. See Figure 2 for timing diagram.  
Table 3.  
Parameter1 Conditions  
Min  
Max  
100  
400  
Unit  
kHz  
kHz  
Description  
fSCL  
Standard mode  
Fast mode  
Serial clock frequency  
High speed mode  
CB = 100 pF max  
CB = 400 pF max  
Standard mode  
Fast mode  
High speed mode  
CB = 100 pF max  
CB = 400 pF max  
Standard mode  
Fast mode  
3.4  
1.7  
MHz  
MHz  
μs  
t1  
4
0.6  
tHIGH, SCL high time  
tLOW, SCL low time  
μs  
60  
ns  
ns  
μs  
μs  
120  
4.7  
1.3  
t2  
High speed mode  
CB = 100 pF max  
CB = 400 pF max  
Standard mode  
Fast mode  
High speed mode  
Standard mode  
Fast mode  
160  
320  
250  
100  
10  
ns  
ns  
ns  
ns  
ns  
μs  
μs  
t3  
tSU;DAT, data setup time  
tHD;DAT, data hold time  
2
t4  
0
0
3.45  
0.9  
High speed mode  
CB = 100 pF max  
CB = 400 pF max  
Standard mode  
Fast mode  
High speed mode  
Standard mode  
Fast mode  
0
0
703  
150  
ns  
ns  
μs  
μs  
ns  
μs  
μs  
ns  
μs  
μs  
μs  
μs  
ns  
ns  
ns  
t5  
t6  
4.7  
0.6  
160  
4
0.6  
160  
4.7  
1.3  
4
tSU;STA, setup time for a repeated start condition  
tHD;STA, hold time (repeated) start condition  
High speed mode  
Standard mode  
Fast mode  
t7  
t8  
tBUF, bus free time between a stop and a start condition  
tSU;STO, setup time for stop condition  
Standard mode  
Fast mode  
High speed mode  
Standard mode  
Fast mode  
High speed mode  
CB = 100 pF max  
CB = 400 pF max  
Standard mode  
Fast mode  
High speed mode  
CB = 100 pF max  
CB = 400 pF max  
Standard mode  
Fast mode  
0.6  
160  
t9  
1000  
tRDA, rise time of SDA signal  
tFDA, fall time of SDA signal  
tRCL, rise time of SCL signal  
20 + 0.1 CB 300  
10  
20  
80  
160  
300  
ns  
ns  
ns  
ns  
t10  
20 + 0.1 CB 300  
10  
20  
80  
160  
1000  
ns  
ns  
ns  
ns  
t11  
20 + 0.1 CB 300  
High speed mode  
CB = 100 pF max  
CB = 400 pF max  
10  
20  
40  
80  
ns  
ns  
Rev. 0 | Page 7 of 24  
 
ADG791A/ADG791G  
Parameter1 Conditions  
Min  
Max  
Unit  
Description  
t11A  
Standard mode  
1000  
ns  
tRCL1, rise time of SCL signal after a repeated start condition  
and after an acknowledge bit.  
Fast mode  
20 + 0.1 CB 300  
ns  
High speed mode  
CB = 100 pF max  
CB = 400 pF max  
Standard mode  
Fast mode  
10  
20  
80  
160  
300  
ns  
ns  
ns  
ns  
t12  
tFCL, fall time of SCL signal  
20 + 0.1 CB 300  
High speed mode  
CB = 100 pF max  
CB = 400 pF max  
Fast mode  
10  
20  
0
40  
80  
50  
10  
ns  
ns  
ns  
ns  
tSP  
Pulse width of suppressed spike  
High speed mode  
0
1 Guaranteed by initial characterization. CB refers to capacitive load on the bus line, tr and tf measured between 0.3 VDD and 0.7 VDD  
2 A device must provide a data hold time for SDA to bridge the undefined region of the SCL falling edge.  
.
TIMING DIAGRAM  
t11  
t12  
t6  
t2  
t6  
SCL  
SDA  
t1  
t3  
t5  
t10  
t8  
t4  
t9  
t7  
P
S
S
P
Figure 2. Timing Diagram for 2-Wire Serial Interface  
Rev. 0 | Page 8 of 24  
 
 
ADG791A/ADG791G  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
Table 4.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Parameter  
Ratings  
VDD to GND  
−0.3 V to +6 V  
Analog, Digital Inputs  
−0.3 V to VDD + 0.3 V or  
30 mA, whichever occurs first  
Continuous Current, S or D  
Peak Current, S or D  
100 mA  
300 mA (pulsed at 1 ms,  
10% duty cycle max)  
Operating Temperature Range  
Industrial (B Version)  
Storage Temperature Range  
Junction Temperature  
θJA Thermal Impedance  
24-Lead LFCSP  
Lead Temperature, Soldering  
(10 sec)  
IR Reflow, Peak Temperature  
(<20 sec)  
Only one absolute maximum rating may be applied at any one  
time.  
−40°C to +85°C  
−65°C to +150°C  
150°C  
30°C/W  
300°C  
260°C  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on  
the human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. 0 | Page 9 of 24  
 
ADG791A/ADG791G  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
PIN 1  
PIN 1  
INDICATOR  
INDICATOR  
S1A  
S1B  
D1  
D2  
S2B  
S2A  
1
2
3
4
5
6
18 A2  
17 NC  
16 NC  
15 NC  
14 NC  
13 NC  
S1A  
S1B  
D1  
D2  
S2B  
S2A  
1
2
3
4
5
6
18 A2  
17 NC  
16 GPO1  
15 NC  
14 NC  
13 NC  
ADG791A  
ADG791G  
TOP VIEW  
TOP VIEW  
(Not to Scale)  
(Not to Scale)  
NOTES  
NOTES  
1. NC = NO CONNECT.  
1. NC = NO CONNECT.  
2. THE EXPOSED PAD MUST BE TIED TO GND.  
2. THE EXPOSED PAD MUST BE TIED TO GND.  
Figure 3. ADG791G Pin Configuration  
Figure 4. ADG791A Pin Configuration  
Table 5. ADG791A/ADG791G Pin Function Descriptions  
Pin No.  
Mnemonic  
S1A  
S1B  
D1  
Description  
1
2
3
A-Side Source Terminal for Mux 1. Can be an input or output.  
B-Side Source Terminal for Mux 1. Can be an input or output.  
Drain Terminal for Mux 1. Can be an input or output.  
Drain Terminal for Mux 2. Can be an input or output.  
B-Side Source Terminal for Mux 2. Can be an input or output.  
A-Side Source Terminal for Mux 2. Can be an input or output.  
A-Side Source Terminal for Mux 3. Can be an input or output.  
B-Side Source Terminal for Mux 3. Can be an input or output.  
Drain Terminal for Mux 3. Can be an input or output.  
Drain Terminal for Mux 4. Can be an input or output.  
B-Side Source Terminal for Mux 4. Can be an input or output.  
A-Side Source Terminal for Mux 4. Can be an input or output.  
Not Internally Connected.  
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
D2  
S2B  
S2A  
S3A  
S3B  
D3  
D4  
S4B  
S4A  
NC  
NC  
NC  
NC/GPO1  
NC  
A2  
A1  
A0  
Not Internally Connected.  
Not Internally Connected.  
Not Internally Connected for ADG791A/General-Purpose Logic Output 1 for ADG791G.  
Not Internally Connected.  
Logic Input. Sets Bit A2 from the least significant bit of the 7-bit slave address.  
Logic Input. Sets Bit A1 from the least significant bit of the 7-bit slave address.  
Logic Input. Sets Bit A0 from the least significant bit of the 7-bit slave address.  
SCL  
Digital Input, Serial Clock Line. Open-drain input that is used in conjunction with SDA to clock data into  
the device. External pull-up resistor required.  
22  
23  
24  
SDA  
VDD  
GND  
Digital I/O. Bidirectional, open-drain data line. External pull-up resistor required.  
Positive Power Supply Input.  
Ground (0 V) Reference.  
Rev. 0 | Page 10 of 24  
 
