ADIS16497 [ADI]

Tactical Grade, Six Degrees of Freedom Inertial Sensor;
ADIS16497
型号: ADIS16497
厂家: ADI    ADI
描述:

Tactical Grade, Six Degrees of Freedom Inertial Sensor

文件: 总43页 (文件大小:769K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Tactical Grade, Six Degrees of Freedom  
Inertial Sensor  
Data Sheet  
ADIS16497  
FEATURES  
GENERAL DESCRIPTION  
Triaxial, digital gyroscope  
±12ꢀ°/sec, ±4ꢀ0°/sec, ±2000°/sec range options  
±0.0ꢀ° axis to axis misalignment error  
The ADIS16497 is a complete inertial system that includes a  
triaxis gyroscope and a triaxis accelerometer. Each inertial sensor  
in the ADIS16497 combines industry leading iMEMS® technology  
±0.2ꢀ° (maximum) axis to package misalignment error  
0.8°/hr in-run bias stability (ADIS16497-1)  
0.09°/√hr angular random walk (ADIS16497-1)  
Triaxial, digital accelerometer, ±40 g  
with signal conditioning that optimizes dynamic performance.  
The factory calibration characterizes each sensor for sensitivity,  
bias, alignment, and linear acceleration (gyroscope bias). As a  
result, each sensor has its own dynamic compensation formulas that  
provide accurate sensor measurements.  
13 μg in run bias stability  
Triaxial, delta angle and delta velocity outputs  
Factory calibrated sensitivity, bias, and axial alignment  
Calibration temperature range: −40°C to +8ꢀ°C  
SPI compatible  
Programmable operation and control  
Automatic and manual bias correction controls  
Configurable FIR filters  
Digital I/O: data ready, external clock  
Sample clock options: internal, external, or scaled  
On demand self test of inertial sensors  
Single-supply operation: 3.0 V to 3.6 V  
1ꢀ00 g mechanical shock survivability  
Operating temperature range: −40°C to +10ꢀ°C  
The ADIS16497 provides a simple, cost effective method for  
integrating accurate, multiaxis inertial sensing into industrial  
systems, especially when compared with the complexity and  
investment associated with discrete designs. All necessary motion  
testing and calibration are part of the production process at  
the factory, greatly reducing system integration time. Tight  
orthogonal alignment simplifies inertial frame alignment in  
navigation systems. The serial peripheral interface (SPI) and  
register structure provide a simple interface for data collection  
and configuration control.  
The footprint and connector system of the ADIS16497 enable a  
simple upgrade from the ADIS16375, ADIS16480, ADIS16485,  
ADIS16488A, and ADIS16490. The ADIS16497 is available in an  
aluminum package that is approximately 47 mm × 44 mm ×  
14 mm and includes a standard connector interface.  
APPLICATIONS  
Precision instrumentation, stabilization  
Guidance, navigation, control  
Avionics, unmanned vehicles  
Precision autonomous machines, robotics  
FUNCTIONAL BLOCK DIAGRAM  
DIO1 DIO2 DIO3 DIO4 RST  
VDD  
POWER  
MANAGEMENT  
GND  
SELF TEST  
I/O  
OUTPUT  
DATA  
CS  
TRIAXIAL  
GYROSCOPE  
REGISTERS  
SCLK  
DIN  
CALIBRATION  
AND  
FILTERS  
TRIAXIAL  
ACCELEROMETER  
SPI  
CONTROLLER  
USER  
CONTROL  
REGISTERS  
TEMPERATURE  
SENSOR  
DOUT  
CLOCK  
ADIS16497  
Figure 1.  
Rev. D  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice.  
No license is granted by implication or otherwise under any patent or patent rights of Analog  
Devices. Trademarks and registeredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
©2017-2020 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
ADIS16497  
Data Sheet  
TABLE OF CONTENTS  
Features.............................................................................................. 1  
Cyclical Redundancy Check (CRC-32)................................... 25  
Delta Angles................................................................................ 26  
Delta Velocity ............................................................................. 27  
User Bias/Scale Adjustment...................................................... 29  
Scratch Registers, USER_SCR_x.............................................. 32  
Applications ...................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications .................................................................................... 4  
Timing Specifications .................................................................. 6  
Absolute Maximum Ratings ........................................................... 9  
Thermal Resistance...................................................................... 9  
ESD Caution.................................................................................. 9  
Pin Configuration and Function Descriptions .......................... 10  
Typical Performance Characteristics........................................... 11  
Theory of Operation ...................................................................... 13  
Inertial Sensor Signal Chain ..................................................... 13  
Register Structure....................................................................... 14  
Serial Peripheral Interface......................................................... 15  
Data Ready .................................................................................. 15  
Reading Sensor Data.................................................................. 16  
Device Configuration ................................................................ 17  
User Register Memory Map.......................................................... 18  
User Register Defintions ............................................................... 21  
Page Number (PAGE_ID) ........................................................ 21  
Data/Sample Counter (DATA_CNT)..................................... 21  
Status/Error Flag Indicators (SYS_E_FLAG)......................... 21  
Self Test Error Flags (DIAG_STS)........................................... 22  
Internal Temperature (TEMP_OUT) ..................................... 22  
Gyroscope Data .......................................................................... 22  
Acceleration Data....................................................................... 24  
Time Stamp................................................................................. 25  
Flash Memory Endurance Counter, FLSHCNT_LOW,  
FLSHCNT_HIGH...................................................................... 32  
Global Commands, GLOB_CMD ........................................... 33  
Auxiliary I/O Line Configuration, FNCTIO_CTRL............. 34  
General-Purpose I/O Control, GPIO_CTRL......................... 35  
Miscellaneous Configuration, CONFIG................................. 35  
Linear Acceleration on Effect on Gyroscope Bias ................. 35  
Decimation Filter, DEC_RATE ............................................... 35  
Continuous Bias Estimation (CBE), NULL_CNFG.............. 36  
Scaling the Input Clock (PPS Mode), SYNC_SCALE........... 36  
FIR Filters.................................................................................... 37  
Firmware Revision, FIRM_REV.............................................. 39  
Firmware Revision Year, FIRM_Y .......................................... 39  
Boot Revision Number, BOOT_REV...................................... 39  
Continuous SRAM Testing....................................................... 39  
Applications Information ............................................................. 41  
Mounting Best Practices ........................................................... 41  
Preventing Misinsertion............................................................ 41  
Evaluation Tools......................................................................... 41  
Power Supply Considerations .................................................. 41  
CRC32 Coding Example ........................................................... 42  
Outline Dimensions....................................................................... 43  
Ordering Guide .......................................................................... 43  
REVISION HISTORY  
7/2020—Rev. C to Rev. D  
1/2020—Rev. B to Rev. C  
Changes to Table 1 ........................................................................... 5  
Changes to Table 2 ........................................................................... 6  
Changes to Flash Memory Update Section and On Demand Self  
Test (ODST) Section...................................................................... 33  
Changes to Data Ready Indicator Section .................................. 34  
Changes to Scaling the Input Clock (PPS Mode),  
Changes to Accelerometers, Sensitivity Parameter, Table 1.......1  
6/2019—Rev. A to Rev. B  
Changes to Features Section............................................................1  
Changes to Specifications Section and Table 1.............................4  
Changes to Figure 5 and Figure 6 ...................................................7  
Changes to Table 6............................................................................9  
Changes to Figure 12 ..................................................................... 10  
SYNC_SCALE................................................................................. 36  
Rev. D | Page 2 of 43  
 
Data Sheet  
ADIS16497  
Added Figure 13 and Figure 14; Renumbered Sequentially .....10  
Added Figure 15, Figure 16, Figure 17, Figure 18, Figure 19,  
and Figure 20 ...................................................................................11  
Changes to Theory of Operation Section ....................................12  
Change to Serial Peripheral Interface Section.............................14  
Changes to Burst Read Function Section and Table 10.............15  
Changes to Table 11........................................................................16  
Changes to Table 12........................................................................17  
Changes to Model Column, Table 24...........................................21  
Change to Delta Angle Measurement Range Section and Model  
Column, Table 60............................................................................25  
Changes to Delta Velocity Section................................................26  
Changes to Continuous Bias Estimation (CBE), NULL_CNFG  
Section and Description Column, Table 156..............................35  
Added CRC32 Coding Example, Table 195, and Table 196;  
Renumbered Sequentially..............................................................41  
11/2017—Rev. 0 to Rev. A  
Changes to Table 1............................................................................3  
Changed t2 Parameter, Table 2; GLOB_CMD, Bit 3 Parameter,  
GLOB_CMD, Bit 6 Parameter, and GLOB_CMD, Bit 7 Parameter,  
Table 3 ................................................................................................5  
10/2017—Revision 0: Initial Version  
Rev. D | Page 3 of 43  
ADIS16497  
Data Sheet  
SPECIFICATIONS  
TC = 25°C, VDD = 3.3 V, angular rate = 0°/sec, ADIS16497-1 model, 1 g, unless otherwise noted.  
Table 1.  
Parameter  
Test Conditions/Comments  
Min  
12ꢀ  
Typ  
Max  
Unit  
GYROSCOPES  
Dynamic Range  
ADIS16497-1  
°/sec  
ADIS16497-2  
4ꢀ5  
4ꢁ5  
°/sec  
ADIS16497-3  
2555  
°/sec  
Sensitivity  
ADIS16497-1, 32-bit  
ADIS16497-2, 32-bit  
ADIS16497-3, 32-bit  
154ꢁꢀ765  
2621445  
6ꢀꢀ365  
5.1  
5.2  
5.2  
LSB/°/sec  
LSB/°/sec  
LSB/°/sec  
%
%
%
Degrees  
Degrees  
% FS  
% FS  
% FS  
Error Over Temperature  
ADIS16497-1, −45°C ≤ TC ≤ +ꢁꢀ°C, 1 σ  
ADIS16497-2, −45°C ≤ TC ≤ +ꢁꢀ°C, 1 σ  
ADIS16497-3, −45°C ≤ TC ≤ +ꢁꢀ°C, 1 σ  
Axis to axis, −45°C ≤ TC ≤ +ꢁꢀ°C, 1 σ  
Axis to package, −45°C ≤ TC ≤ +ꢁꢀ°C  
1 σ, ADIS16497-1, FS = 12ꢀ°/sec  
1 σ, ADIS16497-2, FS = 4ꢀ5°/sec  
1 σ, ADIS16497-3, FS = 2555°/sec  
Misalignment  
Nonlinearity1  
5.5ꢀ  
5.2ꢀ  
5.2  
5.2  
5.2ꢀ  
Bias  
Repeatability 2  
In Run Bias Stability  
−45°C ≤ TC ≤ +ꢁꢀ°C, 1 σ  
1 σ, ADIS16497-1  
5.57  
5.ꢁ  
°/sec  
°/hr  
1 σ, ADIS16497-2  
1.6  
°/hr  
1 σ, ADIS16497-3  
3.3  
°/hr  
Angular Random Walk  
1 σ, ADIS16497-1  
1 σ, ADIS16497-2  
5.59  
5.1  
°/√hr  
°/√hr  
1 σ, ADIS16497-3  
5.1ꢁ  
5.1  
°/√hr  
°/sec  
Error over Temperature  
Linear Acceleration Effect  
−45°C ≤ TC ≤ +ꢁꢀ°C, 1 σ  
Any axis, 1 σ (CONFIG register, Bit 7 = 1)  
Any axis, 1 σ (CONFIG register, Bit 7 = 5)  
1 σ, ADIS16497-1  
1 σ, ADIS16497-2  
1 σ, ADIS16497-3  
5.556  
5.51ꢀ  
5.5553  
5.5554  
5.5559  
°/sec/g  
°/sec/g  
°/sec/g2  
°/sec/g2  
°/sec/g2  
Vibration Rectification Error  
Noise  
Output Noise  
No filtering, ADIS16497-1  
No filtering, ADIS16497-2  
No filtering, ADIS16497-3  
1 σ, ADIS16497-1  
1 σ, ADIS16497-2  
1 σ, ADIS16497-3  
5.5ꢀ1  
5.5ꢀꢁ  
5.112  
5.552  
5.5522  
5.5542  
4ꢁ5  
°/sec rms  
°/sec rms  
°/sec rms  
°/sec/√Hz rms  
°/sec/√Hz rms  
°/sec/√Hz rms  
Hz  
Rate Noise Density3  
−3 dB Bandwidth  
ADIS16497-1  
ADIS16497-2, ADIS16497-3  
ꢀꢀ5  
Hz  
Sensor Resonant Frequency  
6ꢀ  
kHz  
Rev. D | Page 4 of 43  
 
 
Data Sheet  
ADIS16497  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
ACCELEROMETERS4  
Dynamic Range  
Sensitivity  
Each axis  
45  
g
32-bit data format  
−45°C ≤ TC ≤ +ꢁꢀ°C, 1 σ  
ꢀ2,42ꢁ,ꢁ55  
5.51  
LSB/g  
%
Error Over Temperature  
Misalignment  
Nonlinearity  
Axis to axis, −45°C ≤ TC ≤ +ꢁꢀ°C, 1 σ  
Axis to package, −45°C ≤ TC ≤ +ꢁꢀ°C  
Best fit straight line, 15 g  
Best fit straight line, 25 g  
Best fit straight line, 45 g  
5.5ꢀ  
Degrees  
Degrees  
% FS  
% FS  
% FS  
5.2ꢀ  
5.52  
5.4  
1.ꢀ  
Bias  
In Run Bias Stability  
Velocity Random Walk  
Error over Temperature  
Repeatability  
1 σ  
1 σ  
13  
5.54  
5.ꢀ  
6
μg  
m/sec/√hr  
mg  
mg  
−45°C ≤ TC ≤ +ꢁꢀ°C, 1 σ  
−45°C ≤ TC ≤ +ꢁꢀ°C, 1 σ  
Noise  
Output Noise  
Noise Density  
−3 dB Bandwidth  
Sensor Resonant Frequency  
TEMPERATURE SENSOR  
Scale Factor  
No filtering  
15 Hz to 45 Hz, no filtering  
2.6  
ꢁꢁ  
7ꢀ5  
ꢀ.ꢀ  
mg rms  
μg/√Hz rms  
Hz  
kHz  
Output = 5x5555 at 2ꢀ°C ( ꢀ°C)  
5.512ꢀ  
°C/LSB  
LOGIC INPUTSꢀ  
Input Voltage  
High, VIH  
Low, VIL  
RST Pulse Width  
Input Current  
2.5  
1
V
V
ꢂs  
5.ꢁ  
Logic 1, IIH  
Logic 5, IIL  
All Pins Except RST, CS  
RST, CS Pins6  
VIH = 3.3 V  
VIL = 5 V  
15  
15  
ꢂA  
ꢂA  
mA  
pF  
5.33  
15  
Input Capacitance, CIN  
DIGITAL OUTPUTSꢀ  
Output Voltage  
High, VOH  
ISOURCE = 5.ꢀ mA  
ISINK = 2.5 mA  
Endurance7  
TJ = ꢁꢀ°C  
2.4  
V
V
Low, VOL  
5.4  
FLASH MEMORY  
Data Retentionꢁ  
FUNCTIONAL TIMES9  
155,555  
25  
Cycles  
Years  
Time until data is available, −45°C ≤ TC ≤  
+ꢁꢀ°C, 1 σ  
Power-On Start-Up Time  
Reset Recovery Time15  
26ꢀ  
22ꢀ  
26ꢀ  
ms  
ms  
ms  
GLOB_CMD, Bit 7 = 1 (see Table 142)  
RST pulled low, then restored to high  
Flash Memory  
Update Time  
Clear User Calibration  
Self Test Time  
GLOB_CMD, Bit 3 = 1 (see Table 142)  
GLOB_CMD, Bit 6 = 1 (see Table 142)  
GLOB_CMD, Bit 1 = 1 (see Table 142)  
1355  
3ꢀ5  
35  
ms  
ꢂs  
ms  
Rev. D | Page ꢀ of 43  
ADIS16497  
Data Sheet  
Parameter  
Test Conditions/Comments  
Min  
Typ  
4.2ꢀ  
5.52  
45  
Max  
Unit  
kSPS  
%
ppm/°C  
kHz  
Hz  
CONVERSION RATE  
Initial Clock Accuracy  
Temperature Coefficient  
Sync Input Clock  
Pulse Per Second (PPS) Mode  
POWER SUPPLY, VDD  
Power Supply Current11  
3.5  
1
4.ꢀ  
12ꢁ  
3.6  
Operating voltage range  
Normal mode, VDD = 3.3 V, ꢂ + σ  
3.5  
V
mA  
ꢁ9  
1 FS = full scale, FS = 12ꢀ°/sec (ADIS16497-1), FS = 4ꢀ5°/sec (ADIS16497-2), FS = 2555°/sec (ADIS16497-3).  
2 Bias repeatability provides an estimate for long-term drift in the bias, as observed during ꢀ55 hours of high temperature operating life (HTOL) at +15ꢀC.  
3 Magnitude between 15 and 45 Hz, sample rate is 42ꢀ5 SPS (nominal), no digital filtering.  
4 All specifications associated with the accelerometers relate to the full-scale range of 45 g.  
The digital I/O signals use a 3.3 V system.  
6 RST  
CS  
and  
pins are connected to the VDD pin through 15 kΩ pull-up resistors.  
7 Endurance is qualified as per JEDEC Standard 22, Method A117, measured at −45°C, +2ꢀ°C, +ꢁꢀ°C, and +12ꢀ°C.  
The data retention specification assumes a junction temperature (TJ) of ꢁꢀ°C per JEDEC Standard 22, Method A117. Data retention lifetime decreases with TJ.  
9 These times do not include thermal settling and internal filter response times, which can affect overall accuracy.  
15  
RST  
The  
line must be in a low state for at least 15 μs to ensure a proper reset initiation and recovery.  
11 Supply current transients can reach 2ꢀ5 mA during initial startup or reset recovery.  
TIMING SPECIFICATIONS  
TC = 25°C, VDD = 3.3 V, unless otherwise noted.  
Table 2.  
Normal Mode  
Burst Read Function  
Parameter  
Description  
Min1  
5.51  
Typ  
Max1  
Min  
Typ  
Max1  
Unit  
MHz  
ꢂs  
ns  
ns  
fSCLK  
tSTALL  
SCLK frequency  
1ꢀ  
6.ꢀ  
2
Stall period between data  
SCLK low period  
SCLK high period  
CS to SCLK edge  
N/A3  
tCLS  
tCHS  
tCS  
31  
31  
32  
31  
31  
32  
ns  
tDAV  
tDSU  
tDHD  
tDR, tDF  
tDSOE  
tHD  
tSFS  
tDSHI  
tNV  
DOUT valid after SCLK edge  
DIN setup time before SCLK rising edge  
DIN hold time after SCLK rising edge  
DOUT rise/fall times, ≤155 pF loading  
CS assertion to DOUT active  
SCLK edge to DOUT invalid  
Last SCLK edge to CS deassertion  
CS deassertion to DOUT high impedance  
Data invalid time  
15  
15  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ꢂs  
ꢂs  
ꢂs  
ꢂs  
2
2
2
2
3
11  
3
11  
5
5
5
32  
5
5
32  
5
9
9
25  
25  
t1  
t2  
t3  
Input sync pulse width  
Input sync to data invalid  
Input sync period4  
356  
356  
222.2  
222.2  
1 Guaranteed by design and characterization, but not tested in production.  
2 See Table 3 for exceptions to the stall time rating. Note that an insufficient stall time results in reading all 5s for the register attempting to be read.  
3 N/A means not applicable.  
4 This measurement represents the inverse of the maximum frequency for the input sample clock: 4ꢀ55 Hz.  
Rev. D | Page 6 of 43  
 
Data Sheet  
ADIS16497  
Register Specific Stall Times  
Table 3.  
Parameter  
Description  
Min1  
Typ  
Max  
Unit  
STALL TIME  
FNCTIO_CTRL  
FILTR_BNK_5  
FILTR_BNK_1  
NULL_CNFG  
SYNC_SCALE  
DEC_RATE  
GPIO_CTRL  
CONFIG  
GLOB_CMD, Bit 1  
GLOB_CMD, Bit 3  
GLOB_CMD, Bit 6  
GLOB_CMD, Bit 7  
Configure the DIOx functions  
Enable/select finite impulse response (FIR) filter banks  
Enable/select FIR filter banks  
Configure autonull bias function  
Configure input clock scale factor  
Configure decimation rate  
Configure general-purpose input/output (I/O) lines  
Configure miscellaneous functions  
On demand self test  
345  
6ꢀ  
6ꢀ  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
ms  
ms  
μs  
ms  
71  
345  
345  
4ꢀ  
4ꢀ  
25  
1125  
3ꢀ5  
215  
Flash memory update  
Clear user calibration  
Software reset  
1 Monitoring the data ready signal (see Table 144 for FNCTIO_CTRL configuration) for the return of regular pulsing can help minimize system wait times.  
Timing Diagrams  
CS  
tCHS  
tCLS  
tCS  
tSFS  
1
2
3
4
5
6
15  
16  
SCLK  
DOUT  
tDSOE  
tDAV  
tHD  
tDR  
tDSHI  
MSB  
DB14  
tDSU  
DB13  
DB12  
DB11  
DB10  
DB2  
DB1  
tDF  
LSB  
LSB  
tDHD  
DIN  
R/W  
A6  
A5  
A4  
A3  
A2  
D2  
D1  
Figure 2. SPI Timing and Sequence  
tSTALL  
CS  
SCLK  
Figure 3. Stall Time and Data Rate  
t3  
t2  
DIO4  
(SYNC CLOCK)  
t1  
DATA  
READY  
tNV  
OUTPUT  
REGISTERS  
DATA VALID  
DATA VALID  
Figure 4. Input Clock Timing Diagram, FNCTIO_CTRL, Bits[7:4] = 0xFD  
Rev. D | Page 7 of 43  
 
ADIS16497  
Data Sheet  
CS  
SCLK  
DIN  
7C00  
DOUT  
0000  
1
BURST_ID  
2
X_GYRO_OUT  
3
CRC_UPR  
19  
0
Figure 5. Burst Read Function Sequence Diagram, 19 Segments  
CS  
SCLK  
DIN  
0x7C00  
0000  
1
BURST_ID  
2
BURST_ID  
3
X_GYRO_LOW  
4
CRC_UPR  
20  
DOUT  
Figure 6. Burst Read Function Sequence Diagram, 20 Segments  
Rev. D | Page ꢁ of 43  
 
 
Data Sheet  
ADIS16497  
ABSOLUTE MAXIMUM RATINGS  
Table 4.  
THERMAL RESISTANCE  
Thermal performance is directly linked to printed circuit board  
(PCB) design and operating environment. Pay careful attention  
to PCB thermal design.  
Parameter  
Rating  
Mechanical Shock Survivability  
Any Axis, Unpowered  
Any Axis, Powered  
1ꢀ55 g  
1ꢀ55 g  
θ
JA is the natural convection junction to ambient thermal  
resistance measured in a one cubic foot sealed enclosure.  
JC is the junction to case thermal resistance.  
VDD to GND  
−5.3 V to +3.6 V  
−5.3 V to VDD + 5.2 V  
−5.3 V to VDD + 5.2 V  
−45°C to +15ꢀ°C  
−ꢀꢀ°C to +1ꢀ5°C  
2 bar  
Digital Input Voltage to GND  
Digital Output Voltage to GND  
Operating Temperature Range  
Storage Temperature Range1  
Barometric Pressure  
θ
The ADIS16497 is a multichip module, which includes many  
active components. The values in Table 5 identify the thermal  
response of the hottest component inside of the ADIS16497,  
with respect to the overall power dissipation of the module.  
This approach enables a simple method for predicting the  
temperature of the hottest junction, based on either ambient or  
case temperature.  
1 Extended exposure to temperatures that are lower than −45°C or higher  
than +15ꢀ°C can adversely affect the accuracy of the factory calibration.  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the  
operational section of this specification is not implied.  
Operation beyond the maximum operating conditions for  
extended periods may affect product reliability.  
For example, when TA = 70°C, the hottest junction inside of the  
ADIS16497 is 76.7°C.  
TJ = θJA × VDD × IDD + 70°C  
TJ = 22.8°C/W × 3.3 V × 0.089 A + 70°C  
TJ = 76.7°C  
Table 5. Package Characteristics  
Package Type  
θJA  
θJC  
Device Weight  
ML-24-91  
35.7°C/W  
25.9°C/W  
42 g  
1 Thermal impedance simulated values come from a case with 4 M2 × 5.4 mm  
machine screws (torque = 25 inch ounces). Secure the ADIS16497 to the  
PCB.  
ESD CAUTION  
Rev. D | Page 9 of 43  
 
 
 
 
 
ADIS16497  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
ADIS16497  
TOP VIEW  
(Not to Scale)  
24 22 20 18 16 14 12 10  
8
7
6
5
4
3
2
1
PIN 23  
PIN 1  
23 21 19 17 15 13 11  
9
NOTES  
1. THIS REPRESENTATION DISPLAYS THE TOP VIEW PINOUT  
FOR THE MATING SOCKET CONNECTOR.  
2. THE ACTUAL CONNECTOR PINS ARE NOT VISIBLE FROM  
THE TOP VIEW.  
3. MATING CONNECTOR: SAMTEC CLM-112-02 OR EQUIVALENT.  
4. DNC = DO NOT CONNECT.  
5. PIN 12 AND PIN 15 ARE NOT PHYSICALLY PRESENT.  
PIN 1 PIN 2  
Figure 7. Pin Configuration  
Figure 8. Axial Orientation (Top Side Facing Up)  
Table 6. Pin Function Descriptions  
Pin No.  
Mnemonic Type  
Description  
1
2
3
4
6
DIO3  
DIO4  
SCLK  
DOUT  
DIN  
Input/output  
Input/output  
Input  
Output  
Input  
Configurable Digital Input/Output 3.  
Configurable Digital Input/Output 4.  
SPI Serial Clock.  
SPI Data Output. Clocks output on the SCLK falling edge.  
SPI Data Input. Clocks input on the SCLK rising edge.  
SPI Chip Select.  
CS  
Input  
7
DIO1  
RST  
Input/output  
Input  
Configurable Digital Input/Output 1.  
Reset.  
9
DIO2  
VDD  
NO PIN  
GND  
Input/output  
Supply  
Configurable Digital Input/Output 2.  
Power Supply.  
15, 11  
12, 1ꢀ  
13, 14  
Not applicable No Pin. These pins are not physically present.  
Supply Power Ground.  
16 to 22, 24 DNC  
23 DNC  
Not applicable Do Not Connect. Do not connect to these pins.  
Not applicable Do Not Connect. Do not connect to this pin. This pin can tolerate connection to the VDD supply.  
Rev. D | Page 15 of 43  
 
 
Data Sheet  
ADIS16497  
TYPICAL PERFORMANCE CHARACTERISTICS  
1000  
1000  
100  
10  
X-AXIS  
X-AXIS  
Y-AXIS  
Z-AXIS  
Y-AXIS  
Z-AXIS  
100  
10  
1
1
0.1  
0.001  
0.01  
0.1  
1
10  
100  
1000 10000 100000  
0.1  
0.001  
0.01  
0.1  
1
10  
100  
1000 10000 100000  
INTEGRATION PERIOD (Seconds)  
INTEGRATION PERIOD (Seconds)  
Figure 9. Gyroscope Allan Deviation, ADIS16497-1  
Figure 12. Accelerometer Allan Deviation  
1000  
0.15  
0.10  
0.05  
0
X-AXIS  
MEAN + 1σ  
MEAN  
MEAN – 1σ  
Y-AXIS  
Z-AXIS  
100  
10  
1
–0.05  
–0.10  
–0.15  
0.1  
0.001  
0.01  
0.1  
1
10  
100  
1000 10000 100000  
–40  
–20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
INTEGRATION PERIOD (Seconds)  
Figure 10. Gyroscope Allan Deviation, ADIS16497-2  
Figure 13. Gyroscope Sensitivity Error vs. Temperature, Cold to Hot,  
ADIS16497-2  
1000  
100  
10  
0.05  
X-AXIS  
Y-AXIS  
Z-AXIS  
0
–0.05  
–0.10  
–0.15  
1
–0.20  
MEAN + 1σ  
MEAN  
MEAN – 1σ  
–0.25  
–40  
0.1  
0.001  
0.01  
0.1  
1
10  
100  
1000 10000 100000  
–20  
0
20  
40  
60 80  
TEMPERATURE (°C)  
INTEGRATION PERIOD (Seconds)  
Figure 14. Gyroscope Sensitivity Error vs. Temperature, Hot to Cold,  
ADIS16497-2  
Figure 11. Gyroscope Allan Deviation, ADIS16497-3  
Rev. D | Page 11 of 43  
 
ADIS16497  
Data Sheet  
0.020  
0.015  
0.010  
0.005  
0
0
–0.02  
–0.04  
–0.06  
–0.08  
–0.10  
–0.12  
–0.14  
–0.16  
–0.18  
–0.20  
–0.005  
–0.010  
–0.015  
–0.020  
MEAN + 1σ  
MEAN  
MEAN – 1σ  
MEAN + 1σ  
MEAN  
MEAN – 1σ  
–40  
–20  
0
20  
40  
60  
80  
–40  
–20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 15. Accelerometer Sensitivity vs. Temperature, Cold to Hot,  
ADIS16497-2  
Figure 18. Gyroscope Sensitivity Error vs. Temperature, Hot to Cold,  
ADIS16497-3  
0.020  
0.015  
0.010  
0.005  
0
0.05  
MEAN + 1σ  
MEAN  
MEAN – 1σ  
0.04  
0.03  
0.02  
0.01  
0
–0.01  
–0.02  
–0.03  
–0.04  
–0.05  
–0.005  
–0.010  
MEAN + 1σ  
MEAN  
MEAN – 1σ  
–0.015  
–0.020  
–40  
–20  
0
20  
40  
60 80  
–40  
–20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 16. Accelerometer Sensitivity vs. Temperature, Hot to Cold,  
ADIS16497-2  
Figure 19. Accelerometer Sensitivity Error vs. Temperature, Cold to Hot,  
ADIS16497-3  
0
–0.02  
–0.04  
–0.06  
–0.08  
–0.10  
–0.12  
–0.14  
0.10  
MEAN + 1σ  
MEAN  
MEAN – 1σ  
0.08  
0.06  
0.04  
0.02  
0
–0.02  
–0.04  
–0.06  
–0.08  
–0.10  
–0.16  
MEAN + 1σ  
MEAN  
MEAN – 1σ  
–0.18  
–0.20  
–40  
–20  
0
20  
40  
60  
80  
–40  
–20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 17. Gyroscope Sensitivity Error vs. Temperature, Cold to Hot,  
ADIS16497-3  
Figure 20. Accelerometer Sensitivity Error vs. Temperature, Hot to Cold,  
ADIS16497-3  
Rev. D | Page 12 of 43  
Data Sheet  
ADIS16497  
THEORY OF OPERATION  
The ADIS16497 is an autonomous sensor system. A power-on  
self test begins automatically after the voltage on the power  
supply pins reaches a minimum safe level as defined by Table 1.  
After the automatic power-on self test, the ADIS16497 begins  
sampling, processing, and loading calibrated sensor data into  
the output registers which are accessible using the SPI port.  
External Clock Options  
The ADIS16497 offers two modes of operation to control data  
production with an external clock: sync mode and PPS mode. In  
sync mode, the external clock directly controls the data sampling  
and production clock (fSM in Figure 22 and Figure 23). In PPS  
mode, the user can provide a lower input clock rate (1 Hz to  
128 Hz) and use a scale factor (SYNC_SCALE register, see  
Table 154) to establish a data collection and processing rate  
that is between 3000 Hz and 4250 Hz for best performance.  
INERTIAL SENSOR SIGNAL CHAIN  
Figure 21 shows the basic signal chain for the inertial sensors in  
the ADIS16497, which processes data at a rate of 4250 SPS  
when using the internal sample clock. Using one of the external  
clock options in FNCTIO_CTRL, Bits[7:4] (see Table 144) can  
provide flexibility in selecting this rate.  
Inertial Sensor Calibration  
The calibration function for the gyroscopes and the  
accelerometers has two components: factory calibration and  
user calibration (see Figure 24).  
OUTPUT  
MEMS  
SENSORS  
CALIBRATION  
FILTERING  
DATA  
FROM  
SENSORS  
FACTORY  
CALIBRATION  
USER  
CALIBRATION  
TO  
FILTERING  
REGISTERS  
Figure 24. Gyroscope Calibration Processing  
Figure 21. Signal Processing Diagram, Inertial Sensors  
Gyroscope Factory Calibration  
Gyroscope Data Sampling  
Gyroscope factory calibration applies the following correction  
formula to the data of each gyroscope:  
The ADIS16497 produces angular rate measurements around  
three orthogonal axes (x, y, and z). Figure 22 shows the basic  
signal flow for the production of x-axis gyroscope data (same as  
y-axis and z-axis). This signal chain contains two digital MEMS  
gyroscopes (XG1 and XG2), which have their own ADC and sample  
clocks (fSGX1 and fSGX2 = 4100 Hz) that produce data independently  
from each other. The sensor to sensor tolerance on this sample rate  
is 200 samples per second (SPS). Processing these data starts with  
combining (summation and rescale) the most recent sample from  
each gyroscope together by using an independent sample master  
frequency (fSM) clock (fSM = 4250 Hz, see Figure 22), which drives  
the rest of the digital signal processing (calibration, alignment,  
and filtering) for the gyroscopes and accelerometers.  
XC   
X   
b
m11 m12 m13  
m21 m22 m23  
m31 m32 m33  
ω
ω
ω
ω
X   
bY  
bZ  
YC   
Y   
ω ZC  
ω Z  
(1)  
a'  
g11 g12 g13  
X   
g 21 g 22 g 23 a'Y   
g31 g32 g33  
a'Z  
where:  
ωXC, ωYC, and ωZC are the postcalibration gyroscope data.  
m11, m12, m13, m21, m22, m23, m31, m32, and m33 are the scale and  
alignment correction factors.  
ωX, ωY, and ωZ are the precalibration gyroscope data.  
bX, bY, and bZ are the bias correction factors.  
g11, g12, g13, g21, g22, g23, g31, g32, and g33 are the linear g correction  
factors.  
a'X, a'Y, and a'Z are the postcalibration accelerometer data.  
MEMS  
X-AXIS  
RATE DATA  
SAMPLE 1  
GYROSCOPE  
ADC  
X
G1  
X-AXIS  
ANGULAR RATE  
DATA PROCESSING  
fSGX1 = 4100Hz  
X-AXIS  
RATE DATA  
SAMPLE 2  
MEMS  
GYROSCOPE  
ADC  
X
G2  
All the correction factors in each matrix/array are derived from  
direct observation of the response of each gyroscope to a variety  
of rotation rates at multiple temperatures across the calibration  
temperature range (−40°C ≤ TC ≤ +85°C). These correction factors  
are stored in the flash memory bank, but they are not available for  
observation. Register CONFIG, Bit 7 provides an on/off control  
for the linear g compensation (see Table 148). See Figure 45 for  
more details on the user calibration options that are available  
for the gyroscopes.  
fSGX2 = 4100Hz  
fSM = 4250Hz  
Figure 22. Gyroscope Data Sampling  
Accelerometer Data Sampling  
The ADIS16497 produces linear acceleration measurements  
along the same orthogonal axes (x, y, and z) as the gyroscopes,  
using the same clock (fSM, see Figure 22 and Figure 23) that  
triggers data acquisition and subsequent processing of the  
gyroscope data.  
X-AXIS  
MEMS  
ACCELEROMETER  
X-AXIS  
ACCELERATION  
DATA PROCESSING  
ADC  
fSM = 4250SPS  
Figure 23. Accelerometer Data Sampling  
Rev. D | Page 13 of 43  
 
 
 
 
 
 
ADIS16497  
Data Sheet  
The decimation filter averages multiple samples together to  
Accelerometer Factory Calibration  
produce each register update. In this type of filter structure, the  
number of samples in the average is equal to the reduction in the  
update rate for the output data registers. See the DEC_RATE  
register for the user controls for this filter (see Table 150).  
The accelerometer factory calibration applies the following  
correction formulas to the data of each accelerometer:  
b
a'  
m11 m12  
m
a
X   
13   
X   
X   
a'Y m21 m22 m23 aY bY  
REGISTER STRUCTURE  
a'Z  
m31 m32 m33  
aZ  
bZ  
All communication with the ADIS16497 involves accessing its  
user registers. The register structure contains both output data  
and control registers. The output data registers include the  
latest sensor data, error flags, and identification data. The  
control registers include sample rate, filtering, I/O, calibration,  
and diagnostic configuration options. All communication  
between the ADIS16497 and an external processor involves  
either reading or writing to one of the user registers.  
(2)  
2
0
p21  
p12  
0
p
13   
XC   
p23  Y2C  
2
p31 p32  
0
ZC  
where:  
a'X, a'Y, and a'Z are the postcalibration accelerometer data.  
m11, m12, m13, m21, m22, m23, m31, m32, and m33 are the scale and  
alignment correction factors.  
aX, aY, and aZ are the precalibration accelerometer data.  
bX, bY, and bZ are the bias correction factors.  
0, p12, p13, p21, p23, p31, and p32 are the point of percussion  
correction factors  
TRIAXIAL  
OUTPUT  
GYROSCOPE  
ADC  
DSP  
REGISTERS  
TRIAXIAL  
ACCELEROMETER  
CONTROL  
REGISTERS  
TEMPERATURE  
SENSOR  
CONTROLLER  
ω2XC, ω2YC, and ω2ZC are the postcalibration gyroscope data  
(squared).  
All the correction factors in each matrix/array are derived from  
direct observation of the response of each accelerometer to a  
variety of inertial test conditions at multiple temperatures across  
the calibration temperature range (−40°C ≤ TC ≤ +85°C). These  
correction factors are stored in the flash memory bank, but they  
are not available for observation. Register CONFIG, Bit 6 provides  
an on/off control for the point of percussion alignment (see  
Table 148). See Figure 46 for more details on the user calibration  
options that are available for the accelerometers.  
Figure 26. Basic Operation  
The register structure uses a paged addressing scheme that  
contains 13 pages, with each page containing 64 register  
locations. Each register is 16 bits wide, with each byte having its  
own unique address within the memory map of that page. The SPI  
port has access to one page at a time, using the bit sequence in  
Figure 27. Select the page to activate for SPI access by writing its  
code to the PAGE_ID register. Read the PAGE_ID register to  
determine which page is currently active. Table 7 displays the  
PAGE_ID contents for each page and their basic functions. The  
PAGE_ID register is located at Address 0x00 on every page.  
Filtering  
After calibration, the data of each inertial sensor passes through  
two digital filters, both of which have user configurable  
attributes: FIR and decimation (see Figure 25).  
Table 7. User Register Page Assignments  
Page PAGE_ID Function  
TO  
5
1
2
3
4
5x55  
5x51  
5x52  
5x53  
5x54  
Output data, clock, identification  
Reserved  
Calibration  
FROM  
CALIBRATION  
FIR  
FILTER  
DECIMATION  
FILTER  
DATA  
REGISTERS  
Figure 25. Inertial Sensor Filtering  
Control: sample rate, filtering, I/O  
The FIR filter includes four banks of coefficients that have  
120 taps each. Register FILTR_BNK_0 (see Table 158) and  
Register FILTR_BNK_1 (see Table 160) provide the configuration  
options for the use of the FIR filters of each inertial sensor. Each  
FIR filter bank includes a preconfigured filter, but the user can  
design their own filters and write over these values using the  
register of each coefficient. For example, Table 163 provides the  
details for the FIR_COEF_A071 register, which contains  
Coefficient 71 in FIR Bank A. Refer to Figure 49 for the  
frequency response of the factory default filters. These filters do  
not represent any specific application environment; they are  
only examples.  
Serial number, cyclic redundancy check (CRC)  
values  
6
7
5x5ꢀ  
5x56  
5x57  
5x5ꢁ  
5x59  
5x5A  
5x5B  
5x5C  
FIR Filter Bank A, Coefficient 5 to Coefficient ꢀ9  
FIR Filter Bank A, Coefficient 65 to Coefficient 119  
FIR Filter Bank B, Coefficient 5 to Coefficient ꢀ9  
FIR Filter Bank B, Coefficient 65 to Coefficient 119  
FIR Filter Bank C, Coefficient 5 to Coefficient ꢀ9  
FIR Filter Bank C, Coefficient 65 to Coefficient 119  
FIR Filter Bank D, Coefficient 5 to Coefficient ꢀ9  
FIR Filter Bank D, Coefficient 65 to Coefficient 119  
9
15  
11  
12  
Rev. D | Page 14 of 43  
 
 
 
Data Sheet  
ADIS16497  
CS  
SCLK  
DIN  
R/W A6  
A5  
R/W A6  
A5  
A4  
A3  
A2  
A1  
D9  
A0 DC7 DC6 DC5 DC4 DC3 DC2 DC1 DC0  
D8 D7 D6 D5 D4 D3 D2 D1 D0  
DOUT  
D15 D14 D13 D12 D11 D10  
D15 D14 D13  
NOTES  
1. DOUT BITS ARE PRODUCED ONLY WHEN THE PREVIOUS 16-BIT DIN SEQUENCE STARTS WITH R/W = 0.  
2. WHEN CS IS HIGH, DOUT IS IN A THREE-STATE, HIGH IMPEDANCE MODE, WHICH ALLOWS MULTIFUNCTIONAL USE OF THE LINE  
FOR OTHER DEVICES.  
Figure 27. SPI Communication Bit Sequence  
SERIAL PERIPHERAL INTERFACE  
DATA READY  
The SPI provides access to all of the user accessible registers  
(see Table 8) and typically connects to a compatible port on an  
embedded processor platform. See Figure 28 for a diagram that  
provides the most common connections between the ADIS16497  
and an embedded processor.  
The factory default configuration provides the user with a data  
ready (DR) signal on the DIO2 pin, which pulses low when the  
output data registers are updating (see Figure 29). In this config-  
uration, connect DIO2 to an interrupt service pin on the  
embedded processor, which triggers data collection, when this  
signal pulses high. Register FNCTIO_CTRL, Bits[3:0] (see  
Table 144), provides user configuration options for this  
function.  
I/O LINES ARE COMPATIBLE WITH  
3.3V LOGIC LEVELS  
3.3V  
VDD  
10  
11  
SYSTEM  
PROCESSOR  
SPI MASTER  
DIO2  
6
3
SS  
CS  
ADIS16497  
INACTIVE  
ACTIVE  
SCLK  
SCLK  
MOSI  
Figure 29. Data Ready, when FNCTIO_CTRL, Bits[3:0] = 1101 (default)  
5
4
9
DIN  
During the start-up and reset recovery processes, the DR signal  
can exhibit transient behavior before data production begins.  
Figure 30 provides an example of the DR behavior during  
startup, and Figure 31 and Figure 32 provide examples of the  
DR behavior during recovery from reset commands.  
MISO  
IRQ  
DOUT  
DIO2  
13  
14  
Figure 28. Electrical Connection Diagram  
TIME THAT VDD > 3V  
Table 8. Generic Master Processor Pin Names and Functions  
VDD  
Mnemonic  
Function  
PULSING INDICATES  
DATA PRODUCTION  
SS  
Slave select  
IRQ  
Interrupt request  
Master output, slave input  
Master input, slave output  
Serial clock  
DR  
MOSI  
MISO  
SCLK  
START-UP TIME  
Figure 30. Data Ready Response During Startup  
Embedded processors typically use control registers to  
configure their serial ports for communicating with SPI slave  
devices such as the ADIS16497. Table 9 provides a list of settings  
that describe the SPI protocol of the ADIS16497. The  
initialization routine of the master processor typically  
establishes these settings using firmware commands to write  
them into its serial control registers.  
SOFTWARE RESET COMMAND  
GLOB_CMD[7] = 1  
DR PULSING  
RESUMES  
DR  
RESET RECOVERY TIME  
Table 9. Generic Master Processor SPI Settings  
Processor Setting Description  
Figure 31. Data Ready Response During Software Reset  
(Register GLOB_CMD, Bit 7 = 1) Recovery  
Master  
ADIS16497 operates as slave  
SCLK ≤ 1ꢀ MHz  
SPI Mode 3  
MSB First Mode  
16-Bit Mode  
Maximum serial clock rate  
CPOL = 1 (polarity), CPHA = 1 (phase)  
Bit sequence, see Figure 27 for coding  
Shift register/data length  
Rev. D | Page 1ꢀ of 43  
 
 
 
 
 
 
 
 
 
ADIS16497  
Data Sheet  
Burst Read Function  
RST PIN  
RELEASED  
The burst read function (BRF) provides a method for reading a  
batch of data (status, temperature, gyroscopes, accelerometers,  
time stamp/data counter, and CRC code), which does not  
require a stall time between each 16-bit segment and only  
requires one command on the DIN line to initiate. System  
processors can execute the BRF by reading the BURST_CMD  
register (DIN = 0x7C00) and then reading each segment of data  
RST  
DR  
DR PULSING  
RESUMES  
RESET RECOVERY TIME  
in the response, while holding the  
line in a low state, until  
RST  
CS  
Figure 32. Data Ready Response During Reset (  
= 0) Recovery  
after reading the last 16-bit segment of data. If the  
high before the completion of all data acquisition, the data from  
that read request is lost.  
line goes  
CS  
READING SENSOR DATA  
Reading a single register requires two 16-bit cycles on the SPI:  
one to request the contents of a register and another to receive  
those contents. The 16-bit command code (see Figure 27) for a  
The BRF response (on the DOUT line) contains either 19 or 20  
data segments (16-bits each), after the BRF request (DIN =  
0x7C00) depending on the SCLK rate. Figure 5 and Table 10  
illustrate the 19-segment case, while Figure 6 and in Table 11  
illustrate the 20-segment case.  
R
read request on the SPI has three parts: the read bit ( /W = 0),  
the 7-bit address code for either address (upper or lower) of the  
register, Bits[A6:A0], and eight don’t care bits, Bits[DC7:DC0].  
Figure 33 provides an example that includes two register reads  
in succession. This example starts with DIN = 0x1A00, to  
request the contents of the Z_GYRO_OUT register, and follows  
with 0x1800, to request the contents of the Z_GYRO_LOW  
register (assuming PAGE_ID already equals 0x0000). The  
sequence in Figure 33 also shows full duplex mode of  
operation, which means that the ADIS16497 can receive  
requests on DIN while also transmitting data out on DOUT  
within the same 16-bit SPI cycle.  
To manage that variation, use the transition from the  
BURST_ID code (0xA5A5 in Table 10 and Table 11) to the  
SYS_E_FLAG register, which is not equal to 0xA5A5, as an  
identifier for when the ADIS16497 BRF response is starting.  
Table 10. BRF Data Format (fSCLK < 3 MHz)1  
Segment DIN  
DOUT  
5
5x7C55 N/A  
1
2
3
4
6
7
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
5x5555  
5xAꢀAꢀ (BURST_ID)  
SYS_E_FLAG  
TEMP_OUT  
X_GYRO_LOW  
X_GYRO_OUT  
Y_GYRO_LOW  
Y_GYRO_OUT  
Z_GYRO_LOW  
Z_GYRO_OUT  
X_ACCL_LOW  
X_ACCL_OUT  
Y_ACCL_LOW  
Y_ACCL_OUT  
Z_ACCL_LOW  
Z_ACCL_OUT  
DATA_CNT (FNCTIO_CTRL, Bits[ꢁ:7] ≠ 11)  
TIME_STAMP (FNCTIO_CTRL, Bits[ꢁ:7] = 11)  
CRC_LWR  
NEXT  
DIN  
0x1A00  
0x1800  
ADDRESS  
DOUT  
Z_GYRO_OUT  
Z_GYRO_LOW  
Figure 33. SPI Read Example  
Figure 34 provides an example of the four SPI signals when  
reading the PROD_ID register (see Table 92) in a repeating  
pattern. This pattern can be helpful when troubleshooting the  
SPI interface setup and communications.  
9
15  
11  
12  
13  
14  
1ꢀ  
16  
17  
CS  
SCLK  
DIN  
DIN = 0111 1110 0000 0000 = 0x7E00  
DOUT  
DOUT = 0100 0000 0111 0001 = 0x4071 = 16497 (PROD_ID)  
Figure 34. SPI Read Example, Second 16-Bit Sequence  
1ꢁ  
19  
N/A  
N/A  
CRC_UPR  
1 N/A means not applicable.  
Rev. D | Page 16 of 43  
 
 
 
 
 
Data Sheet  
ADIS16497  
CS  
Table 11. BRF Data Format (fSCLK > 3.6 MHz)1  
Segment DIN  
DOUT  
SCLK  
DIN  
5
5x7C55  
N/A  
0x90DC  
0x91FE  
1
2
3
4
6
7
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
5x5555  
Figure 35. SPI Sequence for Writing 0xFEDC to XG_BIAS_LOW  
5xAꢀAꢀ (BURST_ID)  
5xAꢀAꢀ (BURST_ID)  
SYS_E_FLAG  
Dual Memory Structure  
The ADIS16497 uses a dual memory structure (see Figure 36),  
with static random access memory (SRAM) supporting real-  
time operation and flash memory storing operational code,  
calibration coefficients, and user configurable register settings. The  
manual flash update command (GLOB_CMD, Bit 3, see  
Table 142) provides a single-command method for storing user  
configuration settings into flash memory, for automatic recall  
during the next power-on or reset recovery process. This portion of  
the flash memory bank has two independent banks that operate  
in a ping pong manner, alternating with every flash update.  
During power-on or reset recovery, the ADIS16497 performs a  
CRC on the SRAM and compares it to a CRC computation from  
the same memory locations in flash memory. If this memory test  
fails, the ADIS16497 resets and boots up from the other flash  
memory location. SYS_E_FLAG, Bit 2 (see Table 18) provides  
an error flag for detecting when the backup flash memory  
supported the last power-on or reset recovery. Table 12 provides a  
memory map for the user registers in the ADIS16497, which  
includes flash backup support (indicated by yes or no in the  
flash column).  
TEMP_OUT  
X_GYRO_LOW  
X_GYRO_OUT  
Y_GYRO_LOW  
Y_GYRO_OUT  
Z_GYRO_LOW  
Z_GYRO_OUT  
X_ACCL_LOW  
X_ACCL_OUT  
Y_ACCL_LOW  
Y_ACCL_OUT  
Z_ACCL_LOW  
Z_ACCL_OUT  
9
15  
11  
12  
13  
14  
1ꢀ  
16  
17  
1ꢁ  
DATA_CNT (FNCTIO_CTRL, Bits[ꢁ:7] ≠ 11)  
TIME_STAMP (FNCTIO_CTRL, Bits[ꢁ:7] = 11)  
CRC_LWR  
19  
25  
N/A  
N/A  
CRC_UPR  
1 N/A means not applicable.  
DEVICE CONFIGURATION  
Each register contains 16 bits (two bytes); Bits[7:0] contain the  
low byte and Bits[15:8] contain the high byte. Each byte has its  
own unique address in the user register map (see Table 12).  
Updating the contents of a register requires writing to its low  
byte first and its high byte second. There are three parts to coding  
a SPI command (see Figure 27), which writes a new byte of data  
MANUAL  
FLASH  
BACKUP  
NONVOLATILE  
FLASH MEMORY  
VOLATILE  
SRAM  
SPI ACCESS  
(NO SPI ACCESS)  
START-UP  
RESET  
R
to a register: the write bit ( /W = 1), the 7-bit address code for  
the byte that this command is updating, and the new data for that  
location, Bits[DC7:DC0]. Figure 35 provides a coding example for  
writing 0xFEDC to the XG_BIAS_LOW register (see Table 106),  
assuming PAGE_ID already equals 0x0002.  
Figure 36. SRAM and Flash Memory Diagram  
Rev. D | Page 17 of 43  
 
 
 
 
ADIS16497  
Data Sheet  
USER REGISTER MEMORY MAP  
Table 12. User Register Memory Map1  
Register Name  
R/W Flash Backup PAGE_ID Address  
Default Register Description  
PAGE_ID  
Reserved  
DATA_CNT  
Reserved  
SYS_E_FLAG  
DIAG_STS  
Reserved  
R/W No  
N/A N/A  
5x55  
5x55  
5x55  
5x55  
5x55  
5x55  
5x55  
5x55  
5x55  
5x55  
5x55  
5x55  
5x55  
5x55  
5x55  
5x55  
5x55  
5x55  
5x55  
5x55  
5x55  
5x55  
5x55  
5x55  
5x55  
5x55  
5x55  
5x55  
5x55  
5x55  
5x55  
5x55  
5x55  
5x55  
5x55  
5x55  
5x55  
5x55  
5x55  
5x51  
5x52  
5x52  
5x52  
5x52  
5x52  
5x52  
5x52  
5x52  
5x52  
5x52  
5x55, 5x51  
5x52, 5x53  
5x54, 5x5ꢀ  
5x56, 5x57  
5x5ꢁ, 5x59  
5x5A, 5x5B  
5x5C, 5x5D  
5x5E, 5x5F  
5x15, 5x11  
5x12, 5x13  
5x14, 5x1ꢀ  
5x16, 5x17  
5x1ꢁ, 5x19  
5x1A, 5x1B  
5x1C, 5x1D  
5x1E, 5x1F  
5x25, 5x21  
5x22, 5x23  
5x24, 5x2ꢀ  
5x26, 5x27  
5x2ꢁ, 5x29  
5x2A, 5x2B  
5x2C, 5x2D  
5x5555  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Page identifier  
Reserved  
Data counter  
Reserved  
Output, system error flags (5x5555 if no errors)  
Output, self test error flags (5x5555 if no errors)  
Reserved  
R
No  
N/A N/A  
R
R
No  
No  
N/A N/A  
TEMP_OUT  
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
Output, temperature  
X_GYRO_LOW  
X_GYRO_OUT  
Y_GYRO_LOW  
Y_GYRO_OUT  
Z_GYRO_LOW  
Z_GYRO_OUT  
X_ACCL_LOW  
X_ACCL_OUT  
Y_ACCL_LOW  
Y_ACCL_OUT  
Z_ACCL_LOW  
Z_ACCL_OUT  
TIME_STAMP  
CRC_LWR  
Output, x-axis gyroscope, low word  
Output, x-axis gyroscope, high word  
Output, y-axis gyroscope, low word  
Output, y-axis gyroscope, high word  
Output, z-axis gyroscope, low word  
Output, z-axis gyroscope, high word  
Output, x-axis accelerometer, low word  
Output, x-axis accelerometer, high word  
Output, y-axis accelerometer, low word  
Output, y-axis accelerometer, high word  
Output, z-axis accelerometer, low word  
Output, z-axis accelerometer, high word  
Output, time stamp  
Output, CRC-32 (32 bits), lower word  
Output, CRC-32, upper word  
Reserved  
CRC_UPR  
Reserved  
N/A N/A  
5x2E to 5x3F N/A  
X_DELTANG_LOW  
X_DELTANG_OUT  
Y_DELTANG_LOW  
Y_DELTANG_OUT  
Z_DELTANG_LOW  
Z_DELTANG_OUT  
X_DELTVEL_LOW  
X_DELTVEL_OUT  
Y_DELTVEL_LOW  
Y_DELTVEL_OUT  
Z_DELTVEL_LOW  
Z_DELTVEL_OUT  
Reserved  
BURST_CMD  
PROD_ID  
Reserved  
PAGE_ID  
Reserved  
X_GYRO_SCALE  
Y_GYRO_SCALE  
Z_GYRO_SCALE  
X_ACCL_SCALE  
Y_ACCL_SCALE  
Z_ACCL_SCALE  
XG_BIAS_LOW  
XG_BIAS_HIGH  
R
R
R
R
R
R
R
R
R
R
R
R
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
5x45, 5x41  
5x42, 5x43  
5x44, 5x4ꢀ  
5x46, 5x47  
5x4ꢁ, 5x49  
5x4A, 5x4B  
5x4C, 5x4D  
5x4E, 5x4F  
5xꢀ5, 5xꢀ1  
5xꢀ2, 5xꢀ3  
5xꢀ4, 5xꢀꢀ  
5xꢀ6, 5xꢀ7  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Output, x-axis delta angle, low word  
Output, x-axis delta angle, high word  
Output, y-axis delta angle, low word  
Output, y-axis delta angle, high word  
Output, z-axis delta angle, low word  
Output, z-axis delta angle, high word  
Output, x-axis delta velocity, low word  
Output, x-axis delta velocity, high word  
Output, y-axis delta velocity, low word  
Output, y-axis delta velocity, high word  
Output, z-axis delta velocity, low word  
Output, z-axis delta velocity, high word  
Reserved  
Burst-read command  
Output, product identification (16497d)  
Reserved  
Page identifier  
Reserved  
Calibration, scale, x-axis gyroscope  
Calibration, scale, y-axis gyroscope  
Calibration, scale, z-axis gyroscope  
Calibration, scale, x-axis accelerometer  
Calibration, scale, y-axis accelerometer  
Calibration, scale, z-axis accelerometer  
Calibration, bias, gyroscope, x-axis, low word  
Calibration, bias, gyroscope, x-axis, high word  
N/A N/A  
5xꢀꢁ to 5x7B N/A  
5x7C, 5x7D  
5x7E, 5x7F  
R
R
No  
Yes  
N/A  
5x4571  
N/A N/A  
R/W No  
N/A N/A  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
5x55 to 5x7F N/A  
5x55, 5x51  
5x52, 5x53  
5x54, 5x5ꢀ  
5x56, 5x57  
5x5ꢁ, 5x59  
5x5A, 5x5B  
5x5C, 5x5D  
5x5E, 5x5F  
5x15, 5x11  
5x12, 5x13  
5x5555  
N/A  
5x5555  
5x5555  
5x5555  
5x5555  
5x5555  
5x5555  
5x5555  
5x5555  
Rev. D | Page 1ꢁ of 43  
 
 
Data Sheet  
ADIS16497  
Register Name  
YG_BIAS_LOW  
YG_BIAS_HIGH  
ZG_BIAS_LOW  
ZG_BIAS_HIGH  
XA_BIAS_LOW  
XA_BIAS_HIGH  
YA_BIAS_LOW  
YA_BIAS_HIGH  
ZA_BIAS_LOW  
ZA_BIAS_HIGH  
Reserved  
USER_SCR_1  
USER_SCR_2  
USER_SCR_3  
USER_SCR_4  
FLSHCNT_LOW  
FLSHCNT_HIGH  
PAGE_ID  
GLOB_CMD  
Reserved  
FNCTIO_CTRL  
GPIO_CTRL  
CONFIG  
DEC_RATE  
NULL_CNFG  
SYNC_SCALE  
RANG_MDL  
Reserved  
FILTR_BNK_5  
FILTR_BNK_1  
Reserved  
FIRM_REV  
FIRM_DM  
FIRM_Y  
BOOT_REV  
PAGE_ID  
Reserved  
CAL_SIGTR_LWR  
CAL_SIGTR_UPR  
CAL_DRVTN_LWR  
CAL_DRVTN_UPR  
CODE_SIGTR_LWR  
CODE_SIGTR_UPR  
CODE_DRVTN_LWR  
CODE_DRVTN_UPR  
Reserved  
SERIAL_NUM  
Reserved  
PAGE_ID  
Reserved  
FIR_COEF_Axxx3  
R/W Flash Backup PAGE_ID Address  
Default Register Description  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
N/A N/A  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
5x52  
5x52  
5x52  
5x52  
5x52  
5x52  
5x52  
5x52  
5x52  
5x52  
5x52  
5x52  
5x52  
5x52  
5x52  
5x52  
5x52  
5x53  
5x53  
5x53  
5x53  
5x53  
5x53  
5x53  
5x53  
5x53  
5x53  
5x53  
5x53  
5x53  
5x53  
5x53  
5x53  
5x53  
5x53  
5x54  
5x54  
5x54  
5x54  
5x54  
5x54  
5x54  
5x54  
5x54  
5x54  
5x54  
5x54  
5x54  
5x5ꢀ  
5x5ꢀ  
5x5ꢀ  
5x56  
5x56  
5x14, 5x1ꢀ  
5x16, 5x17  
5x1ꢁ, 5x19  
5x1A, 5x1B  
5x1C, 5x1D  
5x1E, 5x1F  
5x25, 5x21  
5x22, 5x23  
5x24, 5x2ꢀ  
5x26, 5x27  
5x5555  
5x5555  
5x5555  
5x5555  
5x5555  
5x5555  
5x5555  
5x5555  
5x5555  
5x5555  
Calibration, bias, gyroscope, y-axis, low word  
Calibration, bias, gyroscope, y-axis, high word  
Calibration, bias, gyroscope, z-axis, low word  
Calibration, bias, gyroscope, z-axis, high word  
Calibration, bias, accelerometer, x-axis, low word  
Calibration, bias, accelerometer, x-axis, high word  
Calibration, bias, accelerometer, y-axis, low word  
Calibration, bias, accelerometer, y-axis, high word  
Calibration, bias, accelerometer, z-axis, low word  
Calibration, bias, accelerometer, z-axis, high word  
Reserved  
5x2ꢁ to 5x73 5x5555  
5x74, 5x7ꢀ  
5x76, 5x77  
5x7ꢁ, 5x79  
5x7A, 5x7B  
5x7C, 5x7D  
5x7E, 57F  
5x5555  
5x5555  
5x5555  
5x5555  
N/A  
N/A  
5x5555  
N/A  
User Scratch Register 1  
User Scratch Register 2  
User Scratch Register 3  
User Scratch Register 4  
Diagnostic, flash memory count, low word  
Diagnostic, flash memory count, high word  
Page identifier  
R
R
Yes  
Yes  
R/W No  
No  
5x55, 5x51  
5x52, 5x53  
5x54, 5x5ꢀ  
5x56, 5x57  
5x5ꢁ, 5x59  
5x5A, 5x5B  
5x5C, 5x5D  
5x5E, 5x5F  
5x15, 5x11  
5x12, 5x13  
5x14, 5x1ꢀ  
5x16, 5x17  
5x1ꢁ, 5x19  
W
Control, global commands  
N/A N/A  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
N/A  
Reserved  
5x555D Control, I/O pins, functional definitions  
5x55X52 Control, I/O pins, general-purpose  
5x55C5  
5x5555  
Control, clock, and miscellaneous correction  
Control, output sample rate decimation  
5x575A Control, automatic bias correction configuration  
5x159A Control, input clock scaling (PPS mode)  
R
N/A  
N/A  
N/A  
Measurement range (model-specific) Identifier  
Reserved  
N/A N/A  
R/W Yes  
R/W Yes  
N/A N/A  
5x5555  
5x5555  
Filter selection  
Filter selection  
5x1A to 5x77 N/A  
Reserved  
R
R
R
R
Yes  
Yes  
Yes  
Yes  
5x7ꢁ, 5x79  
5x7A, 5x7B  
5x7C, 5x7D  
5x7E, 5x7F  
5x55, 5x51  
5x52, 5x53  
5x54, 5x5ꢀ  
5x56, 5x57  
5x5ꢁ, 5x59  
5x5A, 5x5B  
5x5C, 5x5D  
5x5E, 5x5F  
5x15, 5x11  
5x12, 5x13  
N/A  
N/A  
N/A  
N/A  
5x5555  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Firmware revision  
Firmware programming date (day/month)  
Firmware programming date (year)  
Boot loader revision  
Page identifier  
Reserved  
Signature CRC, calibration coefficients, low word  
Signature CRC, calibration coefficients, high word  
Real-time CRC, calibration coefficients, low word  
Real-time CRC, calibration coefficients, high word  
Signature CRC, program code, low word  
Signature CRC, program code, high word  
Real-time CRC, program code, low word  
Real-time CRC, program code, high word  
Reserved  
R/W No  
N/A N/A  
R
R
R
R
R
R
R
R
Yes  
Yes  
No  
No  
Yes  
Yes  
No  
No  
N/A N/A  
Yes  
5x14 to 5x1F N/A  
5x25, 5x21 N/A  
5x22 to 5x7F N/A  
5x55, 5x51  
5x52 to 5x57 N/A  
5x5ꢁ to 5x7F N/A  
R
Serial number  
Reserved  
N/A N/A  
R/W No  
N/A N/A  
R/W Yes  
R/W No  
N/A N/A  
5x5555  
Page identifier  
Reserved  
FIR Filter Bank A: Coefficient 5 through Coefficient ꢀ9  
Page identifier  
PAGE_ID  
Reserved  
5x55, 5x51  
5x52 to 5x57 N/A  
5x5555  
Reserved  
Rev. D | Page 19 of 43  
ADIS16497  
Data Sheet  
Register Name  
FIR_COEF_Axxx3  
PAGE_ID  
Reserved  
FIR_COEF_Bxxx4  
PAGE_ID  
Reserved  
FIR_COEF_Bxxx4  
PAGE_ID  
Reserved  
FIR_COEF_Cxxxꢀ  
PAGE_ID  
Reserved  
FIR_COEF_Cxxxꢀ  
PAGE_ID  
Reserved  
FIR_COEF_Dxxx6  
R/W Flash Backup PAGE_ID Address  
Default Register Description  
R/W Yes  
R/W No  
N/A N/A  
R/W Yes  
R/W No  
N/A N/A  
R/W Yes  
R/W No  
N/A N/A  
R/W Yes  
R/W No  
N/A N/A  
R/W Yes  
R/W No  
N/A N/A  
R/W Yes  
R/W No  
N/A N/A  
R/W Yes  
5x56  
5x57  
5x57  
5x57  
5x5ꢁ  
5x5ꢁ  
5x5ꢁ  
5x59  
5x59  
5x59  
5x5A  
5x5A  
5x5A  
5x5B  
5x5B  
5x5B  
5x5C  
5x5C  
5x5C  
5x5ꢁ to 5x7F N/A  
5x55, 5x51  
5x52 to 5x57 N/A  
5x5ꢁ to 5x7F N/A  
5x55, 5x51  
5x52 to 5x57 N/A  
5x5ꢁ to 5x7F N/A  
5x55, 5x51  
5x52 to 5x57 N/A  
5x5ꢁ to 5x7F N/A  
5x55, 5x51  
5x52 to 5x57 N/A  
5x5ꢁ to 5x7F N/A  
5x55, 5x51  
5x52 to 5x57 N/A  
5x5ꢁ to 5x7F N/A  
5x55, 5x51  
FIR Filter Bank A: Coefficient 65 through Coefficient 119  
5x5555  
Page identifier  
Reserved  
FIR Filter Bank B: Coefficient 5 through Coefficient ꢀ9  
5x5555  
Page identifier  
Reserved  
FIR Filter Bank B: Coefficient 65 through Coefficient 119  
5x5555  
Page identifier  
Reserved  
FIR Filter Bank C: Coefficient 5 through Coefficient ꢀ9  
5x5555  
Page identifier  
Reserved  
FIR Filter Bank C: Coefficient 65 through Coefficient 119  
5x5555  
Page identifier  
Reserved  
FIR Filter Bank D: Coefficient 5 through Coefficient ꢀ9  
Page identifier  
PAGE_ID  
Reserved  
FIR_COEF_Dxxx6  
5x5555  
5x52 to 5x57 N/A  
5x5ꢁ to 5x7F N/A  
Reserved  
FIR Filter Bank D: Coefficient 65 through Coefficient 119  
1 N/A means not applicable.  
2 The GPIO_CTRL[7:4] bits reflect the logic levels on the DIOx lines and do not have a default setting.  
3 See the FIR Filter Bank A, FIR_COEF_A555 to FIR_COEF_A119 section for additional information.  
4 See the FIR Filter Bank B, FIR_COEF_B555 to FIR_COEF_B119 section for additional information.  
See the FIR Filter Bank C, FIR_COEF_C555 to FIR_COEF_C119 section for additional information.  
6 See the FIR Filter Bank D, FIR_COEF_D555 to FIR_COEF_D119 section for additional information.  
Rev. D | Page 25 of 43  
Data Sheet  
ADIS16497  
USER REGISTER DEFINTIONS  
PAGE NUMBER (PAGE_ID)  
Table 18. SYS_E_FLAG Bit Descriptions  
The contents in the PAGE_ID register (see Table 13 and Table 14)  
contain the current page setting, and provide a control for selecting  
another page for SPI access. For example, set DIN = 0x8002 to  
select Page 2 for SPI-based user access. See Table 12 for the page  
assignments associated with each user accessible register.  
Bits  
Description  
1ꢀ  
Watchdog timer flag. A 1 indicates the ADIS16497  
automatically resets itself to clear an issue.  
[14:9] Not used.  
Sync error. A 1 indicates the sample timing is not scaling  
correctly, when operating in PPS mode (FNCTIO_CTRL,  
Bit ꢁ = 1, see Table 144). When this error occurs, verify  
that the input sync frequency is correct and that  
SYNC_SCALE (see Table 1ꢀ4) has the correct value.  
Table 13. PAGE_ID Register Definition  
Page  
Addresses Default Access Flash Backup  
5x55  
5x55, 5x51 5x5555 R/W No  
7
6
Processing overrun. A 1 indicates the occurrence of a  
processing overrun. Initiate a reset to recover. Replace  
the ADIS16497 if this error persists.  
Table 14. PAGE_ID Bit Descriptions  
Bits  
Description  
Flash memory update failure. A 1 indicates that the most  
recent flash memory update failed (GLOB_CMD, Bit 3, see  
Table 142). Repeat the test and replace the ADIS16497 if  
this error persists.  
[1ꢀ:5]  
Page number, binary numerical format  
DATA/SAMPLE COUNTER (DATA_CNT)  
Sensor failure. A 1 indicates failure in at least one of the  
inertial sensors. Read the DIAG_STS register (see Table 25)  
to determine which sensor is failing. Replace the  
ADIS16497 if the error persists, when it is operating in  
static inertial conditions.  
The DATA_CNT register (see Table 15 and Table 16) is a continu-  
ous, real-time, sample counter. It starts at 0x0000, increments  
every time the output data registers update, and wraps around  
from 0xFFFF (65,535 decimal) to 0x0000 (0 decimal).  
4
3
Not used.  
Table 15. DATA_CNT Register Definition  
Page Addresses Default  
SPI communication error. A 1 indicates that the total  
number of SCLK cycles is not equal to an integer multiple  
of 16. Repeat the previous communication sequence to  
recover. Persistence in this error can indicate a weakness in  
the SPI service from the master processor.  
Access Flash Backup  
5x55 5x54, 5x5ꢀ Not applicable  
R
No  
Table 16. DATA_CNT Bit Descriptions  
Bits Description  
[1ꢀ:5] Data counter, binary format  
2
SRAM error condition. A 1 indicates a failure in the CRC  
(period = 25 ms) between the SRAM and flash memory.  
Initiate a reset to recover. Replace the ADIS16497 if this  
error persists.  
1
5
Boot memory failure. A 1 indicates that the device booted  
up using code from the backup memory bank. Replace the  
ADIS16497 if this error occurs.  
STATUS/ERROR FLAG INDICATORS (SYS_E_FLAG)  
The SYS_E_FLAG register (see Table 17 and Table 18) provides  
various error flags. Reading this register causes all of its bits to  
return to 0, with the exception of Bit 7. If an error condition  
persists, its flag (bit) automatically returns to an alarm value of 1.  
Not used.  
Table 17. SYS_E_FLAG Register Definition  
Page  
Addresses Default Access Flash Backup  
5x55  
5x5ꢁ, 5x59 5x5555 No  
R
Rev. D | Page 21 of 43  
 
 
 
 
 
 
 
 
 
ADIS16497  
Data Sheet  
SELF TEST ERROR FLAGS (DIAG_STS)  
GYROSCOPE DATA  
SYS_E_FLAG, Bit 5 (see Table 18) contains the pass/fail result  
(0 = pass) for the on demand self test (ODST) operations,  
whereas the DIAG_STS register (see Table 19 and Table 20)  
contains pass/fail flags (0 = pass) for each inertial sensor.  
Reading the DIAG_STS register causes all of its bits to restore to 0.  
The bits in DIAG_STS return to 1 if the error conditions persists.  
The gyroscopes in the ADIS16497 measure the angular rate of  
rotation around three orthogonal axes (x, y, and z). Figure 38  
shows the orientation of each gyroscope axis, which defines the  
direction of rotation that produces a positive response in each  
of the angular rate measurements.  
Each gyroscope has two output data registers. Figure 37 shows how  
these two registers combine to support a 32-bit, twos complement  
data format for the x-axis gyroscope measurements. This format  
also applies to the y-axis and z-axis as well.  
Table 19. DIAG_STS Register Definition  
Page  
Addresses  
Default Access Flash Backup  
5x55  
5x5A, 5x5B  
5x5555 No  
R
X_GYRO_OUT  
X_GYRO_LOW  
15  
0 15  
0
Table 20. DIAG_STS Bit Descriptions  
Bits Description (Default = 0x0000)  
[1ꢀ:6] Not used  
X-AXIS GYROSCOPE DATA  
Figure 37. Gyroscope Output Data Structure  
4
3
2
1
5
Self test failure, z-axis accelerometer (1 means failure)  
Self test failure, y-axis accelerometer (1 means failure)  
Self test failure, x-axis accelerometer (1 means failure)  
Self test failure, z-axis gyroscope (1 means failure)  
Self test failure, y-axis gyroscope (1 means failure)  
Self test failure, x-axis gyroscope (1 means failure)  
Gyroscope Measurement Range/Scale Factor  
Table 24 provides the range and scale factor (KG) for the  
angular rate (gyroscope) measurements in each ADIS16497  
model.  
Table 24. Gyroscope Measurement Range and Scale Factors  
Model  
Range  
Scale Factor, KG  
5.5562ꢀ°/sec/LSB  
5.52ꢀ°/sec/LSB  
5.1°/sec/LSB  
INTERNAL TEMPERATURE (TEMP_OUT)  
ADIS16497-1  
ADIS16497-2  
ADIS16497-3  
12ꢀ°/sec  
4ꢀ5°/sec  
2555°/sec  
The TEMP_OUT register (see Table 21 and Table 22) provides  
a coarse measurement of the temperature inside of the ADIS16497,  
and is useful for monitoring relative changes in the thermal  
environment. Table 23 provides several examples of the data  
format for the TEMP_OUT register.  
Gyroscope Data Formatting  
Table 25 and Table 26 offer various numerical examples that  
demonstrate the format of the rotation rate data in both 16-bit  
and 32-bit formats. See Table 24 for the scale factor (KG)  
associated with each ADIS16497 model.  
Table 21. TEMP_OUT Register Definition  
Page Addresses Default  
Access Flash Backup  
5x55 5x5E, 5x5F  
Not applicable  
R
No  
Table 25. 16-Bit Gyroscope Data Format Examples  
Rotation Rate  
Table 22. TEMP_OUT Bit Definitions  
Bits  
Description  
(°/sec)  
+15555 KG  
+2 KG  
+KG  
5°/sec  
−KG  
Decimal Hex  
Binary  
[1ꢀ:5]  
Temperature data; twos complement, 1°C per ꢁ5 LSB,  
2ꢀ°C = 5x5555  
+15,555  
5x2715  
5515 5111 5551 5555  
5555 5555 5555 5515  
5555 5555 5555 5551  
5555 5555 5555 5555  
1111 1111 1111 1111  
1111 1111 1111 1115  
1151 1555 1111 5555  
+2  
+1  
5
−1  
−2  
−15,555  
5x5552  
5x5551  
5x5555  
5xFFFF  
5xFFFE  
5xDꢁF5  
Table 23. TEMP_OUT Data Format Examples  
Temperature (°C) Decimal Hex Binary  
−2 KG  
−15555 KG  
+ꢁꢀ  
+4ꢁ55  
+2  
+1  
5
−1  
5x12C5 5551 5515 1155 5555  
5x5552 5555 5555 5555 5515  
5x5551 5555 5555 5555 5551  
5x5555 5555 5555 5555 5555  
5xFFFF 1111 1111 1111 1111  
5xFFFE 1111 1111 1111 1115  
5xEBB5 1115 1511 1511 5555  
+2ꢀ + 2/ꢁ5  
+2ꢀ + 1/ꢁ5  
+2ꢀ  
+2ꢀ – 1/ꢁ5  
+2ꢀ – 2/ꢁ5  
−45  
Table 26. 32-Bit Gyroscope Data Format Examples  
Rotation Rate (°/sec)  
+15555 KG  
+KG/21ꢀ  
Decimal  
Hexadecimal  
5x27155555  
5x55555552  
5x55555551  
5x5555555  
5xFFFFFFFF  
5xFFFFFFFE  
5xDꢁF55555  
−2  
−ꢀ255  
+6ꢀꢀ,365,555  
+2  
+1  
5
−1  
−2  
+KG/216  
5
−KG /216  
−KG /21ꢀ  
−15555 KG  
−6ꢀꢀ,365,555  
Rev. D | Page 22 of 43  
 
 
 
 
 
 
 
 
 
 
 
Data Sheet  
ADIS16497  
Z-AXIS  
ω
Z
X-AXIS  
Y-AXIS  
ω
X
ω
Y
PIN 23  
PIN 1  
Figure 38. Gyroscope Axis and Polarity Assignments  
X-Axis Gyroscope (X_GYRO_LOW, X_GRYO_OUT)  
Table 32. Y_GYRO_LOW Bit Descriptions  
The X_GYRO_LOW (see Table 27 and Table 28) and X_GRYO_  
OUT (see Table 29 and Table 30) registers contain the gyroscope  
data for the x-axis.  
Bits  
Description  
[1ꢀ:5]  
Y-axis gyroscope data; low word  
Table 27. X_GYRO_LOW Register Definition  
Table 33. Y_GYRO_OUT Register Definition  
Page Addresses Default  
Access Flash Backup  
Page Addresses Default  
Access Flash Backup  
5x55 5x15, 5x11 Not applicable  
R
No  
5x55 5x16, 5x17 Not applicable  
R
No  
Table 34. Y_GYRO_OUT Bit Descriptions  
Table 28. X_GYRO_LOW Bit Descriptions  
Bits  
Description  
Bits  
Description  
[1ꢀ:5]  
Y-axis gyroscope data; high word; twos complement,  
5°/sec = 5x5555, see Table 24 for scale factor  
[1ꢀ:5]  
X-axis gyroscope data; low word  
Z-Axis Gyroscope (Z_GYRO_LOW, Z_GYRO_OUT)  
Table 29. X_GYRO_OUT Register Definition  
Page Addresses Default  
Access Flash Backup  
The Z_GYRO_LOW (see Table 35 and Table 36) and Z_GRYO_  
OUT (see Table 37 and Table 38) registers contain the gyroscope  
data for the z-axis.  
5x55 5x12, 5x13 Not applicable  
R
No  
Table 30. X_GYRO_OUT Bit Descriptions  
Table 35. Z_GYRO_LOW Register Definition  
Bits  
Description  
Page Addresses Default  
Access Flash Backup  
[1ꢀ:5]  
X-axis gyroscope data; high word; twos complement,  
5°/sec = 5x5555, see Table 24 for scale factor  
5x55 5x1ꢁ, 5x19 Not applicable  
R
No  
Table 36. Z_GYRO_LOW Bit Descriptions  
Y-Axis Gyroscope (Y_GYRO_LOW, Y_GYRO_OUT)  
Bits  
Description  
The Y_GYRO_LOW (see Table 31 and Table 32) and Y_GRYO_  
OUT (see Table 33 and Table 34) registers contain the gyroscope  
data for the y-axis.  
[1ꢀ:5]  
Z-axis gyroscope data; additional resolution bits  
Table 37. Z_GYRO_OUT Register Definition  
Table 31. Y_GYRO_LOW Register Definition  
Page Addresses Default  
Access Flash Backup  
Page Addresses Default  
Access Flash Backup  
5x55 5x1A, 5x1B Not applicable  
R
No  
5x55 5x14, 5x1ꢀ Not applicable  
R
No  
Table 38. Z_GYRO_OUT Bit Descriptions  
Bits  
Description  
[1ꢀ:5]  
Z-axis gyroscope data; high word; twos complement,  
5°/sec = 5x5555, see Table 24 for scale factor  
Rev. D | Page 23 of 43  
 
 
 
 
 
 
 
 
 
 
 
 
 
ADIS16497  
Data Sheet  
Z-AXIS  
aZ  
X-AXIS  
Y-AXIS  
aX  
aY  
PIN 23  
PIN 1  
Figure 39. Accelerometer Axis and Polarity Assignments  
ACCELERATION DATA  
Y-Axis Accelerometer (Y_ACCL_LOW, Y_ACCL_OUT)  
The accelerometers in the ADIS16497 measure both dynamic  
and static (response to gravity) acceleration along three orthogonal  
axes (x, y, and z). Figure 39 shows the orientation of each  
accelerometer axis, which defines the direction of linear  
acceleration that produces a positive response in each of the  
angular rate measurements.  
The Y_ACCL_LOW (see Table 43 and Table 44) and  
Y_ACCL_ OUT (see Table 45 and Table 46) registers contain  
the accelerometer data for the y-axis.  
Table 43. Y_ACCL_LOW Register Definition  
Page Addresses Default  
Access Flash Backup  
5x55 5x25, 5x21 Not applicable  
R
No  
Each accelerometer has two output data registers. Figure 40 shows  
how these two registers combine to support a 32-bit, twos comple-  
ment data format for the x-axis accelerometer measurements.  
This format also applies to the y-axis and z-axis.  
Table 44. Y_ACCL_LOW Bit Descriptions  
Bits Description  
[1ꢀ:5] Y-axis accelerometer data; low word  
X_ACCL_OUT  
X_ACCL_LOW  
15  
0 15  
0
Table 45. Y_ACCL_OUT Register Definition  
X-AXIS ACCELEROMETER DATA  
Page Addresses Default  
Access Flash Backup  
Figure 40. Accelerometer Output Data Structure  
5x55 5x22, 5x23 Not applicable  
R
No  
X-Axis Accelerometer (X_ACCL_LOW, X_ACCL_OUT)  
The X_ACCL_LOW (see Table 39 and Table 40) and X_ACCL_  
OUT (see Table 41 and Table 42) registers contain the  
accelerometer data for the x-axis.  
Table 46. Y_ACCL_OUT Bit Descriptions  
Bits Description  
[1ꢀ:5] Y-axis accelerometer data, high word; twos complement,  
45 g range; 5 g = 5x5555, 1 LSB = 1.2ꢀ mg  
Table 39. X_ACCL_LOW Register Definition  
Page Addresses Default  
Access Flash Backup  
Z-Axis Accelerometer (Z_ACCL_LOW, Z_ACCL_OUT)  
5x55 5x1C, 5x1D Not applicable  
R
No  
The Z_ACCL_LOW (see Table 47 and Table 48) and Z_ACCL_  
OUT (see Table 49 and Table 50) registers contain the  
accelerometer data for the z-axis.  
Table 40. X_ACCL_LOW Bit Descriptions  
Bits Description  
Table 47. Z_ACCL_LOW Register Definition  
[1ꢀ:5] X-axis accelerometer data; low word  
Page Addresses Default  
Access Flash Backup  
5x55 5x24, 5x2ꢀ Not applicable  
R
No  
Table 41. X_ACCL_OUT Register Definition  
Page Addresses Default  
Access Flash Backup  
Table 48. Z_ACCL_LOW Bit Descriptions  
Bits Description  
[1ꢀ:5] Z-axis accelerometer data; low word  
5x55 5x1E, 5x1F Not applicable  
R
No  
Table 42. X_ACCL_OUT Descriptions  
Bits Description  
[1ꢀ:5] X-axis accelerometer data, high word; twos complement,  
45 g range; 5 g = 5x5555, 1 LSB = 1.2ꢀ mg  
Rev. D | Page 24 of 43  
 
 
 
 
 
 
 
 
 
 
 
 
 
Data Sheet  
ADIS16497  
When using the decimation filter (DEC_RATE > 0x0000) the  
value in the TIME_STAMP register represents the time of the  
first sample (taken at the rate of fSM, per Figure 22 and Figure 23).  
For example, when DEC_RATE = 0x0003, the decimation filter  
reduces the update by a factor of four and the TIME_STAMP  
register updates to 1 (decimal) during the first data update,  
then to 5 on the second update, 9 on the third update, for  
example; until the next clock signal pulse.  
Table 49. Z_ACCL_OUT Register Definition  
Page Addresses Default  
Access Flash Backup  
5x55 5x26, 5x27 Not applicable  
R
No  
Table 50. Z_ACCL_OUT Bit Descriptions  
Bits Description  
[1ꢀ:5] Z-axis accelerometer data, high word; twos complement,  
45 g range; 5 g = 5x5555, 1 LSB = 1.2ꢀ mg  
CYCLICAL REDUNDANCY CHECK (CRC-32)  
The ADIS16497 performs a CRC-32 computation, using the  
data registers that are shown in Table 55.  
Accelerometer Resolution  
Table 51 and Table 52 offer various numerical examples that  
demonstrate the format of the linear acceleration data in both  
16-bit and 32-bit formats.  
Table 55. CRC-32 Source Data and Example Values  
Register  
Example Value  
5x5555  
5x5ꢁ3A  
5x5555  
5xFFF7  
SYS_E_FLAG  
TEMP_OUT  
Table 51. 16-Bit Accelerometer Data Format Examples  
Acceleration  
Decimal  
+32,555  
+2  
+1  
5
Hex  
Binary  
X_GYRO_LOW  
X_GYRO_OUT  
Y_GYRO_LOW  
Y_GYRO_OUT  
Z_GYRO_LOW  
Z_GYRO_OUT  
X_ACCL_LOW  
X_ACCL_OUT  
Y_ACCL_LOW  
Y_ACCL_OUT  
Z_ACCL_LOW  
Z_ACCL_OUT  
TIME_STAMP  
+45 g  
5x7D55 5111 1151 5555 5555  
+2.ꢀ mg  
+1.2ꢀ mg  
5 mg  
5x5552  
5x5551  
5x5555  
5xFFFF  
5xFFFE  
5xꢁ355  
5555 5555 5555 5515  
5555 5555 5555 5551  
5555 5555 5555 5555  
1111 1111 1111 1111  
1111 1111 1111 1115  
1555 5511 5555 5555  
5x5555  
5xFFFE  
5x5555  
5x5551  
5xꢀ551  
5x5553  
5xE55A  
5x551ꢀ  
5xC559  
5x5325  
5xꢁAꢀ4  
−1.2ꢀ mg  
−2.ꢀ mg  
−45 g  
−1  
−2  
−32,555  
Table 52. 32-Bit Accelerometer Data Format Examples  
Acceleration  
Decimal  
Hexadecimal  
5x7D555555  
5x55555552  
5x55555551  
5x55555555  
5xFFFFFFFF  
5xFFFFFFFE  
5xꢁ3555555  
+45 g  
+2,597,1ꢀ2,555  
+1.2ꢀ/21ꢀ mg  
+1.2ꢀ/216 mg  
5 mg  
+2  
+1  
5
The CRC_LWR (see Table 56 and Table 57) and CRC_UPR (see  
Table 58 and Table 59) registers contain the result of the CRC-32  
computation. For the example, the register values from  
Table 55 are,  
−1.2ꢀ/216 mg  
−1.2ꢀ/21ꢀ mg  
−45 g  
−1  
−2  
−2,597,1ꢀ2,555  
CRC_LWR = 0x15B4  
CRC_UPR = 0xB6C8  
TIME STAMP  
When using PPS mode (FNCTIO_CTRL, Bits[8:7] = 11 (binary),  
see Table 144), the TIME_STAMP register (see Table 53 and  
Table 54) provides the time between the most recent pulse on  
the input clock signal and the most recent data update.  
Table 56. CRC_LWR Register Definition  
Page Addresses Default  
Access Flash Backup  
5x55 5x2A, 5x2B Not applicable  
R
No  
Table 53. TIME_STAMP Register Definition  
Table 57. CRC_LWR Bit Descriptions  
Page Addresses Default  
Access Flash Backup  
Bits  
Description  
5x55 5x2ꢁ, 5x29 Not applicable  
R
No  
[1ꢀ:5] CRC-32 code from most recent BRF, lower word  
Table 54. TIME_STAMP Bit Descriptions  
Bits Description  
[1ꢀ:5] Time stamp, binary format.  
Table 58. CRC_UPR Register Definition  
Page Addresses Default  
Access Flash Backup  
5x55 5x2C, 5x2D Not applicable  
R
No  
1 LSB = 1/fSM (see Figure 22, Figure 23, and Table 1ꢀ4).  
The leading edge of the input clock pulse resets the  
value in this register to 5x5555.  
Table 59. CRC_UPR Bit Descriptions  
Bits Description  
[1ꢀ:5] CRC-32 code from most recent BRF, upper word  
Rev. D | Page 2ꢀ of 43  
 
 
 
 
 
 
 
 
 
 
 
 
 
ADIS16497  
Data Sheet  
Z-AXIS  
Δθ  
Z
X-AXIS  
Y-AXIS  
Δθ  
X
Δθ  
Y
PIN 23  
PIN 1  
Figure 41. Delta Angle Axis and Polarity Assignments  
Delta Angle Measurement Range  
DELTA ANGLES  
Table 60 offers the measurement range and scale factor for each  
ADIS16497 model.  
In addition to the angular rate of rotation (gyroscope) measure-  
ments around each axis (x, y, and z), the ADIS16497 also provides  
delta angle measurements that represent a computation of  
angular displacement between each sample update. Figure 41  
shows the orientation of each delta angle output, which defines  
the direction of rotation that produces a positive response in  
each of the angular displacement (delta angle) measurements.  
Table 60. Delta Angle Measurement Range and Scale Factor  
Model  
Measurement Range, ±±θMAX  
ADIS16497-1  
ADIS16497-2  
ADIS16497-3  
365°  
725°  
2165°  
The delta angle outputs represent an integration of the gyro-  
scope measurements and use the following formula for all three  
axes (x-axis displayed):  
X-Axis Delta Angle (X_DELTANG_LOW, X_DELTANG_OUT)  
The X_DELTANG_LOW (see Table 61 and Table 62) and  
X_DELTANG_OUT (see Table 63 and Table 64) registers  
contain the delta angle data for the x-axis.  
D 1  
1
x,n D  
x,n D d 1  
x,n D d  
2 fS  
d 0  
where:  
Table 61. X_DELTANG_LOW Register Definitions  
ΔθX is the delta angle measurement for the x-axis  
D is the decimation rate = DEC_RATE + 1 (see Table 150).  
fS is the sample rate.  
Page Addresses Default  
Access Flash Backup  
5x55 5x45, 5x41 Not applicable  
R
No  
d is the incremental variable in the summation formula.  
ωx is the x-axis rate of rotation (gyroscope).  
n is the sample time, prior to the decimation filter.  
Table 62. X_DELTANG_LOW Bit Descriptions  
Bits  
Description  
[1ꢀ:5]  
X-axis delta angle data; low word  
When using the internal sample clock, fS is equal to 4250 SPS.  
When using the external clock option, fS is equal to the frequency  
of the external clock. The range in the delta angle registers  
accommodates the maximum rate of rotation (100°/sec), the  
nominal sample rate (4250 SPS), and an update rate of 1 Hz  
(DEC_RATE = 0x1099; divide by 4249 plus 1, see Table 150),  
all at the same time. When using an external clock that is  
higher than 4250 SPS, reduce the DEC_RATE setting to  
avoid over-ranging the delta angle registers.  
Table 63. X_DELTANG_OUT Register Definitions  
Page Addresses Default  
Access Flash Backup  
5x55 5x42, 5x43 Not applicable  
R
No  
Table 64. X_DELTANG_OUT Bit Descriptions  
Bits Description  
[1ꢀ:5] X-axis delta angle data; twos complement, 5° = 5x5555,  
1 LSB = ΔθMAX/21ꢀ (see Table 65 for ΔθMAX  
)
Each axis of the delta angle measurements has two output data  
registers. Figure 42 shows how these two registers combine to  
support a 32-bit, twos complement data format for the x-axis  
delta angle measurements. This format also applies to the y-axis  
and z-axis.  
Y-Axis Delta Angle (Y_DELTANG_LOW, Y_DELTANG_OUT)  
The Y_DELTANG_LOW (see Table 65 and Table 66) and  
Y_DELTANG_OUT (see Table 67 and Table 68) registers  
contain the delta angle data for the y-axis.  
X_DELTANG_OUT  
X_DELTANG_LOW  
Table 65. Y_DELTANG_LOW Register Definitions  
15  
0 15  
0
Page Addresses Default  
Access Flash Backup  
X-AXIS DELTA ANGLE DATA  
5x55 5x44, 5x4ꢀ Not applicable  
R
No  
Figure 42. Delta Angle Output Data Structure  
Rev. D | Page 26 of 43  
 
 
 
 
 
 
 
 
Data Sheet  
ADIS16497  
Table 66. Y_DELTANG_LOW Bit Descriptions  
Table 74. 32-Bit Delta Angle Data Format Examples  
Bits  
Description  
Delta Angle (°)  
+ΔθMAX × (231 − 1)/231  
+ΔθMAX/235  
+ΔθMAX2555/231  
5
−ΔθMAX/231  
−ΔθMAX/235  
−ΔθMAX  
Decimal  
Hexadecimal  
[1ꢀ:5]  
Y-axis delta angle data; low word  
+2,147,4ꢁ3,647 5x7FFFFFFF  
+2  
+1  
5
−1  
−2  
5x55555552  
5x55555551  
5x55555555  
5xFFFFFFFF  
5xFFFFFFFE  
Table 67. Y_DELTANG_OUT Register Definitions  
Page Addresses Default  
Access Flash Backup  
5x55 5x46, 5x47 Not applicable  
R
No  
−2,147,4ꢁ3,64ꢁ 5xꢁ5555555  
Table 68. Y_DELTANG_OUT Bit Descriptions  
Bits Description  
[1ꢀ:5] Y-axis delta angle data; twos complement, 5° = 5x5555,  
1 LSB = ΔθMAX/21ꢀ (see Table 65 for ΔθMAX  
DELTA VELOCITY  
)
In addition to the linear acceleration measurements along each  
axis (x, y, and z), the ADIS16497 also provides delta velocity  
measurements that represent a computation of linear velocity  
change between each sample update. Figure 44 shows the  
orientation of each delta-velocity measurement, which defines  
the direction of linear velocity increase that produces a positive  
response in each of the delta velocity rate measurements.  
Z-Axis Delta Angle (Z_DELTANG_LOW, Z_DELTANG_OUT)  
The Z_DELTANG_LOW (see Table 69 and Table 70) and  
Z_DELTANG_OUT (see Table 71 and Table 72) registers  
contain the delta angle data for the z-axis.  
Table 69. Z_DELTANG_LOW Register Definitions  
The delta velocity outputs represent an integration of the accelera-  
tion measurements and use the following formula for all three  
axes (x-axis displayed):  
Page Addresses Default  
Access Flash Backup  
5x55 5x4ꢁ, 5x49 Not applicable  
R
No  
D1  
1
2 fS  
Table 70. Z_DELTANG_LOW Bit Descriptions  
a  
Vx,nD  
ax,nDd1  
x,nDd  
Bits  
Description  
d0  
[1ꢀ:5]  
Z-axis delta angle data; low word  
where:  
ΔVX is the delta velocity measurement for the x-axis.  
D is the decimation rate = DEC_RATE + 1 (see Table 150).  
fS is the sample rate.  
Table 71. Z_DELTANG_OUT Register Definitions  
Page Addresses Default  
Access Flash Backup  
d is the incremental variable in the summation formula.  
ax is the x-axis rate of acceleration (accelerometer).  
n is the sample time, prior to the decimation filter.  
5x55 5x4A, 5x4B Not applicable  
R
No  
Table 72. Z_DELTANG_OUT Bit Descriptions  
Bits Description  
[1ꢀ:5] Z-axis delta angle data; twos complement, 5° = 5x5555,  
1 LSB = ΔθMAX/21ꢀ (see Table 65 for ΔθMAX  
When using the internal sample clock, fS is equal to 4250 SPS.  
When using the external clock option, fS is equal to the frequency  
of the external clock. The range in the delta velocity registers  
accommodates the maximum linear acceleration (8 g), the nominal  
sample rate (4250 SPS), and an update rate of 1 Hz (DEC_RATE =  
0x1099; divide by 4249 plus 1, see Table 150), all at the same  
time. When using an external clock that is higher than 4250 SPS,  
reduce the DEC_RATE setting to avoid overranging the delta  
velocity registers.  
)
Delta Angle Resolution  
Table 73 and Table 74 show various numerical examples that  
demonstrate the format of the delta angle data in both 16-bit  
and 32-bit formats.  
Table 73. 16-Bit Delta Angle Data Format Examples  
Each axis of the delta velocity measurements has two output  
data registers. Figure 43 shows how these two registers combine  
to support 32-bit, twos complement data format for the delta  
velocity measurements along the x-axis. This format also  
applies to the y-axis and x-axis.  
Delta Angle (°)  
ΔθMAX × (21ꢀ−1)/21ꢀ +32,767  
Decimal Hex  
Binary  
5x7FFF 5111 1111 1115 1111  
5x5552 5555 5555 5555 5515  
5x5551 5555 5555 5555 5551  
5x5555 5555 5555 5555 5555  
5xFFFF 1111 1111 1111 1111  
5xFFFE 1111 1111 1111 1115  
5xꢁ555 1555 5555 5555 5555  
+ΔθMAX/214  
+ΔθMAX/21ꢀ  
5
+2  
+1  
5
X_DELTVEL_OUT  
X_DELTVEL_LOW  
−ΔθMAX/21ꢀ  
−ΔθMAX/214  
−ΔθMAX  
−1  
−2  
−32,76ꢁ  
15  
0 15  
0
X-AXIS DELTA ANGLE DATA  
Figure 43. Delta Angle Output Data Structure  
Rev. D | Page 27 of 43  
 
 
 
 
 
 
 
 
 
Data Sheet  
ADIS16497  
Z-AXIS  
ΔV  
Z
X-AXIS  
Y-AXIS  
ΔV  
X
ΔV  
Y
PIN 23  
PIN 1  
Figure 44. Delta Velocity Axis and Polarity Assignments  
X-Axis Delta Velocity (X_DELTVEL_LOW, X_DELTVEL_OUT)  
Table 81. Y_DELTVEL_OUT Register Definitions  
The X_DELTVEL_LOW (see Table 75 and Table 76) and  
X_DELTVEL_OUT (see Table 77 and Table 78) registers  
contain the delta velocity data for the x-axis.  
Page Addresses Default  
Access Flash Backup  
5x55 5xꢀ2, 5xꢀ3 Not applicable  
R
No  
Table 75. X_DELTVEL_LOW Register Definitions  
Table 82. Y_DELTVEL_OUT Bit Descriptions  
Bits Description  
Page Addresses Default  
Access Flash Backup  
5x55 5x4C, 5x4D Not applicable  
R
No  
[1ꢀ:5] Y-axis delta velocity data; high word; twos complement,  
455 m/sec range, 5 m/sec = 5x5555;  
1 LSB = 455 m/sec ÷ 21ꢀ = ~12.25ꢁ mm/sec  
Table 76. X_DELTVEL_LOW Bit Descriptions  
Bits  
Description  
Z-Axis Delta Velocity (Z_DELTVEL_LOW, Z_DELTVEL_OUT)  
[1ꢀ:5]  
X-axis delta angle data; low word  
The Z_DELTVEL_LOW (see Table 83 and Table 84) and  
Z_DELTVEL_OUT (see Table 85 and Table 86) registers  
contain the delta velocity data for the z-axis.  
Table 77. X_DELTVEL_OUT Register Definitions  
Page Addresses Default Access Flash Backup  
5x55 5x4E, 5x4F Not applicable No  
Table 83. Z_DELTVEL_LOW Register Definitions  
R
Page Addresses Default  
Access Flash Backup  
5x55 5xꢀ4, 5xꢀꢀ Not applicable  
R
No  
Table 78. X_DELTVEL_OUT Bit Descriptions  
Bits Description  
Table 84. Z_DELTVEL_LOW Bit Descriptions  
[1ꢀ:5] X-axis delta velocity data; high word; twos complement,  
455 m/sec range, 5 m/sec = 5x5555;  
Bits  
Description  
1 LSB = 455 m/sec ÷ 21ꢀ = ~12.25ꢁ mm/sec  
[1ꢀ:5]  
Z-axis delta angle data; low word  
Y-Axis Delta Velocity (Y_DELTVEL_LOW, Y_DELTVEL_OUT)  
Table 85. Z_DELTVEL_OUT Register Definitions  
The Y_DELTVEL_LOW (see Table 79 and Table 80) and  
Y_DELTVEL_OUT (see Table 81 and Table 82) registers contain  
the delta velocity data for the y-axis.  
Page Addresses Default  
Access Flash Backup  
5x55 5xꢀ6, 5xꢀ7 Not applicable  
R
No  
Table 79. Y_DELTVEL_LOW Register Definitions  
Table 86. Z_DELTVEL_OUT Bit Descriptions  
Bits Description  
Page Addresses Default  
Access Flash Backup  
5x55 5xꢀ5, 5xꢀ1 Not applicable  
R
No  
[1ꢀ:5] Z-axis delta velocity data; high word; twos complement,  
455 m/sec range, 5 m/sec = 5x5555;  
1 LSB = 455 m/sec ÷ 21ꢀ = ~12.25ꢁ mm/sec  
Table 80. Y_DELTVEL_LOW Bit Descriptions  
Bits  
Description  
[1ꢀ:5]  
Y-axis delta angle data; low word  
Rev. D | Page 2ꢁ of 43  
 
 
 
 
 
 
 
 
 
Data Sheet  
ADIS16497  
USER BIAS/SCALE ADJUSTMENT  
Delta Velocity Resolution  
The signal chain of each inertial sensor (accelerometers, gyro-  
scopes) includes application of unique correction formulas that  
come from extensive characterization of bias, sensitivity, align-  
ment, and response to linear acceleration (gyroscopes) over a  
temperature range of −40°C to +85°C for the ADIS16497. These  
correction formulas are not accessible, but the user does have the  
opportunity to adjust the bias and the scale factor, for each sensor  
individually, through user accessible registers. These correction  
factors follow immediately after the factory derived correction  
formulas in the signal chain, which processes at a rate of 4250 Hz  
when using the internal sample clock (see fSM in Figure 22 and  
Figure 23).  
Table 87 and Table 88 show various numerical examples that  
demonstrate the format of the delta angle data in both 16-bit  
and 32-bit formats.  
Table 87. 16-Bit Delta Velocity Data Format Examples  
Velocity (m/sec)  
Decimal Hex  
Binary  
+455 × (21ꢀ − 1)/21ꢀ +32,767  
5x7FFF 5111 1111 1115 1111  
5x5552 5555 5555 5555 5515  
5x5551 5555 5555 5555 5551  
5x5555 5555 5555 5555 5555  
5xFFFF 1111 1111 1111 1111  
5xFFFE 1111 1111 1111 1115  
5xꢁ555 1555 5555 5555 5555  
+455/214  
+455/21ꢀ  
5
−455/21ꢀ  
−455/214  
−455  
+2  
+1  
5
−1  
−2  
−32,76ꢁ  
Gyroscope Scale Adjustment, X_GYRO_SCALE  
The X_GYRO_SCALE register (see Table 93 and Table 94)  
provides the user with the opportunity to adjust the scale factor  
for the x-axis gyroscopes. See Figure 45 for an illustration of  
how this scale factor influences the x-axis gyroscope data.  
Table 88. 32-Bit Delta Angle Data Format Examples  
Velocity (m/sec)  
+455 × (231 − 1)/231  
+455/235  
+455/231  
5
Decimal  
Hex  
+2,147,4ꢁ3,647  
+2  
+1  
5
5x7FFFFFFF  
5x55555552  
5x55555551  
5x55555555  
5xFFFFFFFF  
5xFFFFFFFE  
5xꢁ5555555  
Table 93. X_GYRO_SCALE Register Definitions  
Page  
Addresses  
Default Access Flash Backup  
5x52  
5x54, 5x5ꢀ  
5x5555 R/W Yes  
−455/231  
−455/235  
−455  
−1  
−2  
−2,147,4ꢁ3,64ꢁ  
Table 94. X_GYRO_SCALE Bit Descriptions  
Bits Description  
Burst Read Command, BURST_CMD  
[1ꢀ:5] X-axis gyroscope scale correction; twos complement,  
5x5555 = unity gain, 1 LSB = 1 ÷ 21ꢀ = ~5.5535ꢀ2%  
Reading the BURST_CMD register (see Table 89 and Table 90)  
starts the BRF. See Table 10, Table 11, Figure 5, and Figure 6  
for more information on the BRF function.  
1 + X_GYRO_SCALE  
FACTORY  
X-AXIS  
GYRO  
CALIBRATION  
AND  
FILTERING  
Table 89. BURST_CMD Register Definitions  
X_GYRO_OUT X_GYRO_LOW  
Page Addresses Default  
Access Flash Backup  
5x55 5x7C, 5x7D Not Applicable  
R
No  
XG_BIAS_HIGH XG_BIAS_LOW  
Figure 45. User Bias/Scale Adjustment Registers in Gyroscope Signal Path  
Table 90. BURST_CMD Bit Descriptions  
Bits  
Description  
Gyroscope Scale Adjustment, Y_GYRO_SCALE  
[1ꢀ:5]  
Burst read command register  
The Y_GYRO_SCALE register (see Table 95 and Table 96) allows  
the user to adjust the scale factor for the y-axis gyroscopes. This  
register influences the y-axis gyroscope measurements in the  
same manner that X_GYRO_SCALE influences the x-axis  
gyroscope measurements (see Figure 45).  
Product Identification, PROD_ID  
The PROD_ID register (see Table 91 and Table 92) contains  
the numerical portion of the device number (16,497). See  
Figure 34 for an example of how to use a looping read of this  
register to validate the integrity of the communication.  
Table 95. Y_GYRO_SCALE Register Definitions  
Page  
Addresses  
Default Access Flash Backup  
Table 91. PROD_ID Register Definitions  
5x52  
5x56, 5x57  
5x5555 R/W Yes  
Page  
Addresses  
Default Access Flash Backup  
5x55  
5x7E, 5x7F  
5x4571 Yes  
R
Table 96. Y_GYRO_SCALE Bit Descriptions  
Bits Description  
Table 92. PROD_ID Bit Descriptions  
[1ꢀ:5] Y-axis gyroscope scale correction; twos complement,  
5x5555 = unity gain, 1 LSB = 1 ÷ 21ꢀ = ~5.5535ꢀ2%  
Bits  
Description  
[1ꢀ:5]  
Product identification = 5x4571  
Rev. D | Page 29 of 43  
 
 
 
 
 
 
 
 
 
 
 
ADIS16497  
Data Sheet  
Gyroscope Scale Adjustment, Z_GYRO_SCALE  
Table 102. Y_ACCL_SCALE Bit Descriptions  
Bits Description  
[1ꢀ:5] Y-axis accelerometer scale correction; twos complement,  
5x5555 = unity gain, 1 LSB = 1 ÷ 21ꢀ = ~5.5535ꢀ2%  
The Z_GYRO_SCALE register (see Table 97 and Table 98)  
allows the user to adjust the scale factor for the z-axis gyroscopes.  
This register influences the z-axis gyroscope measurements in the  
same manner that X_GYRO_SCALE influences the x-axis  
gyroscope measurements (see Figure 45).  
Accelerometer Scale Adjustment, Z_ACCL_SCALE  
The Z_ACCL_SCALE register (see Table 103 and Table 104)  
allows the user to adjust the scale factor for the z-axis  
accelerometers. This register influences the z-axis  
accelerometer measurements in the same manner that  
X_ACCL_SCALE influences the x-axis accelerometer  
measurements (see Figure 46).  
Table 97. Z_GYRO_SCALE Register Definitions  
Page  
Addresses  
Default Access Flash Backup  
5x52  
5x5ꢁ, 5x59  
5x5555 R/W Yes  
Table 98. Z_GYRO_SCALE Bit Descriptions  
Bits Description  
Table 103. Z_ACCL_SCALE Register Definitions  
[1ꢀ:5] Z-axis gyroscope scale correction; twos complement,  
5x5555 = unity gain, 1 LSB = 1 ÷ 21ꢀ = ~5.5535ꢀ2%  
Page  
Addresses  
Default Access Flash Backup  
5x52  
5x5E, 5x5F  
5x5555 R/W Yes  
Accelerometer Scale Adjustment, X_ACCL_SCALE  
The X_ACCL_SCALE register (see Table 99 and Table 100)  
allows the user to adjust the scale factor for the x-axis  
accelerometers. See Figure 46 for an illustration of how this  
scale factor influences the x-axis accelerometer data.  
Table 104. Z_ACCL_SCALE Bit Descriptions  
Bits Description  
[1ꢀ:5] Z-axis accelerometer scale correction; twos complement,  
5x5555 = unity gain, 1 LSB = 1 ÷ 21ꢀ = ~5.5535ꢀ2%  
Table 99. X_ACCL_SCALE Register Definitions  
Page  
Addresses  
Default Access Flash Backup  
Gyroscope Bias Adjustment, XG_BIAS_LOW,  
XG_BIAS_HIGH  
5x52  
5x5A, 5x5B  
5x5555 R/W Yes  
The XG_BIAS_LOW (see Table 105 and Table 106) and XG_  
BIAS_HIGH (see Table 107 and Table 108) registers combine  
to allow the user to adjust the bias of the x-axis gyroscopes. The  
digital format examples in Table 25 also apply to the XG_BIAS_  
HIGH register, and the digital format examples in Table 26 apply  
to the number that comes from combining the XG_BIAS_LOW  
and XG_BIAS_HIGH registers. See Figure 45 for an illustration  
of how these two registers combine and influence the x-axis  
gyroscope measurements.  
Table 100. X_ACCL_SCALE Bit Descriptions  
Bits Description  
[1ꢀ:5] X-axis accelerometer scale correction; twos complement,  
5x5555 = unity gain, 1 LSB = 1 ÷ 21ꢀ = ~5.5535ꢀ2%  
1 + X_ACCL_SCALE  
FACTORY  
X-AXIS  
ACCL  
CALIBRATION  
AND  
X_ACCL_OUT X_ACCL_LOW  
FILTERING  
Table 105. XG_BIAS_LOW Register Definitions  
XA_BIAS_HIGH  
XA_BIAS_LOW  
Page  
Addresses  
Default Access Flash Backup  
Figure 46. User Bias/Scale Adjustment Registers in Accelerometer Signal Path  
5x52  
5x15, 5x11  
5x5555 R/W Yes  
Accelerometer Scale Adjustment, Y_ACCL_SCALE  
Table 106. XG_BIAS_LOW Bit Descriptions  
The Y_ACCL_SCALE register (see Table 101 and Table 102)  
allows the user to adjust the scale factor for the y-axis  
Bits  
Description  
accelerometers. This register influences the y-axis accelerometer  
measurements in the same manner that X_ACCL_SCALE  
influences the x-axis accelerometer measurements (see Figure 46).  
[1ꢀ:5]  
X-axis gyroscope offset correction, low word;  
twos complement, 5°/sec = 5x5555, 1 LSB = KG ÷ 216  
(see Table 24)  
Table 101. Y_ACCL_SCALE Register Definitions  
Table 107. XG_BIAS_HIGH Register Definitions  
Page  
Addresses  
Default Access Flash Backup  
Page  
Addresses  
Default Access Flash Backup  
5x52  
5x5C, 5x5D  
5x5555 R/W Yes  
5x52  
5x12, 5x13  
5x5555 R/W Yes  
Table 108. XG_BIAS_HIGH Bit Descriptions  
Bits Description  
[1ꢀ:5] X-axis gyroscope offset correction, high word twos  
complement, 5°/sec = 5x5555, 1 LSB = KG (see Table 24)  
Rev. D | Page 35 of 43  
 
 
 
 
 
 
 
 
 
 
 
 
Data Sheet  
ADIS16497  
Table 115. ZG_BIAS_HIGH Register Definitions  
Gyroscope Bias Adjustment, YG_BIAS_LOW,  
YG_BIAS_HIGH  
Page  
Addresses  
Default Access Flash Backup  
5x52  
5x1A, 5x1B  
5x5555 R/W Yes  
The YG_BIAS_LOW (see Table 109 and Table 110) and YG_  
BIAS_HIGH (see Table 111 and Table 112) registers combine  
to allow the user to adjust the bias of the y-axis gyroscopes. The  
digital format examples in Table 25 also apply to the YG_BIAS_  
HIGH register, and the digital format examples in Table 26 apply  
to the number that comes from combining the YG_BIAS_LOW  
and YG_BIAS_HIGH registers. These registers influences the  
y-axis gyroscope measurements in the same manner that the  
XG_BIAS_LOW and XG_BIAS_HIGH registers influence the  
x-axis gyroscope measurements (see Figure 45).  
Table 116. ZG_BIAS_HIGH Bit Definitions  
Bits Description  
[1ꢀ:5] Z-axis gyroscope offset correction, high word twos  
complement, 5°/sec = 5x5555, 1 LSB = 5.55ꢀ°/sec  
Accelerometer Bias Adjustment, XA_BIAS_LOW,  
XA_BIAS_HIGH  
The XA_BIAS_LOW (see Table 117 and Table 118) and XA_  
BIAS_HIGH (see Table 119 and Table 120) registers combine  
to allow the user to adjust the bias of the x-axis accelerometers.  
The digital format examples in Table 51 also apply to the  
XA_BIAS_HIGH register and the digital format examples in  
Table 52 apply to the number that comes from combining the  
XA_BIAS_LOW and XA_BIAS_HIGH registers. See Figure 46  
for an illustration of how these two registers combine and  
influence the x-axis accelerometer measurements.  
Table 109. YG_BIAS_LOW Register Definitions  
Page  
Addresses  
Default Access Flash Backup  
5x52  
5x14, 5x1ꢀ  
5x5555 R/W Yes  
Table 110. YG_BIAS_LOW Bit Descriptions  
Bits Description  
[1ꢀ:5] Y-axis gyroscope offset correction, low word; twos  
complement, 5°/sec = 5x5555, 1 LSB = 5.55ꢀ°/sec ÷ 216  
Table 117. XA_BIAS_LOW Register Definitions  
Table 111. YG_BIAS_HIGH Register Definitions  
Page  
Addresses  
Default Access Flash Backup  
Page  
Addresses  
Default Access Flash Backup  
5x52  
5x1C, 5x1D  
5x5555 R/W Yes  
5x52  
5x16, 5x17  
5x5555 R/W Yes  
Table 118. XA_BIAS_LOW Bit Descriptions  
Table 112. YG_BIAS_HIGH Bit Descriptions  
Bits Description  
Bits  
Description  
[1ꢀ:5]  
X-axis accelerometer offset correction, low word, twos  
complement, 5 g = 5x5555, 1 LSB = 1.2ꢀ mg ÷ 216  
[1ꢀ:5] Y-axis gyroscope offset correction, high word; twos  
complement, 5°/sec = 5x5555, 1 LSB = 5.55ꢀ°/sec  
Table 119. XA_BIAS_HIGH Register Definitions  
Gyroscope Bias Adjustment, ZG_BIAS_LOW,  
ZG_BIAS_HIGH  
Page  
Addresses  
Default Access Flash Backup  
5x52  
5x1E, 5x1F  
5x5555 R/W Yes  
The ZG_BIAS_LOW (see Table 113 and Table 114) and ZG_  
BIAS_HIGH (see Table 115 and Table 116) registers combine  
to allow the user to adjust the bias of the z-axis gyroscopes. The  
digital format examples in Table 25 also apply to the ZG_BIAS_  
HIGH register, and the digital format examples in Table 26 apply  
to the number that comes from combining the ZG_BIAS_LOW  
and ZG_BIAS_HIGH registers. These registers influence the  
z-axis gyroscope measurements in the same manner that the  
XG_BIAS_LOW and XG_BIAS_HIGH registers influence the x-  
axis gyroscope measurements (see Figure 45).  
Table 120. XA_BIAS_HIGH Bit Descriptions  
Bits Description  
[1ꢀ:5] X-axis accelerometer offset correction, high word,  
twos complement, 5 g = 5x5555, 1 LSB = 1.2ꢀ mg  
Accelerometer Bias Adjustment, YA_BIAS_LOW,  
YA_BIAS_HIGH  
The YA_BIAS_LOW (see Table 121 and Table 122) and YA_  
BIAS_HIGH (see Table 123 and Table 124) registers combine  
to allow the user to adjust the bias of the y-axis accelerometers.  
The digital format examples in Table 51 also apply to the  
YA_BIAS_HIGH register, and the digital format examples in  
Table 52 apply to the number that comes from combining the  
YA_BIAS_LOW and YA_BIAS_HIGH registers. These registers  
influence the y-axis accelerometer measurements in the same  
manner that the XA_BIAS_LOW and XA_BIAS_HIGH registers  
influence the x-axis accelerometer measurements (see Figure 46).  
Table 113. ZG_BIAS_LOW Register Definitions  
Page  
Addresses  
Default Access Flash Backup  
5x52  
5x1ꢁ, 5x19  
5x5555 R/W Yes  
Table 114. ZG_BIAS_LOW Bit Descriptions  
Bits Description  
[1ꢀ:5] Z-axis gyroscope offset correction, low word; twos  
complement, 5°/sec = 5x5555, 1 LSB = 5.55ꢀ°/sec ÷ 216  
Rev. D | Page 31 of 43  
 
 
 
 
 
 
 
 
 
 
 
 
ADIS16497  
Data Sheet  
Table 121. YA_BIAS_LOW Register Definitions  
SCRATCH REGISTERS, USER_SCR_X  
Page  
Addresses  
Default Access Flash Backup  
The USER_SCR_1 (see Table 129 and Table 130),  
USER_SCR_2 (see Table 131 and Table 132), USER_SCR_3  
(see Table 133 and Table 134), and the USER_SCR_4 (see Table  
135 and Table 136) registers provide four locations for the user  
to store information.  
5x52  
5x25, 5x21  
5x5555 R/W Yes  
Table 122. YA_BIAS_LOW Bit Descriptions  
Bits  
Description  
[1ꢀ:5]  
Y-axis accelerometer offset correction, low word, twos  
complement, 5 g = 5x5555, 1 LSB = 1.2ꢀ mg ÷ 216  
Table 129. USER_SCR_1 Register Definitions  
Page  
Addresses  
Default Access Flash Backup  
5x52  
5x74, 5x7ꢀ  
5x5555 R/W Yes  
Table 123. YA_BIAS_HIGH Register Definitions  
Page  
Addresses  
Default Access Flash Backup  
Table 130. USER_SCR_1 Bit Descriptions  
Bits Description  
[1ꢀ:5] User defined  
5x52  
5x22, 5x23  
5x5555 R/W Yes  
Table 124. YA_BIAS_HIGH Bit Descriptions  
Bits Description  
Table 131. USER_SCR_2 Register Definitions  
[1ꢀ:5] Y-axis accelerometer offset correction, high word,  
twos complement, 5 g = 5x5555, 1 LSB = 1.2ꢀ mg  
Page  
Addresses  
Default Access Flash Backup  
5x52  
5x76, 5x77  
5x5555 R/W Yes  
Accelerometer Bias Adjustment, ZA_BIAS_LOW,  
ZA_BIAS_HIGH  
The ZA_BIAS_LOW (see Table 125 and Table 126) and ZA_  
BIAS_HIGH (see Table 127 and Table 128) registers combine  
to allow the user to adjust the bias of the z-axis accelerometers. The  
digital format examples in Table 51 also apply to the ZA_BIAS_  
HIGH register and the digital format examples in Table 52 apply  
to the number that comes from combining the ZA_BIAS_LOW  
and ZA_BIAS_HIGH registers. These registers influence the z-  
axis accelerometer measurements in the same manner that the  
XA_BIAS_LOW and XA_BIAS_HIGH registers influence the x-  
axis accelerometer measurements (see Figure 46).  
Table 132. USER_SCR_2 Bit Descriptions  
Bits Description  
[1ꢀ:5] User defined  
Table 133. USER_SCR_3 Register Definitions  
Page  
Addresses  
Default Access Flash Backup  
5x52  
5x7ꢁ, 5x79  
5x5555 R/W Yes  
Table 134. USER_SCR_3 Bit Descriptions  
Bits Description  
[1ꢀ:5] User defined  
Table 125. ZA_BIAS_LOW Register Definitions  
Page  
Addresses  
Default Access Flash Backup  
5x52  
5x24, 5x2ꢀ  
5x5555 R/W Yes  
Table 135. USER_SCR_4 Register Definitions  
Page  
Addresses  
Default Access Flash Backup  
5x52  
5x7A, 5x7B  
5x5555 R/W Yes  
Table 126. ZA_BIAS_LOW Bit Descriptions  
Bits Description  
[1ꢀ:5] Z-axis accelerometer offset correction, low word,  
Table 136. USER_SCR_4 Bit Descriptions  
Bits Description  
[1ꢀ:5] User defined  
twos complement, 5 g = 5x5555, 1 LSB = 1.2ꢀ mg ÷ 216  
Table 127. ZA_BIAS_HIGH Register Definitions  
FLASH MEMORY ENDURANCE COUNTER,  
FLSHCNT_LOW, FLSHCNT_HIGH  
Page  
Addresses  
Default Access Flash Backup  
5x52  
5x26, 5x27  
5x5555 R/W Yes  
The FLSHCNT_LOW (see Table 137 and Table 138) and  
FLSHCNT_HIGH (see Table 139 and Table 140) registers  
combine to provide a 32-bit, binary counter that tracks the  
number of flash memory write cycles. In addition to the number of  
write cycles, the flash memory has a finite service lifetime, which  
depends on the junction temperature. Figure 47 provides guidance  
for estimating the retention life for the flash memory at specific  
junction temperatures. The junction temperature is approximately  
7°C above the case temperature.  
Table 128. ZA_BIAS_HIGH Bit Descriptions  
Bits Description  
[1ꢀ:5] Z-axis accelerometer offset correction, high word,  
twos complement, 5 g = 5x5555, 1 LSB = 1.2ꢀ mg  
Rev. D | Page 32 of 43  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Data Sheet  
ADIS16497  
Table 137. FLSHCNT_LOW Register Definitions  
Software Reset  
Page Addresses Default  
Access Flash Backup  
Select Page 3 (DIN = 0x8003) and then set GLOB_CMD, Bit 7 = 1  
(DIN = 0x8280, then DIN = 0x8300) to initiate a reset in the  
operation of the ADIS16497. This reset removes all data,  
initializes all registers from their flash settings, and restarts data  
sampling and processing. This function provides a firmware  
5x52 5x7C, 5x7D Not applicable  
R
Yes  
Table 138. FLSHCNT_LOW Bit Descriptions  
Bits Description  
[1ꢀ:5] Flash memory write counter, low word  
RST  
alternative to providing a low pulse on the  
Pin 8).  
pin (see Table 6,  
Clear User Calibration  
Table 139. FLSHCNT_HIGH Register Definitions  
Page Addresses Default Access Flash Backup  
5x52 5x7E, 5x7F Not applicable  
Select Page 3 (DIN = 0x8003) and then set GLOB_CMD, Bit 6 = 1  
(DIN = 0x8240, then DIN = 0x8300) to clear all user bias/scale  
adjustments for each accelerometer and gyroscope. This command  
writes 0x0000 to the following registers: X_GYRO_SCALE,  
Y_GYRO_SCALE, Z_GYRO_SCALE, X_ACCL_SCALE, Y_  
ACCL_ SCALE, Z_ACCL_SCALE, XG_BIAS_LOW,  
XG_BIAS_HIGH, YG_BIAS_LOW, YG_BIAS_HIGH,  
ZG_BIAS_LOW, ZG_BIAS_HIGH, XA_BIAS_LOW,  
XA_BIAS_HIGH, YA_BIAS_LOW, YA_BIAS_ HIGH,  
ZA_BIAS_LOW, and ZA_BIAS_HIGH.  
R
Yes  
Table 140. FLSHCNT_HIGH Bit Descriptions  
Bits Description  
[1ꢀ:5] Flash memory write counter, high word  
600  
450  
300  
Flash Memory Update  
Select Page 3 (DIN = 0x8003) and then set GLOB_CMD, Bit 3 = 1  
(DIN = 0x8208, DIN = 0x8300) to initiate a manual flash update.  
SYS_E_FLAG, Bit 6 (see Table 18) identifies success (0) or  
failure (1) in completing this process.  
Note that the user must not poll the status registers while  
waiting for the update to complete because the serial port is  
disabled during the update. Rather, the user must either wait  
the prescribed amount of time found in Table 3 or wait for the  
data ready indicator pin to begin toggling.  
150  
0
30  
40  
55  
70  
85  
100  
125  
135  
150  
JUNCTION TEMPERATURE (°C)  
On Demand Self Test (ODST)  
Figure 47. Flash Memory Retention  
Select Page 3 (DIN = 0x8003) and then set GLOB_CMD, Bit 1 = 1  
(DIN = 0x8202, then DIN = 0x8300) to run the ODST routine,  
which executes the following steps:  
GLOBAL COMMANDS, GLOB_CMD  
The GLOB_CMD register (see Table 141 and Table 142) provides  
trigger bits for several operations. Write a 1 to the appropriate bit  
in GLOB_CMD to start a particular function.  
1. Measure the output on each sensor.  
2. Activate an internal force on the mechanical elements of  
each sensor, which simulates the force associated with  
actual inertial motion.  
3. Measure the output response on each sensor.  
4. Deactivate the internal force on each sensor.  
5. Calculate the difference between the force on and normal  
operating conditions (force off).  
6. Compare the difference with internal pass/fail criteria.  
7. Report the pass/fail results for each sensor in DIAG_STS  
(see Table 20) and the overall pass/fail flag in SYS_E_FLAG,  
Bit 5 (see Table 18).  
Table 141. GLOB_CMD Register Definitions  
Page Addresses Default  
Access Flash Backup  
5x53 5x52, 5x53 Not applicable  
W
No  
Table 142. GLOB_CMD Bit Descriptions  
Bits  
Description  
[1ꢀ:ꢁ]  
Not used  
7
6
[ꢀ:4]  
3
2
Software reset  
Clear user calibration  
Not used  
Flash memory update  
Not used  
False positive results are possible when the executing the ODST  
while the device is in motion. Note that the user must not poll  
the status registers while waiting for the test to complete. Rather,  
the user must either wait the prescribed amount of time found  
in Table 3 or wait for the data ready indicator pin to begin  
toggling.  
1
Self test  
5
Bias correction update  
Rev. D | Page 33 of 43  
 
 
 
 
 
 
 
 
ADIS16497  
Data Sheet  
Bias Correction Update  
Data Ready Indicator  
Select Page 3 (DIN = 0x8003) and set GLOB_CMD, Bit 0 = 1  
(DIN = 0x8201, then DIN = 0x8300) to update the user offset  
registers with the correction factors of the continuous bias  
estimation (CBE) (see Table 152). Ensure that the inertial  
platform is stable during the entire average time for optimal bias  
estimates.  
The FNCTIO_CTRL, Bits[3:0] provide three configuration  
options for the data ready function: on/off, polarity, and DIOx line.  
The primary purpose this signal is to drive the interrupt control  
line of an embedded processor, which can synchronize data  
collection and minimize latency. The data ready indicator is  
useful to determine if the controller inside the ADIS16497 is busy  
with a task (for example, a flash memory update) because data  
ready stops togging while these tasks are performed and resumes  
on completion. The factory default assigns DIO2 as a positive  
polarity, data ready signal, which means the data in the output  
registers is valid when the DIO2 line is high (see Figure 29). This  
configuration works well when DIO2 drives an interrupt  
service pin that activates on a low to high pulse. Use the  
following sequence to change this assignment to DIO3 with  
negative polarity:  
AUXILIARY I/O LINE CONFIGURATION,  
FNCTIO_CTRL  
The FNCTIO_CTRL register (see Table 143 and Table 144)  
provides configuration control for each I/O pin (DIO1, DIO2,  
DIO3, and DIO4). Each DIOx pin supports only one function at  
a time. When a single pin has two assignments, the enable bit for  
the lower priority function automatically resets to zero (disabling  
the lower priority function). The order of priority is as follows,  
from highest priority to lowest priority: data ready, sync clock  
input, and general-purpose. The ADIS16497 can take up to 20 ms  
to execute a write command to the FNCTIO_CTRL register.  
During this time, the operational state and the contents of the  
register remain unchanged, but the SPI interface supports  
normal communication (for accessing other registers).  
1. Select Page 3 (DIN = 0x8003).  
2. Set FNCTIO_CTRL, Bits[3:0] = 1000 (DIN = 0x860A, then  
DIN = 0x8700).  
The timing jitter on the data ready signal is typically within  
1.4 ꢀs. When using DIO1 to support the data ready function,  
this signal can experience premature data ready pulses during  
the ADIS16497 start-up, However, these pulses do not indicate  
that data production has started. If it is necessary to use DIO1  
for this function, use it in conjunction with a delay or other  
control mechanism to prevent premature data acquisition  
activity during the start-up process.  
Table 143. FNCTIO_CTRL Register Definitions  
Page  
Addresses  
Default Access Flash Backup  
5x53  
5x56, 5x57  
5x555D R/W Yes  
Table 144. FNCTIO_CTRL Bit Descriptions  
Bits  
[1ꢀ:9]  
Description  
Not used  
Input Sync/Clock Control  
Sync clock mode  
1 = PPS  
The FNCTIO_CTRL, Bits[8:4] provide several configuration  
options for using one of the DIOx lines as an external clock  
signal and for controlling inertial sensor data collection and  
processing. For example, use the following sequence to establish  
DIO4 as a positive polarity, input clock pin that operates in sync  
mode and preserves the factory default setting for the data ready  
function:  
5 = sync  
7
Sync clock input enable  
1 = enabled  
5 = disabled  
6
Sync clock input polarity  
1 = rising edge  
5 = falling edge  
Sync clock input line selection  
55 = DIO1  
1. Select Page 3 (DIN = 0x8003).  
2. Set FNCTIO_CTRL, Bits[7:0] = 0xFD (DIN = 0x86FD).  
3. Set FNCTIO_CTRL, Bits[15:8] = 0x00 (DIN = 0x8700).  
[ꢀ:4]  
51 = DIO2  
In sync mode, the ADIS16497 disables its internal sample clock,  
and the frequency of the external clock signal establishes the rate of  
data collection and processing (fSM in Figure 22 and Figure 23).  
When using the PPS mode (FNCTIO_CTRL, Bit 8 = 1) the rate  
of data collection and production (fSM) is equal to the product  
of the external clock frequency and scale factor (KECSF) in the  
SYNC_SCALE register (see Table 154).  
15 = DIO3  
11 = DIO4  
3
Data ready enable:  
1 = enabled  
5 = disabled  
2
Data ready polarity:  
1 = positive  
5 = negative  
[1:5]  
Data ready line selection  
55 = DIO1  
51 = DIO2  
15 = DIO3  
11 = DIO4  
Rev. D | Page 34 of 43  
 
 
 
Data Sheet  
ADIS16497  
Point of Percussion  
GENERAL-PURPOSE I/O CONTROL, GPIO_CTRL  
CONFIG, Bit 6 offers a point of percussion alignment function  
that maps the accelerometer sensors to the corner of the  
package identified in Figure 48. To activate this feature, select  
Page 3 (DIN = 0x8003), then set CONFIG, Bit 6 = 1 (DIN =  
0x8A40, then DIN = 0x8B00).  
When FNCTIO_CTRL does not configure a DIOx pin, the  
GPIO_CTRL register (see Table 145 and Table 146) provides  
user controls for general-purpose use of the DIOx pins.  
GPIO_CTRL, Bits[3:0], provide I/O assignment controls for  
each line. When the DIOx lines are inputs, monitor their level  
by reading GPIO_CTRL, Bits[7:4]. When the DIOx lines are  
used as outputs, set their level by writing to GPIO_CTRL, Bits[7:4].  
For example, use the following sequence to set DIO1 and DIO3  
as high and low output lines, respectively, and set DIO2 and DIO4  
as input lines. Select Page 3 (DIN = 0x8003) and set GPIO_  
CTRL, Bits[7:0] = 0x15 (DIN = 0x8815, then DIN = 0x8900).  
PIN 23  
PIN 1  
Table 145. GPIO_CTRL Register Definitions1  
POINT OF PERCUSSION  
ALIGNMENT REFERENCE POINT.  
SEE CONFIG[6].  
Page  
Addresses  
Default Access Flash Backup  
Figure 48. Point of Percussion Reference Point  
5x53  
5x5ꢁ, 5x59  
5x55X5 R/W Yes  
1 The GPIO_CTRL, Bits[7:4] reflect the logic levels on the DIOx lines and do not  
have a default setting.  
LINEAR ACCELERATION ON EFFECT ON  
GYROSCOPE BIAS  
Table 146. GPIO_CTRL Bit Descriptions 1  
The ADIS16497 includes first-order compensation for the linear g  
effect in the gyroscopes, which uses the following model:  
Bits  
Description  
[1ꢀ:ꢁ]  
Don’t care  
XC   
XPC   
LG11 LG12 LG  
A
ω
ω
ω
ω
ω
ω
13   
X   
7
6
4
3
General-Purpose I/O Line 4 (DIO4) data level  
General-Purpose I/O Line 3 (DIO3) data level  
General-Purpose I/O Line 2 (DIO2) data level  
General-Purpose I/O Line 1 (DIO1) data level  
General-Purpose I/O Line 4 (DIO4) direction control  
(1 = output, 5 = input)  
General-Purpose I/O Line 3 (DIO3) direction control  
(1 = output, 5 = input)  
General-Purpose I/O Line 2 (DIO2) direction control  
(1 = output, 5 = input)  
LG  
LG22 LG23 AY  
21  
YC   
YPC   
LG31 LG32 LG33  
AZ  
ZC   
ZPC   
The linear g correction factors, LGXY, apply correction for linear  
acceleration in all three directions to the data path of each gyro-  
scope (ωXPC, ωYPC, and ωZPC) at the rate of the data samples  
(4250 SPS when using the internal clock). CONFIG, Bit 7, provides  
an on/off control for this compensation. The factory default  
value for this bit activates this compensation.  
2
1
5
General-Purpose I/O Line 1 (DIO1) direction control  
(1 = output, 5 = input)  
To turn it off, select Page 3 (DIN = 0x8003) and set CONFIG,  
Bit 7 = 0 (DIN = 0x8A40, then DIN = 0x8B00). This command  
sequence also preserves the default setting for the point of  
percussion alignment function (on).  
1 The GPIO_CTRL, Bits[7:4] reflect the logic levels on the DIOx lines and do not  
have a default setting.  
DECIMATION FILTER, DEC_RATE  
MISCELLANEOUS CONFIGURATION, CONFIG  
The DEC_RATE register (see Table 149 and Table 150)  
provides user control for the final filter stage (see Figure 25),  
which averages and decimates the accelerometers and  
gyroscopes data, and extends the time that the delta angle and  
delta velocity track between each update. The output sample  
rate is equal to 4250/(DEC_RATE + 1). For example, select Page  
3 (DIN = 0x8003), and set DEC_RATE = 0x2A (DIN = 0x8C2A,  
then DIN = 0x8D00) to reduce the output sample rate to ~98.8 SPS  
(4250 ÷ 43).  
The CONFIG register (see Table 147 and Table 148) provides  
configuration options for the linear g compensation in the  
gyroscopes (on/off) and the point of percussion alignment for  
the accelerometers (on/off).  
Table 147. CONFIG Register Definitions  
Page  
Addresses  
Default Access Flash Backup  
5x53  
5x5A, 5x5B  
5x55C5 R/W Yes  
Table 148. CONFIG Bit Descriptions  
Bits Description  
[1ꢀ:ꢁ] Not used  
Table 149. DEC_RATE Register Definitions  
Page  
Addresses  
Default Access Flash Backup  
5x53  
5x5C, 5x5D  
5x5555 R/W Yes  
7
Linear g compensation for gyroscopes (1 = enabled)  
Point of percussion alignment (1 = enabled)  
Not used  
6
[ꢀ:5]  
Rev. D | Page 3ꢀ of 43  
 
 
 
 
 
 
 
 
 
 
ADIS16497  
Data Sheet  
SCALING THE INPUT CLOCK (PPS MODE),  
SYNC_SCALE  
Table 150. DEC_RATE Bit Descriptions  
Bits  
Description  
The PPS mode (FNCTIO_CTRL, Bit 8 = 1, see Table 144)  
supports the use of an input sync frequency that is slower than  
the data sample rates of the inertial sensors. This mode  
supports a frequency range of 1 Hz to 128 Hz for the input sync  
mode. In this mode, the data sample rate is equal to the product  
of the value in the SYNC_SCALE register (see Table 153 and  
Table 154) and the input sync frequency. For example, the  
following command sequence sets the data collection and  
processing rate (fSM in Figure 22 and Figure 23) to 4000 Hz  
(SYNC_SCALE = 0x0FA0) when using a 1 Hz signal on the  
DIO3 line as the external clock input, and preserves the factory  
default configuration for the data ready signal:  
[1ꢀ:11]  
[15:5]  
Don’t care  
Decimation rate, binary format, maximum = 4249  
CONTINUOUS BIAS ESTIMATION (CBE),  
NULL_CNFG  
The NULL_CNFG register (see Table 151 and Table 152) provides  
the configuration controls for the CBE, which associates with the  
bias correction update command in GLOB_CMD, Bit 0 (see  
Table 142). NULL_CNFG, Bits[3:0], establishes the total  
average time (tA) for the bias estimates and NULL_CNFG,  
Bits[13:8], provide on/off controls for each sensor. The factory  
default configuration for NULL_CNFG enables the bias null  
command for the gyroscopes, disables the bias null command for  
the accelerometers, and sets the average time to ~15.42 seconds.  
1. Select Page 3 (DIN = 0x8003).  
2. Set SYNC_SCALE, Bits[7:0] = 0xA0 (DIN = 0x90A0).  
3. Set SYNC_SCALE, Bits[15:8] = 0x0F (DIN = 0x910F).  
4. Set FNCTIO_CTRL, Bits[7:0] = 0xFD (DIN = 0x86ED).  
5. Set FNCTIO_CTRL, Bits[15:8] = 0x00 (DIN = 0x8701).  
tB = 2TBC/4250 = 210/4250 = ~0.241 seconds  
tA = 64 × tB = 64 × 0.241 = 15.42 seconds  
where:  
tB is the time base.  
tA is the averaging time.  
Note that the data ready indicator pin does not begin to toggle  
until at least two external clock edges (with valid time period  
between them) are detected by the ADIS16497.  
When a sensor bit in NULL_CNFG is active (equal to 1), setting  
GLOB_CMD, Bit 0 = 1 (DIN sequence: 0x8003, 0x8201, 0x8300)  
causes its bias correction register to automatically update with a  
value that corrects for its present bias error (from the CBE). For  
example, setting NULL_CNFG, Bit 8 equal to 1 causes an update in  
the XG_BIAS_LOW (see Table 106) and XG_BIAS_HIGH (see  
Table 108) registers.  
Table 153. SYNC_SCALE Register Definitions  
Page  
Addresses  
Default  
Access  
Flash Backup  
5x53  
5x15, 5x11  
5x159A  
R/W  
Yes  
Table 154. SYNC_SCALE Bit Descriptions  
Bits  
Description  
[1ꢀ:5]  
External clock scale factor (KECSF), binary format  
Table 151. NULL_CNFG Register Definitions  
Page  
Addresses  
Default Access Flash Backup  
Measurement Range Identifier, RANG_MDL  
5x53  
5x5E, 5x5F  
5x575A R/W Yes  
The RANG_MDL register (see Table 155 and Table 156)  
provides a convenient method for identifying the model (and  
gyroscope measurement range) of the ADIS16497.  
Table 152. NULL_CNFG Bit Descriptions  
Bits Description  
[1ꢀ:14] Not used  
Table 155. RANG_MDL Register Definitions1  
Page  
Addresses  
Default  
Access  
Flash Backup  
13  
12  
11  
15  
9
[7:4]  
[3:5]  
Z-axis acceleration bias correction enable (1 = enabled)  
Y-axis acceleration bias correction enable (1 = enabled)  
X-axis acceleration bias correction enable (1 = enabled)  
Z-axis gyroscope bias correction enable (1 = enabled)  
Y-axis gyroscope bias correction enable (1 = enabled)  
X-axis gyroscope bias correction enable (1 = enabled)  
Not used  
5x53  
5x12, 5x13  
N/A  
R
N/A  
1 N/A means not applicable.  
Table 156. RANG_MDL Bit Descriptions  
Bits  
Description  
[1ꢀ:3]  
[3:5]  
Not used  
5511 = ADIS16497-1 ( 12ꢀ°/sec)  
5111 = ADIS16497-2 ( 4ꢀ5°/sec)  
1111 = ADIS16497-3 ( 2555°/sec)  
Time base control (TBC), range: 5 to 13 (default = 15);  
tB = 2TBC/42ꢀ5, time base; tA = 64 × tB, average time  
Rev. D | Page 36 of 43  
 
 
 
 
 
 
 
 
 
Data Sheet  
ADIS16497  
Table 160. FILTR_BNK_1 Bit Descriptions  
FIR FILTERS  
FIR Filters Control, FILTR_BNK_0, FILTR_BNK_1  
Bits  
[1ꢀ:3]  
2
Description  
Don’t care  
The FILTR_BNK_0 (see Table 157 and Table 158) and FILTR_  
BNK_1 (see Table 159 and Table 160) registers provide the  
configuration controls for the FIR filter bank in the signal chain  
of each sensor (see Figure 25). These registers provide on/off  
control for the FIR bank for each inertial sensor, along with the  
FIR bank (A, B, C, or D) that each sensor uses.  
Z-axis accelerometer filter enable (1 = enabled)  
[1:5]  
Z-axis accelerometer filter bank selection:  
55 = Bank A  
51 = Bank B  
15 = Bank C  
11 = Bank D  
Table 157. FILTR_BNK_0 Register Definitions  
FIR Filter Bank Memory Maps  
Page  
Addresses  
Default Access Flash Backup  
The ADIS16497 provides four FIR filter banks to configure and  
select for each individual inertial sensor using the FILTR_BNK_0  
(see Table 158) and FILTR_BNK_1 (see Table 160) registers.  
Each FIR filter bank (A, B, C, and D) has 120 taps that consume  
two pages of memory. The coefficient associated with each tap,  
in each filter bank, has its own dedicated register that uses a 16-bit,  
twos complement format. The FIR filter has unity gain when the  
sum of all of the coefficients is equal to 32,768. For filter designs  
that require less than 120 taps, write 0x0000 to all unused registers  
to eliminate the latency associated with that particular tap.  
5x53  
5x16, 5x17  
5x5555 R/W Yes  
Table 158. FILTR_BNK_0 Bit Descriptions  
Bits  
Description (Default = 0x0000)  
1ꢀ  
Don’t care  
14  
Y-axis accelerometer filter enable (1 = enabled)  
[13:12]  
Y-axis accelerometer filter bank selection  
55 = Bank A  
51 = Bank B  
15 = Bank C  
FIR Filter Bank A, FIR_COEF_A000 to FIR_COEF_A119  
11 = Bank D  
11  
X-axis accelerometer filter enable (1 = enabled)  
X-axis accelerometer filter bank selection  
55 = Bank A  
51 = Bank B  
15 = Bank C  
Table 161. FIR Filter Bank A Memory Map  
[15:9]  
Page PAGE_ID Addresses  
Register  
5x5ꢀ  
5x5ꢀ  
5x5ꢀ  
5x5ꢀ  
5x5ꢀ  
5x55, 5x51  
5x52 to 5x57  
5x5ꢁ, 5x59  
5x5A, 5x5B  
5x5C to 5x7D  
PAGE_ID  
Not used  
FIR_COEF_A555  
FIR_COEF_A551  
FIR_COEF_A552 to  
FIR_COEF_A5ꢀꢁ  
11 = Bank D  
Z-axis gyroscope filter enable (1 = enabled)  
Z-axis gyroscope filter bank selection  
55 = Bank A  
51 = Bank B  
15 = Bank C  
[7:6]  
6
6
6
6
6
5x5ꢀ  
5x56  
5x56  
5x56  
5x56  
5x56  
5x7E, 5x57F  
5x55, 5x51  
5x52 to 5x57  
5x5ꢁ, 5x59  
5x5A, 5x5B  
5x5C to 5x7D  
FIR_COEF_A5ꢀ9  
PAGE_ID  
Not used  
FIR_COEF_A565  
FIR_COEF_A561  
FIR_COEF_A562 to  
FIR_COEF_A11ꢁ  
11 = Bank D  
Y-axis gyroscope filter enable (1 = enabled)  
Y-axis gyroscope filter bank selection  
55 = Bank A  
[4:3]  
6
5x56  
5x7E, 5x7F  
FIR_COEF_A119  
51 = Bank B  
15 = Bank C  
Table 162 and Table 163 provide detailed register and bit  
definitions for one of the FIR coefficient registers in Bank A,  
FIR_COEF_ A071. Table 164 provides a configuration  
example, which sets this register to a decimal value of −169  
(0xFF57).  
11 = Bank D  
2
X-axis gyroscope filter enable (1 = enabled)  
X-axis gyroscope filter bank selection  
55 = Bank A  
[1:5]  
51 = Bank B  
15 = Bank C  
11 = Bank D  
Table 162. FIR_COEF_A071 Register Definitions  
Page Addresses Default  
Access Flash Backup  
5x56 5x1E, 5x1F  
Not applicable R/W  
Yes  
Table 159. FILTR_BNK_1 Register Definitions  
Table 163. FIR_COEF_A071 Bit Descriptions  
Page  
Addresses  
Default Access Flash Backup  
Bits  
Description  
5x53  
5x1ꢁ, 5x19  
5x5555 R/W Yes  
[1ꢀ:5]  
FIR Bank A, Coefficient 71, twos complement  
Rev. D | Page 37 of 43  
 
 
 
 
 
 
 
 
ADIS16497  
Data Sheet  
Table 164. Configuration Example, FIR Coefficient  
FIR Filter Bank D, FIR_COEF_D000 to FIR_COEF_D119  
Table 167. Filter Bank D Memory Map  
DIN Command  
Description  
5xꢁ556  
Select Page 6  
Page PAGE_ID Addresses  
Register  
5x9Eꢀ7  
5x9FFF  
FIR_COEF_A571, Bits[7:5] = 5xꢀ7  
FIR_COEF_A571, Bits[1ꢀ:ꢁ] = 5xFF  
11  
11  
11  
11  
11  
5x5B  
5x5B  
5x5B  
5x5B  
5x5B  
5x55, 5x51  
5x52 to 5x57  
5x5ꢁ, 5x59  
5x5A, 5x5B  
5x5C to 5x7D FIR_COEF_D552 to  
FIR_COEF_D5ꢀꢁ  
PAGE_ID  
Not used  
FIR_COEF_D555  
FIR_COEF_D551  
FIR Filter Bank B, FIR_COEF_B000 to FIR_COEF_B119  
Table 165. Filter Bank B Memory Map  
Page PAGE_ID Addresses  
Register  
11  
12  
12  
12  
12  
12  
5x5B  
5x5C  
5x5C  
5x5C  
5x5C  
5x5C  
5x7E, 5x57F  
5x55, 5x51  
5x52 to 5x57  
5x5ꢁ, 5x59  
5x5A, 5x5B  
5x5C to 5x7D FIR_COEF_D562 to  
FIR_COEF_D11ꢁ  
5x7E, 5x7F  
FIR_COEF_D5ꢀ9  
PAGE_ID  
Not used  
FIR_COEF_D565  
FIR_COEF_D561  
7
7
7
7
7
5x57  
5x57  
5x57  
5x57  
5x57  
5x55, 5x51  
5x52 to 5x57  
5x5ꢁ, 5x59  
5x5A, 5x5B  
5x5C to 5x7D FIR_COEF_B552 to  
FIR_COEF_B5ꢀꢁ  
5x7E, 5x57F  
5x55, 5x51  
5x52 to 5x57  
5x5ꢁ, 5x59  
5x5A, 5x5B  
PAGE_ID  
Not used  
FIR_COEF_B555  
FIR_COEF_B551  
7
5x57  
5x5ꢁ  
5x5ꢁ  
5x5ꢁ  
5x5ꢁ  
5x5ꢁ  
FIR_COEF_B5ꢀ9  
PAGE_ID  
Not used  
FIR_COEF_B565  
FIR_COEF_B561  
12  
5x5C  
FIR_COEF_D119  
Default Filter Performance  
The FIR filter banks have factory programmed filter designs that  
are all low-pass filters that have unity dc gain. Table 168 provides a  
summary of each filter design, and Figure 49 shows the frequency  
response characteristics. The phase delay is equal to ½ of the total  
number of taps.  
5x5C to 5x7D FIR_COEF_B562 to  
FIR_COEF_B11ꢁ  
5x7E, 5x7F  
5x5ꢁ  
FIR_COEF_B119  
FIR Filter Bank C, FIR_COEF_C000 to FIR_COEF_C119  
Table 166. Filter Bank C Memory Map  
Table 168. FIR Filter Descriptions, Default Configuration  
FIR Filter Bank  
Taps  
125  
125  
32  
−3 dB Frequency (Hz)  
Page PAGE_ID Addresses  
Register  
A
B
C
D
355  
155  
355  
155  
9
9
9
9
9
5x59  
5x59  
5x59  
5x59  
5x59  
5x55, 5x51  
5x52 to 5x57  
5x5ꢁ, 5x59  
5x5A, 5x5B  
5x5C to 5x7D FIR_COEF_C552 to  
FIR_COEF_C5ꢀꢁ  
PAGE_ID  
Not used  
FIR_COEF_C555  
FIR_COEF_C551  
32  
0
–10  
9
5x59  
5x5A  
5x5A  
5x5A  
5x5A  
5x5A  
5x7E, 5x57F  
5x55, 5x51  
5x52 to 5x57  
5x5ꢁ, 5x59  
5x5A, 5x5B  
5x5C to 5x7D FIR_COEF_C562 to  
FIR_COEF_C11ꢁ  
5x7E, 5x7F  
FIR_COEF_C5ꢀ9  
PAGE_ID  
Not used  
FIR_COEF_C565  
FIR_COEF_C561  
NO FIR  
FILTERING  
–20  
B
15  
15  
15  
15  
15  
D
A
C
–30  
–40  
–50  
–60  
–70  
–80  
–90  
15  
5x5A  
FIR_COEF_C119  
–100  
0
200  
400  
600  
800  
1000  
1200  
FREQUENCY (Hz)  
Figure 49. FIR Filter Frequency Response Curves  
Rev. D | Page 3ꢁ of 43  
 
 
 
 
 
 
Data Sheet  
ADIS16497  
FIRMWARE REVISION, FIRM_REV  
Table 174. FIRM_Y Bit Descriptions  
The FIRM_DM register (see Table 171 and Table 172) contains  
the month and day of the factory configuration date. Register  
FIRM_DM, Bits[15:12] and Register FIRM_DM, Bits[11:8]  
contain digits that represent the month of the factory configuration  
in a binary coded decimal (BCD) format. For example,  
November is the 11th month in a year and is represented by  
Register FIRM_DM, Bits[15:8] = 0x11. Register FIRM_DM,  
Bits[7:4] and Register FIRM_DM, Bits[3:0], contain digits that  
represent the day of factory configuration in a BCD format. For  
example, the 27th day of the month is represented by FIRM_DM,  
Bits[7:0] = 0x27.  
Bits  
Description  
[1ꢀ:12]  
Factory configuration year BCD code, thousands digit,  
numerical format = 4-bit binary, range = 5 to 9  
Factory configuration year BCD code, hundreds digit,  
numerical format = 4-bit binary, range = 5 to 9  
Factory configuration year BCD code, tens digit,  
numerical format = 4-bit binary, range = 5 to 3  
Factory configuration year BCD code, ones digit,  
numerical format = 4-bit binary, range = 5 to 9  
[11:ꢁ]  
[7:4]  
[3:5]  
BOOT REVISION NUMBER, BOOT_REV  
Table 175. BOOT_REV Register Definitions  
Table 169. FIRM_REV Register Definitions  
Page Addresses Default  
Access Flash Backup  
Page Addresses Default  
Access Flash Backup  
5x53 5x7E, 5x7F Not applicable  
R
Yes  
5x53 5x7ꢁ, 5x79 Not applicable  
R
Yes  
Table 176. BOOT_REV Bit Definitions  
Table 170. FIRM_REV Bit Descriptions  
Bits Description  
Bits  
Description  
[1ꢀ:ꢁ]  
[7:5]  
Binary, major revision number  
Binary, minor revision number  
[1ꢀ:12] Firmware revision BCD code, tens digit, numerical  
format = 4-bit binary, range = 5 to 9  
[11:ꢁ]  
[7:4]  
[3:5]  
Firmware revision BCD code, ones digit, numerical  
format = 4-bit binary, range = 5 to 9  
Firmware revision BCD code, tenths digit, numerical  
format = 4-bit binary, range = 5 to 9  
Firmware revision BCD code, hundredths digit,  
numerical format = 4-bit binary, range = 5 to 9  
CONTINUOUS SRAM TESTING  
This device employs a CRC function on the SRAM memory  
blocks that contain the program code (CODE_SIGTR_xxx) and  
the calibration coefficients (CAL_DRVTN_xxx). This process  
operates in the background and generates real-time, 32-bit  
CRC values for the program code and calibration coefficients,  
respectively. At the conclusion of each cycle, the processor  
writes these calculated values in the CAL_DRVTN_xxx and  
CODE_DRVTN_xxx registers (see Table 183, Table 184, Table  
190, and Table 192) and compares them with the signature  
values, which reflect the state of these memory locations at the  
time of factory configuration. When the calculation results do  
not match the signature values, Register SYS_E_FLAG, Bit 2  
increases to a 1. The respective signature values are available for  
user access through the CAL_SIGTR_xxx and CODE_SIGTR_xxx  
registers (see Table 177, Table 178, Table 179, Table 180, Table 186,  
and Table 188). The following conditions must be met for  
Register SYS_E_FLAG, Bit 2 to remain at the zero level:  
Table 171. FIRM_DM Register Definitions  
Page Addresses Default  
Access Flash Backup  
5x53 5x7A, 5x7B Not applicable  
R Yes  
Table 172. FIRM_DM Bit Descriptions  
Bits  
Description  
[1ꢀ:12]  
Factory configuration month BCD code, tens digit,  
numerical format = 4-bit binary, range = 5 to 2  
Factory configuration month BCD code, ones digit,  
numerical format = 4-bit binary, range = 5 to 9  
Factory configuration day BCD code, tens digit,  
numerical format = 4-bit binary, range = 5 to 3  
Factory configuration day BCD code, ones digit,  
numerical format = 4-bit binary, range = 5 to 9  
[11:ꢁ]  
[7:4]  
[3:5]  
CAL_SIGTR_LWR = CAL_DRVTN_LWR  
CAL_SIGTR_UPR = CAL_DRVTN_UPR  
CODE_SIGTR_LWR = CODE_DRVTN_LWR  
CODE_SIGTR_UPR = CODE_DRVTN_UPR  
FIRMWARE REVISION YEAR, FIRM_Y  
The FIRM_Y register (see Table 173 and Table 174) contains  
the year of the factory configuration date. For example, the year  
2013 is represented by FIRM_Y = 0x2013.  
Table 173. FIRM_Y Register Definitions  
Page Addresses Default  
Access Flash Backup  
5x53 5x7C, 5x7D Not applicable  
R
Yes  
Rev. D | Page 39 of 43  
 
 
 
 
 
 
 
 
ADIS16497  
Data Sheet  
Signature CRC, Calibration Values, CAL_SIGTR_LWR  
Signature CRC, Program Code, CODE_SIGTR_UPR  
Table 187. CODE_SIGTR_UPR Register Definitions  
Page Addresses Default Access Flash Backup  
5x54 5x5E, 5x5F Not applicable Yes  
Table 177. CAL_SIGTR_LWR Register Definitions  
Page Addresses Default  
Access Flash Backup  
5x54 5x54, 5x5ꢀ Not applicable  
R
Yes  
R
Table 178. CAL_SIGTR_LWR Bit Descriptions  
Bits Description  
[1ꢀ:5] Factory programmed CRC value for the program code,  
low word  
Table 188. CODE_SIGTR_UPR Bit Descriptions  
Bits Description  
[1ꢀ:5] Factory programmed CRC value for the calibration  
coefficients, high word  
Signature CRC, Calibration Values, CAL_SIGTR_UPR  
Derived CRC, Program Code, CODE_DRVTN_LWR  
Table 179. CAL_SIGTR_UPR Register Definitions  
Table 189. CODE_DRVTN_LWR Register Definitions  
Page Addresses Default  
Access Flash Backup  
Page Addresses Default  
Access Flash Backup  
5x54 5x56, 5x57 Not applicable  
R
Yes  
5x54 5x15, 5x11 Not applicable  
R
No  
Table 180. CAL_SIGTR_UPR Bit Descriptions  
Bits Description  
[1ꢀ:5] Factory programmed CRC value for the program code,  
high word  
Table 190. CODE_DRVTN_LWR Bit Descriptions  
Bits Description  
[1ꢀ:5] Calculated CRC value for the calibration coefficients, low  
word  
Derived CRC, Calibration Values, CAL_DRVTN_LWR  
Derived CRC, Program Code, CODE_DRVTN_UPR  
Table 181. CAL_DRVTN_LWR Register Definitions  
Page Addresses Default  
Access Flash Backup  
Table 191. CODE_DRVTN_LWR Register Definitions  
5x54 5x5ꢁ, 5x59 Not applicable  
R
No  
Page Addresses Default  
Access Flash Backup  
5x54 5x12, 5x13 Not applicable  
R
No  
Table 182. CAL_DRVTN_LWR Bit Descriptions  
Bits Description  
Table 192. CODE_DRVTN_UPR Bit Descriptions  
Bits Description  
[1ꢀ:5] Calculated CRC value for the program code, low word  
[1ꢀ:5] Calculated CRC value for the calibration coefficients,  
high word  
Derived CRC, Calibration Values, CAL_DRVTN_UPR  
Table 183. CAL_DRVTN_UPR Register Definitions  
Lot Specific Serial Number, SERIAL_NUM  
Page Addresses Default  
Access Flash Backup  
Table 193. SERIAL_NUM Register Definitions  
5x54 5x5A, 5x5B Not applicable  
R No  
Page Addresses Default  
Access Flash Backup  
5x54 5x25, 5x21 Not applicable  
R
Yes  
Table 184. CAL_DRVTN_UPR Bit Descriptions  
Bits Description  
Table 194. SERIAL_NUM Bit Descriptions  
[1ꢀ:5] Calculated CRC value for the program code, high word  
Bits  
Description  
[1ꢀ:5]  
Lot specific serial number  
Signature CRC, Program Code, CODE_SIGTR_LWR  
Table 185. CODE_SIGTR_LWR Register Definitions  
Page Addresses Default  
Access Flash Backup  
5x54 5x5C, 5x5D Not applicable  
R
Yes  
Table 186. CODE_SIGTR_LWR Bit Descriptions  
Bits Description  
[1ꢀ:5] Factory programmed CRC value for the calibration  
coefficients, low word  
Rev. D | Page 45 of 43  
 
 
 
 
 
 
 
 
 
 
Data Sheet  
ADIS16497  
APPLICATIONS INFORMATION  
MOUNTING BEST PRACTICES  
PREVENTING MISINSERTION  
For the best performance, follow these guidelines when  
installing the ADIS16497 into a system:  
The ADIS16497 connector uses the same pattern as the  
ADIS16485, but with Pin 12 and Pin 15 missing. This pin  
configuration enables a mating connector to plug these holes,  
which helps prevent misconnection with the ADIS16497. Samtec  
has a custom part number that provides this type of mating  
socket: ASP-193371-04.  
Eliminate opportunity for translational force (x- and y-axis  
direction, per Figure 39) application on the electrical  
connector.  
Use uniform mounting forces on all four corners. The  
suggested torque setting is 40 inch ounces (0.285 Nm).  
When the ADIS16497 rests on the PCB, which contains  
the mating connector (see Figure 50), use a diameter of at  
least 2.85 mm for the passthrough holes.  
EVALUATION TOOLS  
Breakout Board, ADIS16IMU1/PCBZ  
The ADIS16IMU1/PCBZ (sold separately) provides a breakout  
board function for the ADIS16497, which means that it provides  
access to the ADIS16497 through larger connectors that support  
standard 1 mm ribbon cabling. It also provides four mounting  
holes for attachment of the ADIS16497 to the breakout board.  
These guidelines help prevent irregular force profiles, which  
can warp the package and introduce bias errors in the sensors.  
Figure 50 and Figure 51 provide details for mounting hole and  
connector alignment pin drill locations.  
PC-Based Evaluation, EVAL-ADIS2  
39.600 BSC  
Use the EVAL-ADIS2 and ADIS16IMU1/PCBZ to evaluate the  
ADIS16497 on a PC-based platform.  
19.800 BSC  
PASSTHROUGH HOLE  
FOR MOUNTING SCREWS  
POWER SUPPLY CONSIDERATIONS  
DIAMETER OF THE HOLE  
MUST ACCOMODATE  
DIMENSIONAL TOLERANCE  
BETWEEN THE CONNECTOR  
AND HOLES  
The VDD power supply must charge 46 ꢀF of capacitance (inside  
of the ADIS16497, across the VDD and GND pins) during its  
initial ramp and settling process. When VDD reaches 2.85 V,  
the ADIS16497 begins its internal start-up process, which gener-  
ates additional transient current demand. See Figure 52 for a  
typical current profile during the start-up process. The first  
peak in Figure 52 relates to charging the 46 ꢀF capacitor bank,  
whereas the other transient activity relates to numerous  
functions turning on during the initialization process of the  
ADIS16497.  
DEVICE  
OUTLINE  
0.560 BSC 2×  
ALIGNMENT HOLES  
FOR MATING SOCKET  
5 BSC  
5 BSC  
a
b
T
a
b
1.608ms  
159.8ms  
Δ158.2ms Δ60.00mA  
92.00mA  
152.0mA  
NOTES  
1. ALL DIMENSIONS IN UNITS OF MILLIMETERS (mm).  
2. IN THIS CONFIGURATION, THE CONNECTOR IS FACING DOWN AND  
ITS PINSARE NOT VISIBLE.  
Figure 50. Suggested PCB Layout Pattern, Connector Down  
0.4334 [11.0]  
0.019685  
[0.5000]  
(TYP)  
VDD  
0.0240 [0.610]  
3
0.054 [1.37]  
DR  
2
4
0.1800  
[4.57]  
0.0394 [1.00]  
0.0394 [1.00]  
CURRENT  
B
0.022±  
DIA (TYP)  
CH2 2.0V  
M40.0ms  
20.10%  
A
CH3  
3.00V  
W
B
B
CH3 2.0V  
CH4 100mA  
T
12.5MS/s 5M pts  
NONPLATED  
THROUGH HOLE 2×  
0.022 DIA THROUGH HOLE (TYP)  
NONPLATED THROUGH HOLE  
W
W
Figure 52. Transient Current Demand, Startup  
Figure 51. Suggested Layout and Mechanical Design When Using Samtec  
CLM-112-02-G-D-A for the Mating Connector  
Rev. D | Page 41 of 43  
 
 
 
 
 
 
 
 
ADIS16497  
Data Sheet  
unsigned long crc32_block( unsigned long crc,  
const unsigned short data[], int n )  
CRC32 CODING EXAMPLE  
This section contains sample code and values for computing  
the cyclic redundancy check (CRC) for the ADIS16497 register  
readback values.  
{
unsigned long long_c;  
int i;  
In this coding example, the 32-bit CRC is first initialized with  
0xFFFFFFFF. Next, each 16-bit word passes through the CRC  
computation in ascending order. Finally, the CRC is Xor’ed  
with 0xFFFFFFFF.  
/* cycle through memory */  
for ( i=0; i<n; i++ )  
{
/* Get lower byte */  
long_c = 0x000000ff &  
(unsigned long)data[i];  
/* Process with CRC */  
crc = ((crc>>8) & 0x00ffffff) ^  
crc_tab32[(crc^long_c)&0xff];  
/* Get upper byte */  
long_c = (0x000000ff &  
((unsigned long)data[i]>>8);  
/* Process with CRC */  
crc = ((crc>>8) & 0x00ffffff) ^  
crc_tab32[(crc^long_c)&0xff];  
}
The ADIS16497 updates the CRC value for each data ready  
cycle. The registers listed in Table 195 are used as inputs for  
computing the CRC32 checksum. The registers can either be  
read individually in normal SPI mode or in burst mode,  
provided that all registers are all read during the same data  
ready cycle.  
1
Table 195. Sample Input Data for CRC Computation  
Register Number  
Register  
Input Value  
5x5555  
5x5ꢁ3A  
5x5555  
5xFFF7  
5x5555  
5xFFFE  
5x5555  
5x5551  
5xꢀ551  
5x5553  
5xE55A  
5x551ꢀ  
5xC559  
5x5325  
5xꢁAꢀ4  
1
2
3
4
6
7
STATUS  
TEMP_OUT  
return crc;  
}
X_GYRO_LOW  
X_GYRO_OUT  
Y_GYRO_LOW  
Y_GYRO_OUT  
Z_GYRO_LOW  
Z_GYRO_OUT  
X_ACCL_LOW  
X_ACCL_OUT  
Y_ACCL_LOW  
Y_ACCL_OUT  
Z_ACCL_LOW  
Z_ACCL_OUT  
TIME_STAMP  
The CRC table (crc_tab32) is computed with the following  
function:  
void init_crc32_table( void )  
{
9
unsigned long P_32;  
int i, j;  
unsigned long crc;  
15  
11  
12  
13  
14  
1ꢀ  
/* CRC32 polynomial defined by IEEE-802.3 */  
P_32 = 0xEDB88320  
/* 8 bits require 256 entries in Table */  
for (i=0; i<256; i++)  
1 This information is contained in the array data in the coding example.  
{
1
Table 196. Output Results for CRC Sample Computation  
/* start with table entry number */  
crc = (unsigned long) i;  
Register Number  
Register  
CRC_LWR  
CRC_UPR  
Output Value  
1
2
5x1ꢀB4  
5xB6Cꢁ  
/* cycle through all bits in entry number */  
for (j=0; j<8; j++)  
{
1 Based on the input shown in Table 19ꢀ.  
The following is the CRC initialization code:  
/* LSBit set? */  
if ((crc&(unsigned  
long)0x00000001)!=(unsigned long)0)  
/* Initialize CRC */  
crc = 0xFFFFFFFFU;  
{
/* process for bit set */  
/* Compute CRC in the order of bytes low-high  
crc = (crc>>1) ^ P_32;  
starting at 0-14, BurstID, STATUS - TIME_STAMP */  
crc = crc32_block(crc, DATA, 15);  
/* Final operation per IEEE-802.3 */  
crc ^= 0xFFFFFFFFU;  
}
else  
{
/* process for bit clear */  
crc = (crc>>1);  
}
The crc32_block function accepts an array of 16-bit numbers  
and computes the CRC byte-by-byte:  
}
/* Store calculated value into table */  
crc_tab32[i] = crc;  
}
}
Rev. D | Page 42 of 43  
 
 
Data Sheet  
ADIS16497  
OUTLINE DIMENSIONS  
44.254  
44.000  
43.746  
39.800  
34.600  
34.575  
34.550  
39.600  
39.400  
7.350  
7.225  
7.100  
20.00  
19.80  
19.60  
2.20 BSC  
2.20 BSC  
2.065  
Ø 2.040  
2.015  
2.325  
2.200  
2.075  
1.142 BSC  
42.800  
42.600  
42.400  
37.598  
37.573  
37.548  
47.254  
47.000  
46.746  
3.70  
3.50  
3.30  
Ø 2.40  
BSC  
2.065  
2.040  
2.015  
BOTTOM VIEW  
TOP VIEW  
°
47.479  
47.379  
47.279  
DETAIL A  
13.750 REF  
0.250 BSC  
DETAIL A  
FRONT VIEW  
14.200  
14.000  
13.800  
2.84 BSC  
3.454  
3.200  
2.946  
0.250 BSC  
5.50  
BSC  
5.50  
BSC  
1.00 BSC  
PITCH  
0.30 SQ BSC  
Figure 53. 24-Lead Module with Connector Interface [MODULE]  
(ML-24-9)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
−45°C to +15ꢀ°C  
−45°C to +15ꢀ°C  
−45°C to +15ꢀ°C  
Description  
Package Option  
ML-24-9  
ML-24-9  
ADIS16497-1BMLZ  
ADIS16497-2BMLZ  
ADIS16497-3BMLZ  
24-Lead Module with Connector Interface [MODULE]  
24-Lead Module with Connector Interface [MODULE]  
24-Lead Module with Connector Interface [MODULE]  
ML-24-9  
1 Z = RoHS Compliant Part.  
©2017-2020 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D1ꢀ061-7/20(D)  
Rev. D | Page 43 of 43  
 
 

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY