ADGS5412BCPZ-RL7 [ADI]

SPI Interface, 4× SPST Switches, 9.8 Ω RON, ±20 V/36 V, Mux Configurable;
ADGS5412BCPZ-RL7
型号: ADGS5412BCPZ-RL7
厂家: ADI    ADI
描述:

SPI Interface, 4× SPST Switches, 9.8 Ω RON, ±20 V/36 V, Mux Configurable

文件: 总30页 (文件大小:608K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SPI Interface, 4× SPST Switches,  
9.8 Ω RON, ± ±2 ꢀV/+3 ꢀ, ꢁMu ꢂCnfiꢃMraꢄbe  
ADGS541±  
Data Sheet  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
SPI interface with error detection  
Includes CRC, invalid read/write address, and SCLK count  
error detection  
Supports burst mode and daisy-chain mode  
Industry standard SPI Mode 0 and Mode 3 interface  
compatible  
ADGS5412  
S1  
S2  
D1  
D2  
S3  
S4  
D3  
D4  
Guaranteed break-before-make switching allowing external  
wiring of switches to deliver multiplexer configurations  
VSS to VDD analog signal range  
Fully specified at 1ꢀ V, 20 V, +12 V, and +36 V  
9 V to 22 V dual-supply operation  
9 V to 40 V single-supply operation  
SPI  
INTERFACE  
SDO  
Latch-up proof analog switch pins  
8 kV HBM ESD rating  
SCLK  
SDI  
CS  
RESET/V  
L
Low on resistance (<10 Ω)  
1.8 V logic compatibility with 2.7 V ≤ VL ≤ 3.3 V  
Figure 1.  
APPLICATIONS  
Relay replacement  
Automatic test equipment  
Data acquisition  
Instrumentation  
Avionics  
Audio and video switching  
Communication systems  
GENERAL DESCRIPTION  
The ADGS5412 contains four independent single-pole/single-  
throw (SPST) switches. A serial peripheral interface (SPI) controls  
the switches. The SPI interface has robust error detection features,  
including cyclic redundancy check (CRC) error detection, invalid  
read/write address detection, and serial clock (SCLK) count  
error detection.  
It is possible to daisy-chain multiple ADGS5412 devices together,  
which enables the configuration of multiple devices with a  
minimal amount of digital lines. The ADGS5412 can also  
operate in burst mode to decrease the time between SPI  
commands.  
applications with external wiring.  
PRODUCT HIGHLIGHTS  
1. SPI interface removes the need for parallel conversion and  
logic traces and reduces general-purpose input/output  
(GPIO) channel count.  
2. Daisy-chain mode removes additional logic traces when  
multiple devices are used.  
3. CRC, invalid read/write address, and SCLK count error  
detection ensure a robust digital interface.  
4. CRC error detection capabilities allow for the use of the  
ADGS5412 in safety critical systems.  
Each switch conducts equally well in both directions when on,  
and each switch has an input signal range that extends to the  
supplies. In the off condition, signal levels up to the supplies are  
blocked.  
5. Guaranteed break-before-make switching allows the use of  
the ADGS5412 in multiplexer configurations with external  
wiring.  
Trench isolation analog switch section guards against latch-up. A  
dielectric trench separates the positive (P) and negative (N) channel  
transistors thereby preventing latch-up even under severe  
overvoltage conditions.  
The on-resistance profile is very flat over the full analog input  
range, which ensures good linearity and low distortion when  
switching audio signals. The ADGS5412 exhibits break-before-  
make switching action, allowing use of the device in multiplexer  
Rev. A  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2017–2018 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
 
ADGS5412  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Error Detection Features........................................................... 22  
Clearing the Error Flags Register............................................. 23  
Burst Mode.................................................................................. 23  
Software Reset............................................................................. 23  
Daisy-Chain Mode..................................................................... 23  
Power-On Reset.......................................................................... 24  
Break-Before-Make Switching.................................................. 25  
Trench Isolation.......................................................................... 25  
Digital Input Buffers .................................................................. 25  
Applications Information .............................................................. 26  
Power Supply Rails ..................................................................... 26  
Power Supply Recommendations............................................. 26  
Register Summary .......................................................................... 27  
Register Details ............................................................................... 28  
Switch Data Register .................................................................. 28  
Error Configuration Register.................................................... 28  
Error Flags Register.................................................................... 29  
Burst Enable Register................................................................. 29  
Software Reset Register ............................................................. 29  
Outline Dimensions ....................................................................... 30  
Ordering Guide .......................................................................... 30  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Product Highlights ........................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
15 V Dual Supply ....................................................................... 3  
20 V Dual Supply ....................................................................... 5  
12 V Single Supply........................................................................ 7  
36 V Single Supply........................................................................ 9  
Continuous Current per Channel, SX or DX............................ 11  
Timing Characteristics .............................................................. 11  
Absolute Maximum Ratings.......................................................... 13  
ESD Caution................................................................................ 13  
Pin Configurations and Function Descriptions ......................... 14  
Typical Performance Characteristics ........................................... 15  
Test Circuits..................................................................................... 19  
Terminology .................................................................................... 21  
Theory of Operation ...................................................................... 22  
Address Mode ............................................................................. 22  
REVISION HISTORY  
7/2018—Rev. 0 to Rev. A  
Changes to Table 1............................................................................ 3  
Changes to Source Off Leakage, IS (Off) Parameter and Drain  
Off Leakage, ID (Off) Parameter, Table 1....................................... 3  
Changes to Source Off Leakage, IS (Off) Parameter and Drain  
Off Leakage, ID (Off) Parameter, Table 2....................................... 5  
Changes to Source Off Leakage, IS (Off) Parameter and Drain  
Off Leakage, ID (Off) Parameter, Table 4....................................... 9  
Deleted Figure 43 and Figure 44; Renumbered Sequentially..... 24  
Added Figure 43 and Figure 44; Renumbered Sequentially ..... 24  
5/2017—Revision 0: Initial Version  
Rev. A | Page 2 of 30  
 
Data Sheet  
ADGS5412  
SPECIFICATIONS  
15 V DUAL SUPPLY  
Positive supply (VDD) = 15 V 10%, negative supply (VSS) = −15 V 10%, digital supply (VL) = 2.7 V to 5.5 V, GND = 0 V, unless  
otherwise noted.  
Table 1.  
Parameter  
+25°C −40°C to +85°C −40°C to +125°C Unit  
Test Conditions/Comments  
ANALOG SWITCH  
Analog Signal Range  
On Resistance, RON  
VDD to VSS  
V
9.8  
Ω typ  
VS = 10 V, IS = −10 mA;  
see Figure 29  
11  
0.35  
14  
16  
Ω max  
Ω typ  
VDD = +13.5 V, VSS = −13.5 V  
VS = 10 V, IS = −10 mA  
On-Resistance Match Between Channels,  
∆RON  
0.7  
1.2  
1.6  
0.9  
2
1.1  
2.2  
Ω max  
Ω typ  
Ω max  
On-Resistance Flatness, RFLAT (ON)  
VS = 10 V, IS = −10 mA  
LEAKAGE CURRENTS  
VDD = +16.5 V, VSS = −16.5 V  
Source Off Leakage, IS (Off)  
0.05  
nA typ  
VS = 10 V, VD = μ 10 V;  
see Figure 32  
0.25  
0.05  
0.75  
6
nA max  
nA typ  
Drain Off Leakage, ID (Off)  
VS = 10 V, VD = μ 10 V;  
see Figure 32  
0.25  
0.1  
0.4  
0.75  
2
6
nA max  
nA typ  
nA max  
Channel On Leakage, ID (On), IS (On)  
VS = VD = 10 V; see Figure 28  
12  
DIGITAL OUTPUT  
Output Voltage  
Low, VOL  
0.4  
0.2  
V max  
V max  
µA typ  
µA max  
pF typ  
ISINK = 5 mA  
ISINK = 1 mA  
VOUT = VGND or VL  
High Impedance Leakage Current  
0.001  
4
0.1  
High Impedance Output Capacitance  
DIGITAL INPUTS  
Input Voltage  
High, VINH  
2
V min  
V min  
3.3 V < VL ≤ 5.5 V  
2.7 V ≤ VL ≤ 3.3 V  
3.3 V < VL ≤ 5.5 V  
2.7 V ≤ VL ≤ 3.3 V  
VIN = VGND or VL  
1.35  
0.8  
0.8  
Low, VINL  
V max  
V max  
µA typ  
µA max  
pF typ  
Input Current, IINL or IINH  
0.002  
4
0.1  
Digital Input Capacitance, CIN  
DYNAMIC CHARACTERISTICS1  
tON  
460  
540  
185  
225  
245  
ns typ  
ns max  
ns typ  
ns max  
ns typ  
ns min  
RL = 300 Ω, CL = 35 pF  
VS = 10 V; see Figure 36  
RL = 300 Ω, CL = 35 pF  
VS = 10 V; see Figure 36  
RL = 300 Ω, CL = 35 pF  
VS1 = VS2 = 10 V, see Figure 35  
560  
240  
580  
270  
195  
tOFF  
Break-Before-Make Time Delay, tD  
Rev. A | Page 3 of 30  
 