ADG791A/ADG791G  
TYPICAL PERFORMANCE CHARACTERISTICS  
3.0  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
T
= 25°C  
V
= 3.3V, R = 1M  
L
T
= 25°C  
A
DD  
A
V
= 5.0V  
= 5.5V  
DD  
1 CHANNEL  
1 CHANNEL  
V
= 3V, R = 1MΩ  
L
V
= 4.5V  
DD  
DD  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
V
= 2.7V, R = 1MΩ  
DD  
DD  
L
V
= 3.3V, R = 75Ω  
DD  
L
V
= 3V, R = 75Ω  
L
DD  
V
= 2.7V, R = 75Ω  
DD  
L
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
0
0.5  
1.0  
1.5  
(V ) (V)  
2.0  
2.5  
3.0  
INPUT SIGNAL (V)  
V
D
S
Figure 5. Analog Signal Range, 3 V Supply  
Figure 8. On Resistance vs. VD (VS), 5 V Supply  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
7
6
5
4
3
2
1
0
T
= 25°C  
V
= 5.5V, R = 1M  
L
A
V
= 5V, R = 1MΩ  
DD  
DD  
L
1 CHANNEL  
= 3V  
V
= 5.5V, R = 75Ω  
DD  
L
V
DD  
V
= 4.5V, R = 1MΩ  
L
DD  
T
= +85°C  
A
V
= 5V, R = 75Ω  
L
DD  
V
= 4.5V, R = 75Ω  
DD  
L
T
= –40°C  
A
T
= +25°C  
A
T
= 25°C  
A
1 CHANNEL  
0
1
2
3
4
5
6
0
0.2  
0.4  
0.6  
0.8  
V (V ) (V)  
D
1.0  
1.2  
1.4  
1.6  
INPUT SIGNAL (V)  
S
Figure 6. Analog Signal Range, 5 V Supply  
Figure 9. On Resistance vs. VD (VS) for Various Temperatures, 3 V Supply  
4.5  
6
5
4
3
2
1
0
T
= 25°C  
T = +25°C  
A
1 CHANNEL  
T
= +85°C  
A
A
1 CHANNEL  
V
= 3.0V  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
DD  
V
V
= 5V  
DD  
T
T
= +25°C  
= –40°C  
A
V
= 2.7V  
DD  
A
= 3.3V  
DD  
0
0.2  
0.4  
0.6  
0.8  
1.0  
(V ) (V)  
1.2  
1.4  
1.6  
1.8  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
V
(V ) (V)  
S
V
D
D
S
Figure 7. On Resistance vs. VD (VS), 3 V Supply  
Figure 10. On Resistance vs. VD (VS) for Various Temperatures, 5 V Supply  
Rev. 0 | Page 11 of 24  
 
ADG791A/ADG791G  
0
0
–20  
T
= 25°C  
T
V
= 25°C  
A
A
= 3V/5V  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
–3.5  
–4.0  
–4.5  
–5.0  
DD  
V
= 3V  
DD  
V
= 5V  
DD  
SAME  
–40  
MULTIPLEXER  
–60  
DIFFERENT  
MULTIPLEXER  
–80  
–100  
–120  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
0.01  
0.1  
1
10  
100  
1000  
SOURCE VOLTAGE (V)  
FREQUENCY (MHz)  
Figure 11. Charge Injection vs. Source Voltage  
Figure 14. Crosstalk vs. Frequency  
220  
210  
200  
190  
180  
170  
160  
–1  
–3  
T
V
= 25°C  
A
= 5V  
DD  
tON (3V)  
–5  
tOFF (3V)  
–7  
–9  
tON (5V)  
–11  
–13  
–15  
tOFF (5V)  
0.01  
0.1  
1
10  
100  
1000  
–40  
–20  
0
20  
40  
60  
80  
FREQUENCY (MHz)  
TEMPERATURE (°C)  
Figure 12. tON/tOFF vs. Temperature  
Figure 15. Bandwidth  
0
–20  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
T
= 25°C  
T
V
= 25°C  
A
A
1 CHANNEL  
= 3V/5V  
= 3V/5V  
DD  
V
DD  
NO DECOUPLING CAPACITORS USED  
–40  
–60  
–80  
–100  
–120  
0.01  
0.1  
1
10  
100  
1000  
0.0001  
0.001  
0.01  
0.1  
1
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 13. Off Isolation vs. Frequency  
Figure 16. PSRR vs. Frequency  
Rev. 0 | Page 12 of 24  
ADG791A/ADG791G  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
6
5
4
3
2
1
0
T
= 25°C  
T
= 25°C  
A
A
V
= 5V  
DD  
V
= 5V  
DD  
V
= 3V  
DD  
V
= 3V  
DD  
0.1  
0.6  
1.1  
1.6  
2.1  
2.6  
3.1  
–20 –18 –16 –14 –12 –10  
–8  
–6  
–4  
–2  
0
LOAD CURRENT (mA)  
fCLK FREQUENCY (MHz)  
Figure 17. IDD vs. fCLK Frequency  
Figure 20. GPO VOH vs. Load Current  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
2.5  
2.0  
1.5  
1.0  
0.5  
0
T
= 25°C  
A
T
= 25°C  
A
V
= 3V  
V
= 5V  
DD  
DD  
V
= 5V  
DD  
V
= 3V  
DD  
–0.2  
0
1
2
3
4
5
6
0
5
10  
15  
20  
25  
30  
35  
2
I C LOGIC INPUT VOLTAGE (V)  
LOAD CURRENT (mA)  
Figure 18. IDD vs. I2C Logic Input Voltage (SDA, SCL)  
Figure 21. GPO VOL vs. Load Current  
120  
115  
110  
105  
100  
95  
tPHL (5V)  
tPHL (3V)  
tPLH (5V)  
tPLH (3V)  
–40  
–20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
Figure 19. I2C to GPO Propagation Delay vs. Temperature  
(ADG791G Only)  
Rev. 0 | Page 13 of 24  
ADG791A/ADG791G  
TEST CIRCUITS  
V
DD  
0.1µF  
I
DS  
NETWORK  
ANALYZER  
SA  
50Ω  
50Ω  
50Ω  
V1  
V
S
SB  
D
S
D
V
OUT  
V
S
R
= V1/I  
ON  
DS  
50Ω  
GND  
Figure 22. On Resistance  
Figure 25. Bandwidth  
V
DD  
0.1µF  
NETWORK  
ANALYZER  
I
(OFF)  
I (OFF)  
D
50  
S
50Ω  
S
S
D
A
A
50Ω  
V
S
V
V
S
D
50Ω  
D
V
OUT  
50Ω  
GND  
Figure 26. Off Isolation  
Figure 23. Off Leakage  
V
DD  
0.1µF  
NETWORK  
ANALYZER  
50  
50Ω  
SX  
SY  
I
(ON)  
A
D
S
D
NC  
V
S
50Ω  
V
D
V
OUT  
R
50Ω  
L
NC = NO CONNECT  
DY  
DX  
GND  
5050Ω  
Figure 24. On Leakage  
Figure 27. Channel-to-Channel Crosstalk  
Rev. 0 | Page 14 of 24  
 
 
 
 
 
ADG791A/ADG791G  
CLOCK PULSES  
CORRESPONDING TO THE  
LDSW BITS  
SCL  
50%  
90%  
50%  
5V  
0.1µF  
S
10%  
tOFF  
V
OUT  
V
DD  
tON  
V
OUT  
D
R
50  
C
L
35pF  
CLOCK PULSES  
CORRESPONDING TO THE  
LDSW BITS  
L
V
S
2
I C  
INTERFACE  
SCL  
50%  
90%  
50%  
SDA  
SCL  
GND  
10%  
V
GPO  
tH  
tL  
Figure 28. Switching Time  
5V  
CLOCK PULSE  
CORRESPONDING  
TO THE LDSW BIT  
0.1µF  
V
DD  
SCL  
SA  
SB  
V
OUT  
D
V
V
S
80%  
OUT  
R
50Ω  
C
L
35pF  
L
V
S
2
I C  
INTERFACE  
tD  
SDA  
SCL  
GND  
Figure 29. Break-Before-Make Time Delay  
5V  
V
DD  
SWITCH ON  
R
ΔV  
OUT  
S
S
D
SWITCH OFF  
V
OUT  
C
1nF  
Q
= C × ΔV  
OUT  
L
INJ  
L
V
S
GND  
Figure 30. Charge Injection  
Rev. 0 | Page 15 of 24  
 
 
 
ADG791A/ADG791G  
TERMINOLOGY  
On Resistance (RON)  
Total Harmonic Distortion + Noise (THD + N)  
The ratio of the harmonic amplitudes plus noise of a signal to  
the fundamental.  
The series on-channel resistance measured between the S and  
D pins.  
On Resistance Match (ΔRON)  
−3 dB Bandwidth  
The channel-to-channel matching of on resistance when  
channels are operated under identical conditions.  
The frequency at which the output is attenuated by 3 dB.  
Off Isolation  
On Resistance Flatness (RFLAT(ON)  
)
The measure of unwanted signal coupling through an off switch.  
The variation of on resistance over the specified range produced  
by the specified analog input voltage change with a constant  
load current.  
Crosstalk  
The measure of unwanted signal that is coupled through from  
one channel to another as a result of parasitic capacitance.  
Channel Off Leakage (IOFF  
The sum of leakage currents into or out of an off channel input.  
)
Charge Injection  
The measure of the glitch impulse transferred from the digital  
input to the analog output during on/off switching.  
Channel On Leakage (ION)  
The current loss/gain through an on-channel resistance,  
creating a voltage offset across the device.  
Differential Gain Error  
The measure of how much color saturation shift occurs when  
the luminance level changes. Both attenuation and amplifica-  
tion can occur; therefore, the largest amplitude change between  
any two levels is specified and expressed in ꢀ.  
Input Leakage Current (IIN, IINL, IINH  
)
The current flowing into a digital input when a specified low  
level or high level voltage is applied to that input.  
Input/Output Off Capacitance (COFF  
The capacitance between an analog input and ground when the  
switch channel is off.  
)
Differential Phase Error  
The measure of how much hue shift occurs when the luminance  
level changes. It can be a negative or positive value and is expressed  
in degrees of subcarrier phase.  
Input/Output On Capacitance (CON)  
The capacitance between the inputs or outputs and ground  
when the switch channel is on.  
Input High Voltage (VINH  
The minimum input voltage for Logic 1.  
)
Digital Input Capacitance (CIN)  
The capacitance between a digital input and ground.  
Input Low Voltage (VINL  
The maximum input voltage for Logic 0.  
)
Output On Switching Time (tON)  
Output High Voltage (VOH  
The minimum output voltage for Logic 1.  
)
The time required for the switch channel to close. The time is  
measured from 50ꢀ of the falling edge of the LDSW bit to the  
time the output reaches 90ꢀ of the final value.  
Output Low Voltage (VOL)  
The maximum output voltage for Logic 0.  
Output Off Switching Time (tOFF  
)
The time required for the switch to open. The time is measured  
from 50ꢀ of the falling edge of the LDSW bit to the time the  
output reaches 10ꢀ of the final value.  
IDD  
Positive supply current.  
I2C to GPO Propagation Delay (tH, tL)  
The time required for the logic value at the GPO pin to settle  
after loading a GPO command. The time is measured from 50ꢀ  
of the falling edge of the LDSW bit to the time the output  
reaches 90ꢀ of the final value for high and 10ꢀ for low.  
Rev. 0 | Page 16 of 24  
 
ADG791A/ADG791G  
THEORY OF OPERATION  
The ADG791A/ADG791G are monolithic CMOS devices  
comprising four 2:1 multiplexers controllable via a standard I2C  
serial interface. The CMOS process provides ultralow power  
dissipation, yet offers high switching speed and low on resistance.  
3. Data transmits over the serial bus in sequences of nine  
clock pulses (eight data bits followed by an acknowledge  
bit). The transitions on the SDA line must occur during the  
low period of the clock signal, SCL, and remain stable  
during the high period of SCL. Otherwise, a low-to-high  
transition when the clock signal is high can be interpreted  
as a stop event that ends the communication between the  
master and the addressed slave device.  
The on resistance profile is very flat over the full analog input  
range, and wide bandwidth ensures excellent linearity and low  
distortion. These features, combined with a wide input signal  
range, make the ADG791A/ADG791G an ideal switching  
solution for a wide range of TV applications.  
4. After transferring all data bytes, the master establishes a  
stop condition, defined as a low-to-high transition on the  
SDA line while SCL is high. In write mode, the master pulls  
the SDA line high during the 10th clock pulse to establish a  
stop condition. In read mode, the master issues a no  
acknowledge for the ninth clock pulse (the SDA line  
remains high). The master then brings the SDA line low  
before the 10th clock pulse, and then high during the 10th  
clock pulse to establish a stop condition.  
The switches conduct equally well in both directions when on.  
In the off condition, signal levels up to the supplies are blocked.  
The integrated serial I2C interface controls the operation of the  
switches (ADG791A/ADG791G) and general-purpose logic  
pins (ADG791G only).  
The ADG791A/ADG791G have many attractive features, such  
as the ability to individually control each multiplexer, the option  
of reading back the status of any switch. The ADG791G has one  
general-purpose logic output pin controllable through the I2C  
interface. The following sections describe these features in detail.  
I2C ADDRESS  
The ADG791A/ADG791G has a 7-bit I2C address. The four  
most significant bits are internally hardwired while the last  
three bits (A0, A1, and A2) are user-adjustable. This allows the  
user to connect up to eight ADG791As/ADG791Gs to the same  
bus. The I2C bit map shows the configuration of the address.  
I2C SERIAL INTERFACE  
The ADG791A/ADG791G are controlled via an I2C-compatible  
serial bus interface (refer to the I2C-Bus Specification available  
from Philips Semiconductor) that allows the part to operate as a  
slave device (no clock is generated by the ADG791A/ADG791G).  
The communication protocol between the I2C master and the  
device operates as follows:  
7-Bit I2C Address Configuration  
MSB  
LSB  
1
0
1
0
A2  
A1  
A0  
WRITE OPERATION  
1. The master initiates data transfer by establishing a start  
condition (defined as a high-to-low transition on the SDA  
line while SCL is high). This indicates that an address/data  
stream follows. All slave devices connected to the bus  
respond to the start condition and shift in the next eight  
When writing to the ADG791A/ADG791G, the user must  
begin with an address byte and R/ bit, after which time the  
W
switch acknowledges that it is prepared to receive data by  
pulling SDA low. Data is loaded into the device as a 16-bit word  
under the control of a serial clock input, SCL. Figure 31  
illustrates the entire write sequence for the ADG791A/  
ADG791G. The first data byte (AX7 to AX0) controls the status  
of the switches while the LDSW and RESETB bits from the  
second byte control the operation mode of the device.  
W
bits, consisting of a 7-bit address (MSB first) plus an R/  
bit. This bit determines the direction of the data flow  
during the communication between the master and the  
addressed slave device.  
2. The slave device whose address corresponds to the  
transmitted address responds by pulling the SDA line  
low during the ninth clock pulse (this is known as the  
acknowledge bit).  
Table 6 shows a list of all commands supported by the  
ADG791A/ADG791G with the corresponding byte that needs  
to be loaded during a write operation.  
To achieve the desired configuration, one or more commands  
can be loaded into the device. Any combination of the  
commands listed in Table 6 can be used with these restrictions:  
At this stage, all other devices on the bus remain idle while  
the selected device waits for data to be written to, or read  
W
from, its serial register. If the R/ bit is set high, the  
Only one switch from a given multiplexer can be ON at any  
given time  
W
master reads from the slave device. However, if the R/ bit  
is set low, the master writes to the slave device.  
When a sequence of successive commands affect the same  
element (that is, the switch or GPO pin), only the last  
command is executed.  
Rev. 0 | Page 17 of 24  
 
ADG791A/ADG791G  
SCL  
A2  
A1  
A0 R/W  
AX7 AX6 AX5 AX4 AX3 AX2 AX1 AX0  
X
X
X
X
X
X
SDA  
STOP  
CONDITION  
BY MASTER  
START  
CONDITION  
BY MASTER  
ADDRESS BYTE  
RESETB  
LDSW  
ACKNOWLEDGE  
BY SWITCH  
ACKNOWLEDGE  
BY SWITCH  
ACKNOWLEDGE  
BY SWITCH  
Figure 31. Write Operation  
Table 6. ADG791A/ADG791G Command List  
AX7  
AX6  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
AX5  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
AX4  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
AX3  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
1
1
AX2  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
AX1  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
AX0  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
0
1
1
Addressed Switch  
0
S1A/D1, S2A/D2, S3A/D3, S4A/D4 off  
1
S1A/D1, S2A/D2, S3A/D3, S4A/D4 on  
S1B/D1, S2B/D2, S3B/D3, S4B/D4 off  
S1B/D1, S2B/D2, S3B/D3, S4B/D4 on  
S1A/D1 off  
0
1
0
1
S1A/D1 on  
0
S1B/D1 off  
1
S1B/D1 on  
0
S2A/D2 off  
1
S2A/D2 on  
0
S2B/D2 off  
1
S2B/D2 on  
0
S3A/D3 off  
1
S3A/D3 on  
0
S3B/D3 off  
1
S3B/D3 on  
0
S4A/D4 off  
1
S4A/D4 on  
0
S4B/D4 off  
1
S4B/D4 on  
X1  
X1  
X1  
X1  
X1  
X1  
X1  
X1  
X1  
X1  
1
Reserved  
Reserved  
Reserved  
Reserved  
Mux 1 disabled (all switches connected to D1 are off)  
Mux 2 disabled (all switches connected to D2 are off)  
Mux 3 disabled (all switches connected to D3 are off)  
Mux 4 disabled (all switches connected to D4 are off)  
Reserved  
Reserved  
GPO1 high for ADG791G/reserved for ADG791A  
GPO1 low for ADG791G/reserved for ADG791A  
All muxes disabled  
0
0
1
Reserved  
1 X = Logic state does not matter.  
Rev. 0 | Page 18 of 24  
 
 
ADG791A/ADG791G  
LDSW BIT  
READ OPERATION  
The LDSW bit allows the user to control the way the device  
executes the commands loaded during the write operations.  
The ADG791A/ADG791G executes all the commands loaded  
between two successive write operations that have set the  
LDSW bit high.  
When reading data back from the ADG791A/ADG791G, the  
W
user must begin with an address byte and R/ bit. The switch  
then acknowledges that it is prepared to transmit data by  
pulling SDA low. Following this acknowledgement, the  
ADG791A/ADG791G transmits two bytes on the next clock  
edges. These bytes contain the status of the switches, and each  
byte is followed by an acknowledge bit. A logic high bit  
represents a switch in the on (close) state while a low represents  
a switch in the off (open) state. For the GPO pin (ADG791G  
only), the bit represents the logic value of the pin. Figure 32  
illustrates the entire read sequence.  
Setting the LDSW high for every write cycle ensures that the  
device executes the command right after the LDSW bit was  
loaded into the device. This setting can be used when the  
desired configuration can be achieved by sending a single  
command or when the switches and/or GPO pin are not  
required to be updated at the same time. When the desired  
configuration requires multiple commands with simultaneous  
update, the LDSW bit should be set low while loading the  
commands except the last one when the LDSW bit should be set  
high. Once the last command with LDSW = high is loaded, the  
device executes all commands received since the last update  
simultaneously.  
The bit maps accompanying Figure 32 show the relationship  
between the elements of the ADG791A and ADG791G (that it,  
the switches and GPO pins) and the bits that represent their  
status after a completed read operation.  
POWER ON/SOFTWARE RESET  
The ADG791A/ADG791G has a software reset function  
implemented by the RESETB bit from the second data byte  
written to the device. For normal operation of the multiplexers  
and GPO pin, this bit should be set high. When RESETB = low or  
after power-up, the switches from all multiplexers are turned off  
(open) and the GPO pin is set low.  
ADG791A Bit Map  
RB15  
RB14  
RB13  
RB12  
RB11  
RB10  
RB9  
RB8  
RB7  
RB6  
RB5  
RB4  
RB3  
RB2  
RB1  
RB0  
S1A/D1  
S1B/D1  
S2A/D2  
S2B/D2  
S3A/D3  
S3B/D3  
S4A/D4  
S4B/D4  
-
-
-
-
-
-
-
-
ADG791G Bit Map  
RB15  
RB14  
RB13  
RB12  
RB11  
RB10  
RB9  
RB8  
RB7  
RB6  
RB5  
RB4  
RB3  
RB2  
RB1  
RB0  
S1A/D1  
S1B/D1  
S2A/D2  
S2B/D2  
S3A/D3  
S3B/D3  
S4A/D4  
S4B/D4  
-
-
-
-
GPO1  
-
-
-
SCL  
SDA  
A2  
A1  
A0 R/W  
RB15 RB14 RB13 RB12 RB11 RB10 RB9 RB8  
RB7 RB6 RB5 RB4 RB3 RB2 RB1 RB0  
STOP  
CONDITION  
BY MASTER  
START  
CONDITION  
BY MASTER  
ADDRESS BYTE  
ACKNOWLEDGE  
BY SWITCH  
ACKNOWLEDGE  
BY SWITCH  
ACKNOWLEDGE  
BY SWITCH  
Figure 32. ADG791A/ADG791G Read Operation  
Rev. 0 | Page 19 of 24  
 
 
 
ADG791A/ADG791G  
EVALUATION BOARD  
The ADG791G evaluation kit allows designers to evaluate the  
high performance of the device with a minimum of effort.  
USING THE ADG791G EVALUATION BOARD  
The ADG791G evaluation kit is a test system designed to  
simplify the evaluation of the device. Each input/output of the  
part comes with a socket specifically chosen for easy  
audio/video evaluation. A data sheet is also available and gives  
full information on operating the evaluation board.  
The evaluation kit includes a printed circuit board populated  
with the ADG791G. The evaluation board can be used to  
evaluate the performance of both the ADG791A and  
ADG791G. It interfaces to the USB port of a PC, or it can be  
used as a standalone evaluation board. Software is available with  
the evaluation board that allows the user to easily program the  
ADG791G through the USB port. Schematics of the evaluation  
board are shown in Figure 33 and Figure 34. The software runs  
on any PC that has Microsoft® Windows® 2000 or Windows XP  
installed.  
Rev. 0 | Page 20 of 24  
 
ADG791A/ADG791G  
3 3 0 3 - 0 3 0 6  
D
D
D
D
D
D
D
G N  
G N  
G N  
G N  
G N  
G N  
G N  
5 6  
5 3  
4 1  
2 8  
2 6  
1 2  
1 0  
C
C
C
C
C
C
C
V C  
V C  
V C  
V C  
V C  
V C  
V C  
5 5  
4 3  
3 2  
2 7  
1 7  
1 1  
7
C C A V  
3
Figure 33. EVAL-ADG791GEB Schematic, USB Controller Section  
Rev. 0 | Page 21 of 24  
ADG791A/ADG791G  
3 4 0 3 - 0 3 0 6  
k 1 0  
J 8  
J 7  
J 3  
R 8  
k 1 0  
R 4  
k 1 0  
R 3  
R 1 8  
K 1  
D
G N  
M O T T B O  
1
2
E S C A  
4
5
P T O  
3
E S C A  
D _ U A N L O H P O  
R 1 7  
R 1 6  
0
9
8
R 3  
R 2  
R 2  
0  
R 3 5  
D _ U A N L O H P O  
E
C A S  
5
K 2  
0  
R 3  
P
T O  
E
C A S  
3
2
4
4
D
G N  
M O T T B O  
1 8  
1 7  
1 6  
1 5  
1 4  
1 3  
1
1
2
3
4
5
6
M O T T B O  
D
G N  
2
1
E S C A  
4
5
P T O  
3
K 9  
E S C A  
R 1 5  
R 1 4  
D _ U A N L O H P O  
D _ U A N L O H P O  
E
C A S  
5
P
T O  
E
C A S  
3
2
4
M O T T B O  
K 3  
7
6
R 2  
R 2  
D
G N  
1
D
G N  
K 8  
1
M O T T B O  
2
E S C A  
4
5
P T O  
3
E S C A  
D _ U A N L O H P O  
D _ U A N L O H P O  
R 1 3  
E
C A S  
5
P
T O  
E
C A S  
3
2
4
M O T T B O  
5
R 2  
D
G N  
1
K 7  
Figure 34. EVAL-ADG791GEB Schematic, Chip Section  
Rev. 0 | Page 22 of 24  
ADG791A/ADG791G  
OUTLINE DIMENSIONS  
0.60 MAX  
4.00  
BSC SQ  
0.60 MAX  
PIN 1  
INDICATOR  
1
24  
19  
18  
0.50  
BSC  
PIN 1  
INDICATOR  
*
2.45  
2.30 SQ  
2.15  
TOP  
3.75  
EXPOSED  
VIEW  
BSC SQ  
PA D  
(BOTTOMVIEW)  
0.50  
0.40  
0.30  
6
13  
12  
7
0.23 MIN  
2.50 REF  
0.80 MAX  
0.65 TYP  
1.00  
0.85  
0.80  
12° MAX  
0.05 MAX  
0.02 NOM  
0.30  
0.23  
0.18  
COPLANARITY  
0.08  
0.20 REF  
SEATING  
PLANE  
*
COMPLIANT TO JEDEC STANDARDS MO-220-VGGD-2  
EXCEPT FOR EXPOSED PAD DIMENSION  
Figure 35. 24-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
4 mm x 4 mm Body, Very Thin Quad  
(CP-24-2)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
I2C Speed  
Package Description  
24-Lead LFCSP_VQ  
24-Lead LFCSP_VQ  
Package Option  
CP-24-2  
CP-24-2  
CP-24-2  
CP-24-2  
ADG791ABCPZ-REEL1  
ADG791ABCPZ-500RL71  
ADG791ACCPZ-REEL1  
ADG791ACCPZ-500RL71  
ADG791GBCPZ-REEL1  
ADG791GBCPZ-500RL71  
ADG791GCCPZ-REEL1  
ADG791GCCPZ-500RL71  
EVAL-ADG791GEB2  
100 kHz, 400 kHz  
100 kHz, 400 kHz  
100 kHz, 400 kHz, 3.4 MHz 24-Lead LFCSP_VQ  
100 kHz, 400 kHz, 3.4 MHz 24-Lead LFCSP_VQ  
100 kHz, 400 kHz  
100 kHz, 400 kHz  
100 kHz, 400 kHz, 3.4 MHz 24-Lead LFCSP_VQ  
100 kHz, 400 kHz, 3.4 MHz 24-Lead LFCSP_VQ  
Evaluation Board  
24-Lead LFCSP_VQ  
24-Lead LFCSP_VQ  
CP-24-2  
CP-24-2  
CP-24-2  
CP-24-2  
1 Z = Pb-free part.  
2 Evaluation board is RoHS compliant.  
Rev. 0 | Page 23 of 24  
 
ADG791A/ADG791G  
NOTES  
Purchase of licensed I2C components of Analog Devices or one of its sublicensed Associated Companies conveys a license for the purchaser under the Philips I2C Patent  
Rights to use these components in an I2C system, provided that the system conforms to the I2C Standard Specification as defined by Philips.  
©2006 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D06033-0-7/06(0)  
Rev. 0 | Page 24 of 24  

相关型号:

ADG791GBCPZ-REEL

IC-Compatible, Wide Bandwidth, Quad, 2:1 Multiplexer
ADI

ADG791GCCPZ-500RL7

IC-Compatible, Wide Bandwidth, Quad, 2:1 Multiplexer
ADI

ADG791GCCPZ-REEL

IC-Compatible, Wide Bandwidth, Quad, 2:1 Multiplexer
ADI

ADG791G_15

Wide Bandwidth, Quad, 2:1 Multiplexer
ADI

ADG792A

IC-Compatible, Wide Bandwidth, Triple 4:1 Multiplexer
ADI

ADG792ABCPZ-500RL7

IC-Compatible, Wide Bandwidth, Triple 4:1 Multiplexer
ADI

ADG792ABCPZ-REEL

IC-Compatible, Wide Bandwidth, Triple 4:1 Multiplexer
ADI

ADG792ACCPZ-500RL7

IC-Compatible, Wide Bandwidth, Triple 4:1 Multiplexer
ADI

ADG792ACCPZ-REEL

IC-Compatible, Wide Bandwidth, Triple 4:1 Multiplexer
ADI

ADG792A_15

Wide Bandwidth, Triple 4:1 Multiplexer
ADI

ADG792G

IC-Compatible, Wide Bandwidth, Triple 4:1 Multiplexer
ADI

ADG792GBCPZ-500RL7

IC-Compatible, Wide Bandwidth, Triple 4:1 Multiplexer
ADI