ADGS1412BCPZ-RL7 [ADI]

Serially Controlled, 1.5 Ω, On-Resistance, High Voltage, iCMOS, Quad SPST Switch;
ADGS1412BCPZ-RL7
型号: ADGS1412BCPZ-RL7
厂家: ADI    ADI
描述:

Serially Controlled, 1.5 Ω, On-Resistance, High Voltage, iCMOS, Quad SPST Switch

文件: 总26页 (文件大小:722K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Serially Controlled, 1.5 Ω, On-Resistance,  
High Voltage, iCMOS, Quad SPST Switch  
ADGS1412  
Data Sheet  
FEATURES  
FUNCTIONAL BLOCK DIAGRAMS  
SPI interface with error detection  
ADGS1412  
Includes CRC, invalid read/write address, and SCLK count  
error detection  
Supports burst and daisy-chain mode  
Industry-standard SPI Mode 0 and Mode 3 interface-  
compatible  
S1  
S2  
S3  
S4  
D1  
D2  
D3  
D4  
1.5 Ω typical on resistance at 25°C  
0.3 Ω typical on-resistance flatness at 25°C  
0.1 Ω typical on-resistance match between channels at 25°C  
Fully specified at 15 V, 5 V, and +12 V  
SPI  
INTERFACE  
SDO  
V
SS to VDD analog signal range  
SCLK SDI CS RESET/V  
L
APPLICATIONS  
Figure 1.  
Automated test equipment  
Data acquisition systems  
Battery-powered systems  
Sample-and-hold systems  
Audio signal routing  
Video signal routing  
Communications systems  
Relay replacement  
GENERAL DESCRIPTION  
The ADGS1412 contains four independent single-pole/single-  
throw (SPST) switches. An serial peripheral interface (SPI)  
controls the switches. The SPI interface has robust error detection  
features such as cyclic redundancy check (CRC) error detection,  
invalid read/write address detection, and SCLK count error  
detection.  
PRODUCT HIGHLIGHTS  
1. SPI interface removes the need for parallel conversion,  
logic traces and reduces GPIO channel count.  
2. Daisy-chain mode removes additional logic traces when  
multiple devices are used.  
3. CRC error detection, invalid read/write address detection,  
and SCLK count error detection ensures a robust digital  
interface.  
It is possible to daisy-chain multiple ADGS1412 devices together.  
Daisy-chain mode enables the configuration of multiple devices  
with a minimal amount of digital lines. The ADGS1412 can also  
operate in burst mode to decrease the time between SPI  
commands.  
4. Safety integrity level (SIL)-compatible.  
5. Minimum distortion.  
iCMOS construction ensures ultralow power dissipation, making  
the device ideally suited for portable and battery-powered  
instruments.  
Each switch conducts equally well in both directions when on,  
and each switch has an input signal range that extends to the  
supplies. In the off condition, signal levels up to the supplies  
are blocked.  
The on-resistance profile is flat over the full analog input range,  
which ensures good linearity and low distortion when switching  
audio signals.  
Rev. 0  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2016 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
 
 
ADGS1412* Product Page Quick Links  
Last Content Update: 11/01/2016  
Comparable Parts  
Tools and Simulations  
View a parametric search of comparable parts  
• ADGS1412 IBIS Model  
• ADGS1412 SPICE Macro Model  
Evaluation Kits  
Design Resources  
• ADGS1412 Material Declaration  
• PCN-PDN Information  
• ADGS1412 Evaluation Board  
Documentation  
Data Sheet  
• Quality And Reliability  
• Symbols and Footprints  
ADGS1412: Serially-Controlled, 1.5 Ω On Resistance High  
Voltage, iCMOS, Quad SPST Switch Data Sheet  
User Guides  
Discussions  
View all ADGS1412 EngineerZone Discussions  
• UG-1067: Evaluation Board for ADGS1412 Serially  
Controlled, 1.5 Ω On Resistance, High Voltage, Quad SPST  
Switch  
Sample and Buy  
Visit the product page to see pricing options  
Software and Systems Requirements  
• ADGS5412 - No-OS Driver  
Technical Support  
Submit a technical question or find your regional support  
number  
* This page was dynamically generated by Analog Devices, Inc. and inserted into this data sheet. Note: Dynamic changes to  
the content on this page does not constitute a change to the revision number of the product data sheet. This content may be  
frequently modified.  
ADGS1412  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Address Mode............................................................................. 18  
Error Detection Features........................................................... 18  
Clearing the Error Flags Register............................................. 19  
Burst Mode.................................................................................. 19  
Software Reset............................................................................. 19  
Daisy-Chain Mode..................................................................... 19  
Power-On Reset.......................................................................... 20  
Applications Information .............................................................. 21  
Power Supply Rails ..................................................................... 21  
Power Supply Recommendations............................................. 21  
Register Summary .......................................................................... 22  
Register Details ............................................................................... 23  
Switch Data Register .................................................................. 23  
Error Configuration Register.................................................... 23  
Error Flags Register.................................................................... 24  
Burst Enable Register................................................................. 24  
Software Reset Register ............................................................. 24  
Outline Dimensions....................................................................... 25  
Ordering Guide .......................................................................... 25  
Applications....................................................................................... 1  
Functional Block Diagrams............................................................. 1  
General Description......................................................................... 1  
Product Highlights ........................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
15 V Dual Supply ....................................................................... 3  
5 V Dual Supply ......................................................................... 4  
12 V Single Supply........................................................................ 6  
Continuous Current per Channel, Sx or Dx............................. 7  
Timing Characteristics ................................................................ 7  
Absolute Maximum Ratings............................................................ 9  
Thermal Resistance ...................................................................... 9  
ESD Caution.................................................................................. 9  
Pin Configurations and Function Descriptions ......................... 10  
Typical Performance Characteristics ........................................... 11  
Test Circuits..................................................................................... 15  
Terminology .................................................................................... 17  
Theory of Operation ...................................................................... 18  
REVISION HISTORY  
10/2016—Revision 0: Initial Version  
Rev. 0 | Page 2 of 25  
 
Data Sheet  
ADGS1412  
SPECIFICATIONS  
15 V DUAL SUPPLY  
VDD = +15 V 10%, VSS = −15 V 10%, VL = 2.7 V to 5.5 V, and GND = 0 V, unless otherwise noted.  
Table 1.  
Parameter  
+25°C −40°C to +85°C −40°C to +125°C Unit  
Test Conditions/Comments  
ANALOG SWITCH  
Analog Signal Range  
On Resistance, RON  
VDD to VSS  
2.6  
V
1.5  
1.8  
0.1  
Ω typ  
Ω max  
Ω typ  
VS = 10 V, IS = −10 mA, see Figure 28  
VDD = +13.5 V, VSS = −13.5 V  
VS = 10 V, IS = −10 mA  
2.3  
On-Resistance Match Between  
Channels, ∆RON  
0.18  
0.3  
0.36  
0.19  
0.4  
0.21  
0.45  
Ω max  
Ω typ  
Ω max  
On-Resistance Flatness, RFLAT (ON)  
VS = 10 V, IS = −10 mA  
LEAKAGE CURRENTS  
VDD = +16.5 V, VSS = −16.5 V  
Source Off Leakage, IS (Off)  
0.03  
nA typ  
nA max  
nA typ  
nA max  
nA typ  
nA max  
VS = 10 V, VD =  
10 V, see Figure 31  
0.55  
0.03  
0.55  
0.15  
2
2
2
4
12.5  
12.5  
30  
Drain Off Leakage, ID (Off)  
VS = 10 V, VD =  
10 V, see Figure 31  
Channel On Leakage, ID (On), IS (On)  
VS = VD = 10 V, see Figure 27  
DIGITAL INPUTS  
Input Voltage  
High, VINH  
2
V min  
V min  
3.3 V < VL ≤ 5.5 V  
2.7 V ≤ VL ≤ 3.3 V  
3.3 V < VL ≤ 5.5 V  
2.7 V ≤ VL ≤ 3.3 V  
VIN = VGND or VL  
1.35  
0.8  
0.8  
Low, VINL  
V max  
V max  
µA typ  
µA max  
pF typ  
pF typ  
Input Current, IINL or IINH  
0.001  
0.1  
Digital Input Capacitance, CIN  
Digital Output Capacitance, COUT  
DYNAMIC CHARACTERISTICS1  
tON  
4
4
115  
135  
160  
190  
−20  
ns typ  
ns max  
ns typ  
ns max  
pC typ  
RL = 300 Ω, CL = 35 pF  
VS = 10 V, see Figure 34  
RL = 300 Ω, CL = 35 pF  
VS = 10 V, see Figure 34  
VS = 0 V, RS = 0 Ω, CL = 1 nF,  
see Figure 35  
150  
210  
160  
225  
tOFF  
Charge Injection, QINJ  
Off Isolation  
−76  
dB typ  
dB typ  
% typ  
RL = 50 Ω, CL = 5 pF, f = 1 MHz,  
see Figure 30  
RL = 50 Ω, CL = 5 pF, f = 1 MHz,  
see Figure 29  
RL = 110 Ω, 15 V p-p, f = 20 Hz to  
20 kHz, see Figure 32  
Channel to Channel Crosstalk  
Total Harmonic Distortion + Noise  
−100  
0.014  
−3 dB Bandwidth  
Insertion Loss  
170  
−0.2  
MHz typ  
dB typ  
RL = 50 Ω, CL = 5 pF, see Figure 33  
RL = 50 Ω, CL = 5 pF, f = 1 MHz,  
see Figure 33  
CS (Off)  
CD (Off)  
CD (On), CS (On)  
22  
23  
113  
pF typ  
pF typ  
pF typ  
VS = 0 V, f = 1 MHz  
VS = 0 V, f = 1 MHz  
VS = 0 V, f = 1 MHz  
Rev. 0 | Page 3 of 25  
 
 
ADGS1412  
Data Sheet  
Parameter  
+25°C −40°C to +85°C −40°C to +125°C Unit  
Test Conditions/Comments  
POWER REQUIREMENTS  
IDD  
VDD = +16.5 V, VSS = −16.5 V  
All switches open  
0.001  
220  
µA typ  
1
µA max  
µA typ  
µA max  
µA typ  
µA max  
All switches closed, VL = 5.5 V  
All switches closed, VL = 2.7 V  
380  
380  
230  
IL  
Inactive  
6.3  
1.8  
µA typ  
µA max  
mA typ  
Digital inputs = 0 V or VL  
7
2
8.0  
2.1  
Active at 50 MHz  
Digital inputs toggle between  
0 V and VL, VL = 5.5 V  
mA max  
mA typ  
0.7  
Digital inputs toggle between  
0 V and VL, VL = 2.7 V  
1.0  
1.0  
mA max  
µA typ  
µA max  
ISS  
0.001  
Digital inputs = 0 V or VL  
VDD/VSS  
4.5/ 16.5  
V min/V max GND = 0 V  
1 Guaranteed by design; not subject to production test.  
5 V DUAL SUPPLY  
VDD = +5 V 10%, VSS = −5 V 10%, VL = 2.7 V to 5.5 V, and GND = 0 V, unless otherwise noted.  
Table 2.  
Parameter  
+25°C −40°C to +85°C −40°C to +125°C Unit  
Test Conditions/Comments  
ANALOG SWITCH  
Analog Signal Range  
On Resistance, RON  
VDD to VSS  
V
3.3  
Ω typ  
VS = 4.5 V, IS = −10 mA,  
see Figure 28  
4
0.13  
4.9  
5.4  
Ω max  
Ω typ  
VDD = +4.5 V, VSS = −4.5 V  
VS = 4.5 V, IS = −10 mA  
On-Resistance Match Between  
Channels, ∆RON  
0.22  
0.9  
1.1  
0.23  
1.24  
0.25  
1.31  
Ω max  
Ω typ  
Ω max  
On-Resistance Flatness, RFLAT (ON)  
VS = 4.5 V, IS = −10 mA  
VDD = +5.5V, VSS = −5.5 V  
LEAKAGE CURRENTS  
Source Off Leakage, IS (Off)  
0.03  
nA typ  
VS = 4.5 V, VD =  
see Figure 31  
4.5 V,  
0.55  
0.03  
2
12.5  
nA max  
nA typ  
Drain Off Leakage, ID (Off)  
VS = 4.5 V, VD =  
see Figure 31  
4.5 V,  
0.55  
0.05  
1.0  
2
4
12.5  
30  
nA max  
nA typ  
nA max  
Channel On Leakage, ID (On), IS (On)  
VS = VD = 4.5V, see Figure 27  
DIGITAL INPUTS  
Input Voltage  
High, VINH  
2
V min  
V min  
V max  
V max  
3.3 V < VL ≤ 5.5 V  
2.7 V ≤ VL ≤ 3.3 V  
3.3 V < VL ≤ 5.5 V  
2.7 V ≤ VL ≤ 3.3 V  
1.35  
0.8  
0.8  
Low, VINL  
Rev. 0 | Page 4 of 25  
 