 
ADGS5412  
Data Sheet  
Parameter  
+25°C −40°C to +85°C −40°C to +125°C Unit  
Test Conditions/Comments  
Charge Injection, QINJ  
245  
−78  
−70  
0.01  
167  
−0.7  
pC typ  
VS = 0 V, RS = 0 Ω, CL = 1 nF;  
see Figure 37  
RL = 50 Ω, CL = 5 pF, f =  
100 kHz; see Figure 31  
RL = 50 Ω, CL = 5 pF, f = 1 MHz;  
see Figure 30  
RL = 1 kΩ, 15 V p-p, f = 20 Hz  
to 20 kHz; see Figure 33  
RL = 50 Ω, CL = 5 pF; see  
Figure 34  
RL = 50 Ω, CL = 5 pF, f = 1 MHz;  
see Figure 34  
Off Isolation  
dB typ  
dB typ  
% typ  
Channel to Channel Crosstalk  
Total Harmonic Distortion + Noise,  
THD + N  
−3 dB Bandwidth  
MHz typ  
dB typ  
Insertion Loss  
Off Switch Source Capacitance, CS (Off)  
Off Switch Drain Capacitance, CD (Off)  
On Switch Capacitance, CD (On), CS (On)  
POWER REQUIREMENTS  
18  
18  
57  
pF typ  
pF typ  
pF typ  
VS = 0 V, f = 1 MHz  
VS = 0 V, f = 1 MHz  
VS = 0 V, f = 1 MHz  
VDD = +16.5 V, VSS = −16.5 V  
Digital inputs = 0 V or VL  
Positive Supply Current, IDD  
45  
55  
45  
µA typ  
µA max  
µA typ  
70  
All switches closed,  
VL = 5.5 V  
110  
µA typ  
All switches closed,  
VL = 2.7 V  
Digital Supply Current, IL  
Inactive  
6.3  
14  
µA typ  
µA max  
µA typ  
Digital inputs = 0 V or VL  
8.0  
Inactive, SCLK = 1 MHz  
CS = VL and SDI = 0 V or VL,  
VL = 5 V  
7
µA typ  
µA typ  
µA typ  
µA typ  
µA typ  
µA typ  
µA typ  
mA typ  
CS = VL and SDI = 0 V or VL,  
VL = 3 V  
CS = VL and SDI = 0 V or VL,  
VL = 5 V  
CS = VL and SDI = 0 V or VL,  
VL = 3 V  
CS and SCLK = 0 V or VL,  
VL = 5 V  
CS and SCLK = 0 V or VL,  
VL = 3 V  
CS and SCLK = 0 V or VL,  
VL = 5 V  
CS and SCLK = 0 V or VL,  
VL = 3 V  
Digital inputs toggle  
between 0 V and VL,  
VL = 5.5 V  
SCLK = 50 MHz  
390  
210  
15  
Inactive, SDI = 1 MHz  
SDI = 25 MHz  
7.5  
230  
120  
1.8  
Active at 50 MHz  
2.1  
mA max  
mA typ  
0.7  
Digital inputs toggle  
between 0 V and VL,  
VL = 2.7 V  
1.0  
1.0  
mA max  
µA typ  
µA max  
Negative Supply Current, ISS  
0.001  
Digital inputs = 0 V or VL  
VDD/VSS  
9/ 22  
V min/V max GND = 0 V  
1 Guaranteed by design; not subject to production test.  
Rev. A | Page 4 of 30  
Data Sheet  
ADGS5412  
20 V DUAL SUPPLY  
VDD = 20 V 10%, VSS = −20 V 10%, VL = 2.7 V to 5.5 V, GND = 0 V, unless otherwise noted.  
Table 2.  
Parameter  
+25°C −40°C to +85°C −40°C to +125°C Unit  
Test Conditions/Comments  
ANALOG SWITCH  
Analog Signal Range  
On Resistance, RON  
VDD to VSS  
V
9
Ω typ  
VS = 15 V, IS = −10 mA; see  
Figure 29  
10  
0.35  
13  
15  
Ω max  
Ω typ  
VDD = +18 V, VSS = −18 V  
VS = 15 V, IS = −10 mA  
On-Resistance Match Between  
Channels, ∆RON  
0.7  
1.6  
1.9  
0.9  
2.3  
1.1  
2.7  
Ω max  
Ω typ  
Ω max  
On-Resistance Flatness, RFLAT (ON)  
VS = 15 V, IS = −10 mA  
VDD = +22 V, VSS = −22 V  
LEAKAGE CURRENTS  
Source Off Leakage, IS (Off)  
0.05  
nA typ  
VS = 15 V, VD = μ 15 V; see  
Figure 32  
0.25  
0.05  
0.75  
6
nA max  
nA typ  
Drain Off Leakage, ID (Off)  
VS = 15 V, VD = μ 15 V; see  
Figure 32  
0.25  
0.1  
0.4  
0.75  
2
6
nA max  
nA typ  
nA max  
Channel On Leakage, ID (On), IS (On)  
VS = VD = 15 V; see Figure 28  
12  
DIGITAL OUTPUT  
Output Voltage  
Low, VOL  
0.4  
0.2  
V max  
V max  
µA typ  
µA max  
pF typ  
ISINK = 5 mA  
ISINK = 1 mA  
VOUT = VGND or VL  
High Impedance Leakage Current  
0.001  
4
0.1  
High Impedance Output  
Capacitance  
DIGITAL INPUTS  
Input Voltage  
High, VINH  
2
V min  
V min  
3.3 V < VL ≤ 5.5 V  
2.7 V ≤ VL ≤ 3.3 V  
3.3 V < VL ≤ 5.5 V  
2.7 V ≤ VL ≤ 3.3 V  
VIN = VGND or VL  
1.35  
0.8  
0.8  
Low, VINL  
V max  
V max  
µA typ  
µA max  
pF typ  
Input Current, IINL or IINH  
Digital Input Capacitance, CIN  
0.002  
4
0.1  
Rev. A | Page 5 of 30  
 
ADGS5412  
Data Sheet  
Parameter  
+25°C −40°C to +85°C −40°C to +125°C Unit  
Test Conditions/Comments  
DYNAMIC CHARACTERISTICS1  
tON  
450  
530  
185  
230  
235  
ns typ  
RL = 300 Ω, CL = 35 pF  
VS = 10 V; see Figure 36  
RL = 300 Ω, CL = 35 pF  
VS = 10 V; see Figure 36  
RL = 300 Ω, CL = 35 pF  
VS1 = VS2 = 10 V, see Figure 35  
VS = 0 V, RS = 0 Ω, CL = 1 nF; see  
Figure 37  
RL = 50 Ω, CL = 5 pF, f = 100 kHz; see  
Figure 31  
540  
245  
555  
260  
185  
ns max  
ns typ  
ns max  
ns typ  
ns min  
pC typ  
tOFF  
Break-Before-Make Time Delay, tD  
Charge Injection, QINJ  
Off Isolation  
310  
−78  
−70  
0.008  
dB typ  
dB typ  
% typ  
Channel-to-Channel Crosstalk  
RL = 50 Ω, CL = 5 pF, f = 1 MHz; see  
Figure 30  
RL = 1 kΩ, 20 V p-p, f = 20 Hz to  
20 kHz; see Figure 33  
Total Harmonic Distortion + Noise,  
THD + N  
−3 dB Bandwidth  
Insertion Loss  
160  
−0.6  
MHz typ  
dB typ  
RL = 50 Ω, CL = 5 pF; see Figure 34  
RL = 50 Ω, CL = 5 pF, f = 1 MHz; see  
Figure 34  
Off Switch Source Capacitance,  
CS (Off)  
Off Switch Drain Capacitance,  
CD (Off)  
On Switch Capacitance, CD (On),  
CS (On)  
17  
17  
56  
pF typ  
pF typ  
pF typ  
VS = 0 V, f = 1 MHz  
VS = 0 V, f = 1 MHz  
VS = 0 V, f = 1 MHz  
POWER REQUIREMENTS  
Positive Supply Current, IDD  
VDD = +22 V, VSS = −22 V  
Digital inputs = 0 V or VL  
50  
70  
50  
120  
µA typ  
µA max  
µA typ  
µA typ  
110  
8.0  
All switches closed, VL = 5.5 V  
All switches closed, VL = 2.7 V  
IL  
Inactive  
6.3  
14  
µA typ  
µA max  
µA typ  
Digital inputs = 0 V or VL  
Inactive, SCLK = 1 MHz  
CS = VL and SDI = 0 V or VL,  
VL = 5 V  
7
µA typ  
µA typ  
µA typ  
CS = VL and SDI = 0 V or VL,  
VL = 3 V  
CS = VL and SDI = 0 V or VL,  
VL = 5 V  
CS = VL and SDI = 0 V or VL,  
VL = 3 V  
SCLK = 50 MHz  
390  
210  
Inactive, SDI = 1 MHz  
SDI = 25 MHz  
15  
µA typ  
µA typ  
µA typ  
µA typ  
mA typ  
CS and SCLK = 0 V or VL, VL = 5 V  
7.5  
230  
120  
1.8  
CS and SCLK = 0 V or VL, VL = 3 V  
CS and SCLK = 0 V or VL, VL = 5 V  
CS and SCLK = 0 V or VL, VL = 3 V  
Active at 50 MHz  
Digital inputs toggle between  
0 V and VL, VL = 5.5 V  
2.1  
mA max  
mA typ  
0.7  
Digital inputs toggle between  
0 V and VL, VL = 2.7 V  
1.0  
1.0  
mA max  
µA typ  
µA max  
Negative Supply Current, ISS  
VDD/VSS  
0.001  
Digital inputs = 0 V or VL  
9/ 22  
V min/V max GND = 0 V  
1 Guaranteed by design; not subject to production test.  
Rev. A | Page 6 of 30  
Data Sheet  
ADGS5412  
12 V SINGLE SUPPLY  
VDD = 12 V 10%, VSS = 0 V, VL = 2.7 V to 5.5 V, GND = 0 V, unless otherwise noted.  
Table 3.  
Parameter  
+25°C −40°C to +85°C −40°C to +125°C Unit  
Test Conditions/Comments  
ANALOG SWITCH  
Analog Signal Range  
On-Resistance, RON  
0 V to VDD  
31  
V
19  
Ω typ  
VS = 0 V to 10 V, IS = −10 mA;  
see Figure 29  
VDD = 10.8 V, VSS = 0 V  
22  
0.4  
27  
Ω max  
Ω typ  
On-Resistance Match Between Channels,  
∆RON  
VS = 0 V to 10 V, IS = −10 mA  
0.8  
4.4  
5.5  
1
1.2  
7.5  
Ω max  
Ω typ  
Ω max  
On-Resistance Flatness, RFLAT (ON)  
VS = 0 V to 10 V, IS = −10 mA  
VDD = 13.2 V, VSS = 0 V  
6.5  
LEAKAGE CURRENTS  
Source Off Leakage, IS (Off)  
0.05  
nA typ  
VS = 1 V/10 V, VD = 10 V/1 V;  
see Figure 32  
0.25  
0.05  
0.75  
6
nA max  
nA typ  
Drain Off Leakage, ID (Off)  
VS = 1 V/10 V, VD = 10 V/1 V;  
see Figure 32  
0.25  
0.1  
0.75  
2
6
nA max  
nA typ  
Channel On Leakage, ID (On), IS (On)  
VS = VD = 1 V/10 V; see  
Figure 28  
0.4  
12  
nA max  
DIGITAL OUTPUT  
Output Voltage  
Low, VOL  
0.4  
0.2  
V max  
V max  
µA typ  
µA max  
pF typ  
ISINK = 5 mA  
ISINK = 1 mA  
VOUT = VGND or VL  
High Impedance Leakage Current  
0.002  
4
0.1  
High Impedance Output Capacitance  
DIGITAL INPUTS  
Input Voltage  
High, VINH  
2
V min  
V min  
3.3 V < VL ≤ 5.5 V  
2.7 V ≤ VL ≤ 3.3 V  
3.3 V < VL ≤ 5.5 V  
2.7 V ≤ VL ≤ 3.3 V  
VIN = VGND or VL  
1.35  
0.8  
0.8  
Low, VINL  
V max  
V max  
µA typ  
µA max  
pF typ  
Input Current, IINL or IINH  
0.001  
4
0.1  
Digital Input Capacitance, CIN  
DYNAMIC CHARACTERISTICS1  
tON  
545  
665  
200  
250  
320  
ns typ  
ns max  
ns typ  
ns max  
ns typ  
ns min  
pC typ  
RL = 300 Ω, CL = 35 pF  
VS = 8 V; see Figure 36  
RL = 300 Ω, CL = 35 pF  
VS = 8 V; see Figure 36  
RL = 300 Ω, CL = 35 pF  
VS1 = VS2 = 8 V, see Figure 35  
VS = 6 V, RS = 0 Ω, CL = 1 nF;  
see Figure 37  
RL = 50 Ω, CL = 5 pF,  
f = 100 kHz; see Figure 31  
RL = 50 Ω, CL = 5 pF, f = 1 MHz;  
see Figure 30  
RL = 1 kΩ, 6 V p-p, f = 20 Hz  
to 20 kHz; see Figure 33  
720  
275  
775  
305  
235  
tOFF  
Break-Before-Make Time Delay, tD  
Charge Injection, QINJ  
Off Isolation  
105  
−78  
−70  
0.08  
dB typ  
dB typ  
% typ  
Channel-to-Channel Crosstalk  
Total Harmonic Distortion + Noise,  
THD + N  
Rev. A | Page 7 of 30  
 
ADGS5412  
Data Sheet  
Parameter  
+25°C −40°C to +85°C −40°C to +125°C Unit  
Test Conditions/Comments  
−3 dB Bandwidth  
180  
MHz typ  
RL = 50 Ω, CL = 5 pF; see  
Figure 34  
Insertion Loss  
−1.3  
dB typ  
RL = 50 Ω, CL = 5 pF, f = 1 MHz;  
see Figure 34  
Off Switch Source Capacitance, CS (Off)  
Off Switch Drain Capacitance, CD (Off)  
On Switch Capacitance, CD (On), CS (On)  
POWER REQUIREMENTS  
22  
22  
56  
pF typ  
pF typ  
pF typ  
VS = 6 V, f = 1 MHz  
VS = 6 V, f = 1 MHz  
VS = 6 V, f = 1 MHz  
VDD = 13.2 V  
Positive Supply Current, IDD  
40  
µA typ  
µA max  
µA typ  
µA typ  
Digital inputs = 0 V or VL  
65  
40  
105  
All switches closed, VL = 5.5 V  
All switches closed, VL = 2.7 V  
IL  
Inactive  
6.3  
14  
µA typ  
µA max  
µA typ  
Digital inputs = 0 V or VL  
8.0  
Inactive, SCLK = 1 MHz  
CS = VL and SDI = 0 V or VL,  
VL = 5 V  
7
µA typ  
µA typ  
µA typ  
µA typ  
µA typ  
µA typ  
µA typ  
mA typ  
CS = VL and SDI = 0 V or VL,  
VL = 3 V  
CS = VL and SDI = 0 V or VL,  
VL = 5 V  
CS = VL and SDI = 0 V or VL,  
VL = 3 V  
CS and SCLK = 0 V or VL,  
VL = 5 V  
CS and SCLK = 0 V or VL,  
VL = 3 V  
CS and SCLK = 0 V or VL,  
VL = 5 V  
CS and SCLK = 0 V or VL,  
VL = 3 V  
Digital inputs toggle  
between 0 V and VL,  
VL = 5.5 V  
SCLK = 50 MHz  
390  
210  
15  
Inactive, SDI = 1 MHz  
SDI = 25 MHz  
7.5  
230  
120  
1.8  
Active at 50 MHz  
2.1  
mA max  
mA typ  
0.7  
Digital inputs toggle  
between 0 V and VL,  
VL = 2.7 V  
1.0  
mA max  
VDD  
9/40  
V min/V max GND = 0 V, VSS = 0 V  
1 Guaranteed by design; not subject to production test.  
Rev. A | Page 8 of 30  
 
Data Sheet  
ADGS5412  
36 V SINGLE SUPPLY  
VDD = 36 V 10%, VSS = 0 V, VL = 2.7 V to 5.5 V, GND = 0 V, unless otherwise noted.  
Table 4.  
Parameter  
+25°C −40°C to +85°C −40°C to +125°C Unit  
Test Conditions/Comments  
ANALOG SWITCH  
Analog Signal Range  
On Resistance, RON  
0 V to VDD  
17  
V
10.6  
Ω typ  
VS = 0 V to 30 V, IS = −10 mA; see  
Figure 29  
VDD = 32.4 V, VSS = 0 V  
12  
0.35  
15  
Ω max  
Ω typ  
On-Resistance Match Between  
Channels, ∆RON  
VS = 0 V to 30 V, IS = −10 mA  
0.7  
2.9  
3.4  
0.9  
4
1.1  
4.7  
Ω max  
Ω typ  
Ω max  
On-Resistance Flatness, RFLAT(ON)  
VS = 0 V to 30 V, IS = −10 mA  
VDD = 39.6 V, VSS = 0 V  
LEAKAGE CURRENTS  
Source Off Leakage, IS (Off)  
0.05  
nA typ  
VS = 1 V/30 V, VD = 30 V/1 V; see  
Figure 32  
0.25  
0.05  
0.75  
6
nA max  
nA typ  
Drain Off Leakage, ID (Off)  
VS = 1 V/30 V, VD = 30 V/1 V; see  
Figure 32  
0.25  
0.1  
0.4  
0.75  
2
6
nA max  
nA typ  
nA max  
Channel On Leakage, ID (On), IS (On)  
VS = VD = 1 V/30 V; see Figure 28  
12  
DIGITAL OUTPUT  
Output Voltage  
Low, VOL  
0.4  
0.2  
V max  
V max  
µA typ  
µA max  
pF typ  
ISINK = 5 mA  
ISINK = 1 mA  
VOUT = VGND or VL  
High Impedance Leakage Current  
0.001  
4
0.1  
High Impedance Output  
Capacitance  
DIGITAL INPUTS  
Input Voltage  
High, VINH  
2
V min  
V min  
3.3 V < VL ≤ 5.5 V  
2.7 V ≤ VL ≤ 3.3 V  
3.3 V < VL ≤ 5.5 V  
2.7 V ≤ VL ≤ 3.3 V  
VIN = VGND or VL  
1.35  
0.8  
0.8  
Low, VINL  
V max  
V max  
µA typ  
µA max  
pF typ  
Input Current, IINL or IINH  
Digital Input Capacitance, CIN  
0.002  
4
0.1  
Rev. A | Page 9 of 30  
 
ADGS5412  
Data Sheet  
Parameter  
+25°C −40°C to +85°C −40°C to +125°C Unit  
Test Conditions/Comments  
DYNAMIC CHARACTERISTICS1  
tON  
470  
555  
195  
245  
245  
ns typ  
RL = 300 Ω, CL = 35 pF  
VS = 18 V; see Figure 36  
RL = 300 Ω, CL = 35 pF  
VS = 18 V; see Figure 36  
RL = 300 Ω, CL = 35 pF  
VS1 = VS2 = 18 V, see Figure 35  
VS = 18 V, RS = 0 Ω, CL = 1 nF; see  
Figure 37  
RL = 50 Ω, CL = 5 pF, f = 100 kHz; see  
Figure 31  
565  
250  
580  
260  
185  
ns max  
ns typ  
ns max  
ns typ  
ns min  
pC typ  
tOFF  
Break-Before-Make Time Delay, tD  
Charge Injection, QINJ  
Off Isolation  
285  
−78  
−70  
0.03  
dB typ  
dB typ  
% typ  
Channel-to-Channel Crosstalk  
RL = 50 Ω, CL = 5 pF, f = 1 MHz; see  
Figure 30  
RL = 1 kΩ, 18 V p-p, f = 20 Hz to  
20 kHz; see Figure 33  
Total Harmonic Distortion + Noise,  
THD + N  
−3 dB Bandwidth  
Insertion Loss  
174  
−0.7  
MHz typ  
dB typ  
RL = 50 Ω, CL = 5 pF; see Figure 34  
RL = 50 Ω, CL = 5 pF, f = 1 MHz; see  
Figure 34  
Off Switch Source Capacitance,  
CS (Off)  
Off Switch Drain Capacitance,  
CD (Off)  
On Switch Capacitance, CD (On),  
CS (On)  
17  
17  
55  
pF typ  
pF typ  
pF typ  
VS = 18 V, f = 1 MHz  
VS = 18 V, f = 1 MHz  
VS = 18 V, f = 1 MHz  
POWER REQUIREMENTS  
VDD = 39.6 V  
Positive Supply Current, IDD  
80  
100  
80  
µA typ  
µA max  
µA typ  
µA typ  
Digital inputs = 0 V or VL  
130  
8.0  
All switches closed, VL = 5.5 V  
All switches closed, VL = 2.7 V  
135  
IL  
Inactive  
6.3  
14  
µA typ  
µA max  
µA typ  
Digital inputs = 0 V or VL  
Inactive, SCLK = 1 MHz  
CS = VL and SDI = 0 V or VL,  
VL = 5 V  
7
µA typ  
µA typ  
µA typ  
CS = VL and SDI = 0 V or VL,  
VL = 3 V  
CS = VL and SDI = 0 V or VL,  
VL = 5 V  
CS = VL and SDI = 0 V or VL,  
VL = 3 V  
SCLK = 50 MHz  
390  
210  
Inactive, SDI = 1 MHz  
SDI = 25 MHz  
15  
µA typ  
µA typ  
µA typ  
µA typ  
mA typ  
CS and SCLK = 0 V or VL, VL = 5 V  
7.5  
230  
120  
1.8  
CS and SCLK = 0 V or VL, VL = 3 V  
CS and SCLK = 0 V or VL, VL = 5 V  
CS and SCLK = 0 V or VL, VL = 3 V  
Active at 50 MHz  
Digital inputs toggle between  
0 V and VL, VL = 5.5 V  
2.1  
mA max  
mA typ  
0.7  
Digital inputs toggle between  
0 V and VL, VL = 2.7 V  
1.0  
mA max  
VDD  
9/40  
V min/V max GND = 0 V, VSS = 0 V  
1 Guaranteed by design; not subject to production test.  
Rev. A | Page 10 of 30  
Data Sheet  
ADGS5412  
CONTINUOUS CURRENT PER CHANNEL, SX OR DX  
Table 5. Four Channels On  
Parameter  
25°C  
85°C  
125°C  
Unit  
CONTINUOUS CURRENT, SX OR DX  
VDD = +15 V, VSS = −15 V  
LFCSP (θJA = 50°C/W)  
VDD = +20 V, VSS = −20 V  
LFCSP (θJA = 50°C/W)  
VDD = 12 V, VSS = 0 V  
LFCSP (θJA = 50°C/W)  
VDD = 36 V, VSS = 0 V  
LFCSP (θJA = 50°C/W)  
126  
133  
97  
94  
98  
71  
97  
59  
63  
44  
62  
mA max  
mA max  
mA max  
mA max  
131  
Table 6. One Channel On  
Parameter  
25°C  
85°C  
125°C  
Unit  
CONTINUOUS CURRENT, SX OR DX  
VDD = +15 V, VSS = −15 V  
LFCSP (θJA = 50°C/W)  
VDD = +20 V, VSS = −20 V  
LFCSP (θJA = 50°C/W)  
VDD = 12 V, VSS = 0 V  
LFCSP (θJA = 50°C/W)  
VDD = 36 V, VSS = 0 V  
LFCSP (θJA = 50°C/W)  
230  
241  
180  
239  
154  
160  
126  
158  
102  
104  
88  
mA max  
mA max  
mA max  
mA max  
104  
TIMING CHARACTERISTICS  
VL = 2.7 V to 5.5 V; GND = 0 V; all specifications TMIN to TMAX, unless otherwise noted. Guaranteed by design and characterization, not  
production tested.  
Table 7.  
Parameter  
Limit at TMIN, TMAX  
Unit  
Test Conditions/Comments  
SCLK period  
SCLK high pulse width  
SCLK low pulse width  
CS falling edge to SCLK rising edge  
Data setup time  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
20  
8
8
10  
6
8
10  
20  
20  
20  
20  
8
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns max  
ns max  
ns max  
ns min  
ns min  
ns min  
Data hold time  
SCLK rising edge to CS rising edge  
CS falling edge to SDO data available  
SCLK falling edge to SDO data available  
CS rising edge to SDO returns to high impedance  
CS high time between SPI commands  
CS falling edge to SCLK becomes stable  
CS rising edge to SCLK becomes stable  
1
t9  
t10  
t11  
t12  
t13  
8
1 Measured with the 1 kΩ pull-up resistor to VL and 20 pF load. The parameter t9 determines the maximum SCLK frequency when SDO is used.  
Rev. A | Page 11 of 30  
 
 
 
ADGS5412  
Data Sheet  
t1  
SCLK  
CS  
t2  
t7  
t4  
t3  
t6  
t5  
SDI  
R/W  
A6  
A5  
1
D2  
D2  
D1  
D1  
D0  
D0  
t10  
t9  
SDO  
0
0
t8  
Figure 2. Addressable Mode Timing Diagram  
t1  
SCLK  
CS  
t2  
t3  
t4  
t7  
t6  
t5  
SDI  
D7  
D6  
D0  
D7  
D6  
D1  
D0  
INPUT BYTE FOR DEVICE N  
t9  
INPUT BYTE FOR DEVICE N + 1  
t10  
SDO  
0
0
0
D7  
D6  
D1  
D0  
ZERO BYTE  
INPUT BYTE FOR DEVICE N  
t8  
Figure 3. Daisy Chain Timing Diagram  
t11  
CS  
SCLK  
t13  
t12  
CS  
Figure 4. SCLK/ Timing Relationship  
Rev. A | Page 12 of 30  
Data Sheet  
ADGS5412  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Table 8.  
Parameter  
Rating  
VDD to VSS  
48 V  
VDD to GND  
VSS to GND  
VL to GND  
−0.3 V to +48 V  
+0.3 V to −48 V  
−0.3 V to +6 V  
Analog Inputs1  
VSS − 0.3 V to VDD + 0.3 V or  
Only one absolute maximum rating can be applied at any one time.  
30 mA, whichever occurs first  
−0.3 V to +6 V  
ESD CAUTION  
Digital Inputs1  
Peak Current, SX or DX  
261 mA (pulsed at 1 ms, 10%  
duty cycle maximum)  
Data + 15%  
2
Continuous Current, SX or DX  
Temperature Ranges  
Operating  
Storage  
Junction Temperature  
Thermal Impedance, θJA  
−40°C to +125°C  
−65°C to +150°C  
150°C  
50°C/W  
Reflow Soldering Peak  
Temperature, Pb Free  
260 (+0/−5)°C  
Human Body Model (HBM) ESD 8 kV  
Rating  
1 Overvoltages at the SX pins and DX pins are clamped by internal diodes. Limit  
the current to the maximum ratings given.  
2 See Table 5.  
Rev. A | Page 13 of 30  
 
 
ADGS5412  
Data Sheet  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
18  
17  
16  
15  
14  
13  
1
2
3
4
5
6
D2  
D1  
S1  
S2  
ADGS5412  
NIC  
V
SS  
TOP VIEW  
V
GND  
DD  
(Not to Scale)  
S4  
D4  
S3  
D3  
NOTES  
1. THE EXPOSED PAD IS CONNECTED  
INTERNALLY. FOR INCREASED RELIABILITY  
OF THE SOLDER JOINTS AND MAXIMUM  
THERMAL CAPABILITY, IT IS RECOMMENDED  
THAT THE EXPOSED PAD BE SOLDEREDTO  
THE SUBSTRATE, V  
.
SS  
2. NIC = NOT INTERNALLY CONNECTED.  
Figure 5. Pin Configuration  
Table 9. Pin Function Descriptions  
Pin No.  
Mnemonic Description  
1
2
3
4, 11  
5
6
7, 8, 10,  
12, 16, 19,  
24  
D1  
S1  
VSS  
GND  
S4  
Drain Terminal 1. This pin can be an input or an output.  
Source Terminal 1. This pin can be an input or an output.  
Most Negative Power Supply Potential. In single-supply applications, tie this pin to GND.  
Ground (0 V) Reference.  
Source Terminal 4. This pin can be an input or an output.  
Drain Terminal 4. This pin can be an input or an output.  
Not Internally Connected.  
D4  
NIC  
9
RESET/VL  
RESET/Logic Power Supply Input (VL). Under normal operation, drive the RESET/VL pin with a 2.7 V to 5.5 V supply.  
Pull the pin low to complete a hardware reset. All switches are opened, and the appropriate registers are set to  
their default values.  
13  
14  
15  
17  
18  
20  
D3  
S3  
VDD  
S2  
D2  
SDO  
Drain Terminal 3. This pin can be an input or an output.  
Source Terminal 3. This pin can be an input or an output.  
Most Positive Power Supply Potential.  
Source Terminal 2. This pin can be an input or an output.  
Drain Terminal 2. This pin can be an input or an output.  
Serial Data Output. This pin can be used for daisy-chaining a number of these devices together or for reading  
back the data stored in a register for diagnostic purposes. The serial data is propagated on the falling edge of SCLK.  
Pull this open-drain output to VL with an external resistor.  
21  
CS  
Active Low Control Input. This is the frame synchronization signal for the input data. When CS goes low, it  
powers on the SCLK buffers and enables the input shift register. Data is transferred in on the falling edges of the  
following clocks. Taking CS high updates the switch condition.  
22  
23  
SCLK  
SDI  
Serial Clock Input. Data is captured on the positive edge of SCLK. Data can be transferred at rates of up to 50 MHz.  
Serial Data Input. Data is captured on the positive edge of the serial clock input.  
EPAD  
Exposed Pad. The exposed pad is connected internally. For increased reliability of the solder joints and maximum  
thermal capability, it is recommended that the pad be soldered to the substrate, VSS.  
Rev. A | Page 14 of 30  
 
Data Sheet  
ADGS5412  
TYPICAL PERFORMANCE CHARACTERISTICS  
16  
12  
10  
8
T
= 25°C  
V
V
= +10V  
= –10V  
T = 25°C  
A
A
DD  
SS  
V
V
= +9V  
= –9V  
DD  
SS  
14  
12  
10  
8
V
V
= 32.4V  
= 0V  
DD  
SS  
V
V
= 36V  
= 0V  
DD  
SS  
V
V
= +11V  
= –11V  
DD  
SS  
6
V
V
= 39.6V  
= 0V  
DD  
SS  
V
V
=+13.2V  
= –13.2V  
DD  
SS  
V
V
= +16.5V  
= –16.5V  
DD  
SS  
V
V
= +15V  
= –15V  
6
DD  
SS  
4
4
2
2
0
0
–20  
–15  
–10  
–5  
0
V , V (V)  
5
10  
15  
20  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
V , V (V)  
S
D
S
D
Figure 6. On Resistance (RON) as a Function of VS, VD (Dual Supply)  
Figure 9. On Resistance (RON) as a Function of VS, VD (Single Supply)  
12  
18  
16  
14  
V
V
= +18V  
= –18V  
DD  
SS  
10  
8
T
= +125°C  
A
12  
10  
8
V
V
= +22V  
= –22V  
T
= +85°C  
DD  
SS  
A
A
V
= +20V  
= –20V  
DD  
SS  
V
6
T
= +25°C  
= –40°C  
T
A
4
6
4
2
2
V
V
= +15V  
= –15V  
DD  
SS  
T
= 25°C  
A
0
0
–15  
–25 –20 –15 –10  
–5  
0
5
10  
15  
20  
25  
–10  
–5  
0
5
10  
15  
V , V (V)  
V , V (V)  
S
D
S
D
Figure 7. On Resistance (RON) as a Function of VS, VD (Dual Supply)  
Figure 10. On Resistance (RON) as a Function of VS, VD for Various Temperatures,  
15 V Dual Supply  
25  
16  
14  
12  
T
= 25°C  
A
V
V
= +10V  
= 0V  
DD  
SS  
V
V
= 10.8V  
= 0V  
DD  
SS  
V
V
= +9V  
= 0V  
DD  
SS  
20  
15  
10  
5
T
= +125°C  
A
10  
8
T
= +85°C  
= +25°C  
= –40°C  
A
A
T
V
V
= 11V  
= 0V  
DD  
SS  
V
V
= 12V  
= 0V  
DD  
SS  
6
T
A
V
V
= 13.2V  
= 0V  
DD  
SS  
4
2
V
V
= +20V  
= –20V  
DD  
SS  
0
0
–20  
0
2
4
6
8
10  
12  
14  
–15  
–10  
–5  
0
5
10  
15  
20  
V , V (V)  
V , V (V)  
S
D
S
D
Figure 8. On Resistance (RON) as a Function of VS, VD (Single Supply)  
Figure 11. On Resistance (RON) as a Function of VS, VD for Various Temperatures,  
20 V Dual Supply  
Rev. A | Page 15 of 30  
 
ADGS5412  
Data Sheet  
30  
0.8  
0.6  
V
V
= 12V  
= 0V  
V
V
V
= +20V  
= –20V  
BIAS  
DD  
SS  
DD  
SS  
= +15V/–15V  
I
, I (ON) + +  
S
D
25  
20  
15  
10  
5
I
, I (ON) – –  
S
D
T
= +125°C  
0.4  
A
I
(OFF) + –  
S
T
= +85°C  
A
A
0.2  
I
(OFF) – +  
D
T
= +25°C  
= –40°C  
0
T
A
–0.2  
–0.4  
–0.6  
I
(OFF) – +  
S
I
(OFF) + –  
D
0
0
2
4
6
8
10  
12  
0
25  
50  
75  
100  
125  
V , V (V)  
TEMPERATURE (°C)  
S
D
Figure 15. Leakage Currents vs. Temperature, 20 V Dual Supply  
Figure 12. On Resistance (RON) as a Function of VS , VD for Various  
Temperatures, 12 V Single Supply  
0.6  
16  
14  
12  
V
V
V
= 12V  
= 0V  
BIAS  
DD  
SS  
I
, I (ON) + +  
S
D
= 1V/10V  
0.4  
0.2  
0
T
= +125°C  
A
T
= +85°C  
I
, I (ON) – –  
S
A
D
10  
8
I
(OFF) + –  
S
T
= +25°C  
= –40°C  
A
I
(OFF) – +  
D
T
6
A
4
2
I
(OFF) + –  
D
V
V
= 36V  
= 0V  
DD  
SS  
I
(OFF) – +  
S
–0.2  
0
0
25  
50  
75  
100  
125  
0
5
10  
15  
20  
25  
30  
35  
40  
TEMPERATURE (°C)  
V , V (V)  
S
D
Figure 16. Leakage Currents vs. Temperature, 12 V Single Supply  
Figure 13. RON as a Function of VS ,VD for Various Temperatures,  
36 V Single Supply  
0.8  
0.8  
V
V
V
= 36V  
= 0V  
BIAS  
DD  
SS  
V
V
V
= +15V  
= –15V  
BIAS  
DD  
SS  
I
, I (ON) + +  
S
D
= 1V/30V  
= +10V/–10V  
0.6  
0.4  
I
, I (ON) + +  
S
D
0.6  
0.4  
0.2  
0
I
, I (ON) – –  
S
D
I
, I (ON) – –  
S
D
I
(OFF) – +  
D
I
(OFF) + –  
S
0.2  
0
I
(OFF) + –  
S
–0.2  
–0.4  
–0.6  
I
(OFF) – +  
S
I
(OFF) – +  
D
–0.2  
–0.4  
I
(OFF) + –  
D
I
(OFF) – +  
S
I
(OFF) + –  
D
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 17. Leakage Currents vs. Temperature, 36 V Single Supply  
Figure 14. Leakage Currents vs. Temperature, 15 V Dual Supply  
Rev. A | Page 16 of 30  
Data Sheet  
ADGS5412  
0
0
–20  
T
V
V
= 25°C  
= +15V  
DD  
T
V
V
= 25°C  
A
100nF DECOUPLING CAP  
10µF + 100nF DECOUPLING CAP  
NO DECOUPLING  
A
= +15V  
= –15V  
DD  
SS  
= –15V  
–20  
–40  
SS  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–100  
–120  
100  
1k  
10k  
100k  
1M  
10M  
100M  
1G  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 21. AC Power Supply Rejection Ration (PSRR) vs. Frequency, 15 V  
Dual Supply  
Figure 18. Off Isolation vs. Frequency, 15 V Dual Supply  
0
–10  
0.09  
T
V
V
= 25°C  
= +15V  
SS  
T = 25°C  
A
A
DD  
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0
= –15V  
–20  
–30  
–40  
20V , V = 20V p-p  
DS  
S
S
S
–50  
15V , V = 15V p-p  
DS  
12V , V = 6V p-p  
SS  
SS  
–60  
, V = 18V p-p  
S
36V  
–70  
–80  
–90  
–100  
–110  
–120  
10k  
100k  
1M  
10M  
100M  
1G  
20  
200  
2k  
20k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 22. THD + N vs. Frequency, 15 V Dual Supply  
Figure 19. Crosstalk vs. Frequency, 15 V Dual Supply  
0
–0.5  
–1.0  
–1.5  
–0.2  
–2.5  
–3.0  
–3.5  
–4.0  
–4.5  
–5.0  
400  
350  
300  
250  
200  
150  
100  
50  
T
= 25°C  
A
V
V
V
V
= 20V, V = –20V  
SS  
DD  
DD  
DD  
DD  
T
= 25°C  
= +15V  
= 15V, V = –15V  
SS  
A
DD  
= –15V  
SS  
V
V
= 12V, V = 0V  
SS  
= 36V, V = 0V  
SS  
0
–20  
10k  
100k  
1M  
10M  
100M  
1G  
–10  
0
10  
20  
30  
40  
FREQUENCY (Hz)  
Vs (V)  
Figure 23. Bandwidth  
Figure 20. Charge Injection vs. Source Voltage, VS  
Rev. A | Page 17 of 30  
ADGS5412  
Data Sheet  
700  
15V  
450  
400  
350  
300  
250  
200  
150  
100  
50  
,
,
,
,
tON  
tON  
tON  
tON  
15V  
20V  
12V  
36V  
,
,
,
tOFF  
tOFF  
tOFF  
tOFF  
DS  
DS  
DS  
T
= 25°C  
A
20V  
12V  
36V  
DS  
SS  
SS  
600  
500  
400  
300  
200  
100  
0
SS  
,
SS  
V
V
= 5V  
= 3V  
L
L
0
–40  
–20  
0
20  
40  
60  
80  
100  
120  
1
10  
20  
30  
40  
50  
TEMPERATURE (°C)  
SCLK FREQUENCY (MHz)  
Figure 24. tON, tOFF Times vs. Temperature  
CS  
Figure 26. IL vs. SCLK Frequency When Is High  
100  
2.0  
T
DD  
= 25°C  
SCLK = 2.5MHz  
SCLK IDLE  
T
V
V
= 25°C  
A
DD  
SS  
A
I
WITH ONE SWITCH CLOSED  
= +15V  
= –15V  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1.5  
1.0  
0.5  
0
–0.5  
–1.0  
–1.5  
–2.0  
12V  
15V  
20V  
36V  
0
2
4
6
8
2.7  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
TIME (µs)  
V
(V)  
L
Figure 25. IDD vs. VL  
Figure 27. Digital Feedthrough  
Rev. A | Page 18 of 30  
 
Data Sheet  
ADGS5412  
TEST CIRCUITS  
I
(OFF)  
A
I
(OFF)  
A
(ON)  
S
D
D
Sx  
Dx  
Sx  
Dx  
V
S
V
D
V
V
D
S
Figure 28. On Leakage  
Figure 32. Off Leakage  
I
DS  
V
V
SS  
DD  
0.1µF  
0.1µF  
V1  
AUDIO PRECISION  
Sx  
Dx  
V
V
SS  
DD  
R
S
S
Sx  
R
= V /I  
DS  
ON  
1
V
S
V p-p  
Figure 29. On Resistance  
Dx  
V
OUT  
R
1kΩ  
L
V
V
DD  
SS  
GND  
0.1µF  
0.1µF  
NETWORK  
ANALYZER  
V
V
Figure 33. THD + N  
DD  
SS  
V
NIC  
OUT  
S1  
D1  
R
L
V
V
V
DD  
SS  
50Ω  
0.1µF  
0.1µF  
S2  
D2  
R
L
NETWORK  
ANALYZER  
50Ω  
V
DD  
SS  
V
S
GND  
Sx  
Dx  
50Ω  
V
S
V
OUT  
CHANNEL TO CHANNEL CROSSTALK = 20 log  
V
V
OUT  
S
R
L
50Ω  
Figure 30. Channel to Channel Crosstalk  
GND  
V
V
SS  
DD  
0.1µF  
0.1µF  
V
WITH SWITCH  
OUT  
INSERTION LOSS = 20 log  
V
WITHOUT SWITCH  
OUT  
NETWORK  
ANALYZER  
Figure 34. Bandwidth  
V
V
DD  
SS  
Sx  
50Ω  
50Ω  
V
S
Dx  
V
OUT  
R
L
50Ω  
GND  
V
OUT  
OFF ISOLATION = 20 log  
V
S
Figure 31. Off Isolation  
Rev. A | Page 19 of 30  
 
 
 
 
 
 
 
 
ADGS5412  
Data Sheet  
Figure 35. Break-Before-Make Time Delay, tD  
V
V
V
V
DD  
DD  
SS  
SS  
0.1µF  
0.1µF  
SCLK  
V
OUT  
50%  
50%  
S
D
R
300  
C
L
35pF  
L
90%  
10%  
V
S
V
INPUT LOGIC  
GND  
OUT  
tON  
tOFF  
Figure 36. Switching Times  
V
V
V
V
DD  
SS  
SS  
3V  
DD  
SCLK  
R
V
S
S
D
V
OUT  
C
1nF  
L
S
Q
= C × V  
OUT  
INJ  
L
INPUT LOGIC  
GND  
V
OUT  
V  
OUT  
SWITCH OFF  
SWITCH ON  
Figure 37. Charge Injection  
V
SS  
NETWORK  
ANALYZER  
V
V
DD  
SS  
INTERNAL  
BIAS  
R
L
50  
V
S
V
NIC  
OUT  
R
S1  
D1  
L
50Ω  
GND  
V
OUT  
AC PSRR = 20 log  
V
S
NOTES  
1. BOARD AND COMPONENT EFFECTS ARE NOT DE-EMBEDDED  
FROM THE AC PSRR MEASUREMENT.  
Figure 38. AC PSRR  
Rev. A | Page 20 of 30  
 
 
 
Data Sheet  
ADGS5412  
TERMINOLOGY  
IDD  
CIN  
I
DD is the positive supply current.  
CIN is the digital input capacitance.  
ISS  
tON  
ISS is the negative supply current.  
tON is the delay between applying the digital control input and  
the output switching on.  
VD, VS  
VD and VS are the analog voltages on Terminal D and Terminal  
S, respectively.  
tOFF  
tOFF is the delay between applying the digital control input and  
the output switching off.  
RON  
RON is the ohmic resistance between Terminal D and Terminal  
tD  
S.  
tD is the off time measured between the 80% point of both  
switches when switching from one address state to another.  
∆RON  
∆RON is the difference between the RON of any two channels.  
Off Isolation  
Off isolation is a measure of unwanted signal coupling through  
an off switch.  
RFLAT (ON)  
RFLAT (ON) is flatness that is defined as the difference between the  
Charge Injection  
Charge injection is a measure of the glitch impulse transferred  
from the digital input to the analog output during switching.  
maximum and minimum value of on resistance measured over  
the specified analog signal range.  
IS (Off)  
Crosstalk  
IS (Off) is the source leakage current with the switch off.  
Crosstalk is a measure of unwanted signal that is coupled  
through from one channel to another as a result of parasitic  
capacitance.  
ID (Off)  
ID (Off) is the drain leakage current with the switch off.  
ID (On), IS (On)  
ID (On) and IS (On) are the channel leakage currents with the  
switch on.  
Bandwidth  
Bandwidth is the frequency at which the output is attenuated by  
3 dB.  
VINL  
On Response  
V
INL is the maximum input voltage for Logic 0.  
VINH  
INH is the minimum input voltage for Logic 1.  
INL, IINH  
INL and IINH are the low and high input currents of the digital  
On response is the frequency response of the on switch.  
Insertion Loss  
V
Insertion loss is the loss due to the on resistance of the switch.  
I
I
Total Harmonic Distortion + Noise (THD + N)  
THD + N is the ratio of the harmonic amplitude plus the noise  
of the signal to the fundamental.  
inputs.  
CD (Off)  
AC Power Supply Rejection Ratio (AC PSRR)  
CD (Off) is the off switch drain capacitance, which is measured  
with reference to the GND pin.  
AC PSRR is the ratio of the amplitude of signal on the output to  
the amplitude of the modulation. This is a measure of the ability  
of the device to avoid coupling noise and spurious signals that  
appear on the supply voltage pin to the output of the switch. The dc  
voltage on the device is modulated by a sine wave of 0.62 V p-p.  
CS (Off)  
CS (Off) is the off switch source capacitance, which is measured  
with reference to the GND pin.  
CD (On), CS (On)  
CD (On) and CS (On) are the on switch capacitances, which are  
measured with reference to the GND pin  
Rev. A | Page 21 of 30  
 
ADGS5412  
Data Sheet  
THEORY OF OPERATION  
The ADGS5412 is a set of serially controlled, quad SPST  
switches with error detection features. SPI Mode 0 and Mode 3  
can be used with the device, and it operates with SCLK frequen-  
cies up to 50 MHz. The default mode for the ADGS5412 is  
address mode, in which the registers of the device are accessed  
reads. A register write occurs on the 16th SCLK rising edge  
during SPI writes.  
During any SPI command, SDO sends out eight alignment bits  
on the first eight SCLK falling edges. The alignment bits observed  
at SDO are 0x25.  
CS  
by a 16-bit SPI command that is bounded by . The SPI  
ERROR DETECTION FEATURES  
command becomes 24-bit if the user enables CRC error detection.  
Other error detection features include SCLK count error and  
invalid read/write error. If any of these SPI interface errors occur,  
they are detectable by reading the error flags register. The  
ADGS5412 can also operate in two other modes: burst mode  
and daisy-chain mode.  
Protocol and communication errors on the SPI interface are  
detectable. There are three detectable errors, which are incorrect  
SCLK error detection, invalid read and write address error  
detection, and CRC error detection. Each of these errors has a  
corresponding enable bit in the error configuration register. In  
addition, there is an error flag bit for each of these errors in the  
error flags register.  
CS  
The interface pins of the ADGS5412 are , SCLK, SDI, and  
CS  
SDO. Hold low when using the SPI interface. Data is captured  
Cyclic Redundancy Check (CRC) Error Detection  
on the SDI pin on the rising edge of SCLK, and data is propagated  
out on the SDO pin on the falling edge of SCLK. SDO has an  
open-drain output; thus, connect a pull-up to this output. When  
not pulled low by the ADGS5412, SDO is in a high impedance  
state.  
The CRC error detection feature extends a valid SPI frame by  
eight SCLK cycles. These eight extra cycles are needed to send the  
CRC byte for that SPI frame. The CRC byte is calculated by the SPI  
W
block using the 16-bit payload: the R/ bit, Register Address  
Bits[6:0], and Register Data Bits[7:0]. The CRC polynomial used  
in the SPI block is x8 + x2 + x1 + 1 with a seed value of 0. For a  
timing diagram with CRC enabled, see Figure 40. Register  
writes occur at the 24th SCLK rising edge with CRC error  
checking enabled.  
ADDRESS MODE  
Address mode is the default mode for the ADGS5412 on power-up.  
A single SPI frame in address mode is bounded by a  
CS  
falling  
CS  
edge and the succeeding rising edge. It is comprised of 16 SCLK  
cycles. The timing diagram for address mode is shown in Figure 39.  
The first SDI bit indicates if the SPI command is a read or write  
command. When the first bit is set to 0, a write command is issued,  
and if the first bit is set to 1, a read command is issued. The next  
seven bits determine the target register address. The remaining  
eight bits provide the data to the addressed register. The last eight  
bits are ignored during a read command, because during these  
clock cycles, SDO propagates out the data contained in the  
addressed register.  
During an SPI write, the microcontroller or CPU provides the  
CRC byte through SDI. The SPI block checks the CRC byte just  
before the 24th SCLK rising edge. On this same edge, the register  
write is prevented if an incorrect CRC byte is received by the  
SPI interface. The CRC error flag is asserted in the error flags  
register in the case of the incorrect CRC byte being detected.  
During an SPI read, the CRC byte is provided to the microcon-  
troller through SDO.  
The CRC error detection feature is disabled by default and can  
be configured by the user through the error configuration register.  
The target register address of an SPI command is determined on  
the eighth SCLK rising edge. Data from this register propagates out  
on SDO from the ninth to the 16th SCLK falling edge during SPI  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
CS  
SCLK  
SDI  
R/W A6  
0
A5  
A4  
A3  
A2  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SDO  
0
1
0
0
1
0
1
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Figure 39. Address Mode Timing Diagram  
1
2
8
9
10  
16  
17  
18  
19  
20  
21  
22  
23  
24  
CS  
SCLK  
SDI  
R/W A6  
0
A0  
D7  
D6  
D0  
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
0
1
D7  
D6  
D0  
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
SDO  
Figure 40. Timing Diagram with CRC Enabled  
Rev. A | Page 22 of 30  
 
 
 
 
 
Data Sheet  
ADGS5412  
SCLK Count Error Detection  
BURST MODE  
SCLK count error detection allows the user to detect if an incorrect  
number of SCLK cycles are sent by the microcontroller or CPU.  
When in address mode, with CRC disabled, 16 SCLK cycles are  
expected. If 16 SCLK cycles are not detected, the SCLK count  
error flag asserts in the error flags register. When less than  
16 SCLK cycles are received by the device, a write to the register  
map never occurs. When the ADGS5412 receives more than  
16 SCLK cycles, a write to the memory map still occurs at the  
16th SCLK rising edge, and the flag asserts in the error flags  
register. With CRC enabled, the expected number of SCLK  
cycles becomes 24. SCLK count error detection is enabled by  
default and can be configured by the user through the error  
configuration register.  
The SPI interface can accept consecutive SPI commands  
without the need to deassert the CS line, which is called burst  
mode. Burst mode is enabled through the burst enable register.  
This mode uses the same 16-bit command to communicate  
with the device. In addition, the response of the device at SDO  
is still aligned with the corresponding SPI command. Figure 41  
shows an example of SDI and SDO during burst mode.  
The invalid read/write address and CRC error checking functions  
operate similarly during burst mode as they do during address  
mode. However, SCLK count error detection operates in a  
slightly different manner. The total number of SCLK cycles  
CS  
within a given  
frame are counted, and if the total is not a  
multiple of 16 or a multiple of 24 when CRC is enabled, the  
SCLK count error flag asserts.  
Invalid Read/Write Address Error  
An invalid read/write address error detects when a nonexistent  
register address is a target for a read or write. In addition, this  
error asserts when a write to a read only register is attempted.  
The invalid read/write address error flag asserts in the error  
flags register when an invalid read/write address error occurs.  
The invalid read/write address error is detected on the ninth  
SCLK rising edge, which means a write to the register never  
occurs when an invalid address is targeted. Invalid read/write  
address error detection is enabled by default and can be  
disabled by the user through the error configuration register.  
CS  
SDI  
COMMAND0[15:0] COMMAND1[15:0] COMMAND2[15:0] COMMAND3[15:0]  
RESPONSE0[15:0] RESPONSE1[15:0] RESPONSE2[15:0] RESPONSE3[15:0]  
Figure 41. Burst Mode Frame  
SDO  
SOFTWARE RESET  
When in address mode, the user can initiate a software reset. To  
do so, write two consecutive SPI commands, namely 0xA3 fol-  
lowed by 0x05, targeting Register 0x0B. After a software reset,  
all register values are set to default.  
CLEARING THE ERROR FLAGS REGISTER  
DAISY-CHAIN MODE  
To clear the error flags register, write the special 16-bit SPI  
frame, 0x6CA9, to the device. This SPI command does not  
The connection of several ADGS5412 devices in a daisy-chain  
configuration is possible, and Figure 42 shows this setup. All  
devices share the same and SCLK line, whereas the SDO of a  
device forms a connection to the SDI of the next device, creating a  
shift register. In daisy-chain mode, SDO is an eight cycle delayed  
version of SDI. When in daisy-chain mode, all commands target  
the switch data register. Therefore, it is not possible to make  
configuration changes while in daisy-chain mode.  
DEVICE 2  
W
trigger the invalid R/ address error. When CRC is enabled,  
CS  
the user must also send the correct CRC byte for a successful  
error clear command. At the 16th or 24th SCLK rising edge, the  
error flags register resets to zero.  
DEVICE 1  
ADGS5412  
ADGS5412  
S1  
S2  
S3  
S4  
D1  
S1  
S2  
S3  
S4  
D1  
D2  
D3  
D4  
D2  
D3  
RESET/V  
D4  
L
SDO  
SPI  
INTERFACE  
SPI  
INTERFACE  
SDO  
SDI  
SCLK  
CS  
RESET/V  
L
Figure 42. Two SPI Controlled Switches Connected in a Daisy-Chain Configuration  
Rev. A | Page 23 of 30  
 
 
 
 
 
 
ADGS5412  
Data Sheet  
The ADGS5412 can only enter daisy-chain mode when in  
address mode by sending the 16-bit SPI command, 0x2500  
(see Figure 43). When the ADGS5412 receives this command,  
the SDO of the device sends out the same command because  
the alignment bits at SDO are 0x25, which allows multiple  
daisy-connected devices to enter daisy-chain mode in a single  
SPI frame. A hardware reset is required to exit daisy-chain mode.  
An SCLK rising edge reads in data on SDI while data is  
propagated out SDO on an SCLK falling edge. The expected  
CS  
number of SCLK cycles must be a multiple of eight before  
goes high. When this is not the case, the SPI interface sends the  
last eight bits received to the switch data register  
POWER-ON RESET  
The digital section of the ADGS5412 goes through an initialization  
phase during VL power up. This initialization also occurs after a  
hardware or software reset. After VL power-up or a reset, ensure  
that a minimum of 120 μs from the time of power-up or reset  
before any SPI command is issued. Ensure that VL does not  
drop out during the 120 μs initialization phase because it may  
result in incorrect operation of the ADGS5412.  
For the timing diagram of a typical daisy-chain SPI frame, see  
CS  
Figure 44. When  
goes high, Device 1 writes Command 0,  
Bits[7:0] to its switch data register, Device 2 writes Command 1,  
Bits[7:0] to its switches, and so on. The SPI block uses the last  
eight bits it received through SDI to update the switches. After  
entering daisy-chain mode, the first eight bits sent out by SDO  
CS  
on each device in the chain are 0x00. When  
goes high, the  
internal shift register value does not reset back to zero.  
1
0
2
0
3
4
5
6
7
0
8
1
9
10  
11  
12  
13  
14  
15  
16  
CS  
SCLK  
SDI  
1
0
0
1
0
0
0
0
0
0
0
0
SDO  
0
0
1
0
0
1
0
1
0
0
0
0
0
0
0
0
Figure 43. SPI Command to Enter Daisy-Chain Mode  
CS  
SDI  
COMMAND3[7:0] COMMAND2[7:0] COMMAND1[7:0] COMMAND0[7:0]  
DEVICE 1  
DEVICE 2  
DEVICE 3  
DEVICE 4  
SDO  
8’h00  
8’h00  
8’h00  
COMMAND3[7:0] COMMAND2[7:0] COMMAND1[7:0]  
SDO2  
SDO3  
8’h00  
8’h00  
COMMAND3[7:0] COMMAND2[7:0]  
8’h00 COMMAND3[7:0]  
NOTES  
1. SDO2 AND SDO3 ARE THE OUTPUT COMMANDS FROM DEVICE 2 AND DEVICE 3, RESPECTIVELY.  
Figure 44. Example of an SPI Frame When Four ADGS5412 Devices are Connected in Daisy-Chain Mode  
Rev. A | Page 24 of 30  
 
 
 
Data Sheet  
ADGS5412  
switch pins pass the maximum rating in the JESD78D standard  
in which they are stressed with a 5ꢀꢀ mA pulse for 1 second.  
BREAK-BEFORE-MAKE SWITCHING  
The ADGS5412 exhibits break-before-make switching action,  
which allows the use of the device in multiplexer applications.  
This configuration can be achieved by externally hardwiring the  
device in the mux configuration that is required, as shown in  
Figure 45.  
The high voltage latch-up proof family of switches and multiplexers  
provide a robust solution for instrumentation, industrial, automo-  
tive, aerospace, and other harsh environments that are prone to  
latch-up, which is an undesirable high current state that can  
lead to device failure and which persists until the power supply  
is turned off. The ADGS5412 high voltage switches allow  
single-supply operation from 9 V to 4ꢀ V and dual-supply  
operation from 9 V to 22 V.  
4:1 MUX  
4 × SPST  
S1  
NMOS  
PMOS  
S2  
Dx  
S3  
S4  
SPI  
INTERFACE  
CS  
SCLK SDI  
RESET/V  
L
P-WELL  
N-WELL  
Figure 45. An SPI Controlled Switch Configured into a 4:1 Mux  
TRENCH ISOLATION  
In the analog switch section of the ADGS5412, an insulating  
oxide layer (trench) is placed between the negative channel metal-  
oxide semiconductor (NMOS) and the positive channel metal-  
oxide semiconductor (PMOS) transistors of each complementary  
metal oxide semiconductor switch (CMOS). Parasitic junctions,  
which occur between the transistors in junction isolated  
switches, are eliminated, and the result is a completely latch-up  
proof switch.  
TRENCH  
BURIED OXIDE LAYER  
HANDLE WAFER  
Figure 46. Trench Isolation  
DIGITAL INPUT BUFFERS  
There are input buffers present on the digital inputs pins  
SCLK, and SDI. These buffers are active at all times. As result of  
this, there will be current draw from the VL supply if SCLK or SDI  
are toggling, regardless whether  
this current draw, refer to the specification tables and Figure 26.  
,
CS  
In junction isolation, the negative (N) and positive (P) wells of the  
PMOS and NMOS transistors form a diode that is reverse-biased  
under normal operation. However, during overvoltage  
conditions, this diode can become forward-biased. A silicon  
controlled rectifier (SCR) circuit is formed by the two transistors,  
causing a significant amplification of the current that, in turn,  
leads to latch-up. With trench isolation, this diode is removed,  
and the result is a latch-up proof switch. The ADGS5412 analog  
is active. For typical values of  
CS  
Rev. A | Page 25 of 30  
 
 
 
 
ADGS5412  
Data Sheet  
APPLICATIONS INFORMATION  
positive and negative low dropout regulators (LDOs), respectively,  
that can be used to reduce the output ripple of the ADP5070 in  
ultralow noise sensitive applications.  
POWER SUPPLY RAILS  
To guarantee correct operation of the ADGS5412, 0.1 µF  
decoupling capacitors are required.  
The ADM7160 can be used to generate the  
that is required to power digital circuitry within the ADGS5412.  
/VL voltage  
RESET  
The ADGS5412 can operate with bipolar supplies between 9 V  
and 22 V. The supplies on VDD and VSS do not have to be  
symmetrical; however, the VDD to VSS range must not exceed 44 V.  
The ADGS5412 can also operate with single supplies between  
9 V and 40 V with VSS connected to GND.  
ADM7160  
+3.3V  
LDO  
+16.5V  
–16.5V  
ADP7118  
LDO  
+15V  
–15V  
+5V  
INPUT  
ADP5070  
The voltage range that can be supplied to  
to 5.5 V.  
/VL is from 2.7 V  
ADP7182  
LDO  
RESET  
Figure 47. Bipolar Power Solution  
The device is fully specified at 15 V, 20 V, +12 V, and +36 V  
analog supply voltage ranges.  
Table 10. Recommended Power Management Devices  
Product Description  
ADP5070 1 A/0.6 A, dc-to-dc switching regulator with  
independent positive and negative outputs  
ADM7160 5.5 V, 200 mA, ultralow noise, linear regulator  
ADP7118 20 V, 200 mA, low noise, CMOS LDO linear regulator  
ADP7182 −28 V, −200 mA, low noise, LDO linear regulator  
POWER SUPPLY RECOMMENDATIONS  
Analog Devices, Inc. has a wide range of power management  
products to meet the requirements of most high performance  
signal chains.  
An example of a bipolar power solution is shown in Figure 47.  
The ADP5070 (dual switching regulator) generates a positive and  
negative supply rail for the ADGS5412, amplifier, and/or a  
precision converter in a typical signal chain. Also shown in  
Figure 47 are two optional LDOs, ADP7118 and ADP7182,  
Rev. A | Page 26 of 30  
 
 
 
 
Data Sheet  
ADGS5412  
REGISTER SUMMARY  
Table 11. Register Summary  
Reg. Name  
Bits Bit 7 Bit 6 Bit 5 Bit 4 Bit 3  
Bit 2  
Bit 1  
Bit 0  
Default  
0x00  
RW  
R/W  
R/W  
R
0x01 SW_DATA  
0x02 ERR_CONFIG  
0x03 ERR_FLAGS  
0x05 BURST_EN  
0x0B SOFT_RESETB  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
Reserved  
Reserved  
Reserved  
SW4_EN SW3_EN  
SW2_EN  
SW1_EN  
RW_ERR_EN  
RW_ERR_FLAG  
Reserved  
SCLK_ERR_EN  
SCLK_ERR_FLAG  
CRC_ERR_EN  
CRC_ERR_FLAG  
BURST_MODE_EN  
0x06  
0x00  
0x00  
R/W  
R/W  
SOFT_RESETB  
0x00  
Rev. A | Page 27 of 30  
 
ADGS5412  
Data Sheet  
REGISTER DETAILS  
SWITCH DATA REGISTER  
Address: 0x01, Reset: 0x00, Name: SW_DATA  
The switch data register controls the status of the four switches of the ADGS5412.  
Table 12. Bit Descriptions for SW_DATA  
Bits  
[7:4]  
3
Bit Name  
Reserved  
SW4_EN  
Settings  
Description  
Default  
0x0  
Access  
R
These bits are reserved; set these bits to 0.  
Enable bit for SW4.  
SW4 open.  
0x0  
R/W  
0
1
SW4 closed.  
2
1
0
SW3_EN  
SW2_EN  
SW1_EN  
Enable bit for SW3.  
SW3 open.  
SW3 closed.  
0x0  
0x0  
0x0  
R/W  
R/W  
R/W  
0
1
Enable bit for SW2.  
SW2 open.  
SW2 closed.  
0
1
Enable bit for SW1.  
SW1 open.  
SW1 closed.  
0
1
ERROR CONFIGURATION REGISTER  
Address: 0x02, Reset: 0x06, Name: ERR_CONFIG  
The error configuration register allows the user to enable/disable the relevant error features as required.  
Table 13. Bit Descriptions for ERR_CONFIG  
Bits Bit Name  
Settings Description  
Default Access  
[7:3] Reserved  
These bits are reserved; set these bits to 0.  
0x0  
0x1  
R
2
1
RW_ERR_EN  
Enable bit for detecting an invalid read/write address.  
Disabled.  
Enabled.  
R/W  
0
1
SCLK_ERR_EN  
Enable bit for detecting the correct number of SCLK cycles in an SPI frame. When  
CRC is disabled and burst mode is disabled, 16 SCLK cycles are expected. When  
CRC is enabled and burst mode is disabled, 24 SCLK cycles are expected. A multiple  
of 16 SCLK cycles is expected when CRC is disabled and burst mode is enabled. A  
multiple of 24 SCLK cycles is expected when CRC is enabled and burst mode is  
enabled.  
0x1  
0x0  
R/W  
R/W  
0
1
Disabled.  
Enabled.  
0
CRC_ERR_EN  
Enable bit for CRC error detection. SPI frames must be 24 bits wide when enabled.  
0
1
Disabled.  
Enabled.  
Rev. A | Page 28 of 30  
 
 
 
Data Sheet  
ADGS5412  
ERROR FLAGS REGISTER  
Address: 0x03, Reset: 0x00, Name: ERR_FLAGS  
The error flags register allows the user to determine if an error occurred. To clear the error flags register, write the special 16-bit SPI  
W
command, 0x6CA9, to the device. This SPI command does not trigger the invalid R/ address error. When CRC is enabled then the user  
must include the correct CRC byte during the SPI write in order for the clear error flags register command to be successful.  
Table 14. Bit Descriptions for ERR_FLAGS  
Bits Bit Name  
Settings Description  
Default Access  
[7:3] Reserved  
These bits are reserved and are set to 0.  
0x0  
0x0  
R
R
2
RW_ERR_FLAG  
Error flag for invalid read/write address. The error flag asserts during an SPI read  
if the target address does not exist. The error flag also asserts when the target  
address of an SPI write does not exist or is read only.  
0
1
No error.  
Error.  
1
0
SCLK_ERR_FLAG  
CRC_ERR_FLAG  
Error flag for the detection of the correct number of SCLK cycles in an SPI frame.  
No error.  
Error.  
0x0  
0x0  
R
R
0
1
Error flag that determines if a CRC error occurred during a register write.  
0
1
No error.  
Error.  
BURST ENABLE REGISTER  
Address: 0x05, Reset: 0x00, Name: BURST_EN  
The burst enable register allows the user to enable or disable the burst mode. When enabled, the user can send multiple consecutive SPI  
commands without de-asserting  
.
CS  
Table 15. Bit Descriptions for BURST_EN  
Bits  
[7:1]  
0
Bit Name  
Settings  
Description  
Default  
0x0  
Access  
R
Reserved  
These bits are reserved; set these bits to 0.  
BURST_MODE_EN  
Burst mode enable bit.  
Disabled.  
Enabled.  
0x0  
R/W  
0
1
SOFTWARE RESET REGISTER  
Address: 0x0B, Reset: 0x00, Name: SOFT_RESETB  
This register is used to perform a software reset. Consecutively write 0xA3 and 0x05 to this register and the device registers reset to their  
default states.  
Table 16. Bit Descriptions for SOFT_RESETB  
Bits Bit Name  
Settings Description  
To perform a software reset, consecutively write 0xA3 followed by 0x05 to this  
register.  
Default Access  
0x0 R/W  
[7:0] SOFT_RESETB  
Rev. A | Page 29 of 30  
 
 
 
ADGS5412  
Data Sheet  
OUTLINE DIMENSIONS  
DETAIL A  
(JEDEC 95)  
4.10  
4.00 SQ  
3.90  
0.30  
0.25  
0.18  
PIN 1  
INDICATOR  
PIN  
1
INDIC ATOR AREA OPTIONS  
(SEE DETAIL A)  
24  
19  
18  
1
0.50  
BSC  
2.70  
2.60 SQ  
2.50  
EXPOSED  
PAD  
13  
12  
6
7
0.50  
0.40  
0.30  
0.20 MIN  
TOP VIEW  
BOTTOM VIEW  
1.00  
0.95  
0.90  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.20 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-VGGD-8.  
Figure 48. 24-Lead Lead Frame Chip Scale Package [LFCSP]  
4 mm × 4 mm Body and 0.95 mm Package Height  
(CP-24-17)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
ADGS5412BCPZ  
ADGS5412BCPZ-RL7  
EVAL-ADGS5412SDZ  
Temperature Range  
−40°C to +125°C  
−40°C to +125°C  
Package Description  
Package Option  
CP-24-17  
CP-24-17  
24-Lead Lead Frame Chip Scale Package [LFCSP]  
24-Lead Lead Frame Chip Scale Package [LFCSP]  
Evaluation Board  
1 Z = RoHS Compliant Part.  
©2017–2018 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D15234-0-7/18(A)  
Rev. A | Page 30 of 30  
 
 

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY