ADG798HFRZ [ADI]

High Temperature, Low Voltage 8-Channel Multiplexer;
ADG798HFRZ
型号: ADG798HFRZ
厂家: ADI    ADI
描述:

High Temperature, Low Voltage 8-Channel Multiplexer

文件: 总22页 (文件大小:429K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
High Temperature, Low Voltage  
8-Channel Multiplexer  
ADG798  
Data Sheet  
FEATURES  
Extreme high temperature operation  
Specified temperature range  
−55°C to +210°C (16-lead FLATPACK)  
−55°C to +175°C (16-lead TSSOP)  
3.0 V to 5.5 V single supply  
2.5 V dual supply  
FUNCTIONAL BLOCK DIAGRAM  
ADG798  
S1  
D
10 Ω on resistance, maximum  
2 Ω on-resistance flatness, maximum  
12 ns switching times  
S8  
Single 8:1 multiplexer  
Low power consumption  
1 OF 8  
DECODER  
TTL-/CMOS-compatible inputs  
APPLICATIONS  
A0 A1  
A2 EN  
Downhole drilling and instrumentation  
Avionics  
Figure 1.  
Heavy industrial  
High temperature environments  
GENERAL DESCRIPTION  
packages have an operating temperature range of −55°C to +210°C.  
A 16-lead TSSOP package is also available that has an operating  
temperature range of −55°C to +175°C. All packages are designed  
for robustness at extreme temperatures, and are qualified for  
1000 hours of continuous operation at the maximum temperature  
rating.  
The ADG798 is a low voltage, CMOS, analog multiplexer  
designed to operate at very high temperatures up to 210°C. The  
ADG798 switches one of eight inputs (S1 to S8) to a common  
output, D, as determined by the 3-bit binary address lines A0,  
A1, and A2. An EN input on the device enables or disables the  
device. When the device is disabled, all channels are switched off.  
The ADG798 is a member of a growing series of high temperature  
qualified products offered by Analog Devices, Inc. For a complete  
selection table of available high temperature products, see the  
high temperature product list and qualification data available at  
http://www.analog.com/hightemp.  
The ADG798 features low power consumption and a 3.3 V to  
5.5 V operating supply range. All channels exhibit break-before-  
make switching action, preventing momentary shorting when  
switching channels. These switches are designed with an enhanced  
submicron process that provides low power dissipation, high  
switching speed, and very low on resistance.  
PRODUCT HIGHLIGHTS  
1. Single-Supply/Dual-Supply Operation.  
The on resistance (RON) is a maximum of 10 Ω and is closely  
matched between switches and very flat over the full signal range.  
The ADG798 operates equally well as either a multiplexer or a  
demultiplexer and has an input signal range that extends to  
the supplies.  
The ADG798 is fully specified and guaranteed with 3.3 V  
and 5 V single-supply rails and 2.5 V dual-supply rails.  
2. Low RON  
.
The RON of the ADG798 is specified at 5 Ω, typical, at 210°C.  
3. Low Power Consumption.  
The power consumption of the ADG798 is specified at  
<0.01 μW.  
4. Guaranteed Break-Before-Make Switching Action.  
This mux is available in a 16-lead ceramic flat package  
(FLATPACK) and a 16-lead ceramic flat package with reverse  
formed gullwing leads (FLATPACK_RF). Both of the flat  
Rev. A  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed byAnalog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarksandregisteredtrademarksare the property oftheir respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2016–2018 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
 
ADG798  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Pin Configuration and Function Descriptions........................... 10  
Truth Table .................................................................................. 10  
Typical Performance Characteristics ........................................... 11  
Test Circuits..................................................................................... 15  
Terminology.................................................................................... 18  
Theory of Operation ...................................................................... 19  
Applications Information.............................................................. 20  
Power Supply Sequencing ......................................................... 20  
Outline Dimensions....................................................................... 21  
Ordering Guide .......................................................................... 22  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Product Highlights ........................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Dual Supply................................................................................... 7  
Continuous Current per Channel, Sx or D............................... 8  
Absolute Maximum Ratings............................................................ 9  
Thermal Resistance ...................................................................... 9  
ESD Caution.................................................................................. 9  
REVISION HISTORY  
6/2018—Rev. 0 to Rev. A  
Added TSSOP Package ......................................................Universal  
Changes to Features.......................................................................... 1  
Changes to General Description .................................................... 1  
Changes to Specifications, Table 1.................................................. 3  
Changes to Specifications, Table 2.................................................. 5  
Changes to Specifications, Table 3.................................................. 7  
Changes to Specifications, Table 4.................................................. 8  
Added TSSOP Operating Temperature Range and Junction  
Temperature Range, Table 5............................................................ 9  
Added RU-16 Thermal Characteristics, Table 6........................... 9  
Changes to Figure 2 Caption......................................................... 10  
9/2016—Revision 0: Initial Version  
Rev. A | Page 2 of 22  
 