 
Data Sheet  
ADGS1412  
Parameter  
+25°C −40°C to +85°C −40°C to +125°C Unit  
Test Conditions/Comments  
Input Current, IINL or IINH  
0.001  
µA typ  
VIN = VGND or VL  
0.1  
µA max  
pF typ  
pF typ  
Digital Input Capacitance, CIN  
Digital Output Capacitance, COUT  
DYNAMIC CHARACTERISTICS1  
tON  
4
4
265  
350  
280  
365  
10  
ns typ  
ns max  
ns typ  
ns max  
pC typ  
RL = 300 Ω, CL = 35 pF  
VS = 3 V, see Figure 34  
RL = 300 Ω, CL = 35 pF  
VS = 3 V, see Figure 34  
VS = 0 V, RS = 0 Ω, CL = 1 nF,  
see Figure 35  
RL = 50 Ω, CL = 5 pF, f = 1 MHz,  
see Figure 30  
RL = 50 Ω, CL = 5 pF, f = 1 MHz,  
see Figure 29  
RL = 110 Ω, 5 V p-p, f = 20 Hz to  
20 kHz, see Figure 32  
RL = 50 Ω, CL = 5 pF,  
see Figure 33  
RL = 50 Ω, CL = 5 pF, f = 1 MHz,  
see Figure 33  
390  
400  
430  
435  
tOFF  
Charge Injection, QINJ  
Off Isolation  
−76  
−100  
0.03  
130  
dB typ  
dB typ  
% typ  
Channel to Channel Crosstalk  
Total Harmonic Distortion + Noise  
−3 dB Bandwidth  
MHz typ  
dB typ  
Insertion Loss  
−0.3  
CS (Off)  
CD (Off)  
CD (On), CS (On)  
POWER REQUIREMENTS  
IDD  
32  
33  
116  
pF typ  
pF typ  
pF typ  
VS = 0 V, f = 1 MHz  
VS = 0 V, f = 1 MHz  
VS = 0 V, f = 1 MHz  
VDD = +5.5 V, VSS = −5.5 V  
Digital inputs = 0 V or  
VL, VL = 5.5 V  
0.001  
14  
µA typ  
1.0  
20  
µA max  
µA typ  
µA max  
All switches closed, VL = 2.7 V  
Digital inputs = 0 V or VL  
IL  
Inactive  
6.3  
1.8  
µA typ  
µA max  
mA typ  
8.0  
2.1  
Active at 50 MHz  
Digital inputs toggle between  
0 V and VL, VL = 5.5 V  
mA max  
mA typ  
0.7  
Digital inputs toggle between  
0 V and VL, VL = 2.7 V  
1.0  
1.0  
mA max  
µA typ  
µA max  
ISS  
0.001  
Digital inputs = 0 V or VL  
VDD/VSS  
4.5/ 16.5  
V min/V max GND = 0 V  
1 Guaranteed by design; not subject to production test.  
Rev. 0 | Page 5 of 25  
ADGS1412  
Data Sheet  
12 V SINGLE SUPPLY  
VDD = 12 V 10%, VSS = 0 V, VL = 2.7 V to 5.5 V, and GND = 0 V, unless otherwise noted.  
Table 3.  
Parameter  
+25°C −40°C to +85°C  
−40°C to +125°C  
Unit  
Test Conditions/Comments  
ANALOG SWITCH  
Analog Signal Range  
On Resistance, RON  
0 V to VDD  
V
2.8  
Ω typ  
VS = 0 V to 10 V, IS = −10 mA,  
see Figure 28  
3.5  
0.13  
4.3  
4.8  
Ω max  
Ω typ  
VDD = 10.8 V, VSS = 0 V  
VS = 0 V to 10 V, IS = −10 mA  
On-Resistance Match Between  
Channels, ∆RON  
0.21  
0.6  
1.1  
0.23  
1.2  
0.25  
1.3  
Ω max  
Ω typ  
Ω max  
On-Resistance Flatness, RFLAT (ON)  
VS = 0 V to 10 V, IS = −10 mA  
VDD = 13.2 V, VSS = 0 V  
LEAKAGE CURRENTS  
Source Off Leakage, IS (Off)  
0.02  
nA typ  
VS = 1 V/10 V, VD = 10 V/1 V,  
see Figure 31  
0.55  
0.02  
2
12.5  
nA max  
nA typ  
Drain Off Leakage, ID (Off)  
VS = 1 V/10 V, VD = 10 V/1 V,  
see Figure 31  
0.55  
0.15  
1.5  
2
4
12.5  
30  
nA max  
nA typ  
nA max  
Channel On Leakage, ID (On), IS (On)  
VS = VD = 1 V/10 V, see Figure 27  
DIGITAL INPUTS  
Input Voltage  
High, VINH  
2
V min  
V min  
3.3 V < VL ≤ 5.5 V  
2.7 V ≤ VL ≤ 3.3 V  
3.3 V < VL ≤ 5.5 V  
2.7 V ≤ VL ≤ 3.3 V  
VIN = VGND or VL  
1.35  
0.8  
0.8  
Low, VINL  
V max  
V max  
µA typ  
µA max  
pF typ  
pF typ  
Input Current, IINL or IINH  
0.001  
0.1  
Digital Input Capacitance, CIN  
Digital Output Capacitance, COUT  
DYNAMIC CHARACTERISTICS1  
tON  
4
4
190  
240  
170  
215  
10  
ns typ  
ns max  
ns typ  
ns max  
pC typ  
RL = 300 Ω, CL = 35 pF  
VS = 8 V, see Figure 34  
RL = 300 Ω, CL = 35 pF  
VS = 8 V, see Figure 34  
VS = 6 V, RS = 0 Ω, CL = 1 nF,  
see Figure 35  
RL = 50 Ω, CL = 5 pF,  
f = 1 MHz, see Figure 30  
RL = 50 Ω, CL = 5 pF,  
f = 1 MHz, see Figure 29  
270  
240  
300  
265  
tOFF  
Charge Injection, QINJ  
Off Isolation  
−76  
−100  
0.06  
130  
dB typ  
dB typ  
% typ  
Channel to Channel Crosstalk  
Total Harmonic Distortion + Noise  
−3 dB Bandwidth  
RL = 110 Ω, 6 V p-p, f = 20 Hz to  
20 kHz, see Figure 32  
RL = 50 Ω, CL = 5 pF,  
see Figure 33  
MHz typ  
dB typ  
Insertion Loss  
−0.3  
RL = 50 Ω, CL = 5 pF,  
f = 1 MHz, see Figure 33  
CS (Off)  
CD (Off)  
CD (On), CS (On)  
29  
30  
116  
pF typ  
pF typ  
pF typ  
VS = 6 V, f = 1 MHz  
VS = 6 V, f = 1 MHz  
VS = 6 V, f = 1 MHz  
Rev. 0 | Page 6 of 25  
 
Data Sheet  
ADGS1412  
Parameter  
+25°C −40°C to +85°C  
−40°C to +125°C  
Unit  
Test Conditions/Comments  
VDD = 13.2 V  
All switches open  
POWER REQUIREMENTS  
IDD  
0.001  
220  
µA typ  
µA max  
µA typ  
µA max  
µA typ  
µA max  
1.0  
All switches closed, VL = 5.5 V  
All switches closed, VL = 2.7 V  
380  
430  
250  
IL  
Inactive  
6.3  
1.8  
µA typ  
µA max  
mA typ  
Digital inputs = 0 V or VL  
8.0  
2.1  
Active at 50 MHz  
Digital inputs toggle between  
0 V and VL, VL = 5.5 V  
mA max  
mA typ  
0.7  
Digital inputs toggle between  
0 V and VL, VL = 2.7 V  
1.0  
mA max  
VDD  
5/20  
V min/V max GND = 0 V, VSS = 0 V  
1 Guaranteed by design; not subject to production test.  
CONTINUOUS CURRENT PER CHANNEL, Sx OR Dx  
Table 4. Four Channels On  
Parameter  
25°C  
85°C  
125°C  
Unit  
CONTINUOUS CURRENT, Sx OR Dx1  
VDD = 15 V, VSS = −15 V (θJA = 54°C/W)  
VDD = 12 V, VSS = 0 V (θJA = 54°C/W)  
VDD = 5 V, VSS = −5 V (θJA = 54°C/W  
297  
240  
224  
165  
142  
135  
79  
74  
72  
mA maximum  
mA maximum  
mA maximum  
1 Sx refers to the S1 to S4 pins, and Dx refers to the D1 to D4 pins.  
Table 5. One Channel On  
Parameter  
25°C  
85°C  
125°C  
Unit  
CONTINUOUS CURRENT, Sx OR Dx1  
VDD = 15 V, VSS = −15 V (θJA = 54°C/W)  
VDD = 12 V, VSS = 0 V (θJA = 54°C/W)  
VDD = 5 V, VSS = −5 V (θJA = 54°C/W  
531  
433  
404  
225  
210  
202  
87  
85  
84  
mA maximum  
mA maximum  
mA maximum  
1 Sx refers to the S1 to S4 pins, and Dx refers to the D1 to D4 pins.  
TIMING CHARACTERISTICS  
VL = 2.7 V to 5.5 V, GND = 0 V, and all specifications TMIN to TMAX, unless otherwise noted. Guaranteed by design and characterization,  
not production tested.  
Table 6.  
Parameter  
Limit  
Unit  
Test Conditions/Comments  
TIMING CHARACTRISTICS  
t1  
t2  
t3  
t4  
t5  
t6  
20  
8
8
10  
6
8
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
SCLK period  
SCLK high pulse width  
SCLK low pulse width  
CS falling edge to SCLK active edge  
Data setup time  
Data hold time  
Rev. 0 | Page 7 of 25  
 
 
 
 
 
ADGS1412  
Data Sheet  
Parameter  
Limit  
10  
20  
20  
20  
20  
8
Unit  
Test Conditions/Comments  
t7  
ns min  
ns max  
ns max  
ns max  
ns min  
ns min  
ns min  
SCLK active edge to CS rising edge  
t8  
CS falling edge to SDO data available  
SCLK falling edge to SDO data available  
CS rising edge to SDO returns to high impedance  
CS high time between SPI commands  
CS falling edge to SCLK becomes stable  
CS rising edge to SCLK becomes stable  
1
t9  
t10  
t11  
t12  
t13  
8
1 Measured with the 1 kΩ pull-up resistor to VL and 20 pF load. t9 determines the maximum SCLK frequency when SDO is used.  
Timing Diagrams  
t1  
SCLK  
t2  
t7  
t4  
t3  
CS  
t6  
t5  
SDI  
R/W  
A6  
A5  
1
D2  
D2  
D1  
D1  
D0  
D0  
t10  
t9  
SDO  
0
0
t8  
Figure 2. Address Mode Timing Diagram  
t1  
SCLK  
CS  
t2  
t3  
t4  
t7  
t6  
t5  
SDI  
D7  
D6  
D0  
D7  
D6  
D1  
D0  
INPUT BYTE FOR DEVICE N  
t9  
INPUT BYTE FOR DEVICE N + 1  
t10  
SDO  
0
0
0
D7  
D6  
D1  
D0  
ZERO BYTE  
INPUT BYTE FOR DEVICE N  
t8  
Figure 3. Daisy Chain Timing Diagram  
t11  
CS  
SCLK  
t13  
t12  
CS  
Figure 4. SCLK/ Timing Relationship  
Rev. 0 | Page 8 of 25  
Data Sheet  
ADGS1412  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Table 7.  
Parameter  
Rating  
VDD to VSS  
35 V  
VDD to GND  
VSS to GND  
VL to GND  
−0.3 V to +25 V  
+0.3 V to −25 V  
−0.3 V to +5.75 V  
VSS − 0.3 V to VDD + 0.3 V or  
30 mA, whichever occurs first  
−0.3 V to +5.75 V  
600 mA (pulsed at 1 ms,  
10% duty cycle maximum)  
Data + 15%  
Analog Inputs1  
Only one absolute maximum rating can be applied at any one time.  
THERMAL RESISTANCE  
Digital Inputs1  
Peak Current, Sx or Dx Pins2  
Thermal performance is directly linked to printed circuit board  
(PCB) design and operating environment. Careful attention to  
PCB thermal design is required.  
Continuous Current, Sx or Dx2, 3  
Temperature Range  
Operating  
Storage  
Junction Temperature  
Table 8. Thermal Resistance  
Package Type  
CP-24-172  
−40°C to +125°C  
−65°C to +150°C  
150°C  
1
θJA  
θJCB  
Unit  
54  
3
°C/W  
Reflow Soldering Peak  
Temperature, Pb Free  
260(+0/−5)°C  
1 θJCB is the junction to the bottom of the case value.  
2 Thermal impedance simulated values are based on JEDEC 2S2P thermal test  
board with four thermal vias. See JEDEC JESD51.  
1 Overvoltages at the digital Sx and Dx pins are clamped by internal diodes.  
Limit current to the maximum ratings given.  
2 Sx refers to the S1 to S4 pins, and Dx refers to the D1 to D4 pins.  
3 See Table 4 and Table 5.  
ESD CAUTION  
Rev. 0 | Page 9 of 25  
 
 
 
ADGS1412  
Data Sheet  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
1
2
3
4
5
6
18 D2  
17  
D1  
S1  
S2  
16 NIC  
V
ADGS1412  
SS  
GND  
S4  
TOP VIEW  
15 V  
DD  
(Not to Scale)  
14  
13  
S3  
D3  
D4  
NOTES  
1. NIC = NOT INTERNALLY CONNECTED.  
2. THE EXPOSED PAD IS CONNECTED INTERNALLY. FOR  
INCREASED RELIABILITY OF THE SOLDER JOINTS AND  
MAXIMUM THERMAL CAPABILITY, IT IS RECOMMENDED  
THAT THE PAD BE SOLDERED TO THE SUBSTRATE, V  
.
SS  
Figure 5. Pin Configuration  
Table 9. Pin Function Descriptions  
Pin No.  
Mnemonic Description  
1
2
D1  
S1  
Drain Terminal 1. This pin can be an input or output.  
Source Terminal 1. This pin can be an input or output.  
3
4, 11  
5
6
7, 8, 10, 12,  
16, 19, 24  
VSS  
GND  
S4  
D4  
NIC  
Most Negative Power Supply Potential. In single-supply applications, tie this pin to ground.  
Ground (0 V) Reference.  
Source Terminal 4. This pin can be an input or output.  
Drain Terminal 4. This pin can be an input or output.  
Not Internally Connected.  
9
RESET/VL  
RESET/Logic Power Supply Input (VL). Under normal operation, drive the RESET/VL pin with a 2.7 V to 5.5 V supply.  
Pull the RESET pin low to complete a hardware reset. After a reset, all switches open, and the appropriate registers  
are set to their default.  
13  
14  
15  
17  
18  
20  
D3  
S3  
VDD  
S2  
D2  
SDO  
Drain Terminal 3. This pin can be an input or output.  
Source Terminal 3. This pin can be an input or output.  
Most Positive Power Supply Potential.  
Source Terminal 2. This pin can be an input or output.  
Drain Terminal 2. This pin can be an input or output.  
Serial Data Output. This pin can be used for daisy chaining a number of these devices together or for reading  
back the data stored in a register for diagnostic purposes. The serial data is propagated on the falling edge of  
SCLK. Pull this open-drain output to VL with an external resistor.  
21  
22  
23  
CS  
Active Low Control Input. CS is the frame synchronization signal for the input data.  
Serial Clock Input. Data is captured on the positive edge of SCLK. Data can be transferred at rates of up to 50 MHz.  
Serial Data Input. Data is captured on the positive edge of the serial clock input.  
SCLK  
SDI  
EPAD  
Exposed Pad. The exposed pad is connected internally. For increased reliability of the solder joints and  
maximum thermal capability, it is recommended that the exposed pad be soldered to the substrate, VSS.  
Rev. 0 | Page 10 of 25  
 
Data Sheet  
ADGS1412  
TYPICAL PERFORMANCE CHARACTERISTICS  
2.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
V
= +10V,  
= –10V  
DD  
SS  
2.0  
1.5  
1.0  
0.5  
0
V
V
= +12V,  
= –12V  
DD  
SS  
T
= +125°C  
= +85°C  
A
T
A
T
T
= +25°C  
= –40°C  
A
V
V
= +16.5V,  
= –16.5V  
DD  
SS  
V
V
= +13.5V,  
= –13.5V  
DD  
SS  
V
= +15V,  
DD  
SS  
A
V
= –15V  
V
V
I
= +15V  
= –15V  
= –10mA  
DD  
SS  
T
I
= 25°C  
= –10mA  
A
S
S
–16.5 –12.5 –8.5  
–4.5  
–0.5  
3.5  
7.5  
11.5  
15.5  
–15  
–10  
–5  
0
5
10  
15  
V
OR V (V)  
V OR V (V)  
S D  
S
D
Figure 6. On Resistance vs. VS or VD for Various Dual Supplies  
Figure 9. On Resistance vs. VS or VD for Various Temperatures,  
±±5 V Dual Supply  
4.0  
5.0  
4.5  
4.0  
3.5  
V
V
= +4.5V,  
= –4.5V  
DD  
SS  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
V
= +5V,  
= –5V  
DD  
SS  
T
T
= +85°C  
= +25°C  
A
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
A
V
V
= +7V,  
= –7V  
DD  
SS  
V
= +5.5V,  
DD  
SS  
V
= –5.5V  
T
= –40°C  
A
V
V
= +5V  
= –5V  
DD  
SS  
T
= 25°C  
= –10mA  
A
I
S
I
= –10mA  
S
–7 –6 –5 –4 –3 –2 –1  
0
1
2
3
4
5
6
7
–5  
–4  
–3  
–2  
–1  
V
0
1
2
3
4
5
V
OR V (V)  
OR V (V)  
S D  
S
D
Figure 7. On Resistance vs. VS or VD for Various Dual Supplies  
Figure ±0. On Resistance vs. VS or VD for Various Temperatures,  
±5 V Dual Supply  
7
4.5  
4.0  
3.5  
V
V
= 5V,  
= 0V  
DD  
SS  
6
5
4
3
2
1
0
T
T
= +85°C  
= +25°C  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
A
A
V
V
= 10.8V,  
= 0V  
DD  
SS  
V
V
= 8V,  
= 0V  
DD  
SS  
V
V
= 12V,  
= 0V  
DD  
SS  
T
= –40°C  
A
V
V
= 15V,  
V
V
= 13.2V,  
= 0V  
DD  
DD  
SS  
= 0V  
SS  
V
V
= 12V  
= 0V  
DD  
SS  
T
= 25°C  
= –10mA  
A
I
S
I
= –10mA  
S
0
2
4
6
8
10  
12  
14  
0
2
4
6
OR V (V)  
8
10  
12  
V
OR V (V)  
D
V
S
S
D
Figure 8. On Resistance vs. VS or VD for Various Single Supplies  
Figure ±±. On Resistance vs. VS or VD for Various Temperatures,  
±2 V Single Supply  
Rev. 0 | Page 11 of 25  
 
ADGS1412  
Data Sheet  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
9
8
V
V
V
= 12V  
= 0V  
I
I
I
I
I
I
(OFF) + –  
DD  
SS  
S
D
S
D
D
D
(OFF) + –  
(OFF) – +  
(OFF) – +  
= 1V/10V  
BIAS  
T
I
= 125°C  
= 100mA  
A
7
S
, I (ON) ++  
S
6
, I (ON) – –  
S
5
4
T
S
= 25°C  
= 190mA  
A
I
3
2
1
0
V
V
= +5V  
= –5V  
DD  
SS  
–1  
0
0
20  
40  
60  
80  
100  
120  
–5  
–4  
–3  
–2  
–1  
0
1
2
3
4
5
TEMPERATURE (°C)  
V
OR V (V)  
S
D
Figure 15. Leakage Current vs. Temperature, 12 V Single Supply  
Figure 12. On Resistance vs. VS or VD for Various Current Levels and  
Temperatures, 5 V Dual Supply  
1.5  
400  
T
= 25°C  
I
, I (ON) + +  
S
A
D
V
= +15V, V = –15V  
SS  
DD  
1.0  
0.5  
300  
200  
I
(OFF) + –  
I
(OFF) – +  
S
D
0
100  
V
= +5V, V = –5V  
SS  
DD  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
–3.5  
0
I
, I (ON) – –  
S
D
–100  
–200  
–300  
–400  
–500  
V
= +12V, V = 0V  
SS  
DD  
I
(OFF) + –  
D
I
(OFF) – +  
V
V
V
= +15V  
= –15V  
S
DD  
SS  
= +10V/–10V  
BIAS  
–15  
–10  
–5  
0
5
10  
15  
0
20  
40  
60  
80  
100  
120  
V
(V)  
TEMPERATURE (°C)  
S
Figure 13. Leakage Current vs. Temperature, 15 V Dual Supply  
Figure 16. Charge Injection vs. Source Voltage (VS)  
1.5  
350  
300  
250  
200  
150  
100  
50  
V
V
V
= +5V  
= –5V  
DD  
SS  
5V DS, tOFF  
= +4.5V/–4.5V  
BIAS  
1.0  
0.5  
5V DS, tON  
12V SS, tOFF  
12V SS, tON  
0
15V DS, tOFF  
–0.5  
–1.0  
–1.5  
I
I
I
I
I
I
(OFF) + –  
(OFF) + –  
(OFF) – +  
(OFF) – +  
, I (ON) ++  
, I (ON) – –  
S
D
S
D
D
D
15V DS, tON  
S
S
0
0
20  
40  
60  
80  
100  
120  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 17. tON/tOFF Time vs. Temperature for Single Supply (SS) and  
Dual Supply (DS)  
Figure 14. Leakage Current vs. Temperature, 5 V Dual Supply  
Rev. 0 | Page 12 of 25  
Data Sheet  
ADGS1412  
0
0
–20  
V
V
T
= +15V  
= –15V  
= 25°C  
V
V
T
= +15V  
= –15V  
= 25°C  
DD  
SS  
DD  
SS  
–20  
–40  
A
A
–40  
100nF DECOUPLING  
CAPACITORS  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–100  
10µF + 100nF DECOUPLING  
CAPACITORS  
–120  
100  
1k  
10k  
100k  
1M  
10M  
100M  
1G  
100  
1k  
10k  
100k  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 18. Off Isolation vs. Frequency, 15 V Dual Supply  
Figure 21. AC Power Supply Rejection Ratio (ACPSRR) vs. Frequency, 15 V  
Dual Supply  
0
–20  
T
= 25°C  
A
V
V
T
= +15V  
= –15V  
= 25°C  
DD  
SS  
0.025  
0.020  
0.015  
0.010  
0.005  
0
R
= 110, V = 20V p-p  
S
L
A
–40  
–60  
R
= 110, V = 15V p-p  
L
S
–80  
R
= 110, V = 10V p-p  
S
L
–100  
–120  
–140  
R
= 1k, V = 20V p-p  
S
L
R
= 1k, V = 10V p-p  
R
= 1k, V = 15V p-p  
L
S
L
S
20  
200  
2k  
20k  
10k  
100k  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 19. Crosstalk vs. Frequency, 15 V Dual Supply  
Figure 22. THD + N vs. Frequency, 15 V Dual Supply  
0
–1  
–2  
–3  
–4  
–5  
–6  
0.20  
0.15  
0.10  
0.05  
0
T = 25°C  
A
V
V
= +15V  
= –15V  
= 25°C  
R
= 110, V = 10V p-p  
S
DD  
SS  
L
T
A
R
= 110, V = 5V p-p  
S
L
R
= 1k, V = 10V p-p  
= 110, V = 2.5V p-p  
= 1k, V = 5V p-p  
L
S
R
L
S
R
L
S
R
= 1k, V = 2.5V p-p  
L
S
20  
200  
2k  
20k  
10k  
100k  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 20. Insertion Loss vs. Frequency, 15 V Dual Supply  
Figure 23. THD + N vs. Frequency, 5 V Dual Supply  
Rev. 0 | Page 13 of 25  
ADGS1412  
Data Sheet  
0.14  
80  
70  
60  
50  
40  
30  
20  
10  
0
T
= 25°C  
PER CLOSED SWITCH  
T
= 25°C  
A
A
I
DD  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0
R
R
= 110, V = 9V p-p  
S
L
V
V
= +15V  
= –15V  
DD  
SS  
= 110, V = 6V p-p  
V
V
= +12V  
= 0V  
L
S
DD  
SS  
R
= 110, V = 3V p-p  
S
L
R
= 1k, V = 9V p-p  
L
S
R
R
= 1k, V = 6V p-p  
L
S
V
V
= +5V  
= –5V  
DD  
SS  
= 1k, V = 3V p-p  
L
S
2.7  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
20  
200  
2k  
20k  
V
L
(V)  
FREQUENCY (Hz)  
Figure 24 . THD + N vs. Frequency, 12 V Single Supply  
Figure 26. IDD vs. VL  
2.0  
V
V
= +15V  
= –15V  
= 25°C  
SCLK = 2.5MHz  
SCLK IDLE  
DD  
SS  
1.5  
1.0  
T
A
0.5  
0
–0.5  
–1.0  
–1.5  
–2.0  
0
2
4
6
8
TIME (µs)  
Figure 25. Digital Feedthrough  
Rev. 0 | Page 14 of 25  
Data Sheet  
ADGS1412  
TEST CIRCUITS  
I
(OFF)  
A
I
(OFF)  
A
S
D
Sx  
Dx  
I
(ON)  
A
D
Sx  
Dx  
V
V
D
V
S
S
V
D
Figure 27. On Leakage  
Figure 31. Off Leakage  
V
V
DD  
SS  
0.1µF  
0.1µF  
AUDIO PRECISION  
V
V
DD  
SS  
R
S
I
DS  
Sx  
V
S
V1  
V p-p  
Dx  
V
OUT  
Sx  
Dx  
R
110  
L
GND  
V
S
R
= V /I  
1 DS  
ON  
Figure 28. On Resistance  
Figure 32. THD + Noise  
V
V
DD  
SS  
V
DD  
V
SS  
0.1µF  
0.1µF  
0.1µF  
0.1µF  
NETWORK  
ANALYZER  
NETWORK  
ANALYZER  
V
V
DD  
SS  
V
DD  
V
SS  
V
NC  
OUT  
S1  
S2  
R
L
50  
Sx  
50  
V
S
S2  
D2  
R
50Ω  
L
Dx  
V
V
OUT  
S
R
50Ω  
L
GND  
GND  
V
WITH SWITCH  
V
OUT  
OUT  
INSERTION LOSS = 20 log  
CHANNEL-TO-CHANNEL CROSSTALK = 20 log  
V
WITHOUT SWITCH  
S
V
S
Figure 33. −3 dB Bandwidth  
Figure 29. Channel to Channel Crosstalk  
V
V
DD  
SS  
0.1µF  
0.1µF  
NETWORK  
ANALYZER  
V
V
DD  
SS  
Sx  
50  
50Ω  
V
S
Dx  
V
OUT  
R
L
GND  
50Ω  
V
OUT  
OFF ISOLATION = 20 log  
V
S
Figure 30. Off Isolation  
Rev. 0 | Page 15 of 25  
 
 
 
 
 
 
 
 
ADGS1412  
Data Sheet  
V
V
V
V
DD  
SS  
0.1µF  
0.1µF  
DD  
SS  
SCLK  
V
OUT  
50%  
50%  
Sx  
Dx  
R
300  
C
L
35pF  
L
90%  
V
S
V
INPUT LOGIC  
GND  
OUT  
10%  
tON  
tOFF  
Figure 34. Switching Times, tON and tOFF  
V
V
V
DD  
DD  
SS  
SS  
3V  
V
SCLK  
R
V
S
Sx  
Dx  
V
OUT  
C
1nF  
L
S
Q
= C × V  
L OUT  
INJ  
INPUT LOGIC  
GND  
V
OUT  
V  
OUT  
SWITCH OFF  
SWITCH ON  
Figure 35. Charge Injection, QINJ  
Rev. 0 | Page 16 of 25  
 
 
Data Sheet  
ADGS1412  
TERMINOLOGY  
IDD  
CD (On), CS (On)  
I
DD represents the positive supply current.  
CD (On) and CS (On) represent on switch capacitances, which  
are measured with reference to ground.  
ISS  
ISS represents the negative supply current.  
CIN  
CIN is the digital input capacitance.  
VD, VS  
VD and VS represent the analog voltage on Terminal Dx and  
Terminal Sx, respectively.  
tON  
tON represents the delay between applying the digital control  
input and the output switching on.  
RON  
RON represents the ohmic resistance between Terminal Dx and  
tOFF  
Terminal Sx.  
tOFF represents the delay between applying the digital control  
input and the output switching off.  
∆RON  
∆RON represents the difference between the RON of any two  
channels.  
Off Isolation  
Off isolation is a measure of unwanted signal coupling through  
an off switch.  
RFLAT (ON)  
Flatness that is defined as the difference between the maximum  
and minimum value of on resistance measured over the specified  
Charge Injection  
Charge injection is a measure of the glitch impulse transferred  
from the digital input to the analog output during switching.  
analog signal range is represented by RFLAT (ON)  
.
IS (Off)  
Crosstalk  
IS (Off) is the source leakage current with the switch off.  
Crosstalk is a measure of unwanted signal that is coupled  
through from one channel to another as a result of parasitic  
capacitance.  
ID (Off)  
ID (Off) is the drain leakage current with the switch off.  
−3 dB Bandwidth  
Bandwidth is the frequency at which the output is attenuated  
by 3 dB.  
ID (On), IS (On)  
ID (On) and IS (On) represent the channel leakage currents with  
the switch on.  
On Response  
VINL  
On response is the frequency response of the on switch.  
V
INL is the maximum input voltage for Logic 0.  
VINH  
INH is the minimum input voltage for Logic 1.  
INL, IINH  
INL and IINH represent the low and high input currents of the  
Insertion Loss  
Insertion loss is the loss due to the on resistance of the switch.  
V
Total Harmonic Distortion + Noise (THD + N)  
The ratio of the harmonic amplitude plus noise of the signal to  
the fundamental is represented by THD + N.  
I
I
digital inputs.  
AC Power Supply Rejection Ratio (ACPSRR)  
CD (Off)  
ACPSRR is the ratio of the amplitude of signal on the output to the  
amplitude of the modulation. ACPSRR is a measure of the ability of  
the device to avoid coupling noise and spurious signals that appear  
on the supply voltage pin to the output of the switch. The dc voltage  
on the device is modulated by a sine wave of 0.62 V p-p.  
CD (Off) represents the off switch drain capacitance, which is  
measured with reference to ground.  
CS (Off)  
CS (Off) represents the off switch source capacitance, which is  
measured with reference to ground.  
Rev. 0 | Page 17 of 25  
 
ADGS1412  
Data Sheet  
THEORY OF OPERATION  
During any SPI command, SDO sends out eight alignment bits  
on the first eight SCLK falling edges. The alignment bits observed  
at SDO are 0x25.  
The ADGS1412 is a set of serially controlled, quad SPST switches  
with error detection features. SPI Mode 0 or SPI Mode 3 can be  
used with the device, and it operates with SCLK frequencies up  
to 50 MHz The default mode for the ADGS1412 is address mode  
in which the registers of the device are accessed by a 16-bit SPI  
ERROR DETECTION FEATURES  
Protocol and communication errors on the SPI interface are  
detectable. There are three detectable errors, which are incorrect  
SCLK error detection, invalid read and write address error  
detection, and CRC error detection. Each of these errors has a  
corresponding enable bit in the error configuration register. In  
addition, there is an error flag bit for each of these errors in the  
error flags register.  
CS  
command that is bounded by . The SPI command becomes  
24 bit if the user enables CRC error detection. Other error detection  
features include SCLK count error and invalid read/write error.  
If any of these SPI interface errors occur, they are detectable by  
reading the error flags register. The ADGS1412 can also operate  
in two other modes, namely burst mode and daisy-chain mode.  
CS  
The interface pins of the ADGS1412 are , SCLK, SDI, and SDO.  
Cyclic Redundancy Check (CRC) Error Detection  
CS  
Hold  
low when using the SPI interface. Data is captured on  
The CRC error detection feature extends a valid SPI frame by  
8 SCLK cycles. These eight extra cycles are needed to send the CRC  
byte for that SPI frame. The CRC byte is calculated by the SPI block  
the SDI on the rising edge of SCLK, and data is propagated out on  
the SDO on the falling edge of SCLK. SDO has an open-drain  
output; thus, connect a pull-up to this output. When not pulled  
low by the ADGS1412, SDO is in a high impedance state.  
W
using the 16-bit payload: the R/ bit, Register Address Bits[6:0],  
and Register Data Bits[7:0]. The CRC polynomial used in the  
SPI block is x8 + x2 + x1 + 1 with a seed value of 0. For a timing  
diagram with CRC enabled, see Figure 37. Register writes occur  
at the 24th SCLK rising edge with CRC Error Checking enabled.  
ADDRESS MODE  
Address mode is the default mode for the ADGS1412 upon  
power up. A single SPI frame in address mode is bounded by  
CS  
CS  
a
falling edge and the succeeding rising edge. It is comprised  
During a SPI write, the microcontroller/CPU provides the CRC  
byte through SDI. The SPI block checks the CRC byte just before  
the 24th SCLK rising edge. On this same edge, the register write  
is prevented if an incorrect CRC byte is received by the SPI  
interface. The CRC error flag is asserted in the error flags  
register in the case of the incorrect CRC byte being detected.  
of 16 SCLK cycles. The timing diagram for address mode is shown  
in Figure 36. The first SDI bit indicates if the SPI command is a  
read or write command. When the first bit is set to 0, a write  
command is issued, and if the first bit is set to 1, a read command  
is issued. The next seven bits determine the target register address.  
The remaining eight bits provide the data to the addressed register.  
The last eight bits are ignored during a read command, because  
during these clock cycles SDO propagates out the data contained  
in the addressed register.  
During a SPI read, the CRC byte is provided to the microcontroller  
through SDO.  
The CRC error detection feature is disabled by default and can  
be configured by the user through the error configuration register.  
The target register address of an SPI command is determined on  
the eighth SCLK rising edge. Data from this register propagates out  
on SDO from the 9th to the 16th SCLK falling edge during SPI  
reads. A register write occurs on the 16th SCLK rising edge  
during SPI writes.  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
CS  
SCLK  
SDI  
R/W A6  
0
A5  
A4  
A3  
A2  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SDO  
0
1
0
0
1
0
1
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Figure 36. Address Mode Timing Diagram  
1
2
8
9
10  
16  
17  
18  
19  
20  
21  
22  
23  
24  
CS  
SCLK  
SDI  
R/W A6  
0
A0  
D7  
D6  
D0  
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
SDO  
0
1
D7  
D6  
D0  
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
Figure 37. Timing Diagram with CRC Enabled  
Rev. 0 | Page 18 of 25  
 
 
 
 
 
Data Sheet  
ADGS1412  
SCLK Count Error Detection  
BURST MODE  
SCLK count error detection allows the user to detect if an  
incorrect number of SCLK cycles are sent by the microcontroller/  
CPU. When in address mode, with CRC disabled, 16 SCLK  
cycles are expected. If 16 SCLK cycles are not detected, the  
SCLK count error flag asserts in the error flags register. When  
less than 16 SCLK cycles are received by the device, a write to  
the register map never occurs. When the ADGS1412 receives  
more than 16 SCLK cycles, a write to the memory map still  
occurs at the 16th SCLK rising edge, and the flag asserts in the  
error flags register. With CRC enabled, the expected number of  
SCLK cycles becomes 24. SCLK count error detection is enabled  
by default and can be configured by the user through the error  
configuration register.  
The SPI interface can accept consecutive SPI commands  
CS  
mode. Burst mode is enabled through the burst enable register.  
This mode uses the same 16-bit command to communicate  
with the device. In addition, the response of the device at SDO  
is still aligned with the corresponding SPI command. Figure 38  
shows an example of SDI and SDO during burst mode.  
without the need to de-assert the  
line, which is called burst  
The invalid read/write address and CRC error checking functions  
operate similarly during burst mode as they do during address  
mode. However, SCLK count error detection operates in a  
slightly different manner. The total number of SCLK cycles  
CS  
within a given  
frame are counted, and if the total is not a  
multiple of 16, or a multiple of 24 when CRC is enabled, the  
SCLK count error flag asserts.  
Invalid Read/Write Address Error  
An invalid read/write address error detects when a nonexistent  
register address is a target for a read or write. In addition, this  
error asserts when a write to a read only register is attempted.  
The invalid read/write address error flag asserts in the error  
flags register when an invalid read/write address error happens.  
The invalid read/write address error is detected on the nineth  
SCLK rising edge, which means a write to the register never  
occurs when an invalid address is targeted. Invalid read/write  
address error detection is enabled by default and can be  
disabled by the user through the error configuration register.  
CS  
SDI  
COMMAND0[15:0] COMMAND1[15:0] COMMAND2[15:0] COMMAND3[15:0]  
SDO  
RESPONSE0[15:0] RESPONSE1[15:0] RESPONSE2[15:0] RESPONSE3[15:0]  
Figure 38. Burst Mode Frame  
SOFTWARE RESET  
When in address mode, the user can initiate a software reset.  
To do so, write two consecutive SPI commands, namely 0xA3  
followed by 0x05, targeting Register 0x0B. After a software  
reset, all register values are set to default.  
CLEARING THE ERROR FLAGS REGISTER  
DAISY-CHAIN MODE  
To clear the error flags register, write the special 16-bit SPI  
frame, 0x6CA9, to the device. This SPI command does not  
trigger the invalid R/W address error. When CRC is enabled,  
the user must also send the correct CRC byte for a successful  
error clear command. At the 16th or 24th SCLK rising edge, the  
error flags register resets to zero.  
The connection of several ADGS1412 devices in a daisy-chain  
configuration is possible, and Figure 39 illustrates this setup. All  
devices share the same and SCLK line, whereas the SDO of a  
device forms a connection to the SDI of the next device, creating a  
shift register. In daisy-chain mode, SDO is an eight-cycle  
delayed version of SDI. When in daisy-chain mode, all  
commands target the switch data register. Therefore, it is not  
possible to make configuration changes while in daisy-chain mode.  
CS  
ADGS1412  
DEVICE 1  
ADGS1412  
DEVICE 2  
S1  
S2  
S3  
S4  
D1  
S1  
D1  
D2  
D3  
D4  
D2  
S2  
S3  
S4  
D3  
V
L
D4  
SPI  
INTERFACE  
SDO  
SPI  
INTERFACE  
SDO  
SDI  
SCLK  
CS  
V
L
Figure 39. Two ADGS1412 Devices Connected in a Daisy-Chain Configuration  
Rev. 0 | Page 19 of 25  
 
 
 
 
 
 
ADGS1412  
Data Sheet  
The ADGS1412 can only enter daisy-chain mode when in  
address mode by sending the 16-bit SPI command, 0x2500  
(see Figure 40). When the ADGS1412 receives this command,  
the SDO of the device sends out the same command because  
the alignment bits at SDO are 0x25, which allows multiple  
daisy-connected devices to enter daisy-chain mode in a single  
SPI frame. A hardware reset is required to exit daisy-chain mode.  
An SCLK rising edge reads in data on SDI while data is  
propagated out SDO on an SCLK falling edge. The expected  
CS  
number of SCLK cycles must be a multiple of eight before  
goes high. When this is not the case, the SPI interface sends the  
last eight bits received to the switch data register.  
POWER-ON RESET  
The digital section of the ADGS1412 goes through an initialization  
phase during VL power up. This initialization also occurs after a  
hardware or software reset. After VL power-up or a reset, ensure  
that a minimum of 120 μs from the time of power-up or reset  
before any SPI command is issued. Ensure that VL does not  
drop out during the 120 μs initialization phase because it may  
result in incorrect operation of the ADGS1412.  
For the timing diagram of a typical daisy-chain SPI frame, see  
CS  
Figure 41. When  
goes high, Device 1 writes Command 0,  
Bits[7:0] to its switch data register of, Device 2 writes Command 1,  
Bits[7:0] to its switches, and so on. The SPI block uses the last  
eight bits it received through SDI to update the switches. After  
entering daisy-chain mode, the first eight bits sent out by SDO  
CS  
on each device in the chain are 0x00. When  
goes high, the  
internal shift register value does not reset back to zero.  
1
0
2
0
3
1
4
0
5
0
6
1
7
0
8
1
9
0
10  
0
11  
0
12  
0
13  
0
14  
0
15  
0
16  
0
CS  
SCLK  
SDI  
SDO  
0
0
1
0
0
1
0
1
0
0
0
0
0
0
0
0
Figure 40. SPI Command to Enter Daisy-Chain Mode  
CS  
SDI  
COMMAND3[7:0] COMMAND2[7:0] COMMAND1[7:0] COMMAND0[7:0]  
DEVICE 1  
DEVICE 2  
DEVICE 3  
DEVICE 4  
SDO  
8’h00  
8’h00  
8’h00  
COMMAND3[7:0] COMMAND2[7:0] COMMAND1[7:0]  
SDO2  
SDO3  
8’h00  
8’h00  
COMMAND3[7:0] COMMAND2[7:0]  
8’h00 COMMAND3[7:0]  
NOTES  
1. SDO2 AND SDO3 ARE THE OUTPUT COMMANDS FROM DEVICE 2 AND DEVICE 3, RESPECTIVELY.  
Figure 41. Example of a SPI Frame Where Four ADGS1412 Devices Connect in Daisy-Chain Mode  
Rev. 0 | Page 20 of 25  
 
 
 
Data Sheet  
ADGS1412  
APPLICATIONS INFORMATION  
Figure 42 are two optional LDOs, ADP7118 and ADP7182  
POWER SUPPLY RAILS  
positive and negative LDOs respectively, that can be used to  
reduce the output ripple of the ADPꢀ070 in ultralow noise  
sensitive applications.  
To guarantee correct operation of the ADGS1412, 0.1 μF  
decoupling capacitors are required.  
The ADGS1412 can operate with bipolar supplies between  
4.ꢀ ꢁ and 1ꢂ.ꢀ . The supplies on ꢁDD and ꢁSS do not have to  
be symmetrical; however, the ꢁDD to ꢁSS range must not exceed  
33 . The ADGS1412 can also operate with single supplies  
between ꢀ ꢁ and 20 ꢁ with ꢁSS connected to GND.  
The ADM71ꢂ0 can be used to generate ꢁL voltage that is  
required to power digital circuitry within the ADGS1412.  
ADM7160  
+3.3V  
LDO  
+16.5V  
–16.5V  
ADP7118  
LDO  
+15V  
–15V  
+5V  
INPUT  
The voltage range that can be supplied to ꢁL is from 2.7 ꢁ to ꢀ.ꢀ .  
ADP5070  
ADP7182  
LDO  
The device is fully specified at 1ꢀ , +, and +12 ꢁ analogue  
supply voltage ranges.  
.
Figure 42. Bipolar Power Solution  
POWER SUPPLY RECOMMENDATIONS  
Table 10. Recommended Power Management Devices  
Product Description  
Analog Devices, Inc., has a wide range of power management  
products to meet the requirements of most high performance  
signal chains.  
ADP5070 1 A/0.6 A, dc-to-dc switching regulator with  
independent positive and negative outputs  
ADM7160 5.5 V, 200 mA, ultralow noise, linear regulator  
ADP7118 20 V, 200 mA, low noise, CMOS LDO linear regulator  
ADP7182 −28 V, −200 mA, low noise, LDO linear regulator  
An example of a bipolar power solution is shown in Figure 42.  
The ADPꢀ070 (dual switching regulator) generates a positive and  
negative supply rail for the ADGS1412, amplifier, and/or a  
precision converter in a typical signal chain. Also shown in  
Rev. 0 | Page 21 of 25  
 
 
 
 
ADGS1412  
Data Sheet  
REGISTER SUMMARY  
Table 11. Register Summary  
Register (Hex) Name  
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3  
Reserved SW4_EN SW3_EN  
Reserved RW_ERR_EN  
Reserved  
Bit 2  
Bit 1  
Bit 0  
Default R/W  
0x01  
0x02  
0x03  
0x05  
0x0B  
SW_DATA  
SW2_EN  
SCLK_ERR_EN  
SW1_EN  
CRC_ERR_EN  
0x00  
0x06  
0x00  
R/W  
R/W  
R
ERR_CONFIG  
ERR_FLAGS  
BURST_EN  
RW_ERR_FLAG SCLK_ERR_FLAG CRC_ERR_FLAG  
Reserved  
SOFT_RESETB  
BURST_MODE_EN 0x00  
0x00  
R/W  
R/W  
SOFT_RESETB  
Rev. 0 | Page 22 of 25  
 
Data Sheet  
ADGS1412  
REGISTER DETAILS  
SWITCH DATA REGISTER  
Address: 0x01, Reset: 0x00, Name: SW_DATA  
The switch data register controls the status of the four switches of the ADGS1412.  
Table 12. Bit Descriptions for SW_DATA  
Bits  
[7:4]  
3
Bit Name  
Reserved  
SW4_EN  
Settings  
Description  
Default Access  
These bits are reserved; set these bits to 0.  
Enable bit for SW4.  
SW4 open.  
0x0  
0x0  
R
R/W  
0
1
SW4 closed.  
2
1
0
SW3_EN  
SW2_EN  
SW1_EN  
Enable bit for SW3.  
SW3 open.  
SW3 closed.  
0x0  
0x0  
0x0  
R/W  
R/W  
R/W  
0
1
Enable bit for SW2.  
SW2 open.  
SW2 closed.  
0
1
Enable bit for SW1.  
SW1 open.  
SW1 closed.  
0
1
ERROR CONFIGURATION REGISTER  
Address: 0x02, Reset: 0x06, Name: ERR_CONFIG  
The error configuration register allows the user to enable and disable the relevant error features as required.  
Table 13. Bit Descriptions for ERR_CONFIG  
Bits  
[7:3]  
2
Bit Name  
Settings  
Description  
Default Access  
Reserved  
These bits are reserved; set these bits to 0.  
0x0  
0x1  
R
RW_ERR_EN  
Enable bit for detecting invalid read/write address.  
R/W  
0
1
Disabled.  
Enabled.  
1
0
SCLK_ERR_EN  
CRC_ERR_EN  
Enable bit for detecting the correct number of SCLK cycles in a SPI frame.  
16 SCLK cycles are expected when CRC is disabled and burst mode is  
disabled. 24 SCLK cycles are expected when CRC is enabled and burst  
mode is disabled. A multiple of 16 SCLK cycles are expected when CRC is  
disabled and burst mode is enabled. A multiple of 24 SCLK cycles are  
expected when CRC is enabled and burst mode is enabled.  
0x1  
0x0  
R/W  
R/W  
0
1
Disabled.  
Enabled.  
Enable bit for CRC error detection. SPI frames are 24 bits wide when  
enabled.  
0
1
Disabled.  
Enabled.  
Rev. 0 | Page 23 of 25  
 
 
 
ADGS1412  
Data Sheet  
ERROR FLAGS REGISTER  
Address: 0x03, Reset: 0x00, Name: ERR_FLAGS  
The error flags register allows the user to determine if an error has occurred. To clear the error flags register, write the special 16-bit SPI  
command 0x6CA9 to the device. This SPI command does not trigger the invalid R/W address error. When CRC is enabled, the user must  
include the correct CRC byte during the SPI write for the clear error flags register command to succeed.  
Table 14. Bit Descriptions for ERR_FLAGS  
Bits  
[7:3]  
2
Bit Name  
Settings  
Description  
Default Access  
Reserved  
These bits are reserved and are set to 0.  
0x0  
0x0  
R
R
RW_ERR_FLAG  
Error flag for invalid read/write address. The error flag asserts during a SPI  
read if the target address does not exist. The error flag also asserts when  
the target address of a SPI write is does not exist or is read only.  
0
1
No error.  
Error.  
1
0
SCLK_ERR_FLAG  
CRC_ERR_FLAG  
Error flag for the detection of the correct number of SCLK cycles in a SPI  
frame.  
No error.  
Error.  
0x0  
0x0  
R
R
0
1
Error flag that determines if a CRC error has occurred during a register  
write.  
0
1
No error.  
Error.  
BURST ENABLE REGISTER  
Address: 0x05, Reset: 0x00, Name: BURST_EN  
The burst enable register allows the user to enable or disable burst mode. When enabled, the user can send multiple consecutive SPI  
CS  
commands without deasserting  
.
Table 15. Bit Descriptions for BURST_EN  
Bits  
[7:1]  
0
Bit Name  
Settings  
Description  
Default Access  
Reserved  
These bits are reserved; set these bits to 0.  
0x0  
0x0  
R
BURST_MODE_EN  
Burst mode enable bit.  
Disabled.  
Enabled.  
R/W  
0
1
SOFTWARE RESET REGISTER  
Address: 0x0B, Reset: 0x00, Name: SOFT_RESETB  
Use the software reset register to perform a software reset. Consecutively, write 0xA3 followed by 0x05 to this register, and the registers of  
the device reset to their default state.  
Table 16. Bit Descriptions for SOFT_RESETB  
Bits  
Bit Name  
Settings  
Description  
Default Access  
[7:0]  
SOFT_RESETB  
To perform a software reset, consecutively write 0xA3 followed by 0x05 to 0x0  
this register.  
R
Rev. 0 | Page 24 of 25  
 
 
 
Data Sheet  
ADGS1412  
OUTLINE DIMENSIONS  
4.10  
4.00 SQ  
3.90  
0.30  
0.25  
0.18  
PIN 1  
INDICATOR  
PIN 1  
INDICATOR  
24  
19  
18  
1
0.50  
BSC  
2.70  
2.60 SQ  
2.50  
EXPOSED  
PAD  
13  
12  
6
7
0.50  
0.40  
0.30  
0.20 MIN  
TOP VIEW  
BOTTOM VIEW  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
1.00  
0.95  
0.90  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.20 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-VGGD-8.  
Figure 43. 24-Lead Lead Frame Chip Scale Package [LFCSP]  
4 mm × 4 mm Body and 0.95 mm Package Height  
(CP-24-17)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
ADGS1412BCPZ  
ADGS1412BCPZ-RL7  
Temperature Range  
−40°C to +125°C  
−40°C to +125°C  
Package Description  
Package Option  
CP-24-17  
CP-24-17  
24-Lead Lead Frame Chip Scale Package [LFCSP]  
24-Lead Lead Frame Chip Scale Package [LFCSP]  
1 Z = RoHS Compliant Part.  
©2016 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D14960-0-10/16(0)  
Rev. 0 | Page 25 of 25  
 
 

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY