ADIS16467 [ADI]

Precision MEMS IMU Module;
ADIS16467
型号: ADIS16467
厂家: ADI    ADI
描述:

Precision MEMS IMU Module

文件: 总34页 (文件大小:758K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Precision MEMS IMU Module  
Data Sheet  
ADIS16467  
FEATURES  
GENERAL DESCRIPTION  
Triaxial, digital gyroscope  
The ADIS16467 is a precision, microelectric mechanical system  
(MEMS), inertial measurement unit (IMU) that includes a triaxial  
gyroscope and a triaxial accelerometer. Each inertial sensor in  
the ADIS16467 combines with signal conditioning to optimize  
dynamic performance. The factory calibration characterizes  
each sensor for sensitivity, bias, alignment, linear acceleration  
(gyroscope bias), and point of percussion (accelerometer location).  
Therefore, each sensor has dynamic compensation formulas  
that provide accurate sensor measurements over a broad set of  
conditions.  
12ꢀ°/sec, ꢀ00°/sec, 2000°/sec dynamic range models  
2°/hr in-run bias stability (ADIS16467-1)  
0.1ꢀ°/√hr angular random walk (ADIS16467-1 and  
ADIS16467-2)  
0.0ꢀ° axis to axis misalignment error  
Triaxial, digital accelerometer, 40 g  
13 μg in-run bias stability  
Triaxial, delta angle, and delta velocity outputs  
Factory calibrated sensitivity, bias, and axial alignment  
Calibration temperature range: −40°C to +8ꢀ°C  
SPI-compatible data communications  
Programmable operation and control  
Automatic and manual bias correction controls  
Data ready indicator for synchronous data acquisition  
External sync modes: direct, pulse, scaled, and output  
On demand self test of inertial sensors  
On demand self test of flash memory  
The ADIS16467 provides a simple, cost effective method for  
integrating accurate, multiaxis inertial sensing into industrial  
systems, especially when compared to the complexity and  
investment associated with discrete designs. All necessary motion  
testing and calibration are part of the production process at the  
factory, greatly reducing system integration time. Tight orthogonal  
alignment simplifies inertial frame alignment in navigation  
systems. The serial peripheral interface (SPI) and register structure  
provide a simple interface for data collection and configuration  
control.  
Single-supply operation (VDD): 3.0 V to 3.6 V  
2000 g mechanical shock survivability  
Operating temperature range: −40°C to +10ꢀ°C  
The ADIS16467 is in an aluminum module package that is  
approximately 22.4 mm × 24.3 mm × 9 mm with a 14-lead  
connector interface.  
APPLICATIONS  
Navigation, stabilization, and instrumentation  
Unmanned and autonomous vehicles  
Smart agriculture and construction machinery  
Factory/industrial automation, robotics  
Virtual/augmented reality  
Internet of Moving Things  
FUNCTIONAL BLOCK DIAGRAM  
DR  
RST  
VDD  
POWER  
GND  
CS  
SELF TEST  
INPUT/OUTPUT  
MANAGEMENT  
OUTPUT  
DATA  
REGISTERS  
TRIAXIAL  
GYROSCOPE  
SCLK  
DIN  
CALIBRATION  
TRIAXIAL  
ACCELEROMETER  
SPI  
CONTROLLER  
AND  
FILTERS  
USER  
CONTROL  
REGISTERS  
TEMPERATURE  
SENSOR  
DOUT  
CLOCK  
ADIS16467  
SYNC  
Figure 1.  
Rev. C  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice.  
No license is granted by implication or otherwise under any patent or patent rights of Analog  
Devices. Trademarks and registeredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2017–2020 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
ADIS16467  
Data Sheet  
TABLE OF CONTENTS  
Features.............................................................................................. 1  
Device Configuration ................................................................ 15  
User Register Memory Map.......................................................... 16  
User Register Defintions ............................................................... 18  
Gyroscope Data .......................................................................... 18  
Delta Angles................................................................................ 21  
Delta Velocity ............................................................................. 22  
Calibration .................................................................................. 24  
Applications Information ............................................................. 31  
Assembly and Handling Tips ................................................... 31  
Power Supply Considerations .................................................. 31  
Breakout Board........................................................................... 31  
Serial Port Operation................................................................. 32  
Digital Resolution of Gyroscopes and Accelerometers ........ 32  
PC-Based Evaluation Tools ...................................................... 33  
Packaging and Ordering Information......................................... 34  
Outline Dimensions................................................................... 34  
Ordering Guide .......................................................................... 34  
Applications ...................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications .................................................................................... 3  
Timing Specifications .................................................................. 5  
Absolute Maximum Ratings....................................................... 7  
Thermal Resistance...................................................................... 7  
ESD Caution.................................................................................. 7  
Pin Configuration and Function Descriptions ............................ 8  
Typical Performance Characteristics............................................. 9  
Theory of Operation ...................................................................... 11  
Introduction................................................................................ 11  
Inertial Sensor Signal Chain ..................................................... 11  
Register Structure....................................................................... 12  
Serial Peripheral Interface (SPI)............................................... 13  
Data Ready (DR) ........................................................................ 13  
Reading Sensor Data.................................................................. 14  
REVISION HISTORY  
2/2020—Rev. B to Rev. C  
2/2019—Rev. 0 to Rev. A  
Changes to Table 1 ........................................................................... 3  
Added Figure 18 ............................................................................. 10  
Changes to Reading Sensor Data Section and Burst Read  
Function Section............................................................................. 14  
Changes to Table 1............................................................................3  
Changes to Table 2............................................................................5  
Changes to Figure 5 ..........................................................................6  
Added Figure 11, Figure 12, and Figure 13; Renumbered  
Sequentially ........................................................................................9  
Added Figure 14, Figure 15, Figure 16, and Figure 17.............. 10  
Changes to Figure 18, Figure 19, and Figure 20 ........................ 11  
Changes to Figure 22 and Figure 23............................................ 12  
Added Gyroscope Data Width (Digital Resolution) Section... 18  
Changes to Gyroscope Measurement Range/Scale Factor Section,  
Table 11, Table 12, Table 13, Table 17, Table 21, and Table 25 19  
Added Accelerometer Data Width (Digital Resolution) Section  
........................................................................................................... 20  
Change to Calibration, Accelerometer Bias (XA_BIAS_LOW  
and XA_BIAS_HIGH) Section..................................................... 25  
Change to Filter Control Register (FILT_CTRL) Section........ 26  
Changes to Direct Sync Mode Section ........................................ 27  
Changes to Pulse Sync Mode Section.......................................... 28  
Changes to Sensor Self Test Section ............................................ 29  
Changes to Figure 52 ..................................................................... 31  
Changes to Outline Dimensions.................................................. 33  
4/2019—Rev. A to Rev. B  
Changes to Serial Peripheral Interface (SPI) Section ................ 13  
Changes to Figure 32 ..................................................................... 14  
Changes to Table 10....................................................................... 18  
Changes to Gyroscope Data Section............................................ 18  
Changes to Acceleration Data Section ........................................ 19  
Added Accelerometer Data Formatting Section........................ 20  
Deleted Accelerometer Resolution Section ................................ 20  
Added Serial Port Operation Section, Maximum Throughput  
Section, and Serial Port SCLK Underrun/Overrun Conditions  
Section.............................................................................................. 32  
Added Digital Resolution of Gyroscopes and Accelerometers  
Section.............................................................................................. 32  
Moved Gyroscope Data Width (Digital Resolution) Section........ 32  
Moved Accelerometer Data Width (Digital Resolution) Section. 32  
12/2017—Revision 0: Initial Version  
Rev. C | Page 2 of 34  
 
Data Sheet  
ADIS16467  
SPECIFICATIONS  
Case temperature (TC) = 25°C, VDD = 3.3 V, angular rate = 0°/sec, and dynamic range = 2000°/sec 1 g, unless otherwise noted.  
Table 1.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max Unit  
GYROSCOPES  
Dynamic Range  
ADIS16467-1  
ADIS16467-2  
ADIS16467-3  
125  
500  
2000  
°/sec  
°/sec  
°/sec  
Sensitivity  
ADIS16467-1, 16-bit  
ADIS16467-2, 16-bit  
ADIS16467-3, 16-bit  
ADIS16467-1, 32-bit  
ADIS16467-2, 32-bit  
ADIS16467-3, 32-bit  
−40°C ≤ TC ≤ +85°C, 1 σ  
−40°C ≤ TC ≤ +85°C, 1 σ  
Axis to axis, 1 σ  
160  
40  
10  
10,485,760  
2,621,440  
655,360  
0.3  
0.1  
0.05  
LSB/°/sec  
LSB/°/sec  
LSB/°/sec  
LSB/°/sec  
LSB/°/sec  
LSB/°/sec  
%
Repeatability1  
Error over Temperature  
Misalignment Error  
Nonlinearity2  
%
Degrees  
% FS  
% FS  
ADIS16467-1, full scale (FS) = 125°/sec  
ADIS16467-2, FS = 500°/sec  
ADIS16467-3, FS = 2000°/sec  
0.2  
0.2  
0.25  
% FS  
Bias  
In-Run Bias Stability  
ADIS16467-1, 1 σ  
2
°/hr  
ADIS16467-2, 1 σ  
2.5  
°/hr  
ADIS16467-3, 1 σ  
6
°/hr  
Angular Random Walk  
ADIS16467-1, 1 σ  
ADIS16467-2, 1 σ  
ADIS16467-3, 1 σ  
−40°C ≤ TC ≤ +85°C, 1 σ  
0.15  
0.15  
0.26  
0.4  
°/√hr  
°/√hr  
°/√hr  
°/sec  
Repeatability1  
Error over Temperature  
Linear Acceleration Effect  
Vibration Rectification Effect  
Output Noise  
−40°C ≤ TC ≤ +85°C, 1 σ  
Any direction, 1 σ  
0.2  
°/sec  
°/sec/g  
0.009  
0.0005  
0.05  
0.07  
0.05  
0.08  
0.11  
0.16  
0.002  
0.003  
0.002  
0.003  
0.004  
0.0065  
550  
Random vibration, 2 g rms, bandwidth = 50 Hz to 2 kHz  
ADIS16467-1, 1 σ, no filtering, x-axis  
ADIS16467-1, 1 σ, no filtering, y-axis and z-axis  
ADIS16467-2, 1 σ, no filtering, x-axis  
ADIS16467-2, 1 σ, no filtering, y-axis and z-axis  
ADIS16467-3, 1 σ, no filtering, x-axis  
ADIS16467-3, 1 σ, no filtering, y-axis and z-axis  
ADIS16467-1, 10 Hz to 40 Hz, x-axis  
ADIS16467-1, 10 Hz to 40 Hz, y-axis and z-axis  
ADIS16467-2, 10 Hz to 40 Hz, x-axis  
ADIS16467-2, 10 Hz to 40 Hz, y-axis and z-axis  
ADIS16467-3, 10 Hz to 40 Hz, x-axis  
ADIS16467-3, 10 Hz to 40 Hz, y-axis and z-axis  
°/sec/g2  
°/sec rms  
°/sec rms  
°/sec rms  
°/sec rms  
°/sec rms  
°/sec rms  
°/sec/√Hz rms  
°/sec/√Hz rms  
°/sec/√Hz rms  
°/sec/√Hz rms  
°/sec/√Hz rms  
°/sec/√Hz rms  
Hz  
Rate Noise Density  
3 dB Bandwidth  
Sensor Resonant Frequency  
ACCELEROMETERS3  
Dynamic Range  
66  
kHz  
Each axis  
40  
g
Sensitivity  
32-bit data format  
52,428,800  
0.2  
0.1  
0.05  
0.02  
0.4  
LSB/g  
%
%
Degrees  
% FS  
% FS  
% FS  
Repeatability1  
−40°C ≤ TC ≤ +85°C, 1 σ  
−40°C ≤ TC ≤ +85°C, 1 σ  
Axis to axis  
Best fit straight line, 10 g  
Best fit straight line, 20 g  
Best fit straight line, 40 g  
Rev. C | Page 3 of 34  
Error over temperature  
Misalignment Error  
Nonlinearity  
1.5  
 
 
ADIS16467  
Data Sheet  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max Unit  
Bias  
In-Run Bias Stability  
Velocity Random Walk  
Repeatability1  
Error over Temperature  
Output Noise  
Noise Density  
1 σ, y-axis and z-axis  
1 σ  
−40°C ≤ TC ≤ +85°C, 1 σ  
−40°C ≤ TC ≤ +85°C, 1 σ  
No filtering  
13  
0.037  
6
μg  
m/sec/√hr  
mg  
mg  
mg rms  
μg/√Hz rms  
Hz  
3
2.3  
100  
600  
5.65  
5.25  
Bandwidth = 10 Hz to 40 Hz, no filtering  
3 dB Bandwidth  
Sensor Resonant Frequency  
Y-axis and z-axis  
X-axis  
kHz  
kHz  
TEMPERATURE SENSOR  
Scale Factor  
Output = 0x0000 at 0°C ( 5°C)  
0.1  
°C/LSB  
LOGIC INPUTS4  
Input Voltage  
High, VIH  
2.0  
V
Low, VIL  
0.8  
V
RST Pulse Width  
CS Wake-Up Pulse Width  
Input Current  
1
μs  
μs  
20  
Logic 1, IIH  
Logic 0, IIL  
All Pins Except RST  
RST Pin  
VIH = 3.3 V  
VIL = 0 V  
10  
10  
μA  
μA  
mA  
pF  
0.33  
10  
Input Capacitance, CIN  
DIGITAL OUTPUTS  
Output Voltage  
High, VOH  
ISOURCE = 0.5 mA  
ISINK = 2.0 mA  
2.4  
V
V
Low, VOL  
0.4  
FLASH MEMORY  
Data Retention6  
FUNCTIONAL TIMES7  
Power-On Start-Up Time  
Reset Recovery Time  
Endurance5  
TJ = 85°C  
10000  
20  
Cycles  
Years  
Time until data is available  
259  
198  
198  
142  
72  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
SPS  
%
Register GLOB_CMD, Bit 7 = 1 (see Table 113)  
RST pulled low, then restored to high8  
Factory Calibration Restore  
Flash Memory Backup  
Flash Memory Test Time  
Self Test Time9  
Register GLOB_CMD, Bit 1 = 1 (see Table 113)  
Register GLOB_CMD, Bit 3 = 1 (see Table 113)  
Register GLOB_CMD, Bit 4 = 1 (see Table 113)  
Register GLOB_CMD, Bit 2 = 1 (see Table 113)  
32  
14  
CONVERSION RATE  
Initial Clock Accuracy  
Sync Input Clock  
2000  
3
1.9  
3.0  
2.1  
3.6  
55  
kHz  
V
mA  
POWER SUPPLY, VDD  
Power Supply Current10  
Operating voltage range  
Normal mode, VDD = 3.3 V  
44  
1 Bias repeatability provides an estimate for long-term drift in the bias, as observed during 500 hours of High-Temperature Operating Life (HTOL) at +105°C.  
2 This measurement is based on the deviation from a best fit linear model.  
3 All specifications associated with the accelerometers relate to the full-scale range of 40 g, unless otherwise noted.  
4 The digital input/output signals use a 3.3 V system.  
5 Endurance is qualified as per JEDEC Standard 22, Method A117, measured at −40°C, +25°C, +85°C, and +125°C.  
6 The data retention specification assumes a junction temperature (TJ) of 85°C per JEDEC Standard 22, Method A117. Data retention lifetime decreases with TJ.  
7 These times do not include thermal settling and internal filter response times, which may affect overall accuracy.  
8
RST  
The  
line must be in a low state for at least 10 μs to ensure a proper reset initiation and recovery.  
9 The self test time can extend when using external clock rates lower than 2000 Hz.  
10 Power supply current transients can reach 100 mA during initial startup or reset recovery.  
Rev. C | Page 4 of 34  
Data Sheet  
ADIS16467  
TIMING SPECIFICATIONS  
TA = 25°C, VDD = 3.3 V, unless otherwise noted.  
Table 2.  
Normal Mode  
Burst Read Mode  
Parameter Description  
Min Typ Max Min1 Typ Max Unit  
fSCLK  
Serial clock  
Stall period between data  
Read rate  
0.1  
16  
24  
2
0.1  
N/A  
1
MHz  
μs  
μs  
tSTALL  
tREADRATE  
tCS  
Chip select to SCLK edge  
200  
200  
ns  
tDAV  
tDSU  
tDHD  
tSCLKR, tSCLKF  
tDR, tDF  
tSFS  
DOUT valid after SCLK edge  
DIN setup time before SCLK rising edge  
DIN hold time after SCLK rising edge  
SCLK rise/fall times  
DOUT rise/fall times  
CS high after SCLK edge  
25  
25  
ns  
ns  
ns  
25  
50  
25  
50  
5
5
12.5  
12.5  
5
5
12.5 ns  
12.5 ns  
ns  
0
5
0
5
t1  
Input sync positive pulse width; pulse sync mode,  
Register MSC_CTRL, Bits[4:1] (binary, see Table 105)  
μs  
tSTDR  
Input sync to data ready valid transition  
Direct sync mode, Register MSC_CTRL, Bits[4:2] (binary, see Table 105)  
Pulse sync mode, Register MSC_CTRL, Bits[4:2] (binary, see Table 105)  
Data invalid time  
256  
256  
20  
256  
256  
20  
μs  
μs  
μs  
μs  
tNV  
t2  
Input sync period2  
477  
477  
1 N/A means not applicable.  
2 This specification is rounded up from the cycle time that comes from the maximum input clock frequency (2100 Hz).  
Timing Diagrams  
CS  
tSCLKR  
tSCLKF  
tCS  
tSFS  
1
2
3
4
5
6
15  
16  
SCLK  
DOUT  
tDAV  
tDR  
MSB  
R/W  
DB14  
tDSU  
DB13  
A5  
DB12  
DB11  
A3  
DB10  
tDF  
DB2  
DB1  
LSB  
LSB  
tDHD  
DIN  
A6  
A4  
A2  
D2  
D1  
Figure 2. SPI Timing and Sequence Diagram  
tREADRATE  
tSTALL  
CS  
SCLK  
Figure 3. Stall Time and Data Rate Timing Diagram  
Rev. C | Page 5 of 34  
 
 
 
ADIS16467  
Data Sheet  
t2  
tSTDR  
t1  
SYNC  
DR  
tNV  
Figure 4. Input Clock Timing Diagram, Pulse Sync Mode, Register MSC_CTRL, Bits[4:2] = 101 (Binary)  
t2  
t1  
SYNC  
DR  
tNV  
tSTDR  
Figure 5. Input Clock Timing Diagram, Direct Sync Mode, Register MSC_CTRL, Bits[4:2] = 001 (Binary)  
Rev. C | Page 6 of 34  
Data Sheet  
ADIS16467  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Table 3.  
Thermal performance is directly linked to printed circuit board  
(PCB) design and operating environment. Careful attention to  
PCB thermal design is required.  
Parameter  
Rating  
Mechanical Shock Survivability  
Any Axis, Unpowered  
2000 g  
The ADIS16467 is a multichip module that includes many active  
components. The values in Table 4 identify the thermal  
response of the hottest component inside of the ADIS16467,  
with respect to the overall power dissipation of the module.  
This approach enables a simple method for predicting the  
temperature of the hottest junction, based on either ambient or  
case temperature.  
Any Axis, Powered  
VDD to GND  
2000 g  
−0.3 V to +3.6 V  
−0.3 V to VDD + 0.2 V  
−0.3 V to VDD + 0.2 V  
−40°C to +85°C  
−40°C to +105°C  
−65°C to +150°C  
2-bar  
Digital Input Voltage to GND  
Digital Output Voltage to GND  
Calibration Temperature Range  
Operating Temperature Range  
Storage Temperature Range1  
Barometric Pressure  
For example, when the ambient temperature is 70°C, the hottest  
junction temperature (TJ) inside of the ADIS16467 is 75.3°C.  
1 Extended exposure to temperatures that are lower than −40°C or higher  
than +105°C can adversely affect the accuracy of the factory calibration.  
TJ = θJA × VDD × IDD + 70°C  
TJ = 36.5°C/W × 3.3 V × 0.044 A + 70°C  
TJ = 75.3°C  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Table 4. Thermal Resistance  
1
2
Package Type  
θJA  
θJC  
16.9C/W  
Mass (g)  
ML-14-63  
36.5°C/W  
15  
1 θJA is the natural convection junction to ambient thermal resistance  
measured in a one cubic foot sealed enclosure.  
2 θJC is the junction to case thermal resistance.  
3 Thermal impedance values come from direct observation of the hottest  
temperature inside of the ADIS16467, when it is attached to an FR4-08 PCB  
that has two metal layers and has a thickness of 0.063 inches.  
ESD CAUTION  
Rev. C | Page 7 of 34  
 
 
 
 
ADIS16467  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
PIN 1  
ADIS16467  
TOP VIEW  
(Not to Scale)  
PIN 14  
13 11  
9
7
8
5
6
3
4
1
2
14 12 10  
NOTES  
1. THIS REPRESENTS THE PIN ASSIGNMENTS WHEN  
LOOKING DOWNAT THE CONNECTOR. SEE FIGURE 7.  
2. MATING CONNECTOR:  
SAMTEC CLM-107-02 SERIES OR EQUIVALENT.  
3. DNC = DO NOT CONNECT.  
Figure 6. Pin Assignments, Bottom View  
Figure 7. Pin Assignments, Package Level View  
Table 5. Pin Function Descriptions  
Pin No.  
Mnemonic  
Type  
Description  
1
DR  
Output  
Data Ready Indicator.  
2
3
4
5
SYNC  
SCLK  
DOUT  
DIN  
Input/output  
Input  
Output  
Input  
Input  
External Sync Input/Output, per MSC_CTRL. See Table 105.  
SPI Serial Clock.  
SPI Data Output. This pin clocks the output on the SCLK falling edge.  
SPI Data Input. This pin clocks the input on the SCLK rising edge.  
SPI Chip Select.  
6
CS  
7
8
DNC  
RST  
Not applicable  
Input  
Do Not Connect. Do not connect to this pin.  
Reset.  
9
DNC  
DNC  
VDD  
DNC  
GND  
DNC  
Not applicable  
Not applicable  
Supply  
Not applicable  
Supply  
Do Not Connect. Do not connect to this pin.  
Do Not Connect. Do not connect to this pin.  
Power Supply.  
Do Not Connect. Do not connect to this pin.  
Power Ground.  
10  
11  
12  
13  
14  
Not applicable  
Do Not Connect. Do not connect to this pin.  
Rev. C | Page 8 of 34  
 
 
Data Sheet  
ADIS16467  
TYPICAL PERFORMANCE CHARACTERISTICS  
1000  
X-AXIS  
Y-AXIS  
Z-AXIS  
X-AXIS  
Y-AXIS  
Z-AXIS  
100  
10  
1
0.1  
0.001  
0.001  
0.01  
0.1  
1
10  
100  
1000 10000 100000  
0.01  
0.1  
1
10  
100  
1000 10000 100000  
INTEGRATION PERIOD (Seconds)  
INTEGRATION PERIOD (Seconds)  
Figure 8. Gyroscope Allan Deviation, TC = 25°C, ADIS16467-1  
Figure 11. Accelerometer Allan Deviation, TC = 25°C  
0.4  
0.3  
1000  
X-AXIS  
Y-AXIS  
Z-AXIS  
0.2  
100  
10  
1
0.1  
µ + 1σ  
0
–0.1  
–0.2  
–0.3  
–0.4  
µ
µ – 1σ  
0.1  
0.001 0.01  
0.1  
1
10  
100  
1000 10000 100000  
–60  
–40  
–20  
0
20  
40  
60  
80  
100  
INTEGRATION PERIOD (Seconds)  
AMBIENT TEMPERATURE (°C)  
Figure 9. Gyroscope Allan Deviation, TC = 25°C, ADIS16467-2  
Figure 12. ADIS16467-1 Gyroscope Sensitivity Error vs. Ambient Temperature  
0.4  
0.3  
0.2  
0.1  
1000  
X-AXIS  
Y-AXIS  
Z-AXIS  
100  
10  
1
µ + 1σ  
0
–0.1  
µ
–0.2  
µ – 1σ  
–0.3  
–0.4  
–60  
0.1  
0.001  
–40  
–20  
0
20  
40  
60  
80  
100  
0.01  
0.1  
1
10  
100  
1000 10000 100000  
AMBIENT TEMPERATURE (°C)  
INTEGRATION PERIOD (Seconds)  
Figure 13. ADIS16467-2 Gyroscope Sensitivity Error vs. Ambient Temperature  
Figure 10. Gyroscope Allan Deviation, TC = 25°C, ADIS16467-3  
Rev. C | Page 9 of 34  
 
ADIS16467  
Data Sheet  
0.4  
0.5  
0.4  
0.3  
0.3  
0.2  
0.2  
µ + 1σ  
0.1  
0.1  
0
0
µ + 1σ  
µ – 1σ  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.1  
–0.2  
–0.3  
–0.4  
µ
µ – 1σ  
µ
–60  
–40  
–20  
0
20  
40  
60  
80  
100  
–60  
–40  
–20  
0
20  
40  
60  
80  
100  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
Figure 17. ADIS16467-3 Gyroscope Bias Error vs. Ambient Temperature  
Figure 14. ADIS16467-3 Gyroscope Sensitivity Error vs. Ambient Temperature  
0.5  
0.4  
0.3  
0.2  
µ + 1σ  
0.1  
0
–0.1  
–0.2  
µ
µ – 1σ  
–0.3  
–0.4  
–0.5  
0
5
10  
15  
20  
25  
30  
35  
–60  
–40  
–20  
0
20  
40  
60  
80  
100  
POWER-ON TIME (Minutes)  
AMBIENT TEMPERATURE (°C)  
Figure 15. ADIS16467-1 Gyroscope Bias Error vs. Ambient Temperature  
Figure 18. ADIS16467-3 Gyroscope Bias Error vs. Power-On Time at 25°C.  
(Applicable to All ADIS16467 Models)  
0.5  
0.4  
0.3  
0.2  
µ + 1σ  
0.1  
0
–0.1  
µ
–0.2  
µ – 1σ  
–0.3  
–0.4  
–0.5  
–60  
–40  
–20  
0
20  
40  
60  
80  
100  
AMBIENT TEMPERATURE (°C)  
Figure 16. ADIS16467-2 Gyroscope Bias Error vs. Ambient Temperature  
Rev. C | Page 10 of 34  
Data Sheet  
ADIS16467  
THEORY OF OPERATION  
External Clock Options  
INTRODUCTION  
The ADIS16467 provides three different modes of operation  
that support the device using an external clock to control the  
internal processing rate (fSM in Figure 20 and Figure 21)  
through the SYNC pin. Register MSC_CTRL (see Table 105)  
provides the configuration options for these external clock  
modes in Bits[4:2].  
When using the factory default configuration for all user  
configurable control registers, the ADIS16467 initializes and  
automatically starts a continuous process of sampling, processing,  
and loading calibrated sensor data into the output registers at a  
rate of 2000 SPS.  
INERTIAL SENSOR SIGNAL CHAIN  
Inertial Sensor Calibration  
Figure 19 shows the basic signal chain for the inertial sensors in the  
ADIS16467. This signal chain produces an update rate of 2000  
SPS in the output data registers when it operates in internal clock  
mode (default, see Register MSC_CTRL, Bits[4:2] in Table 105).  
The inertial sensor calibration function for the gyroscopes and the  
accelerometers has two components: factory calibration and  
user calibration (see Figure 22).  
FROM  
TO  
BARTLETT  
WINDOW  
FIR FILTER  
FACTORY  
CALIBRATION  
USER  
CALIBRATION  
AVERAGING  
DECIMATING  
FILTER  
BARTLETT  
OUTPUT  
DATA  
REGISTERS  
AVERAGING  
DECIMATING  
FILTER  
MEMS  
SENSORS  
WINDOW  
FIR  
CALIBRATION  
FILTER  
Figure 22. Inertial Sensor Calibration Processing  
Figure 19. Signal Processing Diagram, Inertial Sensors  
The factory calibration of the gyroscope applies the following  
correction formulas to the data of each gyroscope:  
Gyroscope Data Sampling  
The three gyroscopes produce angular rate measurements around  
three orthogonal axes (x, y, and z). Figure 20 shows the data  
sampling plan for each gyroscope when the ADIS16467 operates in  
internal clock mode (default, see Register MSC_CTRL, Bits[4:2] in  
Table 105). Each gyroscope has an analog-to-digital converter  
(ADC) and sample clock (fSG) that drives data sampling at a rate  
of 4100 Hz ( 5ꢀ). The internal processor reads and processes  
this data from each gyroscope at a rate of 2000 Hz (fSM).  
bX  
ω
m11 m12  
m
ω
XC   
13   
X   
ωYC m21 m22 m23  
ωY bY  
ωZC  
m31 m32 m33  
ωZ  
bZ  
l
l12  
l
a
11  
13   
XC   
l21 l22 l23 aYC  
l31 l32 l33  
aZC  
TO  
INTERNAL  
BARTLETT  
WINDOW  
MEMS  
GYROSCOPE  
where:  
DATA  
ADC  
REGISTER  
FIR FILTER  
ωXC, ωYC, and ωZC are the gyroscope outputs (post calibration).  
m11, m12, m13, m21, m22, m23, m31, m32, and m33 provide scale and  
alignment correction.  
fSG = 4100Hz  
fSM = 2000Hz  
Figure 20. Gyroscope Data Sampling  
ωX, ωY, and ωZ are the gyroscope outputs (precalibration).  
bX, bY, and bZ provide bias correction.  
l11, l12, l13, l21, l22, l23, l31, l32, and l33 provide linear g correction  
aXC, aYC, and aZC are the accelerometer outputs (post calibration).  
Accelerometer Data Sampling  
The three accelerometers produce linear acceleration measurements  
along the same orthogonal axes (x, y, and z) as the gyroscopes.  
Figure 21 shows the data sampling plan for each accelerometer  
when the ADIS16467 operates in internal clock mode (default,  
see Register MSC_CTRL, Bits[4:2] in Table 105).  
All correction factors in this relationship come from direct  
observation of the response of each gyroscope at multiple  
temperatures over the calibration temperature range (−40°C ≤  
TC ≤ +85°C). These correction factors are stored in the flash  
memory bank, but they are not available for observation or  
configuration. Register MSC_CTRL, Bit 7 (see Table 105) provides  
the only user configuration option for the factory calibration of  
the gyroscopes: an on/off control for the linear g compensation.  
See Figure 45 for more details on the user calibration options  
available for the gyroscopes.  
TO  
2
1
2
MEMS  
ACCELEROMETER  
BARTLETT  
WINDOW  
a(n)  
ADC  
n = 1  
÷2  
FIR FILTER  
2 × fSM = 4000Hz  
Figure 21. Accelerometer Data Sampling  
Rev. C | Page 11 of 34  
 
 
 
 
 
 
 
ADIS16467  
Data Sheet  
The factory calibration of the accelerometer applies the following  
correction formulas to the data of each accelerometer:  
Bartlett Window FIR Filter  
The Bartlett window finite impulse response (FIR) filter (see  
Figure 23) contains two averaging filter stages, in a cascade  
configuration. The FILT_CTRL register (see Table 101) provides  
the configuration controls for this filter.  
bX  
a
m11 m12  
m
a
XC   
13   
X   
aYC m21 m22 m23  
aY bY  
aZC  
m31 m32 m33  
aZ  
bZ  
2
XC   
N
N
TO  
FROM  
MEMS  
SENSOR  
1
N
1
N
ω(n)  
ω(n)  
FACTORY  
CALIBRATION  
0
p12  
p
ω
13   
n = 1  
n = 1  
p21  
0
p23 ωY2C  
2
Figure 23. Bartlett Window FIR Filter Signal Path  
p31 p32  
0
ωZC  
Averaging/Decimating Filter  
where:  
The second digital filter averages multiple samples together to  
produce each register update. In this type of filter structure, the  
number of samples in the average is equal to the reduction in the  
update rate for the output data registers. The DEC_RATE register  
(see Table 109) provides the configuration controls for this filter.  
aXC, aYC, and aZC are the accelerometer outputs (post calibration).  
m11, m12, m13, m21, m22, m23, m31, m32, and m33 provide scale and  
alignment correction.  
aX, aY, and aZ are the accelerometer outputs (precalibration).  
bX, bY, and bZ provide bias correction.  
p12, p13, p21, p23, p31 and p32 provide a point of percussion  
alignment correction (see Figure 48).  
FROM  
USER  
N
1
N
TO OUTPUT  
REGISTERS  
ω(n)  
Σ
n = 1  
CALIBRATION  
÷N  
ω2XC, ω2YC, and ω2ZC are the square of the gyroscope outputs  
(post calibration).  
Figure 24. Averaging/Decimating Filter Diagram  
All of the correction factors in this relationship come from direct  
observation of the response of each accelerometer at multiple  
temperatures, over the calibration temperature range (−40°C ≤  
TC ≤ +85°C). These correction factors are stored in the flash  
memory bank, but they are not available for observation or  
configuration. Register MSC_CTRL, Bit 6 (see Table 105) provides  
the only user configuration option for the factory calibration of  
the accelerometers: an on/off control for the point of percussion,  
alignment function. See Figure 46 for more details on the user  
calibration options available for the accelerometers.  
REGISTER STRUCTURE  
All communication between the ADIS16467 and an external  
processor involves either reading the contents of an output register  
or writing configuration or command information to a control  
register. The output data registers include the latest sensor data,  
error flags, and identification information. The control registers  
include sample rate, filtering, calibration, and diagnostic options.  
Each user accessible register has two bytes (upper and lower),  
each of which has a unique address. See Table 8 for a detailed  
list of all user registers and the corresponding addresses.  
TRIAXIAL  
SENSOR  
OUTPUT  
REGISTERS  
GYROSCOPE  
SIGNAL  
PROCESSING  
TRIAXIAL  
ACCELEROMETER  
CONTROL  
REGISTERS  
TEMPERATURE  
SENSOR  
CONTROLLER  
Figure 25. Basic Operation of the ADIS16467  
Rev. C | Page 12 of 34  
 
 
Data Sheet  
ADIS16467  
SERIAL PERIPHERAL INTERFACE (SPI)  
DATA READY (DR)  
The SPI provides access to the user registers (see Table 8).  
Figure 26 shows the most common connections between the  
ADIS16467 and a SPI master device, which is often an embedded  
processor that has an SPI-compatible interface. In this example,  
the SPI master uses an interrupt service routine to collect data  
every time the data ready (DR) signal pulses.  
The factory default configuration provides users with a DR signal  
on the DR pin (see Table 5) that pulses when the output data  
registers update. Connect the DR pin to a pin on the embedded  
processor to trigger data collection, on the second edge of this  
pulse. Register MSC_CTRL, Bit 0 (see Table 105), controls the  
polarity of this signal. In Figure 27, Register MSC_CTRL, Bit 0 = 1,  
which means that data collection must start on the rising edges  
of the DR pulses.  
Additional information on ADIS16467 SPI can be found in the  
Applications Information section of this datasheet.  
INPUT/OUTPUT LINES ARE COMPATIBLE WITH  
3.3V LOGIC LEVELS  
DR  
+3.3V  
INACTIVE  
ACTIVE  
VDD  
Figure 27. Data Ready When Register MSC_CTRL, Bit 0 = 1 (Default)  
SYSTEM  
PROCESSOR  
SPI MASTER  
ADIS16467  
SS  
SCLK  
MOSI  
MISO  
IRQ  
CS  
During the start-up and reset recovery processes, the DR signal  
may exhibit some transient behavior before data production  
begins. Figure 28 shows an example of the DR behavior during  
startup, and Figure 29 and Figure 30 provide examples of the  
DR behavior during recovery from reset commands.  
SCLK  
DIN  
DOUT  
DR  
TIME THAT VDD > 3V  
VDD  
Figure 26. Electrical Connection Diagram  
PULSING INDICATES  
DATA PRODUCTION  
Table 6. Generic SPI Master Pin Mnemonics and Functions  
Mnemonic  
Function  
DR  
SS  
Slave select  
SCLK  
MOSI  
MISO  
IRQ  
Serial clock  
START-UP TIME  
Master output, slave input  
Master input, slave output  
Interrupt request  
Figure 28. Data Ready Response During Startup  
SOFTWARE RESET COMMAND  
GLOB_CMD[7] = 1  
Embedded processors typically use control registers to configure  
serial ports for communicating with SPI slave devices, such as  
the ADIS16467. Table 7 provides a list of settings that describe  
the SPI protocol of the ADIS16467. The initialization routine  
of the master processor typically establishes these settings using  
firmware commands to write them into the control registers.  
DR PULSING  
RESUMES  
DR  
RESET RECOVERY TIME  
Figure 29. Data Ready Response During Reset  
(Register GLOB_CMD, Bit 7 = 1) Recovery  
Table 7. Generic Master Processor SPI Settings  
Processor Setting Description  
RST PIN  
RELEASED  
Master  
ADIS16467 operates as slave  
SCLK ≤ 2 MHz1  
SPI Mode 3  
MSB First Mode  
16-Bit Mode  
Maximum serial clock rate  
RST  
CPOL = 1 (polarity), CPHA = 1 (phase)  
Bit sequence, see Figure 31 for coding  
Shift register and data length  
DR PULSING  
RESUMES  
DR  
1 A burst mode read requires this value to be ≤1 MHz (see Table 2 for more  
information).  
RESET RECOVERY TIME  
RST  
Figure 30. Data Ready Response During Reset (  
= 0) Recovery  
Rev. C | Page 13 of 34  
 
 
 
 
 
 
 
 
ADIS16467  
Data Sheet  
CS  
SCLK  
DIN  
R/W A6  
A5  
R/W A6  
A5  
A4  
A3  
A2  
A1  
A0 DC7 DC6 DC5 DC4 DC3 DC2 DC1 DC0  
D8 D7 D6 D5 D4 D3 D2 D1 D0  
DOUT  
D15 D14 D13 D12 D11 D10 D9  
D15 D14 D13  
NOTES  
1. DOUT BITS ARE PRODUCED ONLY WHEN THE PREVIOUS 16-BIT DIN SEQUENCE STARTS WITH R/W = 0.  
2. WHEN CS IS HIGH, DOUT IS INA THREE-STATE, HIGH IMPEDANCE MODE, WHICHALLOWS MULTIFUNCTIONAL USE OF THE LINE  
FOR OTHER DEVICES.  
Figure 31. SPI Communication Bit Sequence  
1
2
3
11  
CS  
SCLK  
0x6800  
DIN  
DIAG_STAT  
XGYRO_OUT  
CHECKSUM  
DOUT  
Figure 32. Burst Read Sequence  
CS  
SCLK  
DIN  
DIN = 0x7200 = 0111 0010 0000 0000  
HIGH-Z  
HIGH-Z  
DOUT  
DOUT = 0100 0000 0101 0011 = 0x4053 = 16467 (PROD_ID)  
Figure 33. SPI Signal Pattern, Repeating Read of the PROD_ID Register  
Burst Read Function  
READING SENSOR DATA  
The burst read function provides a way to read the same group  
of output data registers using a continuous stream of bits at an  
SCLK rate of up to 1 MHz. This method does not require a stall  
time between each 16-bit segment (see Figure 3). To start this  
mode, set DIN = 0x6800 to read register 0x6800, and then read  
Reading a single register requires two 16-bit cycles on the SPI:  
one to request the contents of a register and another to receive  
those contents. The 16-bit command code (see Figure 31) for a  
R
read request on the SPI has three parts: the read bit ( /W = 0),  
either address of the register, [A6:A0], and eight don’t care bits,  
[DC7:DC0]. Figure 34 shows an example that includes two register  
reads in succession. This example starts with DIN = 0x0C00, to  
request the contents of the Z_GYRO_LOW register, and follows  
with 0x0E00, to request the contents of the Z_GYRO_OUT  
register. The sequence in Figure 34 also shows full duplex mode  
of operation, which means that the ADIS16467 can receive  
requests on DIN while also transmitting data out on DOUT  
within the same 16-bit SPI cycle.  
CS  
each register in the sequence out of DOUT while keeping  
low for the entire 176-bit sequence (see Figure 32). It is critical  
CS  
to read all 176 bits before the  
pin goes high.  
The sequence of registers (and checksum value) in the burst  
read response depends on which sample clock mode that the  
ADIS16467 is operating in (Register MSC_CTRL, Bits[4:2], see  
Table 105). In all clock modes, except when operating in scaled  
sync mode (Register MSC_CTRL, Bits[4:2] = 010), the burst  
read response includes the following registers and value:  
DIAG_STAT, X_GYRO_OUT, Y_GYRO_OUT, Z_GYRO_OUT,  
X_ACCL_OUT, Y_ACCL_OUT, Z_ACCL_OUT, TEMP_OUT,  
DATA_CNTR, and the checksum value. In these cases, use the  
following formula to verify the checksum value, treating each  
byte in the formula as an independent, unsigned, 8-bit number:  
NEXT  
ADDRESS  
DIN  
0x0C00  
0x0E00  
DOUT  
Z_GYRO_LOW  
Z_GYRO_OUT  
Figure 34. SPI Read Example  
Figure 33 shows an example of the four SPI signals when reading  
the PROD_ID register (see Table 121) in a repeating pattern.  
This pattern can be helpful when troubleshooting the SPI  
interface setup and communications because the signals are  
the same for each 16-bit sequence, except during the first cycle.  
Checksum = DIAG_STAT, Bits[15:8] + DIAG_STAT, Bits[7:0] +  
X_GYRO_OUT, Bits[15:8] + X_GYRO_OUT, Bits[7:0] +  
Y_GYRO_OUT, Bits[15:8] + Y_GYRO_OUT, Bits[7:0] +  
Z_GYRO_OUT, Bits[15:8] + Z_GYRO_OUT, Bits[7:0] +  
X_ACCL_OUT, Bits[15:8] + X_ACCL_OUT, Bits[7:0] +  
Y_ACCL_OUT, Bits[15:8] + Y_ACCL_OUT, Bits[7:0] +  
Z_ACCL_OUT, Bits[15:8] + Z_ACCL_OUT, Bits[7:0] +  
TEMP_OUT, Bits[15:8] + TEMP_OUT, Bits[7:0] +  
DATA_CNTR, Bits[15:8] + DATA_CNTR, Bits[7:0]  
Note that the read and write functions using the SPI interface  
are always 16-bits long. The only exception is the burst read  
function described in the Burst Read Function section.  
Rev. C | Page 14 of 34  
 
 
 
 
 
 
Data Sheet  
ADIS16467  
When operating in scaled sync mode (Register MSC_CTRL,  
Bits[4:2] = 010), the burst read response includes the following  
registers and value: DIAG_STAT, X_GYRO_OUT, Y_GYRO_  
OUT, Z_GYRO_OUT, X_ACCL_OUT, Y_ACCL_OUT,  
Z_ACCL_OUT, TEMP_OUT, TIME_STAMP, and the checksum  
value. In this case, use the following formula to verify the  
checksum value, treating each byte in the formula as an  
independent, unsigned, 8-bit number:  
Memory Structure  
Figure 36 shows a functional diagram for the memory structure of  
the ADIS16467. The flash memory bank contains the operational  
code, unit specific calibration coefficients and user configuration  
settings. During initialization (power application or reset recover),  
this information loads from the flash memory into the static  
random access memory (SRAM), which supports all normal  
operation, including register access through the SPI port. Writing  
to a configuration register using the SPI updates the SRAM  
location of the register but does not automatically update the  
settings in the flash memory bank. The manual flash memory  
update command (Register GLOB_CMD, Bit 3, see Table 113)  
provides a convenient method for saving all of these settings to  
the flash memory bank at one time. A yes in the Flash Backup  
column of Table 8 identifies the registers that have storage  
support in the flash memory bank.  
Checksum = DIAG_STAT, Bits[15:8] + DIAG_STAT, Bits[7:0] +  
X_GYRO_OUT, Bits[15:8] + X_GYRO_OUT, Bits[7:0] +  
Y_GYRO_OUT, Bits[15:8] + Y_GYRO_OUT, Bits[7:0] +  
Z_GYRO_OUT, Bits[15:8] + Z_GYRO_OUT, Bits[7:0] +  
X_ACCL_OUT, Bits[15:8] + X_ACCL_OUT, Bits[7:0] +  
Y_ACCL_OUT, Bits[15:8] + Y_ACCL_OUT, Bits[7:0] +  
Z_ACCL_OUT, Bits[15:8] + Z_ACCL_OUT, Bits[7:0] +  
TEMP_OUT, Bits[15:8] + TEMP_OUT, Bits[7:0] +  
TIME_STAMP, Bits[15:8] + TIME_STAMP, Bits[7:0]  
MANUAL  
FLASH  
BACKUP  
DEVICE CONFIGURATION  
Each configuration register contains 16 bits (two bytes). Bits[7:0]  
contain the low byte, and Bits[15:8] contain the high byte of each  
register. Each byte has a unique address in the user register map  
(see Table 8). Updating the contents of a register requires writing  
to both bytes in the following sequence: low byte first, high byte  
second. There are three parts to coding an SPI command (see  
Figure 31) that write a new byte of data to a register: the write bit  
NONVOLATILE  
FLASH MEMORY  
VOLATILE  
SRAM  
SPI ACCESS  
(NO SPI ACCESS)  
START-UP  
RESET  
Figure 36. SRAM and Flash Memory Diagram  
R
( /W = 1), the address of the byte, [A6:A0], and the new data for  
that location, [DC7:DC0]. Figure 35 shows a coding example  
for writing 0x0004 to the FILT_CTRL register (see Table 101).  
In Figure 35, the 0xDC04 command writes 0x04 to Address  
0x5C (lower byte) and the 0xDD00 command writes 0x00 to  
Address 0x5D (upper byte).  
CS  
SCLK  
DIN  
0xDC04  
0xDD00  
Figure 35. SPI Sequence for Writing 0x0004 to FILT_CTRL  
Rev. C | Page 15 of 34  
 
 
 
ADIS16467  
Data Sheet  
USER REGISTER MEMORY MAP  
Table 8. User Register Memory Map (N/A Means Not Applicable)  
Name  
R/W  
N/A  
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
N/A  
R
R
R
R
R
R
R
R
R
R
R
R
Flash Backup  
N/A  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
N/A  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
Address  
Default  
Register Description  
Reserved  
DIAG_STAT  
0x00, 0x01  
0x02, 0x03  
0x04, 0x05  
0x06, 0x07  
0x08, 0x09  
0x0A, 0x0B  
0x0C, 0x0D  
0x0E, 0x0F  
0x10, 0x11  
0x12, 0x13  
0x14, 0x15  
0x16, 0x17  
0x18, 0x19  
0x1A, 0x1B  
0x1C, 0x1D  
0x1E, 0x1F  
0x20, 0x21  
0x22, 0x23  
0x24, 0x25  
0x26, 0x27  
0x28, 0x29  
0x2A, 0x2B  
0x2C, 0x2D  
0x2E, 0x2F  
0x30, 0x31  
0x32, 0x33  
0x34, 0x35  
0x36, 0x37  
0x38, 0x39  
0x3A, 0x3B  
0x3C to 0x3F  
0x40, 0x41  
0x42, 0x43  
0x44, 0x45  
0x46, 0x47  
0x48, 0x49  
0x4A, 0x4B  
0x4C, 0x4D  
0x4E, 0x4F  
0x50, 0x51  
0x52, 0x53  
0x54, 0x55  
0x56, 0x57  
0x58 to 0x5B  
0x5C, 0x5D  
0x5E, 0x5F  
0x60, 0x61  
0x62, 0x63  
N/A  
0x0000  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
N/A  
Reserved  
Output, system error flags  
X_GYRO_LOW  
X_GYRO_OUT  
Y_GYRO_LOW  
Y_GYRO_OUT  
Z_GYRO_LOW  
Z_GYRO_OUT  
X_ACCL_LOW  
X_ACCL_OUT  
Y_ACCL_LOW  
Y_ACCL_OUT  
Z_ACCL_LOW  
Z_ACCL_OUT  
TEMP_OUT  
Output, x-axis gyroscope, low word  
Output, x-axis gyroscope, high word  
Output, y-axis gyroscope, low word  
Output, y-axis gyroscope, high word  
Output, z-axis gyroscope, low word  
Output, z-axis gyroscope, high word  
Output, x-axis accelerometer, low word  
Output, x-axis accelerometer, high word  
Output, y-axis accelerometer, low word  
Output, y-axis accelerometer, high word  
Output, z-axis accelerometer, low word  
Output, z-axis accelerometer, high word  
Output, temperature  
TIME_STAMP  
Reserved  
DATA_CNTR  
Output, time stamp  
Reserved  
New data counter  
X_DELTANG_LOW  
X_DELTANG_OUT  
Y_DELTANG_LOW  
Y_DELTANG_OUT  
Z_DELTANG_LOW  
Z_DELTANG_OUT  
X_DELTVEL_LOW  
X_DELTVEL_OUT  
Y_DELTVEL_LOW  
Y_DELTVEL_OUT  
Z_DELTVEL_LOW  
Z_DELTVEL_OUT  
Reserved  
XG_BIAS_LOW  
XG_BIAS_HIGH  
YG_BIAS_LOW  
YG_BIAS_HIGH  
ZG_BIAS_LOW  
ZG_BIAS_HIGH  
XA_BIAS_LOW  
XA_BIAS_HIGH  
YA_BIAS_LOW  
YA_BIAS_HIGH  
ZA_BIAS_LOW  
ZA_BIAS_HIGH  
Reserved  
Output, x-axis delta angle, low word  
Output, x-axis delta angle, high word  
Output, y-axis delta angle, low word  
Output, y-axis delta angle, high word  
Output, z-axis delta angle, low word  
Output, z-axis delta angle, high word  
Output, x-axis delta velocity, low word  
Output, x-axis delta velocity, high word  
Output, y-axis delta velocity, low word  
Output, y-axis delta velocity, high word  
Output, z-axis delta velocity, low word  
Output, z-axis delta velocity, high word  
Reserved  
Calibration, offset, gyroscope, x-axis, low word  
Calibration, offset, gyroscope, x-axis, high word  
Calibration, offset, gyroscope, y-axis, low word  
Calibration, offset, gyroscope, y-axis, high word  
Calibration, offset, gyroscope, z-axis, low word  
Calibration, offset, gyroscope, z-axis, high word  
Calibration, offset, accelerometer, x-axis, low word  
Calibration, offset, accelerometer, x-axis, high word  
Calibration, offset, accelerometer, y-axis, low word  
Calibration, offset, accelerometer, y-axis, high word  
Calibration, offset, accelerometer, z-axis, low word  
Calibration, offset, accelerometer, z-axis, high word  
Reserved  
R
No  
N/A  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
N/A  
R/W  
R
N/A  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
N/A  
Yes  
No  
FILT_CTRL  
RANG_MDL  
MSC_CTRL  
UP_SCALE  
0x0000  
N/A1  
0x00C1  
0x07D0  
Control, Bartlett window FIR filter  
Measurement range (model specific) identifier  
Control, input/output and other miscellaneous options  
Control, scale factor for input clock, pulse per second (PPS)  
mode  
R/W  
R/W  
Yes  
Yes  
DEC_RATE  
R/W  
Yes  
0x64, 0x65  
0x0000  
Control, decimation filter (output data rate)  
Rev. C | Page 16 of 34  
 
 
Data Sheet  
ADIS16467  
Name  
R/W  
R/W  
W
N/A  
R
R
R
R
R
R/W  
R/W  
R/W  
R
Flash Backup  
Address  
Default  
0x070A  
N/A  
N/A  
N/A  
N/A  
N/A  
0x4053  
N/A  
N/A  
Register Description  
NULL_CNFG  
GLOB_CMD  
Reserved  
FIRM_REV  
FIRM_DM  
Yes  
No  
N/A  
No  
No  
No  
No  
No  
Yes  
Yes  
Yes  
No  
No  
0x66, 0x67  
0x68, 0x69  
0x6A to 0x6B  
0x6C, 0x6D  
0x6E, 0x6F  
0x70, 0x71  
0x72, 0x73  
0x74, 0x75  
0x76, 0x77  
0x78, 0x79  
0x7A, 0x7B  
0x7C, 0x7D  
0x7E, 0x7E  
Control, bias estimation period  
Control, global commands  
Reserved  
Identification, firmware revision  
Identification, date code, day and month  
Identification, date code, year  
Identification, device number  
Identification, serial number  
User Scratch Register 1  
User Scratch Register 2  
User Scratch Register 3  
Output, flash memory write cycle counter, lower word  
Output, flash memory write cycle counter, upper word  
FIRM_Y  
PROD_ID  
SERIAL_NUM  
USER_SCR_1  
USER_SCR_2  
USER_SCR_3  
FLSHCNT_LOW  
FLSHCNT_HIGH  
N/A  
N/A  
N/A  
N/A  
R
1 See Table 102 for the default value in this register, which is model specific.  
Rev. C | Page 17 of 34  
ADIS16467  
Data Sheet  
USER REGISTER DEFINTIONS  
Status/Error Flag Indicators (DIAG_STAT)  
Table 9. DIAG_STAT Register Definition  
GYROSCOPE DATA  
The gyroscopes in the ADIS16467 measure the angular rate of  
rotation around three orthogonal axes (x, y, and z). Figure 37  
shows the orientation of each gyroscope axis, along with the  
direction of rotation that produces a positive response in each  
measurement.  
Addresses  
Default  
Access  
Flash Backup  
0x02, 0x03  
0x0000  
R
No  
Table 10. DIAG_STAT Bit Assignments  
Bits Description  
[15:8] Reserved.  
Z-AXIS  
ω
z
7
6
Clock error. A 1 indicates that the internal data sampling  
clock (fSM, see Figure 20 and Figure 21) does not  
synchronize with the external clock, which only applies  
when using scaled sync mode (Register MSC_CTRL,  
Bits[4:2] = 010, see Table 105. When this error occurs,  
adjust the frequency of the clock signal on the SYNC pin  
to operate within the appropriate range.  
Y-AXIS  
X-AXIS  
ω
ω
x
y
Memory failure. A 1 indicates a failure in the flash memory  
test (Register GLOB_CMD, Bit 4, see Table 113), which  
involves a comparison between a cyclic redundancy  
check (CRC) calculation of the present flash memory and  
a CRC calculation from the same memory locations at  
the time of initial programming (during the production  
process). If this error occurs, repeat the same test. If this  
error persists, replace the ADIS16467.  
Figure 37. Gyroscope Axis and Polarity Assignments  
Each gyroscope has two output data registers. Figure 38 shows how  
these two registers combine to support a 32-bit, twos complement  
data format for the x-axis gyroscope measurements. This format  
also applies to the y- and z-axes. Additional information on the  
resolution of the accelerometers can be found in the Gyroscope  
Data Width (Digital Resolution) section.  
5
Sensor failure. A 1 indicates failure of at least one sensor,  
at the conclusion of the self test (Register GLOB_CMD,  
Bit 2, see Table 113). If this error occurs, repeat the same  
test. If this error persists, replace the ADIS16467. Motion,  
during the execution of this test, can cause a false failure.  
X_GYRO_OUT  
X_GYRO_LOW  
BIT 15  
BIT 0 BIT 15  
BIT 0  
4
3
Standby mode. A 1 indicates that the voltage across  
VDD and GND is <2.8 V, which causes data processing to  
stop. When VDD ≥ 2.8 V for 250 ms, the ADIS16467  
reinitializes and starts producing data again.  
X-AXIS GYROSCOPE DATA  
Figure 38. Gyroscope Output Data Structure  
SPI communication error. A 1 indicates that the total  
number of SCLK cycles is not equal to an integer multiple  
of 16. When this error occurs, repeat the previous  
communication sequence. Persistence in this error may  
indicate a weakness in the SPI service that the ADIS16467  
is receiving from the system it is supporting.  
Gyroscope Measurement Range/Scale Factor  
Table 11 provides the measurement range ( ωMAX) and scale  
factor (KG) for the gyroscopes in each ADIS16467 model.  
Table 11. Gyroscope Measurement Range and Scale Factors  
Range, ±±MAX  
(°/sec)  
Scale Factor, KG  
(LSB/°/sec)  
2
1
Flash memory update failure. A 1 indicates that the most  
recent flash memory update (Register GLOB_CMD, Bit 3,  
see Table 113) failed. If this error occurs, ensure that  
VDD ≥ 3 V and repeat the update attempt. If this error  
persists, replace the ADIS16467.  
Model  
ADIS16467-1BMLZ  
ADIS16467-2BMLZ  
ADIS16467-3BMLZ  
125  
500  
2000  
160  
40  
10  
Datapath overrun. A 1 indicates that one of the datapaths  
experienced an overrun condition. If this error occurs,  
initiate a reset using the RST pin (see Table 5, Pin 8) or  
Register GLOB_CMD, Bit 7 (see Table 113). See the Serial  
Port Operation section for more details on conditions  
that may cause this bit to be set to 1.  
Gyroscope Data Formatting  
Table 12 and Table 13 offer various numerical examples that  
demonstrate the format of the rotation rate data in both 16-bit  
and 32-bit formats.  
Table 12. 16-Bit Gyroscope Data Format Examples  
0
Reserved.  
Rotation Rate  
Decimal Hex.  
Binary  
The DIAG_STAT register (see Table 9 and Table 10) provides  
error flags for monitoring the integrity and operation of the  
ADIS16467. Reading this register causes all bits to return to 0.  
The error flags in DIAG_STAT are sticky, meaning that, when  
the flags raise to 1, the flags remain there until a read request  
clears the flags. If an error condition persists, the flag (bit)  
automatically returns to an alarm value of 1.  
MAX  
+2/KG  
+1/KG  
0°/sec  
−1/KG  
−2/KG  
−ωMAX  
+20,000  
0x4E20  
0100 1110 0010 0000  
0000 0000 0000 0010  
0000 0000 0000 0001  
0000 0000 0000 0000  
1111 1111 1111 1111  
1111 1111 1111 1110  
1011 0001 1110 0000  
+2  
+1  
0
−1  
−2  
−20,000  
0x0002  
0x0001  
0x0000  
0xFFFF  
0xFFFE  
0xB1E0  
Rev. C | Page 18 of 34  
 
 
 
 
 
 
 
 
Data Sheet  
ADIS16467  
Table 13. 32-Bit Gyroscope Data Format Examples  
Z-Axis Gyroscope (Z_GYRO_LOW and Z_GYRO_OUT)  
Rotation Rate (°/sec)  
Decimal  
Hex.  
Table 22. Z_GYRO_LOW Register Definition  
MAX  
+1,310,720,000 0x4E200000  
Addresses  
Default  
Access  
Flash Backup  
+2/(KG × 216)  
+1/(KG × 216)  
0
+2  
+1  
0
−1  
−2  
0x00000002  
0x00000001  
0x0000000  
0xFFFFFFFF  
0xFFFFFFFE  
0x0C, 0x0D  
Not applicable  
R
No  
Table 23. Z_GYRO_LOW Bit Definitions  
−1/(KG × 216)  
−2/(KG × 216)  
−ωMAX  
Bits  
Description  
[15:0]  
Z-axis gyroscope data; additional resolution bits  
−1,310,720,000 0xB1E00000  
Table 24. Z_GYRO_OUT Register Definition  
X-Axis Gyroscope (X_GYRO_LOW and X_GYRO_OUT)  
Addresses  
Default  
Access  
Flash Backup  
Table 14. X_GYRO_LOW Register Definition  
0x0E, 0x0F  
Not applicable  
R
No  
Addresses  
Default  
Access  
Flash Backup  
Table 25. Z_GYRO_OUT Bit Definitions  
0x04, 0x05  
Not applicable  
R
No  
Bits  
Description  
Table 15. X_GYRO_LOW Bit Definitions  
[15:0]  
Z-axis gyroscope data; high word; twos complement,  
0°/sec = 0x0000, 1 LSB = 1/KG (see Table 11 for KG)  
Bits  
Description  
[15:0]  
X-axis gyroscope data; additional resolution bits  
The Z_GYRO_LOW (see Table 22 and Table 23) and Z_GYRO_  
OUT (see Table 24 and Table 25) registers contain the gyroscope  
data for the z-axis.  
Table 16. X_GYRO_OUT Register Definition  
Addresses  
Default  
Access  
Flash Backup  
Acceleration Data  
0x06, 0x07  
Not applicable  
R
No  
The accelerometers in the ADIS16467 measure both dynamic  
and static (response to gravity) acceleration along the same three  
orthogonal axes that define the axes of rotation for the gyroscopes  
(x, y, and z). Figure 39 shows the orientation of each accelerometer  
axis, along with the direction of acceleration that produces a  
positive response in each measurement.  
Table 17. X_GYRO_OUT Bit Definitions  
Bits  
Description  
[15:0]  
X-axis gyroscope data; high word; twos complement,  
0°/sec = 0x0000, 1 LSB = 1/KG (see Table 11 for KG)  
The X_GYRO_LOW (see Table 14 and Table 15) and X_GYRO_  
OUT (see Table 16 and Table 17) registers contain the gyroscope  
data for the x-axis.  
Z-AXIS  
a
z
Y-Axis Gyroscope (Y_GYRO_LOW and Y_GYRO_OUT)  
Y-AXIS  
X-AXIS  
Table 18. Y_GYRO_LOW Register Definition  
a
a
x
y
Addresses  
Default  
Access  
Flash Backup  
0x08, 0x09  
Not applicable  
R
No  
Table 19. Y_GYRO_LOW Bit Definitions  
Bits  
Description  
[15:0]  
Y-axis gyroscope data; additional resolution bits  
Figure 39. Accelerometer Axis and Polarity Assignments  
Each accelerometer has two output data registers. Figure 40  
shows how these two registers combine to support a 32-bit,  
twos complement data format for the x-axis accelerometer  
measurements. This format also applies to the y- and z-axes.  
Additional information on the resolution of the accelerometers  
can be found in the Accelerometer Data Width (Digital  
Resolution) section.  
Table 20. Y_GYRO_OUT Register Definition  
Addresses  
Default  
Access  
Flash Backup  
0x0A, 0x0B  
Not applicable  
R
No  
Table 21. Y_GYRO_OUT Bit Definitions  
Bits  
Description  
[15:0]  
Y-axis gyroscope data; high word; twos complement,  
0°/sec = 0x0000, 1 LSB = 1/KG (see Table 11 for KG)  
X_ACCL_OUT  
X_ACCL_LOW  
The Y_GYRO_LOW (see Table 18 and Table 19) and Y_GYRO_  
OUT (see Table 20 and Table 21) registers contain the gyroscope  
data for the y-axis.  
BIT 15  
BIT 0 BIT 15  
X-AXIS ACCELEROMETER DATA  
BIT 0  
Figure 40. Accelerometer Output Data Structure  
Rev. C | Page 19 of 34  
 
 
 
 
 
 
 
 
 
ADIS16467  
Data Sheet  
Table 33. Y_ACCL_LOW Bit Definitions  
Bits Description  
Accelerometer Data Formatting  
Table 26 and Table 27 show various numerical examples that  
demonstrate the format of the linear acceleration data in both  
16-bit and 32-bit formats.  
[15:0] Y-axis accelerometer data; additional resolution bits  
Table 34. Y_ACCL_OUT Register Definition  
Addresses Default  
Access  
Flash Backup  
Table 26. 16-Bit Accelerometer Data Format Examples  
0x16, 0x17 Not applicable  
R
No  
Acceleration  
Decimal  
+32,000  
+2  
+1  
0
−1  
−2  
−32,000  
Hex.  
Binary  
+40 g  
0x7D00 0111 1101 0000 0000  
Table 35. Y_ACCL_OUT Bit Definitions  
Bits Description  
+2.5 mg  
+1.25 mg  
0 mg  
−1.25 mg  
−2.5 mg  
−40 g  
0x0002  
0x0001  
0x0000  
0xFFFF  
0xFFFE  
0x8300  
0000 0000 0000 0010  
0000 0000 0000 0001  
0000 0000 0000 0000  
1111 1111 1111 1111  
1111 1111 1111 1110  
1000 0011 0000 0000  
[15:0] Y-axis accelerometer data, high word; twos complement,  
40 g range; 0 g = 0x0000, 1 LSB = 1.25 mg  
The Y_ACCL_LOW (see Table 32 and Table 33) and Y_ACCL_  
OUT (see Table 34 and Table 35) registers contain the  
accelerometer data for the y-axis.  
Table 27. 32-Bit Accelerometer Data Format Examples  
Acceleration  
Z-Axis Accelerometer (Z_ACCL_LOW and Z_ACCL_OUT)  
Decimal  
Hex.  
+40 g  
+2,097,152,000  
+2  
+1  
0
−1  
−2  
0x7D000000  
0x00000002  
0x00000001  
0x00000000  
0xFFFFFFFF  
0xFFFFFFFE  
0x83000000  
Table 36. Z_ACCL_LOW Register Definition  
+1.25/215 mg  
+1.25/216 mg  
0
Addresses  
Default  
Access  
Flash Backup  
0x18, 0x19  
Not applicable  
R
No  
−1.25/216 mg  
−1.25/215 mg  
−40 g  
Table 37. Z_ACCL_LOW Bit Definitions  
Bits Description  
−2,097,152,000  
[15:0] Z-axis accelerometer data; additional resolution bits  
X-Axis Accelerometer (X_ACCL_LOW and X_ACCL_OUT)  
Table 38. Z_ACCL_OUT Register Definition  
Addresses  
Default  
Access  
Flash Backup  
Table 28. X_ACCL_LOW Register Definition  
0x1A, 0x1B  
Not applicable  
R
No  
Addresses  
Default  
Access  
Flash Backup  
0x10, 0x11  
Not applicable  
R
No  
Table 39. Z_ACCL_OUT Bit Definitions  
Bits Description  
Table 29. X_ACCL_LOW Bit Definitions  
Bits Description  
[15:0] Z-axis accelerometer data, high word; twos complement,  
40 g range; 0 g = 0x0000, 1 LSB = 1.25 mg  
[15:0] X-axis accelerometer data; additional resolution bits  
The Z_ACCL_LOW (see Table 36 and Table 37) and Z_ACCL_  
OUT (see Table 38 and Table 39) registers contain the  
accelerometer data for the z-axis.  
Table 30. X_ACCL_OUT Register Definition  
Addresses  
Default  
Access  
Flash Backup  
0x12, 0x13  
Not applicable  
R
No  
Internal Temperature (TEMP_OUT)  
Table 31. X_ACCL_OUT Bit Definitions  
Bits Description  
Table 40. TEMP_OUT Register Definition  
Addresses  
Default  
Access  
Flash Backup  
[15:0] X-axis accelerometer data, high word; twos complement,  
0x1C, 0x1D  
Not applicable  
R
No  
40 g range; 0 g = 0x0000, 1 LSB = 1.25 mg  
Table 41. TEMP_OUT Bit Definitions  
The X_ACCL_LOW (see Table 28 and Table 29) and X_ACCL_  
OUT (see Table 30 and Table 31) registers contain the  
accelerometer data for the x-axis.  
Bits  
Description  
[15:0]  
Temperature data; twos complement,  
1 LSB = 0.1°C, 0°C = 0x0000  
Y-Axis Accelerometer (Y_ACCL_LOW and Y_ACCL_OUT)  
The TEMP_OUT register (see Table 40 and Table 41) provides  
a coarse measurement of the temperature inside of the ADIS16467.  
This data is most useful for monitoring relative changes in the  
thermal environment.  
Table 32. Y_ACCL_LOW Register Definition  
Addresses  
Default  
Access  
Flash Backup  
0x14, 0x15  
Not applicable  
R
No  
Rev. C | Page 20 of 34  
 
 
 
 
 
 
 
 
 
 
 
 
 
Data Sheet  
ADIS16467  
Table 42. TEMP_OUT Data Format Examples  
DELTA ANGLES  
Temperature (°C)  
Decimal Hex.  
Binary  
In addition to the angular rate of rotation (gyroscope)  
measurements around each axis (x, y, and z), the ADIS16467 also  
provides delta angle measurements that represent a calculation  
of angular displacement between each sample update.  
+105  
+25  
+0.2  
+0.1  
+0  
+0.1  
+0.2  
−40  
+1050  
+250  
+2  
+1  
0
−1  
−2  
−400  
0x041A 0000 0100 0001 1010  
0x00FA 0000 0000 1111 1010  
0x0002 0000 0000 0000 0010  
0x0001 0000 0000 0000 0001  
0x0000 0000 0000 0000 0000  
0xFFFF 1111 1111 1111 1111  
0xFFFE 1111 1111 1111 1110  
0xFE70 1111 1110 0111 0000  
Z-AXIS  
Δθ  
z
Y-AXIS  
X-AXIS  
Δθ  
Δθ  
x
Time Stamp (TIME_STAMP)  
Table 43. TIME_STAMP Register Definition  
y
Addresses  
Default  
Access  
Flash Backup  
0x1E, 0x1F  
Not applicable  
R
No  
Figure 41. Delta Angle Axis and Polarity Assignments  
Table 44. TIME_STAMP Bit Definitions  
The delta angle outputs represent an integration of the gyroscope  
measurements and use the following formula for all three axes  
(x-axis displayed):  
Bits  
Description  
[15:0]  
Time from the last pulse on the SYNC pin; offset binary  
format, 1 LSB = 49.02 μs  
D 1  
1
The TIME_STAMP register (see Table 43 and Table 44) works  
in conjunction with scaled sync mode (Register MSC_CTRL,  
Bits[4:2] = 010, see Table 105). The 16-bit number in TIME_  
STAMP contains the time associated with the last sample in  
each data update relative to the most recent edge of the clock  
signal in the SYNC pin. For example, when the value in the  
UP_SCALE register (see Table 107) represents a scale factor of  
20, DEC_RATE = 0, and the external SYNC rate = 100 Hz, the  
following time stamp sequence results: 0 LSB, 10 LSB, 21 LSB,  
31 LSB, 41 LSB, 51 LSB, 61 LSB, 72 LSB, …, 194 LSB for the 20th  
sample, which translates to 0 μs, 490 μs, …, 9510 μs, the time  
from the first SYNC edge.  
  
x, nD  
x, nDd  x, nDd 1  
2fS  
d 0  
where:  
x is the x-axis.  
n is the sample time, prior to the decimation filter.  
D is the decimation rate (DEC_RATE + 1, see Table 109).  
fS is the sample rate.  
d is the incremental variable in the summation formula.  
ωX is the x-axis rate of rotation (gyroscope).  
When using the internal sample clock, fS is equal to a nominal  
rate of 2000 SPS. For better precision in this measurement,  
measure the internal sample rate (fS) using the data ready signal  
on the DR pin (DEC_RATE = 0x0000, see Table 108), divide  
each delta angle result (from the delta angle output registers) by  
the data ready frequency and multiply it by 2000. Each axis of  
the delta angle measurements has two output data registers.  
Figure 42 shows how these two registers combine to support a  
32-bit, twos complement data format for the x-axis delta angle  
measurements. This format also applies to the y- and z-axes.  
Data Update Counter (DATA_CNTR)  
Table 45. DATA_CNTR Register Definition  
Addresses  
Default  
Access  
Flash Backup  
0x22, 0x23  
Not applicable  
R
No  
Table 46. DATA_CNTR Bit Definitions  
Bits  
Description  
[15:0]  
Data update counter, offset binary format  
X_DELTANG_OUT  
X_DELTANG_LOW  
BIT 0 BIT 15  
When the ADIS16467 goes through the power-on sequence or  
when it recovers from a reset command, DATA_CNTR (see  
Table 45 and Table 46) starts with a value of 0x0000 and  
increments every time new data loads into the output registers.  
When the DATA_CNTR value reaches 0xFFFF, the next data  
update causes it to wrap back around to 0x0000, where it  
continues to increment every time new data loads into the  
output registers.  
BIT 15  
BIT 0  
X-AXIS DELTA ANGLE DATA  
Figure 42. Delta Angle Output Data Structure  
Delta Angle Measurement Range  
Table 47 shows the measurement range and scale factor for  
each ADIS16467 model.  
Table 47. Delta Angle Measurement Range and Scale Factor  
Model  
Measurement Range, ±±ΔMAX (°)  
ADIS16467-1BMLZ  
ADIS16467-2BMLZ  
ADIS16467-3BMLZ  
360  
720  
2160  
Rev. C | Page 21 of 34  
 
 
 
 
 
 
ADIS16467  
Data Sheet  
Table 58. Z_DELTANG_OUT Register Definitions  
X-Axis Delta Angle (X_DELTANG_LOW and  
X_DELTANG_OUT)  
Addresses  
Default  
Access  
Flash Backup  
0x2E, 0x2F  
Not applicable  
R
No  
Table 48. X_DELTANG_LOW Register Definitions  
Addresses  
Default  
Access  
Flash Backup  
Table 59. Z_DELTANG_OUT Bit Definitions  
Bits Description  
[15:0] Z-axis delta angle data; twos complement, 0° = 0x0000,  
1 LSB = ΔθMAX/215 (see Table 47 for ΔθMAX  
0x24, 0x25  
Not applicable  
R
No  
Table 49. X_DELTANG_LOW Bit Definitions  
)
Bits  
Description  
The Z_DELTANG_LOW (see Table 56 and Table 57) and  
Z_DELTANG_OUT (see Table 58 and Table 59) registers  
contain the delta angle data for the z-axis.  
[15:0]  
X-axis delta angle data; low word  
Table 50. X_DELTANG_OUT Register Definitions  
Addresses  
Default  
Access  
Flash Backup  
Delta Angle Resolution  
0x26, 0x27  
Not applicable  
R
No  
Table 60 and Table 61 show various numerical examples that  
demonstrate the format of the delta angle data in both 16-bit  
and 32-bit formats.  
Table 51. X_DELTANG_OUT Bit Definitions  
Bits Description  
[15:0] X-axis delta angle data; twos complement, 0° = 0x0000,  
1 LSB = ΔθMAX/215 (see Table 47 for ΔθMAX  
Table 60. 16-Bit Delta Angle Data Format Examples  
)
Delta Angle (°)  
Decimal Hex.  
Binary  
The X_DELTANG_LOW (see Table 48 and Table 49) and  
X_DELTANG_OUT (see Table 50 and Table 51) registers  
contain the delta angle data for the x-axis.  
ΔθMAX × (215−1)/215 +32,767  
0x7FFF 0111 1111 1110 1111  
0x0002 0000 0000 0000 0010  
0x0001 0000 0000 0000 0001  
0x0000 0000 0000 0000 0000  
0xFFFF 1111 1111 1111 1111  
0xFFFE 1111 1111 1111 1110  
0x8000 1000 0000 0000 0000  
+ΔθMAX/214  
+ΔθMAX/215  
0
+2  
+1  
0
Y-Axis Delta Angle (Y_DELTANG_LOW and  
Y_DELTANG_OUT)  
−ΔθMAX/215  
−ΔθMAX/214  
−ΔθMAX  
−1  
−2  
−32,768  
Table 52. Y_DELTANG_LOW Register Definitions  
Addresses  
Default  
Access  
Flash Backup  
0x28, 0x29  
Not applicable  
R
No  
Table 61. 32-Bit Delta Angle Data Format Examples  
Delta Angle (°)  
+ΔθMAX × (231 − 1)/231  
+ΔθMAX/230  
+ΔθMAX/231  
0
−ΔθMAX/231  
−ΔθMAX/230  
−ΔθMAX  
Decimal  
Hex.  
Table 53. Y_DELTANG_LOW Bit Definitions  
+2,147,483,647 0x7FFFFFFF  
Bits  
Description  
+2  
+1  
0
−1  
−2  
0x00000002  
0x00000001  
0x00000000  
0xFFFFFFFF  
0xFFFFFFFE  
[15:0]  
Y-axis delta angle data; low word  
Table 54. Y_DELTANG_OUT Register Definitions  
Addresses  
Default  
Access  
Flash Backup  
0x2A, 0x2B  
Not applicable  
R
No  
−2,147,483,648 0x80000000  
Table 55. Y_DELTANG_OUT Bit Definitions  
Bits Description  
[15:0] Y-axis delta angle data; twos complement, 0° = 0x0000,  
1 LSB = ΔθMAX/215 (see Table 47 for ΔθMAX  
DELTA VELOCITY  
In addition to the linear acceleration measurements along each  
axis (x, y, and z), the ADIS16467 also provides delta velocity  
measurements that represent a calculation of linear velocity  
change between each sample update.  
)
The Y_DELTANG_LOW (see Table 52 and Table 53) and  
Y_DELTANG_OUT (see Table 54 and Table 55) registers  
contain the delta angle data for the y-axis.  
Z-AXIS  
ΔV  
z
Z-Axis Delta Angle (Z_DELTANG_LOW and  
Z_DELTANG_OUT)  
Y-AXIS  
X-AXIS  
Table 56. Z_DELTANG_LOW Register Definitions  
ΔV  
x
ΔV  
y
Addresses  
Default  
Access  
Flash Backup  
0x2C, 0x2D  
Not applicable  
R
No  
Table 57. Z_DELTANG_LOW Bit Definitions  
Bits  
Description  
Figure 43. Delta Velocity Axis and Polarity Assignments  
[15:0]  
Z-axis delta angle data; low word  
Rev. C | Page 22 of 34  
 
 
 
 
 
 
 
 
 
 
 
Data Sheet  
ADIS16467  
The delta velocity outputs represent an integration of the  
acceleration measurements and use the following formula for  
all three axes (x-axis displayed):  
Y-Axis Delta Velocity (Y_DELTVEL_LOW and  
Y_DELTVEL_OUT)  
Table 66. Y_DELTVEL_LOW Register Definition  
D1  
1
Addresses  
Default  
Access  
Flash Backup  
  
Vx, nD  
a
x, nDd ax, nD d 1  
2fS  
0x34, 0x35  
Not applicable  
R
No  
d 0  
where:  
x is the x-axis.  
Table 67. Y_DELTVEL_LOW Bit Definitions  
Bits  
Description  
n is the sample time, prior to the decimation filter.  
D is the decimation rate (DEC_RATE + 1, see Table 109).  
fS is the sample rate.  
[15:0]  
Y-axis delta velocity data; additional resolution bits  
Table 68. Y_DELTVEL_OUT Register Definition  
d is the incremental variable in the summation formula.  
aX is the x-axis acceleration.  
Addresses  
Default  
Access  
Flash Backup  
0x36, 0x37  
Not applicable  
R
No  
When using the internal sample clock, fS is equal to a nominal rate  
of 2000 SPS. For better precision in this measurement, measure the  
internal sample rate (fS) using the data ready signal on the DR pin  
(DEC_RATE = 0x0000, see Table 108), divide each delta angle  
result (from the delta angle output registers) by the data ready  
frequency and multiply it by 2000. Each axis of the delta velocity  
measurements has two output data registers. Figure 44 shows how  
these two registers combine to support a 32-bit, twos complement  
data format for the delta velocity measurements along the x-axis.  
This format also applies to the y- and z-axes.  
Table 69. Y_DELTVEL_OUT Bit Definitions  
Bits Description  
[15:0] Y-axis delta velocity data; twos complement,  
400 m/sec range, 0 m/sec = 0x0000;  
1 LSB = 400 m/sec ÷ 215 = ~0.01221 m/sec  
The Y_DELTVEL_LOW (see Table 66 and Table 67) and  
Y_DELTVEL_OUT (see Table 68 and Table 69) registers  
contain the delta velocity data for the y-axis.  
Z-Axis Delta Velocity (Z_DELTVEL_LOW and  
Z_DELTVEL_OUT)  
X_DELTVEL_OUT  
X_DELTVEL_LOW  
BIT 0 BIT 15  
Table 70. Z_DELTVEL_LOW Register Definition  
BIT 15  
BIT 0  
Addresses  
Default  
Access  
Flash Backup  
X-AXIS DELTA VELOCITY DATA  
0x38, 0x39  
Not applicable  
R
No  
Figure 44. Delta Velocity Output Data Structure  
Table 71. Z_DELTVEL_LOW Bit Definitions  
X-Axis Delta Velocity (X_DELTVEL_LOW and  
X_DELTVEL_OUT)  
Bits  
Description  
[15:0]  
Z-axis delta velocity data; additional resolution bits  
Table 62. X_DELTVEL_LOW Register Definition  
Addresses  
Default  
Access  
Flash Backup  
Table 72. Z_DELTVEL_OUT Register Definition  
0x30, 0x31  
Not applicable  
R
No  
Addresses  
Default  
Access  
Flash Backup  
0x3A, 0x3B  
Not applicable  
R
No  
Table 63. X_DELTVEL_LOW Bit Definitions  
Bits  
Description  
Table 73. Z_DELTVEL_OUT Bit Definitions  
Bits Description  
[15:0]  
X-axis delta velocity data; additional resolution bits  
[15:0] Z-axis delta velocity data; twos complement,  
400 m/sec range, 0 m/sec = 0x0000;  
Table 64. X_DELTVEL_OUT Register Definition  
1 LSB = 400 m/sec ÷ 215 = ~0.01221 m/sec  
Addresses  
Default  
Access  
Flash Backup  
0x32, 0x33  
Not applicable  
R
No  
The Z_DELTVEL_LOW (see Table 70 and Table 71) and  
Z_DELTVEL_OUT (see Table 72 and Table 73) registers  
contain the delta velocity data for the z-axis.  
Table 65. X_DELTVEL_OUT Bit Definitions  
Bits  
Description  
[15:0]  
X-axis delta velocity data; twos complement,  
400 m/sec range, 0 m/sec = 0x0000;  
Delta Velocity Resolution  
Table 74 and Table 75 offer various numerical examples that  
demonstrate the format of the delta velocity data in both 16-bit  
and 32-bit formats.  
1 LSB = 400 m/sec ÷ 215 = ~0.01221 m/sec  
The X_DELTVEL_LOW (see Table 62 and Table 63) and  
X_DELTVEL_OUT (see Table 64 and Table 65) registers  
contain the delta velocity data for the x-axis.  
Rev. C | Page 23 of 34  
 
 
 
 
 
 
 
 
 
 
ADIS16467  
Data Sheet  
Table 74. 16-Bit Delta Velocity Data Format Examples  
and the data format examples in Table 13 apply to the 32-bit  
combination of the XG_BIAS_LOW and XG_BIAS_HIGH  
registers. See Figure 45 for an illustration of how these two registers  
combine and influence the x-axis gyroscope measurements.  
Velocity (m/sec)  
+400 × (215 − 1)/215 +32,767  
Decimal Hex.  
Binary  
0x7FFF 0111 1111 1111 1111  
0x0002 0000 0000 0000 0010  
0x0001 0000 0000 0000 0001  
0x0000 0000 0000 0000 0000  
0xFFFF 1111 1111 1111 1111  
0xFFFE 1111 1111 1111 1110  
0x8000 1000 0000 0000 0000  
+400/214  
+400/215  
0
−400/215  
−400/214  
−400  
+2  
+1  
0
−1  
−2  
−32,768  
FACTORY  
X-AXIS  
GYRO  
CALIBRATION  
AND  
X_GYRO_OUT X_GYRO_LOW  
FILTERING  
XG_BIAS_HIGH XG_BIAS_LOW  
Figure 45. User Calibration Signal Path, Gyroscopes  
Table 75. 32-Bit Delta Velocity Data Format Examples  
Calibration, Gyroscope Bias (YG_BIAS_LOW and  
YG_BIAS_HIGH)  
Velocity (m/sec)  
+400 × (231 − 1)/231  
+400/230  
+400/231  
0
Decimal  
Hex.  
+2,147,483,647  
+2  
+1  
0
0x7FFFFFFF  
0x00000002  
0x00000001  
0x00000000  
0xFFFFFFFF  
0xFFFFFFFE  
0x80000000  
Table 80. YG_BIAS_LOW Register Definition  
Addresses  
Default  
Access  
Flash Backup  
0x44, 0x45  
0x0000  
R/W  
Yes  
−400/231  
−400/230  
−400  
−1  
−2  
Table 81. YG_BIAS_LOW Bit Definitions  
Bits Description  
+2,147,483,648  
[15:0] Y-axis gyroscope offset correction; lower word  
CALIBRATION  
Table 82. YG_BIAS_HIGH Register Definition  
The signal chain of each inertial sensor (accelerometers and  
gyroscopes) includes the application of unique correction  
formulas, which are derived from extensive characterization of  
bias, sensitivity, alignment, response to linear acceleration  
(gyroscopes), and point of percussion (accelerometer location)  
over a temperature range of −40°C to +85°C, for each ADIS16467.  
These correction formulas are not accessible, but users do have  
the opportunity to adjust the bias for each sensor individually  
through user accessible registers. These correction factors  
follow immediately after the factory derived correction formulas  
in the signal chain, which processes at a rate of 2000 Hz when  
using the internal sample clock.  
Addresses  
Default  
Access  
Flash Backup  
0x46, 0x47  
0x0000  
R/W  
Yes  
Table 83. YG_BIAS_HIGH Bit Definitions  
Bits Description  
[15:0] Y-axis gyroscope offset correction factor, upper word  
The YG_BIAS_LOW (see Table 80 and Table 81) and YG_BIAS_  
HIGH (see Table 82 and Table 83) registers combine to allow  
users to adjust the bias of the y-axis gyroscopes. The data format  
examples in Table 12 also apply to the YG_BIAS_HIGH register,  
and the data format examples in Table 13 apply to the 32-bit  
combination of the YG_BIAS_LOW and YG_BIAS_HIGH  
registers. These registers influence the y-axis gyroscope  
measurements in the same manner that the XG_BIAS_LOW  
and XG_BIAS_HIGH registers influence the x-axis gyroscope  
measurements (see Figure 45).  
Calibration, Gyroscope Bias (XG_BIAS_LOW and  
XG_BIAS_HIGH)  
Table 76. XG_BIAS_LOW Register Definition  
Addresses  
Default  
Access  
Flash Backup  
0x40, 0x41  
0x0000  
R/W  
Yes  
Calibration, Gyroscope Bias (ZG_BIAS_LOW and  
ZG_BIAS_HIGH)  
Table 77. XG_BIAS_LOW Bit Definitions  
Bits  
Description  
Table 84. ZG_BIAS_LOW Register Definition  
[15:0]  
X-axis gyroscope offset correction; lower word  
Addresses  
Default  
Access  
Flash Backup  
0x48, 0x49  
0x0000  
R/W  
Yes  
Table 78. XG_BIAS_HIGH Register Definition  
Addresses  
Default  
Access  
Flash Backup  
Table 85. ZG_BIAS_LOW Bit Definitions  
Bits Description  
0x42, 0x43  
0x0000  
R/W  
Yes  
[15:0] Z-axis gyroscope offset correction; lower word  
Table 79. XG_BIAS_HIGH Bit Definitions  
Bits Description  
Table 86. ZG_BIAS_HIGH Register Definition  
[15:0] X-axis gyroscope offset correction factor, upper word  
Addresses  
Default  
Access  
Flash Backup  
0x4A, 0x4B  
0x0000  
R/W  
Yes  
The XG_BIAS_LOW (see Table 76 and Table 77) and XG_BIAS_  
HIGH (see Table 78 and Table 79) registers combine to allow  
users to adjust the bias of the x-axis gyroscopes. The data format  
examples in Table 12 also apply to the XG_BIAS_HIGH register,  
Rev. C | Page 24 of 34  
 
 
 
 
 
 
 
 
 
 
 
 
Data Sheet  
ADIS16467  
Table 87. ZG_BIAS_HIGH Bit Definitions  
Table 94. YA_BIAS_HIGH Register Definition  
Bits  
Description  
Addresses  
Default  
Access  
Flash Backup  
[15:0] Z-axis gyroscope offset correction factor, upper word  
0x52, 0x53  
0x0000  
R/W  
Yes  
The ZG_BIAS_LOW (see Table 84 and Table 85) and ZG_BIAS_  
HIGH (see Table 86 and Table 87) registers combine to allow  
users to adjust the bias of the z-axis gyroscopes. The data format  
examples in Table 12 also apply to the ZG_BIAS_HIGH register,  
and the data format examples in Table 13 apply to the 32-bit  
combination of the ZG_BIAS_LOW and ZG_BIAS_HIGH  
registers. These registers influence the z-axis gyroscope  
measurements in the same manner that the XG_BIAS_LOW  
and XG_BIAS_HIGH registers influence the x-axis gyroscope  
measurements (see Figure 45).  
Table 95. YA_BIAS_HIGH Bit Definitions  
Bits Description  
[15:0] Y-axis accelerometer offset correction, upper word  
The YA_BIAS_LOW (see Table 92 and Table 93) and YA_BIAS_  
HIGH (see Table 94 and Table 95) registers combine to allow users  
to adjust the bias of the y-axis accelerometers. The data format  
examples in Table 26 also apply to the YA_BIAS_HIGH register,  
and the data format examples in Table 27 apply to the 32-bit  
combination of the YA_BIAS_LOW and YA_BIAS_HIGH  
registers. These registers influence the y-axis accelerometer  
measurements in the same manner that the XA_BIAS_LOW and  
XA_BIAS_HIGH registers influence the x-axis accelerometer  
measurements (see Figure 46).  
Calibration, Accelerometer Bias (XA_BIAS_LOW and  
XA_BIAS_HIGH)  
Table 88. XA_BIAS_LOW Register Definition  
Addresses  
Default  
Access  
Flash Backup  
Calibration, Accelerometer Bias (ZA_BIAS_LOW and  
ZA_BIAS_HIGH)  
0x4C, 0x4D  
0x0000  
R/W  
Yes  
Table 89. XA_BIAS_LOW Bit Definitions  
Table 96. ZA_BIAS_LOW Register Definition  
Bits  
Description  
Addresses  
Default  
Access  
Flash Backup  
[15:0]  
X-axis accelerometer offset correction; lower word  
0x54, 0x55  
0x0000  
R/W  
Yes  
Table 90. XA_BIAS_HIGH Register Definition  
Table 97. ZA_BIAS_LOW Bit Definitions  
Bits Description  
Addresses  
Default  
Access  
Flash Backup  
0x4E, 0x4F  
0x0000  
R/W  
Yes  
[15:0] Z-axis accelerometer offset correction; lower word  
Table 91. XA_BIAS_HIGH Bit Definitions  
Bits Description  
Table 98. ZA_BIAS_HIGH Register Definition  
Addresses  
Default  
Access  
Flash Backup  
[15:0] X-axis accelerometer offset correction, upper word  
0x56, 0x57  
0x0000  
R/W  
Yes  
The XA_BIAS_LOW (see Table 88 and Table 89) and XA_BIAS_  
HIGH (see Table 90 and Table 91) registers combine to allow users  
to adjust the bias of the x-axis accelerometers. The data format  
examples in Table 26 also apply to the XA_BIAS_HIGH register,  
and the data format examples in Table 27 apply to the 32-bit  
combination of the XA_BIAS_LOW and XA_BIAS_HIGH  
registers. See Figure 46 for an illustration of how these two registers  
combine and influence the x-axis accelerometer measurements.  
Table 99. ZA_BIAS_HIGH Bit Definitions  
Bits Description  
[15:0] Z-axis accelerometer offset correction, upper word  
The ZA_BIAS_LOW (see Table 96 and Table 97) and ZA_BIAS_  
HIGH (see Table 98 and Table 99) registers combine to allow  
users to adjust the bias of the z-axis accelerometers. The data  
format examples in Table 26 also apply to the ZA_BIAS_HIGH  
register, and the data format examples in Table 27 apply to the  
32-bit combination of the ZA_BIAS_LOW and ZA_BIAS_HIGH  
registers. These registers influence the z-axis accelerometer  
measurements in the same manner that the XA_BIAS_LOW and  
XA_BIAS_HIGH registers influence the x-axis accelerometer  
measurements (see Figure 46).  
FACTORY  
X-AXIS  
ACCL  
CALIBRATION  
AND  
X_ACCL_OUT X_ACCL_LOW  
FILTERING  
XA_BIAS_HIGH XA_BIAS_LOW  
Figure 46. User Calibration Signal Path, Accelerometers  
Filter Control Register (FILT_CTRL)  
Calibration, Accelerometer Bias (YA_BIAS_LOW and  
YA_BIAS_HIGH)  
Table 100. FILT_CTRL Register Definition  
Addresses  
Default  
Access  
Flash Backup  
Table 92. YA_BIAS_LOW Register Definition  
0x5C, 0x5D  
0x0000  
R/W  
Yes  
Addresses  
Default  
Access  
Flash Backup  
0x50, 0x51  
0x0000  
R/W  
Yes  
Table 101. FILT_CTRL Bit Definitions  
Bits  
Description  
Table 93. YA_BIAS_LOW Bit Definitions  
[15:3]  
[2:0]  
Not used  
Bits  
Description  
Filter Size Variable B, number of taps in each stage; N = 2B  
[15:0]  
Y-axis accelerometer offset correction; lower word  
Rev. C | Page 25 of 34  
 
 
 
 
 
 
 
 
 
 
 
ADIS16467  
Data Sheet  
The FILT_CTRL register (see Table 100 and Table 101)  
provides user controls for the Bartlett window FIR filter (see  
Figure 23), which contains two cascaded averaging filters. For  
example, use the following sequence to set Register FILT_CTRL,  
Bits[2:0] = 100, which sets each stage to have 16 taps: 0xCC04 and  
0xCD00. Figure 47 provides the frequency response for several  
settings in the FILT_CTRL register.  
Table 105. MSC_CTRL Bit Definitions  
Bits Description  
[15:8] Not used  
7
Linear g compensation for gyroscopes (1 = enabled)  
Point of percussion alignment (1 = enabled)  
Not used, always set to zero  
SYNC function setting  
6
5
[4:2]  
0
–20  
–40  
–60  
–80  
111 = reserved (do not use)  
110 = reserved (do not use)  
101 = pulse sync mode  
100 = reserved (do not use)  
011 = output sync mode  
010 = scaled sync mode  
001 = direct sync mode  
000 = internal clock mode (default)  
SYNC polarity (input or output)  
1 = rising edge triggers sampling  
0 = falling edge triggers sampling  
DR polarity  
–100  
1
0
N = 2  
–120  
N = 4  
N = 16  
N = 64  
–140  
0.001  
0.01  
FREQUENCY (f/fS  
0.1  
1
1 = active high when data is valid  
0 = active low when data is valid  
Figure 47. Bartlett Window, FIR Filter Frequency Response  
(Phase Delay = N Samples)  
Point of Percussion  
Register MSC_CTRL, Bit 6 (see Table 105) offers an on/off control  
for the point of percussion alignment function, which maps the  
accelerometer sensors to the corner of the package shown in  
Figure 48. The factory default setting in the MSC_CTRL register  
activates this function. To turn this function off while retaining  
the rest of the factory default settings in the MSC_CTRL register,  
set Register MSC_CTRL, Bit 6 = 0, using the following command  
sequence on the DIN pin: 0xE081, then 0xE100.  
Range Identifier (RANG_MDL)  
Table 102. RANG_MDL Register Definition  
Addresses  
Default  
Access  
Flash Backup  
0x5E, 0x5F  
Not applicable  
R
No  
Table 103. RANG_MDL Bit Definitions  
Bits  
Description  
[15:3]  
[3:2]  
Not used  
Gyroscope measurement range  
00 = 125°/sec (ADIS16467-1BMLZ)  
01 = 500°/sec (ADIS16467-2BMLZ)  
10 = reserved  
11 = 2000°/sec (ADIS16467-3BMLZ)  
Reserved, binary value = 11  
[1:0]  
Miscellaneous Control Register (MSC_CTRL)  
Table 104. MSC_CTRL Register Definition  
POINT OF PERCUSSION  
ALIGNMENT REFERENCE POINT  
SEE MSC_CTRL[6]  
Addresses  
Default  
Access  
Flash Backup  
0x60, 0x61  
0x00C1  
R/W  
Yes  
Figure 48. Point of Percussion Reference Point  
Linear Acceleration Effect on Gyroscope Bias  
Register MSC_CTRL, Bit 7 (see Table 105) provides an on/off  
control for the linear g compensation in the signal calibration  
routines of the gyroscope. The factory default contents in the  
MSC_CTRL register enable this compensation. To turn the  
compensation off, set Register MSC_CTRL, Bit 7 = 0, using  
the following sequence on the DIN pin: 0xE041, 0xE100.  
Rev. C | Page 26 of 34  
 
 
 
 
Data Sheet  
ADIS16467  
Internal Clock Mode  
Output Sync Mode  
Register MSC_CTRL, Bits[4:2] (see Table 105), provide five  
different configuration options for controlling the clock (fSM; see  
Figure 20 and Figure 21), which controls data acquisition and  
processing for the inertial sensors. The default setting for Register  
MSC_CTRL, Bits[4:2] is 000 (binary), which places the ADIS16467  
in internal clock mode. In this mode, an internal clock controls  
inertial sensor data acquisition and processing at a nominal rate  
of 2000 Hz. In this mode, each accelerometer data update comes  
from an average of two data samples (sample rate = 4000 Hz).  
When Register MSC_CTRL, Bits[4:2] = 011, the ADIS16467  
operates in output sync mode, which is the same as internal  
clock mode with one exception: the SYNC pin pulses when  
the internal processor collects data from the inertial sensors.  
Figure 49 provides an example of this signal.  
GYROSCOPE AND  
ACCELEROMETER  
DATA ACQUISITION  
ACCELEROMETER  
DATA ACQUISITION  
SYNC  
Direct Sync Mode  
250µs  
500µs  
When Register MSC_CTRL, Bits[4:2] = 001, the ADIS16467  
operates in direct sync mode. The signal on the SYNC pin directly  
controls the sample clock. In this mode, the internal processor  
collects gyroscope data samples on the rising edge of the clock  
signal (SYNC pin) and collects accelerometer data samples on both  
rising and falling edges of the clock signal. The internal processor  
averages both accelerometer samples (from rising and falling edge  
of the clock signal) together to produce a single data sample.  
Therefore, when operating the ADIS16467 in this mode, the clock  
signal (SYNC pin) must have a duty cycle of 50ꢀ and a frequency  
that is within the range of 1900 Hz to 2100 Hz. The ADIS16467 is  
capable of operating when the clock frequency (SYNC pin) is less  
than 1900 Hz, but with risk of performance degradation, especially  
when tracking dynamic inertial conditions (including vibration).  
Figure 49. Sync Output Signal, Register MSC_CTRL, Bits[4:2] = 011  
Pulse Sync Mode  
When operating in pulse sync mode (Register MSC_CTRL,  
Bits[4:2] = 101), the internal processor only collects accelerometer  
samples on the leading edge of the clock signal, which enables the  
use of a narrow pulse width (see Table 2) in the clock signal on  
the SYNC pin. Using pulse sync mode also lowers the bandwidth  
on the inertial sensors to 370 Hz. When operating in the pulse  
sync mode, the ADIS16467 provides the best performance when  
the frequency of the clock signal (SYNC pin) is within the range  
of 1000 Hz to 2100 Hz. The ADIS16467 is capable of operating  
when the clock frequency (SYNC pin) is less than 1000 Hz, but  
with risk of performance degradation, especially when tracking  
dynamic inertial conditions (including vibration).  
Scaled Sync Mode  
When Register MSC_CTRL, Bits[4:2] = 010, the ADIS16467  
operates in scaled sync mode that supports a frequency range of  
1 Hz to 128 Hz for the clock signal on the SYNC pin. This  
mode of operation is particularly useful when synchronizing  
the data processing with a PPS signal from a global positioning  
system (GPS) receiver or with a synchronization signal from a  
video processing system. When operating in scaled sync mode,  
the frequency of the sample clock is equal to the product of the  
external clock scale factor, KECSF (from the UP_SCALE register,  
see Table 106 and Table 107), and the frequency of the clock  
signal on the SYNC pin.  
Decimation Filter (DEC_RATE)  
Table 108. DEC_RATE Register Definition  
Addresses  
Default  
Access  
Flash Backup  
0x64, 0x65  
0x0000  
R/W  
Yes  
Table 109. DEC_RATE Bit Definitions  
Bits  
Description  
[15:11]  
[10:0]  
Don’t care  
Decimation rate, binary format, maximum = 1999  
The DEC_RATE register (see Table 108 and Table 109) provides  
user control for the averaging decimating filter, which averages  
and decimates the gyroscope and accelerometer data; it also  
extends the time that the delta angle and the delta velocity track  
between each update. When the ADIS16467 operates in internal  
clock mode (see Register MSC_CTRL, Bits[4:2], in Table 105),  
the nominal output data rate is equal to 2000/(DEC_RATE + 1).  
For example, set DEC_RATE = 0x0013 to reduce the output  
sample rate to 100 SPS (2000 ÷ 20), using the following DIN pin  
sequence: 0xE413, then 0xE500.  
For example, when using a 1 Hz input signal, set UP_SCALE =  
0x07D0 (KECSF = 2000 (decimal)) to establish a sample rate of  
2000 SPS for the inertial sensors and the signal processing. Use  
the following sequence on the DIN pin to configure UP_SCALE  
for this scenario: 0xE2D0, then 0xE307.  
Table 106. UP_SCALE Register Definition  
Addresses  
Default  
Access  
Flash Backup  
0x62, 0x63  
0x07D0  
R/W  
Yes  
Table 107. UP_SCALE Bit Definitions  
Data Update Rate in External Sync Modes  
Bits  
Description  
When using the input sync option, in scaled sync mode  
(Register MSC_CTRL, Bits[4:2] = 010, see Table 105), the  
output data rate is equal to  
[15:0]  
KECSF; binary format  
(fSYNC × KECSF)/(DEC_RATE + 1)  
Rev. C | Page 27 of 34  
 
 
 
 
 
ADIS16467  
Data Sheet  
where:  
Table 1 provides the execution time for each GLOB_CMD  
command.  
f
SYNC is the frequency of the clock signal on the SYNC pin.  
K
ESCF is the value from the UP_SCALE register (see Table 107).  
Software Reset  
When using direct sync mode and pulse sync mode, KESCF = 1.  
Use the following DIN sequence to set Register GLOB_CMD,  
Bit 7 = 1, which triggers a reset: 0xE880, then 0xE900. This reset  
clears all data, and then restarts data sampling and processing.  
This function provides a firmware alternative to toggling the  
Continuous Bias Estimation (NULL_CNFG)  
Table 110. NULL_CNFG Register Definition  
Addresses  
Default  
Access  
Flash Backup  
RST  
pin (see Table 5, Pin 8).  
0x66, 0x67  
0x070A  
R/W  
Yes  
Flash Memory Test  
Table 111. NULL_CNFG Bit Definitions  
Bits Description  
[15:14] Not used  
Use the following DIN sequence to set Register GLOB_CMD,  
Bit 4 = 1, which tests the flash memory: 0xE810, then 0xE900.  
The command performs a CRC computation on the flash memory  
(excluding user register locations) and compares it to the original  
CRC value, which comes from the factory configuration process.  
If the current CRC value does not match the original CRC  
value, Register DIAG_STAT, Bit 6 (see Table 10), rises to 1,  
indicating a failing result.  
13  
12  
11  
10  
9
Z-axis accelerometer bias correction enable (1 = enabled)  
Y-axis accelerometer bias correction enable (1 = enabled)  
X-axis accelerometer bias correction enable (1 = enabled)  
Z-axis gyroscope bias correction enable (1 = enabled)  
Y-axis gyroscope bias correction enable (1 = enabled)  
X-axis gyroscope bias correction enable (1 = enabled)  
Not used  
8
Flash Memory Update  
[7:4]  
[3:0]  
Use the following DIN sequence to set Register GLOB_CMD,  
Bit 3 = 1, which triggers a backup of all user configurable registers  
in the flash memory: 0xE808, then 0xE900. Register DIAG_STAT,  
Bit 2 (see Table 10), identifies success (0) or failure (1) in  
completing this process.  
Time base control (TBC), range: 0 to 12 (default = 10);  
tB = 2TBC/2000, time base; tA = 64 × tB, average time  
The NULL_CNFG register (see Table 110 and Table 111) provides  
the configuration controls for the continuous bias estimator (CBE),  
which associates with the bias correction update command in  
Register GLOB_CMD, Bit 0 (see Table 113). Register NULL_  
CNFG, Bits[3:0], establishes the total average time (tA) for the  
bias estimates and Register NULL_CNFG, Bits[13:8], provide the  
on/off controls for each sensor. The factory default configuration  
for the NULL_CNFG register enables the bias null command  
for the gyroscopes, disables the bias null command for the  
accelerometers, and sets the average null time to ~32 sec.  
Sensor Self Test  
Use the following DIN sequence to set Register GLOB_CMD,  
Bit 2 = 1, which triggers the self test routine for the inertial sensors:  
0xE804, then 0xE900. The self test routine uses the following  
steps to validate the integrity of each inertial sensor:  
1. Measure the output on each sensor.  
2. Activate an internal stimulus on the mechanical elements of  
each sensor to move them in a predictable manner and  
create an observable response in the sensors.  
3. Measure the output response on each sensor.  
4. Deactivate the internal stimulus on each sensor.  
5. Calculate the difference between the sensor measurements  
from Step 1 (stimulus is off) and from Step 3 (stimulus is on).  
6. Compare the difference with internal pass and fail criteria.  
7. Report the pass and fail result to Register DIAG_STAT, Bit 5  
(see Table 10).  
Global Commands (GLOB_CMD)  
Table 112. GLOB_CMD Register Definition  
Addresses  
Default  
Access  
Flash Backup  
0x68, 0x69  
Not applicable  
W
No  
Table 113. GLOB_CMD Bit Definitions  
Bits  
Description  
[15:8]  
Not used  
7
Software reset  
[6:5]  
4
Not used  
Motion during the execution of this test can indicate a false failure.  
Flash memory test  
Flash memory update  
Sensor self test  
Factory Calibration Restore  
3
2
Use the following DIN sequence to set Register GLOB_CMD,  
Bit 1 = 1 to restore the factory default settings for the MSC_  
CTRL, DEC_RATE, and FILT_CTRL registers and to clear all  
user configurable bias correction settings: 0xE802, then 0xE900.  
Executing this command results in writing 0x0000 to the following  
registers: XG_BIAS_LOW, XG_BIAS_HIGH, YG_BIAS_LOW,  
YG_BIAS_HIGH, ZG_BIAS_LOW, ZG_BIAS_HIGH,  
1
Factory calibration restore  
Bias correction update  
0
The GLOB_CMD register (see Table 112 and Table 113) provides  
trigger bits for several operations. Write a 1 to the appropriate bit  
in GLOB_CMD to start a particular function. During the  
execution of these commands, data production stops, pulsing stops  
on the DR pin, and the SPI interface does not respond to requests.  
XA_BIAS_LOW, XA_BIAS_HIGH, YA_BIAS_LOW,  
YA_BIAS_HIGH, ZA_BIAS_LOW, and ZA_BIAS_HIGH.  
Rev. C | Page 28 of 34  
 
 
 
 
Data Sheet  
ADIS16467  
Table 121. PROD_ID Bit Definitions  
Bias Correction Update  
Bits  
Description  
Use the following DIN pin sequence to set Register GLOB_CMD,  
Bit 0 = 1 to trigger a bias correction, using the correction factors  
from the CBE (see Table 111): 0xE801, then 0xE900.  
[15:0]  
Product identification = 0x4053  
The PROD_ID register (see Table 120 and Table 121) contains  
the numerical portion of the device number (16,467). See Figure 33  
for an example of how to use a looping read of this register to  
validate the integrity of the communication.  
Firmware Revision (FIRM_REV)  
Table 114. FIRM_REV Register Definition  
Addresses  
Default  
Access  
Flash Backup  
Serial Number (SERIAL_NUM)  
0x6C, 0x6D  
Not applicable  
R
No  
Table 122. SERIAL_NUM Register Definition  
Table 115. FIRM_REV Bit Definitions  
Addresses  
Default  
Access  
Flash Backup  
Bits  
Description  
0x74, 0x75  
Not applicable  
R
No  
[15:0]  
Firmware revision, binary coded decimal (BCD) format  
Table 123. SERIAL_NUM Bit Definitions  
Bits Description  
[15:0] Lot specific serial number  
The FIRM_REV register (see Table 114 and Table 115) provides  
the firmware revision for the internal firmware. This register uses a  
BCD format, where each nibble represents a digit. For example,  
if FIRM_REV = 0x0104, the firmware revision is 1.04.  
Scratch Registers (USER_SCR_1 to USER_SCR_3)  
Firmware Revision Day and Month (FIRM_DM)  
Table 124. USER_SCR_1 Register Definition  
Table 116. FIRM_DM Register Definition  
Addresses  
Default  
Access  
Flash Backup  
Addresses  
Default  
Access  
Flash Backup  
0x76, 0x77  
Not applicable  
R/W  
Yes  
0x6E, 0x6F  
Not applicable  
R
No  
Table 125. USER_SCR_1 Bit Definitions  
Bits Description  
Table 117. FIRM_DM Bit Definitions  
Bits  
Description  
[15:0] User defined  
[15:8]  
[7:0]  
Factory configuration month, BCD format  
Factory configuration day, BCD format  
Table 126. USER_SCR_2 Register Definition  
Addresses  
Default  
Access  
Flash Backup  
The FIRM_DM register (see Table 116 and Table 117) contains  
the month and day of the factory configuration date. Register  
FIRM_DM, Bits[15:8], contain digits that represent the month  
of the factory configuration. For example, November is the 11th  
month in a year and is represented by Register FIRM_DM,  
Bits[15:8] = 0x11. Register FIRM_DM, Bits[7:0], contain the  
day of factory configuration. For example, the 27th day of the  
month is represented by Register FIRM_DM, Bits[7:0] = 0x27.  
0x78, 0x79  
Not applicable  
R/W  
Yes  
Table 127. USER_SCR_2 Bit Definitions  
Bits Description  
[15:0] User defined  
Table 128. USER_SCR_3 Register Definition  
Addresses  
Default  
Access  
Flash Backup  
0x7A, 0x7B  
Not applicable  
R/W  
Yes  
Firmware Revision Year (FIRM_Y)  
Table 129. USER_SCR_3 Bit Definitions  
Bits Description  
[15:0] User defined  
Table 118. FIRM_Y Register Definition  
Addresses  
Default  
Access  
Flash Backup  
0x70, 0x71  
Not applicable  
R
No  
The USER_SCR_1 (see Table 124 and Table 125), USER_SCR_2  
(see Table 126 and Table 127), and USER_SCR_3 (see Table 128  
and Table 129) registers provide three locations for the user to  
store information. For nonvolatile storage, use the manual flash  
memory update command (Register GLOB_CMD, Bit 3, see  
Table 113), after writing information to these registers.  
Table 119. FIRM_Y Bit Definitions  
Bits  
Description  
[15:0]  
Factory configuration year, BCD format  
The FIRM_Y register (see Table 118 and Table 119) contains  
the year of the factory configuration date. For example, the  
year, 2017, is represented by FIRM_Y = 0x2017.  
Flash Memory Endurance Counter (FLSHCNT_LOW and  
FLSHCNT_HIGH)  
Product Identification (PROD_ID)  
Table 130. FLSHCNT_LOW Register Definition  
Table 120. PROD_ID Register Definition  
Addresses  
Default  
Access  
Flash Backup  
Addresses  
Default  
Access  
Flash Backup  
0x7C, 0x7D  
Not applicable  
R
No  
0x72, 0x73  
0x4053  
R
No  
Rev. C | Page 29 of 34  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ADIS16467  
Data Sheet  
Table 131. FLSHCNT_LOW Bit Definitions  
Bits  
Description  
600  
450  
300  
[15:0] Flash memory write counter, low word  
Table 132. FLSHCNT_HIGH Register Definition  
Addresses  
Default  
Access  
Flash Backup  
0x7E, 0x7F  
Not applicable  
R
No  
Table 133. FLSHCNT_HIGH Bit Definitions  
Bits Description  
[15:0] Flash memory write counter, high word  
150  
0
The FLSHCNT_LOW (see Table 130 and Table 131) and  
FLSHCNT_HIGH (see Table 132 and Table 133) registers  
combine to provide a 32-bit, binary counter that tracks the  
number of flash memory write cycles. In addition to the  
number of write cycles, the flash memory has a finite service  
lifetime, which depends on the junction temperature. Figure 50  
provides guidance for estimating the retention life for the flash  
memory at specific junction temperatures. The junction  
temperature is approximately 7°C above the case temperature.  
30  
40  
55  
70  
85  
100  
125  
135  
150  
JUNCTION TEMPERATURE (°C)  
Figure 50. Flash Memory Retention  
Rev. C | Page 30 of 34  
 
 
 
 
Data Sheet  
ADIS16467  
APPLICATIONS INFORMATION  
ASSEMBLY AND HANDLING TIPS  
Mounting Tips  
BREAKOUT BOARD  
The ADIS16IMU4/PCBZ breakout board provides a ribbon  
cable interface for simple connection to an embedded processor  
development system. Figure 52 shows the electrical schematic,  
and Figure 53 shows a top view for this breakout board. J2 mates  
directly to the electrical connector on the ADIS16467, and J1 easily  
mates to a 1 mm ribbon cable system.  
The ADIS16467 package supports installation onto a PCB or  
rigid enclosure, using three M2 or 2-56 machine screws, using  
a torque that is between 20 inch ounces and 40 inch ounces.  
When designing a mechanical interface for the ADIS16467,  
avoid placing unnecessary translational stress on the electrical  
connector because this can influence the bias repeatability  
behaviors of the inertial sensors. When the same PCB also has  
the mating connector, the use of passthrough holes for the  
mounting screws may be required. Figure 51 shows a detailed  
view of the PCB pad design when using one of the connector  
variants in the CLM-107-02 family.  
J2  
J1  
1
2
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
DR  
SYNC  
SCLK  
DOUT  
DIN  
CS  
DNC  
RST  
DNC  
DNC  
VDD  
DNC  
GND  
DNC  
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
0.2364 [6.0]  
0.019685  
[0.5000]  
(TYP)  
0.0240 [0.610]  
C1  
0805  
10µF  
C2  
0603  
1µF  
0.054 [1.37]  
0.1800  
[4.57]  
0.0394 [1.00]  
Figure 52. ADIS16IMU4/PCBZ Electrical Schematic  
0.0394 [1.00]  
0.022±  
DIA (TYP)  
NONPLATED  
0.022 DIA THROUGH HOLE (TYP)  
THROUGH HOLE 2× NONPLATED THROUGH HOLE  
Figure 51. Mating Connector Design Detail  
POWER SUPPLY CONSIDERATIONS  
The ADIS16467 contains 6 μF of decoupling capacitance across  
the VDD and GND pins. When the VDD voltage raises from 0 V  
to 3.3 V, the charging current for this capacitor bank imposes the  
following current profile (in amperes):  
dVDD  
dt  
dVDD  
dt  
t
   
IDD  
t
C  
6106   
where:  
IDD(t)is the current demand on the VDD pin during the initial  
power supply ramp, with respect to time.  
C is the internal capacitance across the VDD and GND pins (6 μF).  
VDD(t) is the voltage on the VDD pin, with respect to time.  
Figure 53. ADIS16IMU4/PCBZ Top View  
For example, if VDD follows a linear ramp from 0 V to 3.3 V, in  
66 μs, the charging current is 300 mA for that timeframe. The  
ADIS16467 also contains embedded processing functions that  
present transient current demands during initialization or reset  
recovery operations. During these processes, the peak current  
demand reaches 250 mA and occurs at a time that is approximately  
40 ms after VDD reaches 3.0 V (or ~40 ms after initiating a  
reset sequence).  
J1  
RST  
CS  
1
3
5
7
9
2
4
6
8
SCLK  
DOUT  
DNC  
GND  
GND  
DIN  
GND  
10 VDD  
12 VDD  
14 SYNC  
16 NC  
VDD 11  
DR 13  
NC 15  
Figure 54. ADIS16IMU4/PCBZ J1 Pin Assignments  
Rev. C | Page 31 of 34  
 
 
 
 
 
 
 
ADIS16467  
Data Sheet  
SERIAL PORT OPERATION  
Maximum Throughput  
DIGITAL RESOLUTION OF GYROSCOPES AND  
ACCELEROMETERS  
When operating with the maximum output data (DEC_RATE =  
0x0000, as described in Table 109), the maximum SCLK rate  
(defined in Table 2) and minimum stall time, the SPI port can  
support up to 12, 16-bit register reads in between each pulse of  
the data ready signal. Attempting to read more than 12 registers  
can result in a datapath overrun error in the DIAG_STAT register  
(see Table 10). The serial port stall time (tSTALL) to meet these  
requirements must be no more than 10% greater than the  
minimum specification for tSTALL in Table 2.  
Gyroscope Data Width (Digital Resolution)  
The decimation filter (DEC_RATE register, see Table 109) and  
Bartlett window filter (FILT_CTRL register, see Table 101) have  
direct influence over the total number of bits in the output data  
registers, which contain relevant information. When using the  
factory default settings (DEC_RATE = 0x0000, FILT_CTRL =  
0x0000) for these filters, the data width for the gyroscope data  
width is 16 bits, which means that application processors can  
acquire all relevant information through the X_GYRO_OUT,  
Y_GYRO_OUT, and Z_GYRO_OUT registers.  
The number of allowable registers reads between each pulse on  
the data ready line increases proportionally with the decimation  
rate (set by the DEC_RATE register, see Table 109). For example,  
when the decimation rate equals 3 (DEC_RATE = 0x0002), the  
SPI is able to support up to 36 register reads, assuming maximum  
SCLK rate and minimum stall times in the protocol. Decreasing  
the SCLK rate and increasing the stall time lowers the total  
number of register reads supported by the ADIS16467 before a  
datapath overrun error occurs.  
The X_GYRO_LOW, Y_GYRO_LOW, and Z_GYRO_  
LOW registers capture the bit growth that comes from each  
accumulation operation in the decimation and Bartlett window  
filters. When using these filters (DEC_RATE ≠ 0x0000 and/or  
FILT_CTRL ≠ 0x0000), the bit growth is equal to the square root  
of the number of summations in each filter stage. For example,  
when DEC_RATE = 0x0007, the decimation filter adds eight (7 +  
1 = 8, see Table 109) successful samples together, which causes  
the data width to increase by 3 bits (80.5 = 3). When FILT_CTRL =  
0x0002, both stages in the Bartlett window filter use four (22 = 4,  
see Table 101) summation operations, which increases the data  
width by two bits (40.5 = 2). When using both DEC_RATE =  
0x0007 and FILT_CTRL = 0x0002, the total bit growth is 7 bits,  
which increases the overall data width to 23 bits.  
This limitation of reading 12, 16-bit registers does not impact the  
ability of the user to access the full precision of the gyroscopes and  
accelerometers if the factory default settings of DEC_RATE =  
0x0000 and FILT_CTRL = 0x0000 are used. In this case, the  
data width for the gyroscope and accelerometer data is 16 bits,  
and application processors can acquire all relevant information  
through the X_GYRO_OUT, Y_GYRO_OUT, Z_GYRO_OUT,  
X_ACCEL_OUT, Y_ACCEL_OUT, and Z_ACCEL_OUT  
registers. Thirty-two bit reads of the sensor data do not provide  
additional precision in this case. See the Gyroscope Data Width  
(Digital Resolution) section and the Accelerometer Data Width  
(Digital Resolution) section for more information.  
Accelerometer Data Width (Digital Resolution)  
The decimation filter (DEC_RATE register, see Table 109) and  
Bartlett window filter (FILT_CTRL register, see Table 101) have  
direct influence over the total number of bits in the output data  
registers, which contain relevant information. When using the  
factory default settings (DEC_RATE = 0x0000, FILT_CTRL =  
0x0000) for these filters, the data width for the accelerometer  
data will be 20 bits. The X_ACCL_OUT, Y_ACCL_OUT, and  
Z_ACCL_OUT registers contain the most significant 16 bits of this  
data, while the remaining (least significant) bits are in the upper 4  
bits of the X_ACCL_LOW, Y_ACCL_LOW, and Z_ACCL_LOW  
registers. Because the total noise (0.6 mg rms, see Table 1) in  
the accelerometer data (DEC_RATE = 0x0000, FILT_CTRL =  
0x0000) is greater than the 16-bit quantization noise (0.25 mg ÷  
120.5 = 0.072 mg), application processors can acquire all relevant  
information through the X_ACCL_OUT, Y_ACCL_OUT, and  
Z_ACCL_OUT registers. This setup enables applications to  
preserve optimal performance, while using the burst read (see  
Figure 32), which only provides 16-bit data for the accelerometers.  
Serial Port SCLK Underrun/Overrun Conditions  
The serial port operates in 16-bit segments and it is critical that  
the number of SCLK cycles be equal to an integer multiple of 16  
CS  
when the  
pin is low. Failure to meet this condition causes  
the serial port controller inside of the ADIS16467 to be unable  
to correctly receive and respond to new requests.  
CS  
If too many SCLK cycles are received before the  
deasserted, the user can recover serial port operation by asserting  
CS CS  
pin is  
, providing 17 rising edges on the SCLK line, deasserting  
,
and then attempting to correctly read the PROD_ID (or other  
read-only) register on the ADIS16467. The user should repeat  
these steps up to a maximum of 15 times until the correct data  
is read.  
The X_ACCL_LOW, Y_ACCL_LOW, and Z_ACCL_LOW  
registers also capture the bit growth that comes from each  
accumulation operation in the decimation and Bartlett window  
filters. When using these filters (DEC_RATE ≠ 0x0000 and/or  
FILT_CTRL ≠ 0x0000), the bit growth is proportional to the  
square root of the number of summations in each filter stage.  
For example, when DEC_RATE = 0x0001, the decimation filter  
CS  
If  
user must either power cycle or issue a hard reset (using the  
RST  
is deasserted before enough SCLK cycles are received, the  
pin) to regain SPI port access.  
Rev. C | Page 32 of 34  
 
 
 
 
Data Sheet  
ADIS16467  
adds two (1 + 1 = 2, see Table 109) successful samples together,  
which causes the data width to increase by 1 bit (20.5 = 1). When  
FILT_CTRL = 0x0001, both stages in the Bartlett window filter  
use two (21 = 2, see Table 101) summation operations, which  
increases the data width by 1 bit (20.5 = 1). When using both  
DEC_RATE = 0x0001 and FILT_CTRL = 0x0001, the total bit  
growth is 3 bits, which increases the overall data width to 23 bits.  
PC-BASED EVALUATION TOOLS  
The ADIS16IMU4/PCBZ provides a simple way to connect the  
ADIS16467 to the EVAL-ADIS2 evaluation system, which  
provides a PC-based method for evaluation of basic function  
and performance. For more information, visit the EVAL-  
ADIS2 Wiki Guide.  
Rev. C | Page 33 of 34  
 
ADIS16467  
Data Sheet  
PACKAGING AND ORDERING INFORMATION  
OUTLINE DIMENSIONS  
22.47  
22.40  
22.33  
R 2.75  
Ø 2.40  
22.47  
22.40  
22.33  
18.25 BSC  
24.37  
24.30  
24.23  
0.19  
TOP VIEW  
7.10  
REF  
14.20 BSC  
1.00 BSC  
PITCH  
1.50°  
0.57  
END VIEW  
9.07  
9.00  
8.93  
Figure 55. 14-Lead Module with Connector Interface [MODULE]  
(ML-14-6)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
Package Description  
Package Option  
ML-14-6  
ML-14-6  
ADIS16467-1BMLZ  
ADIS16467-2BMLZ  
ADIS16467-3BMLZ  
ADIS16IMU4/PCBZ  
EVAL-ADIS2Z  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
14-Lead Module with Connector Interface [MODULE]  
14-Lead Module with Connector Interface [MODULE]  
14-Lead Module with Connector Interface [MODULE]  
Breakout Board  
ML-14-6  
Evaluation System  
1 Z = RoHS Compliant Part.  
©2017–2020 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D15439-2/20(C)  
Rev. C | Page 34 of 34  
 
 
 

相关型号:

ADIS16467-1BMLZ

Precision MEMS IMU Module
ADI

ADIS16467-2BMLZ

Precision MEMS IMU Module
ADI

ADIS16467-3BMLZ

Precision MEMS IMU Module
ADI

ADIS16470

Wide Dynamic Range, Miniature MEMs IMU
ADI

ADIS16470AMLZ

Wide Dynamic Range, Miniature MEMs IMU
ADI

ADIS16470PCBZ

Wide Dynamic Range, Miniature MEMs IMU
ADI

ADIS16475

Precision, Miniature MEMs IMU
ADI

ADIS16475-1

Precision, Miniature MEMs IMU
ADI

ADIS16475-1BMLZ

Precision, Miniature MEMs IMU
ADI

ADIS16475-1PCBZ

Precision, Miniature MEMs IMU
ADI

ADIS16475-2

Precision, Miniature MEMs IMU
ADI

ADIS16475-2BMLZ

Precision, Miniature MEMs IMU
ADI