Data Sheet  
ADG798  
SPECIFICATIONS  
VDD = 5 V 10%, VSS = 0 V, GND = 0 V, unless otherwise noted. TSSOP temperature range = −55°C ≤ TA ≤ +175°C and FLATPACK  
temperature range = −55°C ≤ TA ≤ +210°C, unless otherwise noted.  
Table 1.  
TSSOP  
Typ 2  
FLATPACK  
Typ2  
Parameter  
Symbol Test Conditions/Comments1  
Min  
Max Min  
Max  
Unit  
ANALOG SWITCH  
Analog Signal Range  
On Resistance  
0
VDD  
9
0
VDD  
10  
V
RON  
VS = 0 V to VDD, IDS = 10 mA; see  
Figure 24  
VS = 0 V to VDD, IDS = 10 mA  
4.5  
0.6  
5
Matching Between  
Channels  
Flatness  
ΔRON  
RFLAT (ON)  
1.2  
1.5  
1.25  
0.75  
1.5  
2
VS = 0 V to VDD, IDS = 10 mA  
VDD = 5.5 V  
VD = 4.5 V/1 V, VS = 1 V/4.5 V; see  
Figure 25  
VD = 4.5 V/1 V, VS = 1 V/4.5 V; see  
Figure 26  
LEAKAGE CURRENTS  
Source Off Leakage  
IS (Off )  
−50  
0.01  
0.01  
0.01  
+50  
−180  
0.01  
0.01  
0.01  
+180  
nA  
Drain Off Leakage  
ID (Off)  
−650  
+650 −2600  
+650 −2600  
+2600 nA  
+2600 nA  
Channel On Leakage  
ID (On),  
IS (On)  
VD = VS = 1 V or 4.5 V; see Figure 27 −650  
DIGITAL INPUTS  
Input Voltage  
High  
VINH  
VINL  
2.4  
2.4  
0.8  
V
V
Low  
0.8  
Input Current  
IINL or  
IINH  
VIN = VINL or VINH  
−800 +0.005 +800 −800  
+0.005 +800  
nA  
Digital Input Capacitance  
DYNAMIC CHARACTERISTICS3  
Transition Time  
CIN  
2
2
pF  
ns  
tTRANSITION RL = 150 Ω, CL = 15 pF; see  
Figure 28  
12  
8
21  
12  
8
23  
VS1 = 3 V/0 V, VS8 = 0 V/3 V  
RL = 150 Ω, CL = 15 pF, VS = 3 V;  
see Figure 29  
Break-Before-Make Time  
Delay  
tOPEN  
1
1
ns  
TA = maximum temperature  
RL = 150 Ω, CL = 15 pF  
VS = 3 V; see Figure 30  
9
11  
9
11  
ns  
ns  
On Time  
Off Time  
tON (EN)  
17  
11  
20  
12  
tOFF (EN) RL = 150 Ω, CL = 15 pF  
VS = 3 V; see Figure 30  
5.5  
3
5.5  
3
ns  
Charge Injection  
Off Isolation  
QINJ  
VS = 2.5 V, RS = 0 Ω, CL = 1 nF; see  
Figure 31  
RL = 50 Ω, CL = 5 pF, f = 10 MHz  
RL = 50 Ω, CL = 5 pF, f = 1 MHz; see  
Figure 32  
pC  
−60  
−80  
−60  
−80  
dB  
dB  
Channel to Channel  
Crosstalk  
RL = 50 Ω, CL = 5 pF, f = 10 MHz  
−60  
−80  
−60  
−80  
dB  
dB  
RL = 50 Ω, CL = 5 pF, f = 1 MHz; see  
Figure 33  
−3 dB Bandwidth  
Source Capacitance, Off  
RL = 50 Ω, CL = 5 pF; see Figure 34  
f = 1 MHz  
55  
13  
55  
13  
MHz  
pF  
CS (Off )  
Rev. A | Page 3 of 22  
 
 
ADG798  
Data Sheet  
TSSOP  
Typ 2  
85  
FLATPACK  
Parameter  
Drain Capacitance, Off  
Symbol Test Conditions/Comments1  
CD (Off ) f = 1 MHz  
Min  
Max Min  
Typ2  
Max  
Unit  
pF  
85  
Source/Drain Capacitance,  
On  
CD (On), f = 1 MHz  
CS (On)  
96  
96  
pF  
POWER REQUIREMENTS  
Supply Current  
VDD = 5.5 V  
Digital inputs = 0 V or 5.5 V  
IDD  
5
35  
40  
70  
μA  
1 The ADG798 is qualified for a minimum of 1000 hours of continuous operation at the maximum temperature rating.  
2 TA = 25°C, except for the analog switch and power requirements values where TA = 175°C (TSSOP only) or 210°C (FLATPACK only).  
3 Guaranteed by design, not subject to production test.  
Rev. A | Page 4 of 22  
 
 
 
Data Sheet  
ADG798  
VDD = 3.3 V 10%, VSS = 0 V, GND = 0 V, unless otherwise noted. TSSOP temperature range = −55°C ≤ TA ≤ +175°C and FLATPACK  
temperature range = −55°C ≤ TA ≤ +210°C, unless otherwise noted.  
Table 2.  
TSSOP  
Typ 2  
FLATPACK  
Typ2  
Parameter  
Symbol Test Conditions/Comments1  
Min  
Max Min  
Max  
Unit  
ANALOG SWITCH  
Analog Signal Range  
On Resistance  
0
VDD  
15  
0 V  
VDD  
20  
V
RON  
VS = 0 V to VDD, IDS = 10 mA; see  
Figure 24  
7
8
Matching Between  
Channels  
Flatness  
ΔRON  
RFLAT (ON)  
VS = 0 V to VDD, IDS = 10 mA  
0.4  
2.5  
1.2  
3.5  
0.5  
3
1.5  
4.5  
VS = 0 V to VDD, IDS = 10 mA  
VDD = 3.63 V  
VD = 2.3 V/1 V, VS = 1 V/2.3 V; see  
Figure 25  
VD = 2.3 V/1 V, VS = 1 V/2.3 V; see  
Figure 26  
VD = VS = 1 V or 2.3 V; see  
Figure 27  
LEAKAGE CURRENTS  
Source Off Leakage  
IS (Off )  
−50  
0.01  
0.01  
0.01  
+50  
−180  
0.01  
0.01  
0.01  
+180  
nA  
Drain Off Leakage  
ID (Off)  
−650  
−650  
+650 −2600  
+650 −2600  
+2600 nA  
+2600 nA  
Channel On Leakage  
ID (On),  
IS (On)  
DIGITAL INPUTS  
Input Voltage  
High  
VINH  
VINL  
2.4  
2.0  
0.8  
V
V
Low  
0.8  
Input Current  
IINL or  
IINH  
VIN = VINL or VINH  
−800 +0.005 +800 −800  
+0.005 +800  
nA  
Digital Input Capacitance  
DYNAMIC CHARACTERISTICS3  
Transition Time  
CIN  
2
2
pF  
ns  
tTRANSITION RL = 150 Ω, CL = 15 pF; see  
Figure 28  
18  
10  
34  
18  
10  
38  
VS1 = 2 V/0 V, VS8 = 0 V/2 V  
RL = 150 Ω, CL = 15 pF, VS = 2 V;  
see Figure 29  
Break-Before-Make Time  
Delay  
tOPEN  
1
1
ns  
TA = maximum temperature  
RL = 150 Ω, CL = 15 pF  
VS = 2 V; see Figure 30  
15  
14  
15  
14  
ns  
ns  
On Time  
Off Time  
tON (EN)  
26  
16  
28  
17  
tOFF (EN) RL = 150 Ω, CL = 15 pF  
VS = 2 V; see Figure 30  
8.5  
3
8.5  
3
ns  
Charge Injection  
Off Isolation  
QINJ  
VS = 1.5 V, RS = 0 Ω, CL = 1 nF; see  
Figure 31  
RL = 50 Ω, CL = 5 pF, f = 10 MHz  
RL = 50 Ω, CL = 5 pF, f = 1 MHz;  
see Figure 32  
pC  
−60  
−80  
−60  
−80  
dB  
dB  
Channel to Channel  
Crosstalk  
RL = 50 Ω, CL = 5 pF, f = 10 MHz  
−60  
−80  
−60  
−80  
dB  
dB  
RL = 50 Ω, CL = 5 pF, f = 1 MHz; see  
Figure 33  
−3 dB Bandwidth  
Source Capacitance, Off  
Drain Capacitance, Off  
Source/Drain Capacitance,  
On  
RL = 50 Ω, CL = 5 pF; see Figure 34  
55  
13  
85  
96  
55  
13  
85  
96  
MHz  
pF  
pF  
CS (Off )  
CD (Off )  
CD (On),  
CS (On)  
f = 1 MHz  
f = 1 MHz  
f = 1 MHz  
pF  
Rev. A | Page 5 of 22  
 
ADG798  
Data Sheet  
TSSOP  
Typ 2  
FLATPACK  
Typ2  
Parameter  
Symbol Test Conditions/Comments1  
Min  
Max Min  
Max  
Unit  
POWER REQUIREMENTS  
Supply Current  
VDD = 3.63 V  
Digital inputs = 0 V or 3.63 V  
IDD  
5
35  
40  
70  
μA  
1 The ADG798 is qualified for a minimum of 1000 hours of continuous operation at the maximum temperature rating.  
2 TA = 25°C, except for the analog switch and power requirements values where TA = 175°C (TSSOP only) or 210°C (FLATPACK only).  
3 Guaranteed by design, not subject to production test.  
Rev. A | Page 6 of 22  
 
 
 
Data Sheet  
ADG798  
DUAL SUPPLY  
VDD = 2.5 V 10%, VSS = −2.5 V 10%, GND = 0 V, unless otherwise noted. TSSOP temperature range = −55°C ≤ TA ≤ +175°C and  
FLATPACK temperature range = −55°C ≤ TA ≤ +210°C, unless otherwise noted.  
Table 3.  
TSSOP  
Typ 2  
FLATPACK  
Typ2  
Parameter  
Symbol  
Test Conditions/Comments1  
Min  
Max Min  
Max  
Unit  
ANALOG SWITCH  
Analog Signal Range  
On Resistance  
0
VDD  
9
VSS  
VDD  
10  
V
RON  
VS = VSS to VDD, IDS = 10 mA;  
see Figure 24  
VS = VSS to VDD, IDS = 10 mA  
4.5  
0.6  
5
Matching Between  
Channels  
Flatness  
ΔRON  
RFLAT (ON)  
1.2  
1.5  
1.25  
0.6  
1.5  
2
VS = VSS to VDD, IDS = 10 mA  
VDD = +2.75 V, VS = −2.75 V  
VS = +2.25 V/−1.25 V, VD =  
−1.25 V/+2.25 V; see Figure 25  
VS = +2.25 V/−1.25 V, VD =  
−1.25 V/+2.25 V; see Figure 26  
VD = VS = −1.25 V/+2.25 V; see  
Figure 27  
LEAKAGE CURRENTS  
Source Off Leakage  
IS (Off )  
−50  
0.01  
0.01  
0.01  
+50  
−180  
0.01  
0.01  
0.01  
+180  
nA  
Drain Off Leakage  
ID (Off)  
−650  
−650  
+650 −2600  
+650 −2600  
+2600 nA  
+2600 nA  
Channel On Leakage  
ID (On),  
IS (On)  
DIGITAL INPUTS  
Input Voltage  
High  
VINH  
VINL  
2.4  
2.0  
0.8  
V
V
Low  
0.8  
Input Current  
Digital Input Capacitance  
DYNAMIC CHARACTERISTICS3  
Transition Time  
IINL or IINH  
CIN  
VIN = VINL or VINH  
−800 +0.005 +800 −800  
2
+0.005 +800  
2
nA  
pF  
tTRANSITION  
RL = 150 Ω, CL = 15 pF; see  
Figure 28  
VS1 = 1.5 V/0 V, VS8 = 0 V/1.5 V  
RL = 150 Ω, CL = 15 pF, VS = 2 V;  
see Figure 29  
18  
10  
28  
14  
10  
30  
ns  
ns  
Break-Before-Make Time  
Delay  
tOPEN  
1
1
TA = maximum temperature  
RL = 150 Ω, CL = 15 pF  
VS = 2 V; see Figure 30  
RL = 150 Ω, CL = 15 pF  
VS = 2 V; see Figure 30  
VS = 0 V, RS = 0 Ω, CL = 1 nF;  
see Figure 31  
RL = 50 Ω, CL = 5 pF, f = 10 MHz  
13  
19  
13  
19  
ns  
ns  
On Time  
Off Time  
tON (EN)  
tOFF (EN)  
QINJ  
28  
19  
30  
20  
11.5  
3
11.5  
3
ns  
Charge Injection  
Off Isolation  
pC  
−60  
−80  
−60  
−80  
dB  
dB  
RL = 50 Ω, CL = 5 pF, f = 1 MHz;  
see Figure 32  
Channel to Channel  
Crosstalk  
RL = 50 Ω, CL = 5 pF, f = 10 MHz  
−60  
−80  
55  
−60  
−80  
55  
dB  
RL = 50 Ω, CL = 5 pF, f = 1 MHz; see  
Figure 33  
RL = 50 Ω, CL = 5 pF; see  
Figure 34  
dB  
−3 dB Bandwidth  
MHz  
pF  
Source Capacitance, Off  
CS (Off )  
f = 1 MHz  
13  
13  
Rev. A | Page 7 of 22  
 
 
ADG798  
Data Sheet  
TSSOP  
Typ 2  
85  
FLATPACK  
Parameter  
Drain Capacitance, Off  
Symbol  
CD (Off )  
Test Conditions/Comments1  
f = 1 MHz  
Min  
Max Min  
Typ2  
Max  
Unit  
pF  
85  
Source/Drain Capacitance, CD (On), CS f = 1 MHz  
96  
96  
pF  
On  
(On)  
POWER REQUIREMENTS  
Supply Current  
VDD = 2.75 V  
Digital inputs = 0 V or 2.75 V  
VSS = −2.75 V; digital inputs = 0 V  
or 2.75 V  
IDD  
ISS  
5
5
35  
35  
40  
40  
70  
70  
μA  
μA  
1 The ADG798 is qualified for a minimum of 1000 hours of continuous operation at the maximum temperature rating.  
2 TA = 25°C, except for the analog switch and power requirements values where TA = 175°C (TSSOP) or 210°C (FLATPACK).  
3 Guaranteed by design, not subject to production test.  
CONTINUOUS CURRENT PER CHANNEL, Sx OR D  
Table 4.  
Parameter  
175°C  
210°C  
Unit  
CONTINUOUS CURRENT, Sx OR D  
FLATPACK θJA = 70°C/W  
VDD = 5 V, VSS = 0 V  
30  
30  
30  
30  
30  
30  
mA maximum  
mA maximum  
mA maximum  
VDD = 3 V, VSS = 0 V  
VDD = +2.5 V, VSS = −2.5 V  
TSSOP θJA = 109.6°C/W  
VDD = 5 V, VSS = 0 V  
VDD = 3 V, VSS = 0 V  
VDD = +2.5 V, VSS = −2.5 V  
30  
30  
30  
mA maximum  
mA maximum  
mA maximum  
Rev. A | Page 8 of 22  
 
 
 
 
Data Sheet  
ADG798  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Table 5.  
Parameter  
VDD to VSS  
VDD to GND  
VSS to GND  
Analog Inputs1  
Rating  
7 V  
−0.3 V to +7 V  
+0.3 V to −3.5 V  
VSS − 0.3 V to VDD + 0.3 V  
or 30 mA, whichever  
occurs first  
Only one absolute maximum rating can be applied at any one time.  
THERMAL RESISTANCE  
Digital Inputs1  
−0.3 V to VDD + 0.3 V or  
30 mA, whichever  
occurs first  
Thermal performance is directly linked to PCB design and  
operating environment. Close attention to PCB thermal design  
is required.  
Peak Current, Sx or D (Pulsed at 1 ms,  
10% Duty Cycle Maximum)  
94.9 mA  
Continuous Current, Sx or D2  
Operating Temperature Range  
TSSOP  
FLATPACK  
Junction Temperature  
TSSOP  
Data + 5%  
Table 6. Thermal Resistance  
Package Type1  
F-16-1  
θJA  
70  
70  
109.6  
θJC  
22  
10  
Unit  
°C/W  
°C/W  
°C/W  
−55°C to +175°C  
−55°C to +210°C  
FR-16-1  
RU-16  
36.5  
180°C  
211°C  
1 Thermal impedance simulated values are based on a JEDEC 2s2p thermal  
test board. See JEDEC JESD51.  
FLATPACK  
1 Overvoltages at Ax, EN, Sx, or D are clamped by internal codes. Limit the  
current to the maximum ratings given.  
2 See Table 4.  
ESD CAUTION  
Rev. A | Page 9 of 22  
 
 
 
 
ADG798  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
16  
15  
14  
13  
12  
11  
10  
9
1
2
3
4
5
6
7
8
A0  
EN  
V
A1  
A2  
1
2
3
4
5
6
7
8
16 A1  
15 A2  
14  
A0  
EN  
GND  
SS  
ADG798  
V
V
S1  
S2  
S3  
S4  
D
GND  
SS  
S1  
S2  
S3  
S4  
D
DD  
TOP VIEW  
S5  
S6  
S7  
S8  
ADG798  
TOP VIEW  
(Not to Scale)  
V
13  
12  
11  
10  
9
(Not to Scale)  
DD  
S5  
S6  
S7  
S8  
Figure 2. TSSOP and FLATPACK Pin Configuration  
Figure 3. Reversed Formed FLATPACK Pin Configuration  
Table 7. Pin Function Descriptions  
Pin No.  
Mnemonic Description  
1
2
3
4
A0  
EN  
VSS  
S1  
Digital Input. This pin controls the configuration of the switch, as shown in the truth table (see Table 8).  
Digital Input. This pin controls the configuration of the switch, as shown in the truth table (see Table 8).  
Most Negative Power Supply Pin in Dual-Supply Applications. For single-supply applications, tie this pin to GND.  
Source Terminal. This pin can be an input or output.  
5
S2  
Source Terminal. This pin can be an input or output.  
6
S3  
Source Terminal. This pin can be an input or output.  
7
S4  
Source Terminal. This pin can be an input or output.  
8
D
Drain Terminal. This pin can be an input or output.  
9
S8  
Source Terminal. This pin can be an input or output.  
10  
11  
12  
13  
14  
15  
16  
S7  
S6  
S5  
VDD  
GND  
A2  
A1  
Source Terminal. This pin can be an input or output.  
Source Terminal. This pin can be an input or output.  
Source Terminal. This pin can be an input or output.  
Most Positive Power Supply Pin.  
Ground (0 V) Reference.  
Digital Input. This pin controls the configuration of the switch, as shown in the truth table (see Table 8).  
Digital Input. This pin controls the configuration of the switch, as shown in the truth table (see Table 8).  
TRUTH TABLE  
Table 8. Truth Table  
A2  
X1  
0
A1  
X1  
0
A0  
X1  
0
EN  
0
1
Switch Condition  
None  
S1  
0
0
1
1
S2  
0
1
0
1
S3  
0
1
1
1
S4  
1
0
0
1
S5  
1
0
1
1
S6  
1
1
0
1
S7  
1
1
1
1
S8  
1 X means don’t care.  
Rev. A | Page 10 of 22  
 
 
 
Data Sheet  
ADG798  
TYPICAL PERFORMANCE CHARACTERISTICS  
8
7
6
5
4
3
2
1
0
V
V
= 3.3V  
= 0V  
T
= 25°C  
DD  
SS  
A
V
= 0V  
SS  
7
6
5
V
= 2.7V  
DD  
V
= 3.3V  
DD  
4
3
2
1
0
V
= 4.5V  
DD  
V
= 5.5V  
DD  
–55°C  
–40°C  
+25°C  
+85°C  
+125°C  
+175°C  
+210°C  
0
1
2
3
0
1
2
3
4
5
V
OR V – DRAIN OR SOURCE VOLTAGE (V)  
V , V (V)  
D
S
S
D
Figure 4. On Resistance as a Function of VD (VS) for Single Supply  
Figure 7. On Resistance as a Function of VS (VD) for Different Temperatures,  
3.3 V Single Supply  
8
5.0  
V
V
= +2.5V  
= –2.5V  
DD  
SS  
T
= 25°C  
A
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
7
6
5
4
3
2
1
0
V
V
= +2.25V  
= –2.25V  
DD  
SS  
–55°C  
–40°C  
+25°C  
+85°C  
+125°C  
+175°C  
+210°C  
V
V
= +2.75V  
= –2.75V  
DD  
SS  
–2.5  
–1.5  
–0.5  
0.5  
1.5  
2.5  
–3.0 –2.5 –2.0 –1.5 –1.0 –0.5  
0
0.5 1.0 1.5 2.0 2.5 3.0  
V
OR V – DRAIN OR SOURCE VOLTAGE (V)  
V , V (V)  
D
S
S
D
Figure 5. On Resistance as a Function of VD (VS) for Dual Supply  
Figure 8. On Resistance as a Function of VS (VD) for Different Temperatures,  
2.5 V Dual Supply  
5.0  
0.12  
V
V
= +5V  
= 0V  
DD  
SS  
V
V
= 5V  
= 0V  
= 25°C  
DD  
SS  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
T
A
0.08  
I
(ON)  
D
0.04  
0
I
(OFF)  
S
–0.04  
–0.08  
–0.12  
–55°C  
–40°C  
+25°C  
+85°C  
+125°C  
+175°C  
+210°C  
I
(OFF)  
D
0
1
2
3
4
5
0
1
2
3
4
5
V , V (V)  
S
D
V
, (V = V – V ) (V)  
D DD S  
S
Figure 6. On Resistance as a Function of VS, VD for Different Temperatures,  
5 V Single Supply  
Figure 9. Leakage Current as a Function of VD (VS)  
Rev. A | Page 11 of 22  
 
ADG798  
Data Sheet  
0.12  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
V
V
= +2.5V  
= –2.5V  
DD  
SS  
I
I
I
I
(OFF) + –  
(OFF) + –  
(OFF) – +  
(OFF) – +  
D
D
V
V
= 3V  
= 0V  
= 25°C  
S
D
S
D
S
S
DD  
SS  
T
A
0.08  
I , I (ON) + +  
I , I (ON) – –  
I
(ON)  
D
0.04  
0
–0.04  
–0.08  
I
(OFF)  
S
I
(OFF)  
D
–0.12  
0
–200  
0
50  
100  
150  
200  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
V
, (V = V – V ) (V)  
D
S
DD  
D
TEMPERATURE (°C)  
Figure 13. Leakage Current as a Function of Temperature, VDD = +2.5 V,  
VSS = −2.5 V  
Figure 10. Leakage Current as a Function of VD (VS)  
0.12  
0.08  
2000  
V
V
= 5V  
= 0V  
I
I
I
I
(OFF) + –  
(OFF) + –  
(OFF) – +  
(OFF) – +  
D
D
DD  
SS  
V
V
= +2.5V  
S
D
S
D
DD  
SS  
= –2.5V  
1800  
1400  
1400  
1200  
1000  
800  
T
= 25°C  
A
I , I (ON) + +  
S
I , I (ON) – –  
S
I
(ON), V = V  
S D  
0.04  
D
0
–0.04  
–0.08  
600  
I
(OFF)  
S
I
(OFF)  
D
400  
200  
0
–0.12  
–200  
0
50  
100  
150  
200  
–3.0 –2.5 –2.0 –1.5 –1.0 –0.5  
0
0.5 1.0 1.5 2.0 2.5 3.0  
V
, (V = V – V ) (V)  
TEMPERATURE (°C)  
S
D
DD  
S
Figure 11. Leakage Current as a Function of VD (VS)  
Figure 14. Leakage Current vs. Temperature, VDD = 5 V  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
10m  
1m  
V
V
= 3.3V  
= 0V  
T
= 25°C  
I
I
I
I
(OFF) + –  
(OFF) + –  
(OFF) – +  
(OFF) – +  
D
D
DD  
SS  
A
S
D
S
D
I , I (ON) + +  
S
I , I (ON) – –  
S
V
V
= +2.5V  
= –2.5V  
DD  
SS  
100µ  
10µ  
1µ  
V
= +5V  
DD  
V
= +3V  
DD  
100n  
10n  
1n  
–200  
0
50  
100  
150  
200  
10  
100  
1k  
10k  
100k  
1M  
10M  
INPUT SWITCHING FREQUENCY (Hz)  
TEMPERATURE (°C)  
Figure 15. Supply Current vs. Input Switching Frequency  
Figure 12. Leakage Current as a Function of Temperature, VDD = 3.3 V, VSS = 0 V  
Rev. A | Page 12 of 22  
Data Sheet  
ADG798  
0
40  
30  
V
= 5V  
= 25°C  
DD  
T
A
–20  
20  
–40  
10  
–60  
0
–80  
–10  
–20  
–30  
–100  
+25°C  
+175°C  
+210°C  
–120  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
30k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
V
(V ) (V)  
S
D
Figure 16. Off Isolation vs. Frequency  
Figure 19. Charge Injection as a Function of VS (VD) for Various Temperatures,  
5 V Single Supply  
0
35  
V
= 5V  
+25°C  
DD  
= 25°C  
+175°C  
T
A
30  
+210°C  
–20  
25  
20  
15  
10  
5
–40  
–60  
–80  
0
–5  
–10  
–15  
–100  
–120  
0
0.5  
1.0  
1.5  
(V)  
2.0  
2.5  
3.0  
30k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
V
S
Figure 17. Crosstalk vs. Frequency  
Figure 20. Charge Injection as a Function of VS (VD) for Various Temperatures,  
3.3 V Single Supply  
0
–5  
40  
30  
20  
10  
0
V
= 5V  
= 25°C  
DD  
T
A
–10  
–15  
–20  
–10  
–20  
+25°C  
+175°C  
+210°C  
–30  
100k  
1M  
10M  
100M  
30k  
–2.5 –2.0 –1.5 –1.0 –0.5  
0
0.5  
1.0  
1.5  
2.0  
2.5  
FREQUENCY (Hz)  
V
(V ) (V)  
S
D
Figure 18. On Response vs. Frequency  
Figure 21. Charge Injection as a Function of VS (VD) for Various Temperatures,  
2.5 V Dual Supply  
Rev. A | Page 13 of 22  
ADG798  
Data Sheet  
20  
14  
13  
12  
11  
10  
9
V
V
V
= 5V, V = 0V  
SS  
T
= 25°C  
DD  
DD  
DD  
A
= 3V, V = 0V  
SS  
= +2.5V, V = –2.5V  
SS  
10  
V
V
= +5V  
= 0V  
DD  
SS  
0
V
V
= +3V  
= 0V  
DD  
SS  
–10  
–20  
–30  
V
V
= +2.5V  
= –2.5V  
DD  
SS  
8
7
–40  
–3  
6
–55 –35 –15  
5
25 45 65 85 105 125 145 165 185 205  
TEMPERATURE (°C)  
–2  
–1  
0
1
2
3
4
5
SOURCE VOLTAGE (V)  
Figure 23. Break-Before-Make Time vs. Temperature  
Figure 22. Charge Injection (QINJ) vs. Source Voltage  
Rev. A | Page 14 of 22  
Data Sheet  
ADG798  
TEST CIRCUITS  
I
DS  
V
V
V
V
DD  
SS  
V1  
DD  
SS  
S1  
S2  
I
(OFF)  
A
D
Sx  
D
D
S8  
V
V
S
D
0.8V  
EN  
V
GND  
S
R
= V1/I  
ON  
DS  
Figure 24. On Resistance  
Figure 26. ID (Off)  
V
V
V
V
DD  
SS  
DD  
SS  
V
V
V
V
SS  
DD  
SS  
DD  
I (OFF)  
S
S1  
S2  
S8  
I
(ON)  
A
A
D
S1  
D
D
V
S
S8  
V
D
V
S
0.8V  
2.4V  
EN  
EN  
V
GND  
GND  
D
Figure 25. IS (Off)  
Figure 27. ID (On)  
V
V
DD  
SS  
3V  
0V  
V
V
DD  
SS  
ADDRESS  
DRIVE (V  
50%  
50%  
)
IN  
V
S1  
A2  
A1  
A0  
S1  
V
S2 TO S7  
IN  
50Ω  
S8  
V
R
S8  
V
ADG798  
S1  
90%  
V
D
OUT  
V
+0.1V  
EN  
INH  
V
C
35pF  
OUT  
L
L
GND  
300Ω  
10%  
V
S8  
tTRANSITION  
tTRANSITION  
Figure 28. Switching Time of Multiplexer, tTRANSITION  
V
V
V
3V  
DD  
SS  
ADDRESS  
V
DRIVE (V  
)
DD  
SS  
IN  
V
S1  
S
A2  
A1  
A0  
0V  
V
S2 TO S7  
IN  
50Ω  
ADG798  
S8  
D
90%  
90%  
V
OUT  
V
+0.1V  
EN  
INH  
V
OUT  
C
35pF  
R
300Ω  
L
L
GND  
tOPEN  
Figure 29. Break-Before-Make Delay, tOPEN  
Rev. A | Page 15 of 22  
 
 
 
 
 
 
 
ADG798  
Data Sheet  
V
V
V
SS  
3V  
DD  
ENABLE  
50%  
50%  
V
DRIVE (V  
)
DD  
SS  
IN  
A2  
A1  
A0  
V
S1  
S2 TO S8  
S
0V  
tOFF (EN)  
0.9V  
V
OUT  
ADG798  
0.9V  
OUT  
OUT  
V
OUTPUT  
0V  
EN  
D
OUT  
C
35pF  
R
300Ω  
GND  
L
V
IN  
L
50Ω  
tON (EN)  
Figure 30. Enable Delay, tON (EN), tOFF (EN)  
V
V
V
3V  
DD  
SS  
LOGIC INPUT  
(V  
)
IN  
V
DD  
SS  
A2  
A1  
A0  
0V  
ADG798  
R
S
D
Sx  
V
V
C
1nF  
ΔV  
OUT  
OUT  
OUT  
V
L
S
EN  
Q
= C × ΔV  
L OUT  
INJ  
V
GND  
IN  
Figure 31. Charge Injection  
V
V
SS  
DD  
0.1µF  
0.1µF  
NETWORK  
ANALYZER  
V
V
SS  
DD  
A2  
A1  
A0  
50Ω  
Sx  
50Ω  
V
S
D
V
OUT  
2.4V  
EN  
R
L
50Ω  
GND  
V
OUT  
OFF ISOLATION = 20 log  
V
S
Figure 32. Off Isolation  
V
V
SS  
DD  
0.1µF  
0.1µF  
V
V
SS  
DD  
A2  
A1  
A0  
S1  
EN  
2.4V  
NETWORK  
ANALYZER  
ADG798  
50Ω  
D
NETWORK  
V
OUT  
ANALYZER  
R
50Ω  
L
50Ω  
S2  
S8  
GND  
V
S
V
OUT  
CHANNEL TO CHANNEL CROSSTALK = 20 log  
V
S
Figure 33. Channel to Channel Crosstalk  
Rev. A | Page 16 of 22  
 
 
 
 
Data Sheet  
ADG798  
V
V
SS  
DD  
0.1µF  
0.1µF  
NETWORK  
ANALYZER  
V
V
SS  
DD  
A2  
A1  
A0  
Sx  
50Ω  
V
S
D
V
OUT  
2.4V  
EN  
R
L
50Ω  
GND  
V
WITH SWITCH  
OUT  
INSERTION LOSS = 20 log  
V
WITHOUT SWITCH  
OUT  
Figure 34. −3 dB Bandwidth  
Rev. A | Page 17 of 22  
 
 
ADG798  
Data Sheet  
TERMINOLOGY  
VDD  
tTRANSITION  
V
DD is the most positive power supply potential.  
tTRANSITION is the delay time measured between the 50% and 90%  
points of the digital inputs and the switch on condition when  
switching from one address state to another.  
VSS  
V
SS is the most negative power supply in a dual-supply application.  
In single-supply applications, tie VSS to ground at the device.  
tON (EN)  
tON (EN) is the delay time between the 50% and 90% points of  
the EN digital input and the switch on condition.  
GND  
GND is the ground (0 V) reference.  
t
OFF (EN)  
Sx  
tOFF (EN) is the delay time between the 50% and 90% points of  
Sx are the source terminals and can be inputs or outputs.  
the EN digital input and the switch off condition.  
D
tOPEN  
D is the drain terminal and can be an input or an output.  
tOPEN is the off time measured between the 80% points of both  
switches when switching from one address state to another.  
Ax  
Ax is the logic control input.  
Off Isolation  
Off isolation is a measure of unwanted signal coupling through  
an off switch.  
EN  
EN is the active high enable.  
Channel to Channel Crosstalk  
RON  
Channel to channel crosstalk is a measure of unwanted signal  
that is coupled through from one channel to another as a result  
of parasitic capacitance.  
R
ON is the ohmic resistance between D and Sx.  
RFLAT (ON)  
RFLAT (ON) flatness is the difference between the maximum and  
minimum value of on resistance as measured over the specified  
analog signal range.  
Charge Injection  
Charge injection is a measure of the glitch impulse transferred  
from injection of the digital input to the analog output during  
switching.  
IS (Off)  
IS (Off) is the source leakage current with the switch off.  
−3 dB Bandwidth  
−3 dB bandwidth is the frequency at which the output is  
attenuated by 3 dB.  
ID (Off)  
ID (Off) is the drain leakage current with the switch off.  
ID, IS (On)  
On Response  
ID, IS (On) is the channel leakage current with the switch on.  
On response is the frequency response of the on switch.  
VD (VS)  
On Loss  
VD (VS) is the analog voltage on Terminal D and Terminal Sx.  
On loss is the loss due to the on resistance of the switch.  
CS (Off)  
VINL  
CS (Off) is the off switch source capacitance and is measured with  
reference to ground.  
V
INL is the maximum input voltage for Logic 0.  
VINH  
CD (Off)  
V
INH is the minimum input voltage for Logic 1.  
CD (Off) is the off switch drain capacitance and is measured with  
reference to ground.  
IINL (IINH  
)
I
INL (IINH) is the input current of the digital input.  
CD, CS (On)  
IDD  
CD, CS (On) is the on switch capacitance and is measured with  
reference to ground.  
I
DD is the positive supply current.  
ISS  
CIN  
I
SS is the negative supply current.  
C
IN is the digital input capacitance.  
Rev. A | Page 18 of 22  
 
Data Sheet  
ADG798  
THEORY OF OPERATION  
makes this device ideal for applications where the error due to  
on resistance is key. The ADG798 also exhibits extremely fast  
switching times and extremely low power consumption, making  
the device useful in applications where there is a tight power  
budget. The ADG798 is compatible with single-supply systems  
that have a VDD range from 5.5 V to 3.3 V and dual-supply  
systems at 2.5 V.  
The ADG798 is a bidirectional, 8:1 CMOS multiplexer designed  
for very high temperature operation. The device is controlled by  
four parallel digital inputs (EN, A0, A1, and A2). The EN input  
allows the ADG798 to be enabled or disabled. When the  
ADG798 is disabled, the source pins (S1 to S8) disconnect from  
the drain pin (D). When the ADG798 is enabled, the address  
lines (A0, A1, and A2) can determine which source pin (S1 to  
S8) is connected to the drain pin (D).  
The ADG798 operates in a wide ambient temperature range  
from −55°C to +210°C (FLATPACK) or −55°C to +175°C  
(TSSOP), making the ADG798 perfect for use in harsh  
environments that subject the device to extreme temperature  
ranges, such as downhole drilling and avionics.  
The low on resistance and on-resistance flatness of this device  
means that there is minimal signal distortion across the entire  
signal range of the device. This minimal signal distortion,  
combined with the close on-resistance match between channels,  
Rev. A | Page 19 of 22  
ADG798  
Data Sheet  
APPLICATIONS INFORMATION  
Always apply digital and analog inputs after power supplies and  
ground. For single-supply operation, tie VSS to GND as close to  
the device as possible.  
POWER SUPPLY SEQUENCING  
When using CMOS devices, take care to ensure correct power  
supply sequencing. Incorrect power supply sequencing may  
subject the device to stresses beyond the absolute maximum  
ratings listed in Table 5.  
Rev. A | Page 20 of 22  
 
 
Data Sheet  
ADG798  
OUTLINE DIMENSIONS  
5.10  
5.00  
4.90  
16  
9
8
4.50  
4.40  
4.30  
6.40  
BSC  
1
PIN 1  
1.20  
MAX  
0.15  
0.05  
0.20  
0.09  
0.75  
0.60  
0.45  
8°  
0°  
0.30  
0.19  
0.65  
BSC  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-153-AB  
Figure 35. 16-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-16)  
Dimensions shown in millimeters  
25.65  
25.40  
25.15  
7.01  
6.86  
6.71  
8.89 MIN  
5.23  
5.08  
4.93  
1.34  
1.27  
1.20  
1
16  
10.36  
10.16  
9.96  
7.40  
7.24  
7.09  
1.02  
MIN  
8
9
0.48  
0.43  
0.38  
0.89  
BSC  
TOP VIEW  
END VIEW  
BOTTOM VIEW  
0.70 REF  
R 0.32  
BSC  
2.32  
2.11  
1.90  
0.152  
0.127  
0.102  
0.20 MIN  
SIDE VIEW  
0.66 MIN  
Figure 36. 16-Lead Ceramic Flat Package [FLATPACK]  
(F-16-1)  
Dimensions shown in millimeters  
Rev. A | Page 21 of 22  
 
ADG798  
Data Sheet  
10.36  
10.16  
9.96  
7.40  
7.24  
7.09  
8
1
5.23  
5.08  
4.93  
7.01  
6.86  
6.71  
12.446  
REF  
16  
9
BOTTOM VIEW  
4.978  
4.826  
4.673  
2.32  
2.11  
1.90  
0.66 MIN  
1.524  
1.397  
1.270  
SIDE VIEW  
3.02  
2.74  
2.46  
0.254  
0.203  
0.152  
0.432  
0.381  
0.330  
END VIEW  
0.152  
0.127  
0.102  
0.254  
0.203  
0.152  
1.524  
1.397  
1.270  
0.48  
0.43  
0.38  
SEATING  
PLANE  
1.34  
1.27  
1.20  
Figure 37. 16-Lead Ceramic Flat Package with Reverse Formed Gullwing Leads [FLATPACK_RF] Cavity Down  
(FR-16-1)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
ADG798HRUZ  
ADG798HFZ  
ADG798HFRZ  
EVAL-ADG798EB1Z  
Temperature Range  
−55°C to +175°C  
−55°C to +210°C  
−55°C to +210°C  
Package Description  
Package Option  
RU-16  
F-16-1  
16-Lead Thin Shrink Small Outline Package [TSSOP]  
16-Lead Ceramic Flat Package [FLATPACK]  
16-Lead Ceramic Flat Package [FLATPACK_RF]  
Evaluation Board  
FR-16-1  
1 Z = RoHS Compliant Part.  
©2016–2018 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D14880-0-6/18(A)  
Rev. A | Page 22 of 22  
 

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY