ADIS16505-1PCBZ [ADI]

Precision, Miniature MEMS IMU;
ADIS16505-1PCBZ
型号: ADIS16505-1PCBZ
厂家: ADI    ADI
描述:

Precision, Miniature MEMS IMU

文件: 总41页 (文件大小:801K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Precision, Miniature MEMS IMU  
Data Sheet  
ADIS16505  
FEATURES  
GENERAL DESCRIPTION  
Triaxial, digital gyroscope  
The ADIS16505 is a precision, miniature microelectromechanical  
system (MEMS) inertial measurement unit (IMU) that includes  
a triaxial gyroscope and a triaxial accelerometer. Each inertial  
sensor in the ADIS16505 combines with signal conditioning  
that optimizes dynamic performance. The factory calibration  
characterizes each sensor for sensitivity, bias, alignment,  
linear acceleration (gyroscope bias), and point of percussion  
(accelerometer location). As a result, each sensor has dynamic  
compensation formulas that provide accurate sensor  
12ꢀ°/sec, ꢀ00°/sec, 2000°/sec dynamic range models  
2.3°/hr in-run bias stability (ADIS16ꢀ0ꢀ-1)  
0.13°/√hr angular random walk, x-axis and y-axis, 1 σ  
(ADIS16ꢀ0ꢀ-1)  
0.2ꢀ° axis to axis misalignment error  
Triaxial, digital accelerometer, 78.4 m/secꢁ dynamic range  
26.ꢀ μm/secꢁ in-run bias stability (x-axis and y-axis)  
Triaxial, delta angle and delta velocity outputs  
Factory calibrated sensitivity, bias, and axial alignment  
Calibration temperature range: −40°C to +8ꢀ°C  
SPI compatible data communications  
measurements over a broad set of conditions.  
The ADIS16505 provides a simplified, cost effective method for  
integrating accurate, multiaxis inertial sensing into industrial  
systems, especially when compared with the complexity and  
investment associated with discrete designs. All necessary motion  
testing and calibration are part of the production process at the  
factory, greatly reducing system integration time. Tight orthogonal  
alignment simplifies inertial frame alignment in navigation  
systems. The serial peripheral interface (SPI) and register  
structure provide a simple interface for data collection and  
configuration control.  
Programmable operation and control  
Automatic and manual bias correction controls  
Data ready indicator for synchronous data acquisition  
External sync modes: direct, scaled, and output  
On demand self-test of inertial sensors  
On demand self-test of flash memory  
Single-supply operation (VDD): 3.0 V to 3.6 V  
14,700 m/sec2 mechanical shock survivability  
Operating temperature range: −40°C to +10ꢀ°C  
The ADIS16505 is available in a 100-ball, ball grid array (BGA)  
package that is approximately 15 mm × 15 mm × 5 mm.  
APPLICATIONS  
Navigation, stabilization, and instrumentation  
Unmanned and autonomous vehicles  
Smart agriculture and construction machinery  
Factory/industrial automation, robotics  
Virtual/augmented reality  
Internet of Moving Things  
FUNCTIONAL BLOCK DIAGRAM  
DR  
RST  
VDD  
POWER  
MANAGEMENT  
GND  
SELF TEST  
INPUT/OUTPUT  
OUTPUT  
DATA  
CS  
TRIAXIAL  
GYROSCOPE  
REGISTERS  
SCLK  
DIN  
CALIBRATION  
TRIAXIAL  
ACCELEROMETER  
SPI  
CONTROLLER  
AND  
FILTERS  
USER  
CONTROL  
REGISTERS  
TEMPERATURE  
SENSOR  
DOUT  
CLOCK  
ADIS16505  
SYNC  
Figure 1.  
Rev. B  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice.  
No license is granted by implication or otherwise under any patent or patent rights of Analog  
Devices. Trademarks and registeredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2019–2020 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
ADIS16505  
Data Sheet  
TABLE OF CONTENTS  
Features.............................................................................................. 1  
SPI ................................................................................................ 17  
Data Ready (DR) ........................................................................ 17  
Reading Sensor Data.................................................................. 18  
Burst Read Function.................................................................. 19  
Latency......................................................................................... 21  
Device Configuration ................................................................ 21  
Memory Structure...................................................................... 21  
User Register Memory Map.......................................................... 22  
User Register Defintions ............................................................... 24  
Gyroscope Data .......................................................................... 24  
Delta Angles................................................................................ 28  
Delta Velocity ............................................................................. 29  
Calibration .................................................................................. 31  
Applications Information ............................................................. 38  
Assembly and Handling Tips ................................................... 38  
Power Supply Considerations .................................................. 39  
Evaluation Tools......................................................................... 39  
Packaging and Ordering Information......................................... 41  
Outline Dimensions................................................................... 41  
Ordering Guide .......................................................................... 41  
Applications ...................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications .................................................................................... 3  
Timing Specifications .................................................................. 6  
Absolute Maximum Ratings....................................................... 7  
Thermal Resistance...................................................................... 7  
ESD Caution.................................................................................. 7  
Pin Configuration and Function Descriptions ............................ 8  
Typical Performance Characteristics........................................... 11  
Gyroscopes .................................................................................. 11  
Accelerometers ........................................................................... 14  
Theory of Operation ...................................................................... 15  
Introduction................................................................................ 15  
Clock Control ............................................................................. 15  
Bartlett Window Filter............................................................... 16  
Calibration................................................................................... 16  
Decimation Filter ....................................................................... 16  
Register Structure....................................................................... 16  
REVISION HISTORY  
7/2020—Rev. A to Rev. B  
Deleted Table 111 and Table 112; Renumbered Sequentially........34  
Deleted Bias Correction Update Section.........................................35  
Changes to Table 113, Table 115, Table 117, Table 119, and  
Table 121...................................................................................................36  
Changes to Table 129 and Table 131........................................... 37  
Changes to Figure 65 ..................................................................... 40  
Changes to Table 1 ........................................................................... 3  
Changes to Table 3 and Table 4...................................................... 7  
Changes to Clock Control Section............................................... 15  
Changes to Figure 44 and Figure 45 ............................................ 20  
Changes to Table 9 ......................................................................... 23  
Changes to Table 11....................................................................... 24  
Changes to Table 102 and Table 106........................................... 33  
Changes to Table 108 and Table 110........................................... 34  
10/2019—Revision A: Initial Version  
Rev. B | Page 2 of 41  
 
Data Sheet  
ADIS16505  
SPECIFICATIONS  
Case temperature (TC) = 25°C, VDD = 3.3 V, angular rate = 0°/sec, and dynamic range = 2000°/sec 1 g, unless otherwise noted. 1 g is  
the acceleration due to gravity and assumed to be 9.8 m/sec2.  
Table 1.  
Parameter  
Test Conditions/Comments  
Min  
125  
500  
2000  
Typ  
Max Unit  
GYROSCOPES  
Dynamic Range  
ADIS16505-1  
ADIS16505-2  
ADIS16505-3  
°/sec  
°/sec  
°/sec  
Sensitivity  
ADIS16505-1, 16-bit data format  
ADIS16505-2, 16-bit data format  
ADIS16505-3, 16-bit data format  
ADIS16505-1, 32-bit data format  
ADIS16505-2, 32-bit data format  
ADIS16505-3, 32-bit data format  
ADIS16505-1, −40°C ≤ TC ≤ +85°C, 1σ  
ADIS16505-2, −40°C ≤ TC ≤ +85°C, 1σ  
ADIS16505-3, −40°C ≤ TC ≤ +85°C, 1σ  
Axis to axis, −40°C ≤ TC ≤ +85°C, 1 σ  
ADIS16505-1, full scale (FS) = 125°/sec  
ADIS16505-2, FS = 500°/sec  
ADIS16505-3, FS = 2000°/sec  
160  
40  
10  
10,485,760  
2,621,440  
655,360  
0.5  
0.5  
0.3  
LSB/°/sec  
LSB/°/sec  
LSB/°/sec  
LSB/°/sec  
LSB/°/sec  
LSB/°/sec  
%
Error over Temperature  
%
%
Misalignment Error1  
Nonlinearity2  
0.25  
0.2  
0.2  
Degrees  
%FS  
%FS  
0.2  
%FS  
Bias  
Repeatability3  
−40°C ≤ TC ≤ +85°C, 1 σ, x-axis and z-axis  
−40°C ≤ TC ≤ +85°C, 1 σ, y-axis  
ADIS16505-1, 1 σ, x-axis  
ADIS16505-1, 1 σ, y-axis  
ADIS16505-1, 1 σ, z-axis  
ADIS16505-2, 1 σ, x-axis  
ADIS16505-2, 1 σ, y-axis  
ADIS16505-2, 1 σ, z-axis  
ADIS16505-3, 1 σ, x-axis  
ADIS16505-3, 1 σ, y-axis  
ADIS16505-3, 1 σ, z-axis  
ADIS16505-1, x-axis and y-axis, 1 σ  
ADIS16505-1, z-axis, 1 σ  
ADIS16505-2, x-axis and y-axis, 1 σ  
ADIS16505-2, z-axis, 1 σ  
ADIS16505-3, x-axis and y-axis, 1 σ  
ADIS16505-3, z-axis, 1 σ  
−40°C ≤ TC ≤ +85°C, 1 σ, x-axis and z-axis  
−40°C ≤ TC ≤ +85°C, 1 σ, y-axis  
X-axis, 1 σ  
0.14  
1.4  
1.5  
2.3  
1.7  
2.2  
2.7  
1.6  
7.5  
8.1  
4.9  
0.13  
0.19  
0.15  
0.2  
0.29  
0.32  
0.3  
0.7  
0.572 × 10−3  
1.02 × 10−3  
0.408 × 10−3  
3.1 × 10−6  
°/sec  
°/sec  
°/hr  
°/hr  
°/hr  
°/hr  
°/hr  
°/hr  
°/hr  
°/hr  
°/hr  
°/√hr  
°/√hr  
°/√hr  
°/√hr  
°/√hr  
°/√hr  
°/sec  
°/sec  
(°/sec)/(m/sec2)  
(°/sec)/(m/sec2)  
(°/sec)/(m/sec2)  
(°/sec)/(m/sec2)2  
In-Run Bias Stability  
Angular Random Walk  
Error over Temperature  
Linear Acceleration Effect  
Y-axis, 1 σ  
Z-axis, 1 σ  
Vibration Rectified Error (VRE)  
X-axis, random vibration, 19.6 m/sec2 rms,  
50 Hz to 2 kHz  
Y-axis, random vibration, 19.6 m/sec2 rms,  
50 Hz to 2 kHz  
Z-axis, random vibration, 19.6 m/sec2 rms,  
50 Hz to 2 kHz  
5.6 × 10−6  
0.3 × 10−6  
(°/sec)/(m/sec2)2  
(°/sec)/(m/sec2)2  
Rev. B | Page 3 of 41  
 
 
ADIS16505  
Data Sheet  
Parameter  
Test Conditions/Comments  
No filtering, 1 σ, 25°C  
Min  
Typ  
Max Unit  
Output Noise  
ADIS16505-1, x-axis, y-axis  
ADIS16505-1, z-axis  
ADIS16505-2, x-axis, y-axis  
ADIS16505-2, z-axis  
68 × 10−3  
104 × 10−3  
82 × 10−3  
116 × 10−3  
152 × 10−3  
181 × 10−3  
°/sec rms  
°/sec rms  
°/sec rms  
°/sec rms  
°/sec rms  
ADIS16505-3, all axes  
Rate Noise Density  
Frequency = 10 Hz to 40 Hz  
ADIS16505-1, x-axis and y-axis  
ADIS16505-1, z-axis  
ADIS16505-2, x-axis and y-axis  
ADIS16505-2, z-axis  
ADIS16505-3, x-axis and y-axis  
ADIS16505-3, z axis  
ADIS16505-1, ADIS16505-2, x-axis and y-axis  
ADIS16505-1, ADIS16505-2, z-axis  
ADIS16505-3, x-axis and y-axis  
ADIS16505-3, z-axis  
°/sec/√Hz rms  
°/sec/√Hz rms  
°/sec/√Hz rms  
°/sec/√Hz rms  
°/sec/√Hz rms  
°/sec/√Hz rms  
Hz  
Hz  
Hz  
Hz  
3.0 × 10−3  
4.3 × 10−3  
3.4 × 10−3  
4.6 × 10−3  
6.1 × 10−3  
480  
590  
573  
639  
3 dB Bandwidth  
Sensor Resonant Frequency  
X-axis, y-axis  
66  
kHz  
Z-axis  
78  
kHz  
ACCELEROMETERS4  
Dynamic Range  
Sensitivity  
Each axis  
78.4  
m/sec2  
LSB/(m/sec2)  
%
32-bit data format  
−40°C ≤ TC ≤ +85°C, 1 σ  
−40°C ≤ TC ≤ +85°C, 1 σ  
26,756,268  
0.07  
0.1  
Error over Temperature  
Repeatability3  
%
Misalignment Error  
Nonlinearity  
Axis to axis, −40°C ≤ TC ≤ +85°C, 1 σ  
Best fit straight line, 19.6 m/sec2  
Best fit straight line, 78.4 m/sec2, x-axis  
0.05  
0.25  
0.5  
Degrees  
%FS  
%FS  
Best fit straight line, 78.4 m/sec2,  
y-axis and z-axis  
1.5  
%FS  
Bias  
Repeatability3  
In-Run Bias Stability  
X-Axis and Y-Axis  
Z-Axis  
−40°C ≤ TC ≤ +85°C, 1 σ  
1 σ  
19.6 × 10−3  
m/sec2  
26.5 × 10−6  
43.1 × 10−6  
m/sec2  
m/sec2  
Velocity Random Walk  
X-Axis and Y-Axis  
Z-Axis  
Error over Temperature  
Output Noise  
X-Axis and Y-Axis  
Z-Axis  
1 σ  
0.009  
0.012  
9.8 × 10−3  
m/sec/√hr  
m/sec/√hr  
m/sec2  
−40°C ≤ TC ≤ +85°C, 1 σ  
No filtering  
4.8 × 10−3  
6.07 × 10−3  
m/sec2 rms  
m/sec2 rms  
Noise Density  
X-Axis and Y-Axis  
Z-Axis  
3 dB Bandwidth  
Sensor Resonant Frequency  
f = 10 Hz to 40 Hz, no filtering  
167 × 10−6  
243 × 10−6  
750  
2.4  
2.2  
m/sec2/√Hz rms  
m/sec2/√Hz rms  
Hz  
kHz  
kHz  
X-axis and y-axis  
Z-axis  
TEMPERATURE SENSOR  
Scale Factor  
Output = 0x0000 at 0°C ( 5°C)  
0.1  
°C/LSB  
Rev. B | Page 4 of 41  
Data Sheet  
ADIS16505  
Parameter  
LOGIC INPUTS5  
Input Voltage  
High, VIH  
Test Conditions/Comments  
Min  
Typ  
Max Unit  
2.0  
1
V
Low, VIL  
0.8  
V
RST Pulse Width  
Input Current  
Logic 1, IIH  
Logic 0, IIL  
All Pins Except RST  
μs  
VIH = 3.3 V  
VIL = 0 V  
10  
10  
μA  
μA  
mA  
pF  
RST Pin  
0.33  
10  
Input Capacitance, CIN  
DIGITAL OUTPUTS  
Output Voltage  
High, VOH  
Low, VOL  
Source current (ISOURCE) = 0.5 mA  
Sink current (ISINK) = 2.0 mA  
Endurance6  
2.4  
V
V
0.4  
FLASH MEMORY  
Data Retention7  
10,000  
20  
Cycles  
Years  
TJ = 85°C  
FUNCTIONAL TIMES8  
Power-On Start-Up Time  
Reset Recovery Time9  
Factory Calibration Restore  
Flash Memory Backup  
Flash Memory Test Time  
Self Test Time10  
Time until data is available  
310  
255  
136  
70  
30  
24  
ms  
ms  
ms  
ms  
ms  
ms  
SPS  
%
GLOB_CMD, Bit 7 = 1 (see Table 112)  
GLOB_CMD, Bit 1 = 1 (see Table 112)  
GLOB_CMD, Bit 3 = 1 (see Table 112)  
GLOB_CMD, Bit 4 = 1 (see Table 112)  
GLOB_CMD, Bit 2 = 1 (see Table 112)  
CONVERSION RATE  
Initial Clock Accuracy  
Sync Input Clock  
2000  
3
1.9  
3.0  
2.1  
3.6  
55  
kHz  
V
mA  
POWER SUPPLY, VDD  
Power Supply Current11  
Operating voltage range  
Normal mode, VDD = 3.3 V  
44  
1 Cross-axis sensitivity is the sine of this number.  
2 This measurement is based on the deviation from a best fit linear model.  
3 Bias repeatability provides an estimate for long-term drift in the bias, as observed during 500 hours of high temperature operating life (HTOL) at 105°C.  
4 All specifications associated with the accelerometers relate to the full-scale range of 8 g, unless otherwise noted.  
5 The digital input/output signals use a 3.3 V system.  
6 Endurance is qualified as per JEDEC Standard 22, Method A117, measured at −40°C, +25°C, +85°C, and +125°C.  
7 The data retention specification assumes a junction temperature (TJ) of 85°C per JEDEC Standard 22, Method A117. Data retention lifetime decreases with TJ.  
8 These times do not include thermal settling and internal filter response times, which may affect overall accuracy.  
9
RST  
The  
line must be in a low state for at least 10 ꢀs to ensure a proper reset initiation and recovery.  
10 The self test time can extend when using external clock rates lower than 2000 Hz.  
11 Power supply current transients can reach 100 mA during initial startup or reset recovery.  
Rev. B | Page 5 of 41  
ADIS16505  
Data Sheet  
TIMING SPECIFICATIONS  
TA = 25°C, VDD = 3.3 V, unless otherwise noted.  
Table 2.  
Normal Mode  
Burst Read Mode  
Parameter  
fSCLK  
tSTALL  
tREADRATE  
tCS  
Description  
Min  
0.1  
16  
24  
200  
Typ  
Max  
Min  
Typ  
Max  
Unit  
MHz  
μs  
μs  
ns  
Serial clock  
Stall period between data  
Read rate  
2.1  
0.1  
N/A1  
1.1  
Chip select to SCLK edge  
200  
tDAV  
tDSU  
tDHD  
tSCLKR, tSCLKF  
tDR, tDF  
tSFS  
DOUT valid after SCLK edge  
DIN setup time before SCLK rising edge  
DIN hold time after SCLK rising edge  
SCLK rise/fall times  
DOUT rise/fall times  
CS high after SCLK edge  
25  
25  
ns  
ns  
ns  
ns  
ns  
ns  
μs  
25  
50  
25  
50  
5
5
12.5  
12.5  
5
5
12.5  
12.5  
0
5
0
5
t1  
Input sync positive pulse width; direct sync mode,  
MSC_CTRL[3:2] = 01 (binary, see Table 106)  
tSTDR  
Input sync to data ready valid transition, no SPI traffic,  
direct sync mode, MSC_CTRL[3:2] = 01 (binary, see Table 106)  
Input sync to data ready valid transition, full SPI traffic2,  
direct sync mode, MSC_CTRL[3:2] = 01 (binary, see Table 106)  
Data invalid time  
Input sync period  
305  
405  
23  
305  
405  
23  
μs  
μs  
tNV  
t2  
μs  
μs  
500  
500  
1 N/A means not applicable.  
2 Full SPI traffic is defined as a transfer of 64 16-bit registers using an SCLK frequency of 2 MHz. Reading the sensor values from the previous data sample proportionally  
increases the tSTDR on the current cycle.  
Timing Diagrams  
CS  
tSCLKR  
tSCLKF  
tCS  
tSFS  
1
2
3
4
5
6
15  
16  
SCLK  
DOUT  
tDAV  
tDR  
MSB  
R/W  
DB14  
tDSU  
DB13  
A5  
DB12  
DB11  
A3  
DB10  
tDF  
DB2  
DB1  
LSB  
LSB  
tDHD  
DIN  
A6  
A4  
A2  
D2  
D1  
Figure 2. SPI Timing and Sequence Diagram  
tREADRATE  
tSTALL  
CS  
SCLK  
Figure 3. Stall Time and Data Rate Timing Diagram  
t2  
tSTDR  
t1  
SYNC  
DR  
tNV  
Figure 4. Input Clock Timing Diagram, Direct Sync Mode, Register MSC_CTRL[3:2] = 01 (Binary)  
Rev. B | Page 6 of 41  
 
 
 
Data Sheet  
ADIS16505  
THERMAL RESISTANCE  
ABSOLUTE MAXIMUM RATINGS  
Thermal performance is directly linked to printed circuit board  
(PCB) design and operating environment. Careful attention to  
PCB thermal design is required.  
Table 3.  
Parameter  
Rating  
Mechanical Shock Survivability  
Any Axis, Unpowered, 0.5 ms ,  
½ Sine.  
The ADIS16505 is a multichip module that includes many  
active components. The values in Table 4 identify the thermal  
response of the hottest component inside of the ADIS16505,  
with respect to the overall power dissipation of the module.  
This approach enables a simple method for predicting the  
temperature of the hottest junction, based on either ambient  
or case temperature.  
14,700 m/sec2  
VDD to GND  
−0.3 V to +3.6 V  
−0.3 V to VDD + 0.2 V  
−0.3 V to VDD + 0.2 V  
Digital Input Voltage to GND  
Digital Output Voltage to GND  
Temperature Range  
Calibration  
Operating  
Storage1  
−40°C to +85°C  
−40°C to +105°C  
−65°C to +150°C  
2 bar  
For example, when the ambient temperature is 70°C, the hottest  
junction temperature (TJ) inside of the ADIS16505 is 76.7°C.  
Barometric Pressure  
TJ = θJA × VDD × IDD + 70°C  
TJ = 107.1°C/W × 3.3 V × 0.044 A + 70°C  
TJ = 85.6°C  
1 Extended exposure to temperatures that are lower than −40°C or higher  
than +105°C can adversely affect the accuracy of the factory calibration.  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Table 4. Package Characteristics  
1
2
Package Type θJA  
ML-100-13  
107.1°C/W  
θJC  
Device Weight  
74.7°C/W  
<1.75 g  
1 θJA is the natural convection junction to ambient thermal resistance  
measured in a one cubic foot sealed enclosure.  
2 θJC is the junction to case thermal resistance.  
3 Thermal impedance values come from direct observation of the hottest  
temperature inside of the ADIS16505 when it is attached to an FR4-08 PCB  
that has two metal layers and has a thickness of 0.063 inches.  
ESD CAUTION  
Rev. B | Page 7 of 41  
 
 
 
 
 
ADIS16505  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
ADIS16505  
10  
9
8
7
6
5
4
3
2
1
A
B
C
D
E
F
G
H
J
K1  
A10  
K
A1  
Figure 5. Pin Assignments, Bottom View  
Figure 6. Pin Assignments, Package Level View  
Table 5. Pin Function Descriptions  
Pin No.  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
A10  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
B9  
B10  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
Mnemonic  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
NC  
NC  
NC  
NC  
GND  
GND  
GND  
GND  
NC  
Type  
Description  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Supply  
Supply  
Supply  
Supply  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Supply  
Not applicable  
Not applicable  
Not applicable  
Supply  
Power Ground  
Power Ground  
Power Ground  
Power Ground  
Power Ground  
Power Ground  
Power Ground  
Power Ground  
No Connection  
No Connection  
No Connection  
No Connection  
Power Ground  
Power Ground  
Power Ground  
Power Ground  
No Connection  
No Connection  
No Connection  
No Connection  
No Connection  
Power Ground  
Do Not Connect  
No Connection  
No Connection  
Power Ground  
Power Supply  
No Connection  
No Connection  
No Connection  
NC  
NC  
NC  
NC  
GND  
DNC  
NC  
NC  
GND  
VDD  
NC  
NC  
NC  
Supply  
Not applicable  
Not applicable  
Not applicable  
C9  
C10  
Rev. B | Page 8 of 41  
 
 
Data Sheet  
ADIS16505  
Pin No.  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
D10  
E1  
E2  
E3  
E4  
E5  
E6  
E7  
E8  
E9  
Mnemonic  
NC  
NC  
GND  
NC  
NC  
VDD  
NC  
NC  
NC  
NC  
Type  
Description  
Not applicable  
Not applicable  
Supply  
Not applicable  
Not applicable  
Supply  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Supply  
No Connection  
No Connection  
Power Ground  
No Connection  
No Connection  
Power Supply  
No Connection  
No Connection  
No Connection  
No Connection  
No Connection  
Power Ground  
Power Supply  
No Connection  
No Connection  
Power Ground  
Power Ground  
No Connection  
No Connection  
No Connection  
Power Ground  
No Connection  
Reset  
NC  
GND  
VDD  
NC  
Supply  
Not applicable  
Not applicable  
Supply  
NC  
GND  
GND  
NC  
NC  
NC  
GND  
NC  
RST  
NC  
GND  
GND  
NC  
GND  
NC  
Supply  
Not applicable  
Not applicable  
Not applicable  
Supply  
Not applicable  
Input  
E10  
F1  
F2  
F3  
F4  
F5  
F6  
F7  
F8  
F9  
Not applicable  
Supply  
Supply  
Not applicable  
Supply  
Not applicable  
Not applicable  
Supply  
No Connection  
Power Ground  
Power Ground  
No Connection  
Power Ground  
No Connection  
No Connection  
Power Supply  
Power Ground  
SPI, Chip Select  
No Connection  
No Connection  
SPI, Data Input  
Power Supply  
No Connection  
No Connection  
No Connection  
Power Supply  
No Connection  
SPI, Data Output  
No Connection  
No Connection  
SPI, Serial Clock  
No Connection  
Power Ground  
No Connection  
No Connection  
F10  
G1  
G2  
G3  
G4  
G5  
G6  
G7  
G8  
G9  
G10  
H1  
H2  
H3  
H4  
H5  
H6  
H7  
H8  
H9  
H10  
NC  
VDD  
GND  
CS  
Supply  
Input  
NC  
NC  
DIN  
GND  
NC  
NC  
NC  
VDD  
NC  
DOUT  
NC  
NC  
SCLK  
NC  
GND  
NC  
NC  
Not applicable  
Not applicable  
Input  
Supply  
Not applicable  
Not applicable  
Not applicable  
Supply  
Not applicable  
Output  
Not applicable  
Not applicable  
Input  
Not applicable  
Supply  
Not applicable  
Not applicable  
Rev. B | Page 9 of 41  
ADIS16505  
Data Sheet  
Pin No.  
J1  
J2  
J3  
J4  
Mnemonic  
NC  
Type  
Description  
Not applicable  
Supply  
Input  
Supply  
Supply  
No Connection  
Power Ground  
Sync (External Clock)  
Power Supply  
Power Supply  
Data Ready  
GND  
SYNC  
VDD  
VDD  
DR  
J5  
J6  
Output  
J7  
J8  
J9  
GND  
NC  
NC  
NC  
GND  
NC  
GND  
NC  
NC  
VDD  
NC  
GND  
NC  
Supply  
Power Ground  
No Connection  
No Connection  
No Connection  
Power Ground  
No Connection  
Power Ground  
No Connection  
No Connection  
Power Supply  
No Connection  
Power Ground  
No Connection  
No Connection  
Not applicable  
Not applicable  
Not applicable  
Supply  
Not applicable  
Supply  
Not applicable  
Not applicable  
Supply  
Not applicable  
Supply  
J10  
K1  
K2  
K3  
K4  
K5  
K6  
K7  
K8  
K9  
K10  
Not applicable  
Not applicable  
NC  
Rev. B | Page 10 of 41  
 
Data Sheet  
ADIS16505  
TYPICAL PERFORMANCE CHARACTERISTICS  
GYROSCOPES  
100  
0.5  
0.4  
MEAN  
MEAN + 1σ  
X AXIS  
Y AXIS  
Z AXIS  
MEAN + SIGMA  
MEAN  
MEAN – SIGMA  
0.3  
0.2  
0.1  
10  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
1
–10  
1
10  
100  
1k  
10k  
100k  
–60  
–40  
–20  
0
20  
40  
60  
80  
100  
TEMPERATURE (°C)  
INTEGRATION PERIOD, TAU (Seconds)  
Figure 10. Gyroscope Bias Error vs. Temperature, ADIS16505-1,  
All Axes  
Figure 7. Gyroscope Allan Deviation, TC = 25°C, ADIS16505-1,  
Plot Taken After 10 Hours of Settling Time  
1.0  
100  
MEAN  
MEAN + 1σ  
MEAN + SIGMA  
X AXIS  
Y AXIS  
Z AXIS  
MEAN  
0.8  
MEAN – SIGMA  
0.6  
0.4  
0.2  
0
10  
–0.2  
1
–0.4  
–0.6  
–0.8  
–1.0  
–10  
–60  
–40  
–20  
0
20  
40  
60  
80  
100  
–10  
1
10  
100  
1k  
10k  
100k  
TEMPERATURE (°C)  
INTEGRATION PERIOD, TAU (Seconds)  
Figure 11. Gyroscope Bias Error vs. Temperature, ADIS16505-2,  
All Axes  
Figure 8. Gyroscope Allan Deviation, TC = 25°C, ADIS16505-2,  
Plot Taken After 10 Hours of Settling Time  
0.5  
100  
MEAN + SIGMA  
MEAN  
MEAN + 1σ  
X AXIS  
Y AXIS  
Z AXIS  
MEAN  
0.4  
MEAN – SIGMA  
0.3  
0.2  
0.1  
0
10  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
1
–10  
–60  
–40  
–20  
0
20  
40  
60  
80  
100  
1
10  
100  
1k  
10k  
100k  
TEMPERATURE (°C)  
INTEGRATION PERIOD, TAU (Seconds)  
Figure 12. Gyroscope Bias Error vs. Temperature, ADIS16505-3,  
All Axes  
Figure 9. Gyroscope Allan Deviation, TC = 25°C, ADIS16505-3,  
Plot Taken After 10 Hours of Settling Time  
Rev. B | Page 11 of 41  
 
 
ADIS16505  
Data Sheet  
0.5  
0.4  
0.20  
0.15  
0.10  
0.05  
0
MEAN + SIGMA  
MEAN  
MEAN – SIGMA  
MEAN + SIGMA  
MEAN  
MEAN – SIGMA  
0.3  
0.2  
0.1  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.05  
–0.10  
–0.15  
–0.20  
–60  
–40  
–20  
0
20  
40  
60  
80  
100  
0
5
10  
15  
20  
25  
30  
35  
TEMPERATURE (°C)  
POWER-ON TIME (Minutes)  
Figure 13. Gyroscope Sensitivity Error vs. Temperature, ADIS16505-1,  
All Axes  
Figure 16. Gyroscope Bias Error vs. Power-On Time, TC = −40°C,  
All Axes  
1.0  
0.20  
MEAN + SIGMA  
MEAN  
MEAN – SIGMA  
MEAN + SIGMA  
MEAN  
0.8  
0.6  
0.15  
0.10  
0.05  
0
MEAN – SIGMA  
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.05  
–0.10  
–0.15  
–0.20  
–60  
–40  
–20  
0
20  
40  
60  
80  
100  
0
5
10  
15  
20  
25  
30  
35  
TEMPERATURE (°C)  
POWER-ON TIME (Minutes)  
Figure 14. Gyroscope Sensitivity Error vs. Temperature, ADIS16505-2,  
All Axes  
Figure 17. Gyroscope Bias Error vs. Power-On Time, TC = 25°C, All Axes  
0.20  
0.5  
MEAN + SIGMA  
MEAN + SIGMA  
MEAN  
MEAN – SIGMA  
MEAN  
0.4  
MEAN – SIGMA  
0.15  
0.3  
0.2  
0.10  
0.05  
0.1  
0
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.05  
–0.10  
–0.15  
–0.20  
–60  
–40  
–20  
0
20  
40  
60  
80  
100  
0
5
10  
15  
20  
25  
30  
35  
TEMPERATURE (°C)  
POWER-ON TIME (Minutes)  
Figure 15. Gyroscope Sensitivity Error vs. Temperature, ADIS16505-3,  
All Axes  
Figure 18. Gyroscope Bias Error vs. Power-On Time, TC = 85°C,  
All Axes  
Rev. B | Page 12 of 41  
Data Sheet  
ADIS16505  
0.5  
0.4  
0.5  
0.4  
MEAN + SIGMA  
MEAN  
MEAN – SIGMA  
MEAN + SIGMA  
MEAN  
MEAN – SIGMA  
0.3  
0.3  
0.2  
0.2  
0.1  
0.1  
0
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–60  
–40  
–20  
0
20  
40  
60  
80  
100  
–60  
–40  
–20  
0
20  
40  
60  
80  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 19. Axis to Axis Gyroscope Misalignment Error vs. Temperature,  
All Axes, ADIS16505-1  
Figure 21. Axis to Axis Gyroscope Misalignment Error vs. Temperature,  
All Axes, ADIS16505-3  
0.5  
10  
MEAN + SIGMA  
0.4  
0.3  
MEAN  
MEAN – SIGMA  
0
–10  
–20  
–30  
0.2  
0.1  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
BARTLETT OFF  
N = 1  
N = 2  
N = 3  
N = 4  
N = 5  
N = 6  
–40  
–50  
–60  
–3dB  
–60  
–40  
–20  
0
20  
40  
60  
80  
100  
1
10  
100  
FREQUENCY (Hz)  
1k  
TEMPERATURE (°C)  
Figure 20. Axis to Axis Gyroscope Misalignment Error vs. Temperature,  
All Axes, ADIS16505-2  
Figure 22. Normalized Gyroscope Noise Density, All Axes, TC = 25°C  
Rev. B | Page 13 of 41  
ADIS16505  
Data Sheet  
ACCELEROMETERS  
1k  
0.20  
0.15  
0.10  
0.05  
0
MEAN  
MEAN + 1σ  
MEAN + SIGMA  
MEAN  
MEAN – SIGMA  
X AXIS  
Y AXIS  
Z AXIS  
100  
–0.05  
–0.10  
–0.15  
–0.20  
10  
0.1  
1
10  
100  
1k  
10k  
100k  
–60  
–40  
–20  
0
20  
40  
60  
80  
100  
INTEGRATION PERIOD (Seconds)  
TEMPERATURE (°C)  
Figure 23. Accelerometer Allan Deviation, TC = 25°C  
Figure 26. Accelerometer Sensitivity Error vs. Temperature,  
Hot to Cold, All Axes  
40  
MEAN + SIGMA  
MEAN  
MEAN – SIGMA  
0.20  
30  
20  
MEAN + SIGMA  
MEAN  
MEAN – SIGMA  
0.15  
0.10  
0.05  
0
10  
0
–10  
–20  
–30  
–40  
–0.05  
–0.10  
–0.15  
–0.20  
–60  
–40  
–20  
0
20  
40  
60  
80  
100  
TEMPERATURE (°C)  
–60  
–40  
–20  
0
20  
40  
60  
80  
100  
Figure 24. Accelerometer Bias Error vs. Temperature,  
All Axes  
TEMPERATURE (°C)  
Figure 27. Accelerometer Axis to Axis Misalignment Error vs. Temperature  
0.20  
0.15  
0.10  
0.05  
0
10  
MEAN + SIGMA  
MEAN  
MEAN – SIGMA  
0
–10  
–20  
–30  
BARTLETT OFF  
N = 1  
N = 2  
N = 3  
N = 4  
N = 5  
N = 6  
–0.05  
–0.10  
–0.15  
–0.20  
–40  
–50  
–60  
–3dB  
–60  
–40  
–20  
0
20  
40  
60  
80  
100  
1
10  
100  
FREQUENCY (Hz)  
1k  
TEMPERATURE (°C)  
Figure 25. Accelerometer Sensitivity Error vs. Temperature,  
Cold to Hot, All Axes  
Figure 28. Accelerometer Normalized Noise Density  
Rev. B | Page 14 of 41  
 
Data Sheet  
ADIS16505  
THEORY OF OPERATION  
Scaled Sync Mode  
INTRODUCTION  
Setting MSC_CTRL register, Bits[3:2] = 10 selects scaled sync  
mode, which supports use of an external sync clock between  
1 Hz and 128 Hz that can come from video systems or global  
positioning systems (GPSs). When operating in scaled sync  
mode, the frequency of the sample clock is equal to the product  
of the external clock scale factor, KECSF (from the UP_SCALE  
register, see Table 107 and Table 108), and the frequency of  
the clock signal on the SYNC pin. As in input sync mode, the  
ADIS16505 performs best when fSM is between 1900 Hz and  
2100 Hz.  
Figure 30 provides the basic signal chain for the accelerometers  
and gyroscopes of the ADIS16505. When using the factory  
default configuration, the ADIS16505 initializes itself at power-  
up and automatically starts a continuous process of sampling,  
processing, and loading calibrated sensor data into its output  
registers at a rate of 2000 SPS.  
CLOCK CONTROL  
The ADIS16505 provides four modes of operation with respect  
to the source of the sampling and processing clock (see the  
frequency sampling clock (fSM) in Figure 30): internal, direct  
input sync, scaled sync, and output sync. The MSC_CTRL  
register, Bits[3:2] (see Table 105 and Table 106) provide user  
selection of these modes.  
Changes to the UP_SCALE register value resets the clock  
multiplication phase-locked loop (PLL) and restarts the locking  
process. The locking process starts with an input reference  
clock edge resetting the feedback clock edge, and lock is declared  
when time differences between these two edges is ≤100 ꢀs.  
Note that changes to the MSC_CTRL[3:2] and UP_SCALE  
registers are only updated for readback after the internal clock  
configuration is complete. Therefore, the user must wait until  
the DR pin toggles before attempting to verify the desired  
settings by reading the values of these registers. Changes to  
MSC_CTRL[9:6] may take up to 200 μs after writing to indicate  
to the new value during readback. The external clock must also  
be present for two external clock cycles if either direct input  
sync mode or scaled sync mode is programmed.  
For example, when using a 1 Hz input signal, set UP_SCALE =  
0x07D0 (KECSF = 2000 (decimal)) to establish a sample rate of  
2000 SPS for the inertial sensors and their signal processing.  
Use the following sequence on the DIN pin to configure  
UP_SCALE for this scenario: 0xE2D0, then 0xE307.  
Output Sync Mode  
When Register MSC_CTRL, Bits[3:2] = 11, the ADIS16505  
operates in output sync mode, which is the same as internal  
clock mode except that the SYNC pin pulses when the internal  
processor collects data from the inertial sensors. Figure 29  
provides an example of this signal.  
Internal Clock Mode  
Setting MSC_CTRL register, Bits[3:2] = 00 selects the internal  
clock mode and is the default. In this mode, the ADIS16505  
uses an internally generated clock that has a nominal frequency  
of 2000 Hz to drive sampling and data processing for each  
sensor and associated signal chain.  
GYROSCOPE AND  
ACCELEROMETER  
DATA ACQUISITION  
ACCELEROMETER  
DATA ACQUISITION  
Direct Input Sync Mode  
SYNC  
Setting MSC_CTRL register, Bits[3:2] = 01 selects direct input  
sync mode and allows fSM to come directly from an external  
clock to control the sensor sampling using the SYNC pin as an  
input. When operating in input sync mode, the ADIS16505  
performs best when the external clock frequency (fSYNC) is  
between 1900 Hz and 2100 Hz.  
250µs  
500µs  
Figure 29. Sync Output Signal, Register MSC_CTRL, Bits[3:2] = 11  
fODR  
BARTLETT  
WINDOW  
FILTER  
OUTPUT  
ACCELEROMETER/  
GYROSCOPE  
DIGITAL  
FILTER  
DECIMATION  
FILTER  
CALIBRATION  
DATA  
REGISTERS  
SERIAL  
PERIPHERAL  
INTERFACE  
SYNC PIN  
CLOCK  
CONTROL  
fSM  
CONTROL  
REGISTERS  
(fSYNC)  
Figure 30. Sensor Signal Chain  
Rev. B | Page 15 of 41  
 
 
 
 
 
ADIS16505  
Data Sheet  
The factory calibration of the accelerometer applies the following  
correction formulas to the data of each accelerometer:  
BARTLETT WINDOW FILTER  
The Bartlett window filter is a finite impulse response (FIR) filter  
(see Figure 31) that contains two averaging filter stages in a  
cascade configuration. The FILT_CTRL register (see Table 102)  
provides the configuration controls for this filter.  
bX  
a
m11 m12  
m
a
XC   
13   
X   
aYC m21 m22 m23  
aY bY  
aZC  
m31 m32 m33  
aZ  
bZ  
2
XC   
FROM  
USER  
CALIBRATION  
N
N
TO AVERAGING  
DECIMATING  
FILTER  
1
N
1
N
0
p12  
p
Σ ω(n)  
Σ ω(n)  
13   
n = 1  
n = 1  
p21  
0
p23 Y2C  
2
Figure 31. Bartlett Window FIR Filter Signal Path  
p31 p32  
0
ZC  
CALIBRATION  
where:  
The inertial sensor calibration function for the gyroscopes and the  
accelerometers has two components: factory calibration and  
user calibration (see Figure 32).  
aXC, aYC, and aZC are the accelerometer outputs (post calibration).  
m11, m12, m13, m21, m22, m23, m31, m32, and m33 provide scale and  
alignment correction.  
aX, aY, and aZ are the accelerometer outputs (precalibration).  
bX, bY, and bZ provide bias correction.  
FROM  
TO  
BARTLETT  
WINDOW  
FIR FILTER  
FACTORY  
USER  
AVERAGING  
DECIMATING  
FILTER  
CALIBRATION  
CALIBRATION  
p12, p13, p21, p23, p31 and p32 provide a point of percussion  
alignment correction (see Figure 59).  
Figure 32. Inertial Sensor Calibration Processing  
ω2XC, ω2YC, and ω2ZC are the square of the gyroscope outputs  
(post calibration).  
The factory calibration of the gyroscope applies the following  
correction formulas to the data of each gyroscope:  
All of the correction factors in this relationship come from  
direct observation of the response of each accelerometer at  
multiple temperatures, over the calibration temperature range  
(−40°C ≤ TC ≤ +85°C). These correction factors are stored  
in the flash memory bank but are not available for observation  
or configuration. MSC_CTRL, Bit 6 (see Table 106) provides  
the only user configuration option for the factory calibration of  
the accelerometers: an on/off control for the point of percussion,  
alignment function. See Figure 57 for more details on the user  
calibration options available for the accelerometers.  
bX  
ω
m11 m12  
m
ω
XC   
13   
X   
ωYC m21 m22 m23  
ωY bY  
ωZC  
m31 m32 m33  
ωZ  
bZ  
l
l12  
l
a
11  
13   
XC   
l21 l22 l23 aYC  
l31 l32 l33  
aZC  
where:  
ωXC, ωYC, and ωZC are the gyroscope outputs (post calibration).  
m11, m12, m13, m21, m22, m23, m31, m32, and m33 provide scale and  
alignment correction.  
ωX, ωY, and ωZ are the gyroscope outputs (precalibration).  
bX, bY, and bZ provide bias correction.  
DECIMATION FILTER  
The second digital filter averages multiple samples together to  
produce each register update. The number of samples in the  
average is equal to the reduction in the update rate (fODR) for the  
output data registers (see Figure 33). The DEC_RATE register  
(see Table 110) provides the configuration controls for this filter.  
l11, l12, l13, l21, l22, l23, l31, l32, and l33 provide linear acceleration  
correction  
aXC, aYC, and aZC are the accelerometer outputs (post calibration).  
FROM  
USER  
N
1
N
TO OUTPUT  
REGISTERS  
Σ ω(n)  
All of the correction factors in this relationship come from  
direct observation of the response of each gyroscope at multiple  
temperatures over the calibration temperature range (−40°C ≤  
TC ≤ +85°C). These correction factors are stored in the flash  
memory bank, but they are not available for observation or  
configuration.  
n = 1  
CALIBRATION  
÷N  
Figure 33. Decimating Filter Diagram  
REGISTER STRUCTURE  
All communication between the ADIS16505 and an external  
processor involves either reading the contents of an output  
register or writing configuration/command information to a  
control register. The output data registers include the latest  
sensor data, error flags, and identification information. The  
control registers include sample rate, filtering, calibration, and  
diagnostic options. Each user accessible register has two bytes  
(upper and lower), each of which has its own unique address.  
See Table 9 for a detailed list of all user registers, along with  
their addresses.  
Register MSC_CTRL, Bit 7 (see Table 106) provides the only  
user-configurable option for the factory calibration of the  
gyroscopes: an on/off control for the linear acceleration  
compensation. See Figure 56 for more details on the user  
calibration options available for the gyroscopes.  
Rev. B | Page 16 of 41  
 
 
 
 
 
 
 
Data Sheet  
ADIS16505  
SPI  
DATA READY (DR)  
The SPI provides access to the user registers (see Table 9).  
Figure 34 shows the most common connections between the  
ADIS16505 and a SPI master device, which is often an  
embedded processor that has a SPI-compatible interface. In this  
example, the SPI master uses an interrupt service routine to  
collect data every time the data ready (DR) signal pulses.  
The factory default configuration provides users with a DR  
signal on the DR pin (see Table 5), which pulses when the output  
data registers are updating. Connect the DR pin to an input pin  
on the embedded processor and configure this pin to trigger data  
collection on the second edge of the pulse on the DR pin. The  
MSC_CTRL register, Bit 0 (see Table 106), controls the polarity  
of this signal. In Figure 35 shows a DR signal with  
Additional information on the SPI can be found in the  
Applications Information section.  
Register MSC_CTRL, Bit 0 = 1, meaning that data collection  
must start on the rising edges of the DR pulses.  
INPUT/OUTPUT LINES ARE COMPATIBLE WITH  
3.3V LOGIC LEVELS  
+3.3V  
VDD  
DR  
INACTIVE  
ACTIVE  
SYSTEM  
Figure 35. Data Ready When Register MSC_CTRL, Bit 0 = 1 (Default)  
ADIS16505  
PROCESSOR  
SS  
SCLK  
MOSI  
MISO  
IRQ  
CS  
SPI MASTER  
During the start-up and reset recovery processes, the DR signal  
can exhibit some transient behavior before data production  
begins. Figure 36 shows an example of the DR behavior during  
startup, and Figure 37 and Figure 38 provide examples of the  
DR behavior during recovery from reset commands.  
SCLK  
DIN  
DOUT  
DR  
TIME THAT VDD > 3V  
Figure 34. Electrical Connection Diagram  
VDD  
Table 6 provides an example list of pin names for the SPI port  
in an embedded processor.  
PULSING INDICATES  
DATA PRODUCTION  
Table 6. Generic SPI Master Pin Names and Functions  
DR  
Mnemonic  
Function  
SS  
Slave select  
START-UP TIME  
SCLK  
MOSI  
MISO  
IRQ  
Serial clock  
Figure 36. Data Ready Response During Startup  
Master output, slave input  
Master input, slave output  
Interrupt request  
SOFTWARE RESET COMMAND  
GLOB_CMD, BIT 7 = 1  
DR PULSING  
RESUMES  
Embedded processors typically configure their serial ports for  
communicating with SPI slave devices such as the ADIS16505 by  
using control registers on the processor itself. Table 7 lists the  
SPI protocol settings for the ADIS16505.  
DR  
RESET RECOVERY TIME  
Figure 37. Data Ready Response During Reset Recovery  
(Register GLOB_CMD, Bit 7 = 1)  
Table 7. Generic Master Processor SPI Settings  
Processor Setting Description  
RST PIN  
RELEASED  
Master  
ADIS16505 operates as slave  
SCLK ≤ 2 MHz1  
SPI Mode 3  
MSB First Mode  
16-Bit Mode  
Maximum serial clock rate  
CPOL = 1 (polarity), CPHA = 1 (phase)  
Bit sequence, see Figure 40 for coding  
Shift register and data length  
RST  
DR PULSING  
RESUMES  
DR  
1 A burst mode read requires this value to be ≤1 MHz (see Table 2 for more  
information).  
RESET RECOVERY TIME  
RST  
Figure 38. Data Ready Response During Reset (  
= 0) Recovery  
Rev. B | Page 17 of 41  
 
 
 
 
 
 
 
 
 
ADIS16505  
Data Sheet  
requests on DIN while also transmitting data out on DOUT  
within the same 16-bit SPI cycle.  
READING SENSOR DATA  
Reading a single register requires two 16-bit cycles on the SPI:  
one to request the contents of a register and another to receive  
those contents. The 16-bit command code (see Figure 40) for a  
NEXT  
ADDRESS  
DIN  
0x0C00  
0x0E00  
DOUT  
Z_GYRO_LOW  
Z_GYRO_OUT  
R
read request on the SPI has three parts: the read bit ( /W = 0),  
either address of the register, [A6:A0], and eight don’t care bits,  
[DC7:DC0]. Figure 39 shows an example that includes two register  
reads in succession. This example starts with DIN = 0x0C00 to  
request the contents of the Z_GYRO_LOW register, and follows  
with 0x0E00 to request the contents of the Z_GYRO_OUT  
register. The sequence in Figure 39 also shows full duplex mode  
of operation, which means that the ADIS16505 can receive  
Figure 39. SPI Read Example  
Figure 41 provides an example of the four SPI signals when  
reading the PROD_ID register (see Table 120) in a repeating  
pattern. This pattern can be helpful when troubleshooting the  
SPI interface setup and communications because the signals are  
the same for each 16-bit sequence, except during the first cycle.  
CS  
SCLK  
DIN  
R/W A6  
A5  
R/W A6  
A5  
A4  
A3  
A2  
A1  
D9  
A0 DC7 DC6 DC5 DC4 DC3 DC2 DC1 DC0  
D8 D7 D6 D5 D4 D3 D2 D1 D0  
DOUT  
D15 D14 D13 D12 D11 D10  
D15 D14 D13  
NOTES  
1. DOUT BITS ARE PRODUCED ONLY WHEN THE PREVIOUS 16-BIT DIN SEQUENCE STARTS WITH R/W = 0.  
2. WHEN CS IS HIGH, DOUT IS INA THREE-STATE, HIGH IMPEDANCE MODE, WHICH ALLOWS MULTIFUNCTIONAL USE OF THE LINE  
FOR OTHER DEVICES.  
Figure 40. SPI Communication Bit Sequence  
CS  
SCLK  
DIN  
DIN = 0x7200 = 0111 0010 0000 0000  
HIGH-Z  
HIGH-Z  
DOUT  
DOUT = 0100 0000 0111 1001 = 0x4079 = 16505 (PROD_ID)  
Figure 41. SPI Signal Pattern, Repeating Read of the PROD_ID Register  
Rev. B | Page 18 of 41  
 
 
 
 
Data Sheet  
ADIS16505  
In these cases, use the following formula to verify the 16-bit  
checksum value, treating each byte in the formula as an  
independent, unsigned, 8-bit number:  
BURST READ FUNCTION  
The burst read function provides a way to read a batch of output  
data registers, using a continuous stream of bits, at a rate of up  
to 1 MHz (SCLK). This method does not require a stall time  
between each 16-bit segment (see Figure 3). As shown in Figure 42,  
start this mode by setting DIN = 0x6800, and then read each of  
the registers in the sequence out of DOUT while keeping  
low for the entire data transfer sequence.  
Checksum = DIAG_STAT, Bits[15:8] + DIAG_STAT, Bits[7:0] +  
X_GYRO_OUT, Bits[15:8] + X_GYRO_OUT, Bits[7:0] +  
Y_GYRO_OUT, Bits[15:8] + Y_GYRO_OUT, Bits[7:0] +  
Z_GYRO_OUT, Bits[15:8] + Z_GYRO_OUT, Bits[7:0] +  
X_ACCL_OUT, Bits[15:8] + X_ACCL_OUT, Bits[7:0] +  
Y_ACCL_OUT, Bits[15:8] + Y_ACCL_OUT, Bits[7:0] +  
Z_ACCL_OUT, Bits[15:8] + Z_ACCL_OUT, Bits[7:0] +  
TEMP_OUT, Bits[15:8] + TEMP_OUT, Bits[7:0] +  
DATA_CNTR, Bits[15:8] + DATA_CNTR, Bits[7:0]  
CS  
The three options for burst mode include: scaled sync mode on  
or off, BURST32 enabled and disabled, and BURST_SEL = 0 or  
BURSET_SEL = 1. This results in eight possible burst data formats.  
Scaled Sync Mode Enabled vs. Disabled  
16-Bit Burst Mode with BURST_SEL = 1  
The only differences in the burst data format between these two  
modes are the final two bytes in a burst. In scaled sync mode,  
the final two bytes are the values of the TIME_STAMP registers.  
When scaled sync mode is disabled, the final two bytes are the  
values in the DATA_CNTR registers. As always, Bits[15:8]  
appear before Bits[7:0] in both modes.  
In 16-bit burst mode with BURST_SEL = 1, a burst contains  
calibrated delta angle and delta velocity data in 16-bit format.  
This mode is particularly appropriate for cases where there is  
no decimation nor filtering. Not only is the sample rate high  
(~2 kSPS), the lower 16 bits are not used.  
1
2
3
11  
CS  
For the rest of this section, it is assumed that scaled sync mode  
is disabled.  
SCLK  
16-Bit Burst Mode with BURST_SEL = 0  
In 16-bit burst mode with BURST_SEL = 0, a burst contains  
calibrated gyroscope and accelerometer data in 16-bit format.  
This mode is particularly appropriate for cases where there is  
no decimation nor filtering. Not only is the sample rate high  
(~2 kSPS), the lower 16 bits are not used unless the user is  
averaging or filtering.  
0x6800  
DIN  
X_DELTANG_  
OUT  
DIAG_STAT  
CHECKSUM  
DOUT  
Figure 43. Burst Read Sequence with BURST_SEL = 1  
The sequence of registers (and checksum value) in the burst  
read includes the following registers and value: DIAG_STAT,  
X_DELTANG_OUT, Y_DELTANG_OUT,  
1
2
3
11  
CS  
Z_DELTANG_OUT, X_DELTVEL_OUT, Y_DELTVEL_OUT,  
Z_DELTVEL_OUT, TEMP_OUT, DATA_ CNTR, and the  
checksum value.  
SCLK  
0x6800  
In these cases, use the following formula to verify the 16-bit  
checksum value, treating each byte in the formula as an  
independent, unsigned, 8-bit number:  
DIN  
DIAG_STAT  
X_GYRO_OUT  
CHECKSUM  
DOUT  
Figure 42. Burst Read Sequence with BURST_SEL = 0  
Checksum = DIAG_STAT, Bits[15:8] + DIAG_STAT, Bits[7:0] +  
X_DELTANG_OUT, Bits[15:8] + X_DELTANG_OUT, Bits[7:0] +  
Y_DELTANG_OUT, Bits[15:8] + Y_DELTANG_OUT, Bits[7:0] +  
Z_DELTANG_OUT, Bits[15:8] + Z_DELTANG_OUT, Bits[7:0] +  
X_DELTVEL_OUT, Bits[15:8] + X_DELTVEL_OUT, Bits[7:0] +  
Y_DELTVEL_OUT, Bits[15:8] + Y_DELTVEL_OUT, Bits[7:0] +  
Z_DELTVEL_OUT, Bits[15:8] + Z_DELTVEL_OUT, Bits[7:0] +  
TEMP_OUT, Bits[15:8] + TEMP_OUT, Bits[7:0] +  
The sequence of registers (and checksum value) in the burst  
read includes the following registers and value: DIAG_STAT,  
X_GYRO_OUT, Y_GYRO_OUT, Z_GYRO_OUT, X_ACCL_  
OUT, Y_ACCL_OUT, Z_ACCL_OUT, TEMP_OUT, DATA_  
CNTR, and the checksum value.  
DATA_CNTR, Bits[15:8] + DATA_CNTR, Bits[7:0]  
Rev. B | Page 19 of 41  
 
 
ADIS16505  
Data Sheet  
32-Bit Burst Mode with BURST_SEL = 0  
32-Bit Burst Mode with BURST_SEL = 1  
In 32-bit burst mode with BURST_SEL = 0, a burst contains  
calibrated gyroscope and accelerometer data in 32-bit format.  
This mode is appropriate for cases where there is averaging  
(decimation) and/or low-pass filtering of the data.  
In 32-bit burst mode with BURST_SEL = 1, a burst contains  
calibrated delta angle and delta velocity data in 32-bit format.  
This mode is appropriate for cases where there is averaging  
(decimation) and/or low-pass filtering of the data.  
1
2
3
17  
1
2
3
17  
CS  
CS  
SCLK  
SCLK  
0x6800  
0x6800  
DIN  
DIN  
X_DELTANG_  
LOW  
DIAG_STAT  
X_GYRO_LOW  
CHECKSUM  
DIAG_STAT  
CHECKSUM  
DOUT  
DOUT  
Figure 44. Burst Read Sequence with BURST_SEL = 0  
Figure 45. Burst Read Sequence with BURST_SEL = 1  
The sequence of registers (and checksum value) in the burst  
read includes the following registers and value: DIAG_STAT,  
X_GYRO_LOW, X_GYRO_OUT, Y_GYRO_LOW,  
Y_GYRO_OUT, Z_GYRO_LOW, Z_GYRO_OUT,  
X_ACCL_LOW, X_ACCL_OUT, Y_ACCL_LOW,  
Y_ACCL_OUT, Z_ACCL_LOW, Z_ACCL_OUT, TEMP_OUT,  
DATA_ CNTR, and the checksum value. In these cases, use the  
following formula to verify the 16-bit checksum value, treating  
each byte in the formula as an independent, unsigned, 8-bit  
number:  
The sequence of registers (and checksum value) in the burst  
read includes the following registers and value: DIAG_STAT,  
X_DELTANG_LOW, X_DELTANG_OUT,  
Y_DELTANG_LOW, Y_DELTANG_OUT,  
Z_DELTANG_LOW, Z_DELTANG_OUT, X_DELTVEL_LOW,  
X_DELTVEL_OUT, Y_DELTVEL_LOW, Y_DELTVEL_OUT,  
Z_DELTVEL_LOW, Z_DELTVEL_OUT, TEMP_OUT, DATA_  
CNTR, and the checksum value. In these cases, use the following  
formula to verify the 16-bit checksum value, treating each byte  
in the formula as an independent, unsigned, 8-bit number:  
Checksum = DIAG_STAT, Bits[15:8] + DIAG_STAT, Bits[7:0] +  
X_GYRO_LOW, Bits[15:8] + X_GYRO_LOW, Bits[7:0] +  
X_GYRO_OUT, Bits[15:8] + X_GYRO_OUT, Bits[7:0] +  
Y_GYRO_LOW, Bits[15:8] + Y_GYRO_LOW, Bits[7:0] +  
Y_GYRO_OUT, Bits[15:8] + Y_GYRO_OUT, Bits[7:0] +  
Z_GYRO_LOW, Bits[15:8] + Z_GYRO_LOW, Bits[7:0] +  
Z_GYRO_OUT, Bits[15:8] + Z_GYRO_OUT, Bits[7:0] +  
X_ACCL_LOW, Bits[15:8] + X_ACCL_LOW, Bits[7:0] +  
X_ACCL_OUT, Bits[15:8] + X_ACCL_OUT, Bits[7:0] +  
Y_ACCL_LOW, Bits[15:8] + Y_ACCL_LOW, Bits[7:0] +  
Y_ACCL_OUT, Bits[15:8] + Y_ACCL_OUT, Bits[7:0] +  
Z_ACCL_LOW, Bits[15:8] + Z_ACCL_LOW, Bits[7:0] +  
Z_ACCL_OUT, Bits[15:8] + Z_ACCL_OUT, Bits[7:0] +  
TEMP_OUT, Bits[15:8] + TEMP_OUT, Bits[7:0] +  
Checksum = DIAG_STAT, Bits[15:8] + DIAG_STAT, Bits[7:0] +  
X_DELTANG_LOW, Bits[15:8] + X_DELTANG_LOW, Bits[7:0] +  
X_DELTANG_OUT, Bits[15:8] + X_DELTANG_OUT, Bits[7:0] +  
Y_DELTANG_LOW, Bits[15:8] + Y_DELTANG_LOW, Bits[7:0] +  
Y_DELTANG_OUT, Bits[15:8] + Y_DELTANG_OUT, Bits[7:0] +  
Z_DELTANG_LOW, Bits[15:8] + Z_DELTANG_LOW, Bits[7:0] +  
Z_DELTANG_OUT, Bits[15:8] + Z_DELTANG_OUT, Bits[7:0] +  
X_DELTVEL_LOW, Bits[15:8] + X_DELTVEL_LOW, Bits[7:0] +  
X_DELTVEL_OUT, Bits[15:8] + X_DELTVEL_OUT, Bits[7:0] +  
Y_DELTVEL_LOW, Bits[15:8] + Y_DELTVEL_LOW, Bits[7:0] +  
Y_DELTVEL_OUT, Bits[15:8] + Y_DELTVEL_OUT, Bits[7:0] +  
Z_DELTVEL_LOW, Bits[15:8] + Z_DELTVEL_LOW, Bits[7:0] +  
Z_DELTVEL_OUT, Bits[15:8] + Z_DELTVEL_OUT, Bits[7:0] +  
TEMP_OUT, Bits[15:8] + TEMP_OUT, Bits[7:0] +  
DATA_CNTR, Bits[15:8] + DATA_CNTR, Bits[7:0]  
DATA_CNTR, Bits[15:8] + DATA_CNTR, Bits[7:0]  
Rev. B | Page 20 of 41  
Data Sheet  
ADIS16505  
data for that location, [DC7:DC0]. Figure 46 shows a coding  
example for writing 0x0004 to the FILT_CTRL register (see  
Table 102). In Figure 46, the 0xDC04 command writes 0x04 to  
Address 0x5C (lower byte) and the 0xDD00 command writes  
0x00 to Address 0x5D (upper byte).  
LATENCY  
Table 8 contains the group delay for each inertial sensor when  
the ADIS16505 is operating with the factory default settings for  
the FILT_CTRL (see Table 101) and DEC_RATE (see Table 109)  
registers.  
CS  
Table 8. Group Delay with No Filtering  
Inertial Sensor  
Group Delay (ms)1  
SCLK  
Accelerometer  
1.57  
1.51  
1.51  
1.29  
Gyroscope (X-Axis)  
Gyroscope (Y-Axis)  
Gyroscope (Z-Axis)  
DIN  
0xDC04  
0xDD00  
Figure 46. SPI Sequence for Writing 0x0004 to FILT_CTRL  
1 In this context, latency represents the time between the motion (linear  
acceleration and/or angular rate of rotation) and the time that the  
representative data is available in the output data register.  
MEMORY STRUCTURE  
Figure 47 provides a functional diagram for the memory  
structure of the ADIS16505. The flash memory bank contains  
the operational code, unit specific calibration coefficients, and  
user configuration settings. During initialization (power  
application or reset recover), this information loads from the  
flash memory into the static random access memory (SRAM),  
which supports all normal operation including register access  
through the SPI port. Writing to a configuration register using  
the SPI updates the SRAM location of the register but does not  
automatically update its settings in the flash memory bank. The  
manual flash memory update command (Register GLOB_CMD,  
Bit 3, see Table 112) provides a convenient method for saving  
all of these settings to the flash memory bank at one time. A yes  
in the flash backup column of Table 9 identifies the registers  
that have storage support in the flash memory bank.  
When the FILT_CTRL register is not equal to 0, the group  
delay contribution of the Bartlett window filter (in terms of  
sample cycles) is equal to N (see Table 102). When the DEC_RATE  
register is not equal to 0, the group delay contribution of the  
decimation filter (in terms of sample cycles) is equal D + 1,  
divided by 2 (see Table 110).  
Data Acquisition  
The total latency is equal to the sum of the group delay and  
the data acquisition time, which represents the time it takes the  
system processor to read the data from the output data registers  
of the ADIS16505. For example, when using the burst read  
function, with an SCLK rate of 1 MHz, the data acquisition  
time is equal to 176 ꢀs (11 segments × 16 SCLKs/segment ×  
1 ꢀs/SCLK).  
MANUAL  
FLASH  
BACKUP  
DEVICE CONFIGURATION  
Each configuration register contains 16 bits (two bytes). Bits[7:0]  
contain the low byte, and Bits[15:8] contain the high byte. Each  
byte has its own unique address in the user register map (see  
Table 9). Updating the contents of a register requires writing to  
both of its bytes in the following sequence: low byte first, high  
byte second. There are three parts to coding a SPI command  
(see Figure 40) that write a new byte of data to a register: the  
NONVOLATILE  
FLASH MEMORY  
VOLATILE  
SRAM  
SPI ACCESS  
(NO SPI ACCESS)  
START-UP  
RESET  
Figure 47. SRAM and Flash Memory Diagram  
R
write bit ( /W = 1), the address of the byte, [A6:A0], and the new  
Rev. B | Page 21 of 41  
 
 
 
 
 
 
ADIS16505  
Data Sheet  
USER REGISTER MEMORY MAP  
Table 9. User Register Memory Map (N/A Means Not Applicable)  
Name  
R/W  
N/A  
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
N/A  
R
R
R
R
R
R
R
R
R
R
R
R
Flash Backup  
N/A  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
N/A  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
Address  
Default  
Register Description  
Reserved  
DIAG_STAT  
0x00, 0x01  
0x02, 0x03  
0x04, 0x05  
0x06, 0x07  
0x08, 0x09  
0x0A, 0x0B  
0x0C, 0x0D  
0x0E, 0x0F  
0x10, 0x11  
0x12, 0x13  
0x14, 0x15  
0x16, 0x17  
0x18, 0x19  
0x1A, 0x1B  
0x1C, 0x1D  
0x1E, 0x1F  
0x20, 0x21  
0x22, 0x23  
0x24, 0x25  
0x26, 0x27  
0x28, 0x29  
0x2A, 0x2B  
0x2C, 0x2D  
0x2E, 0x2F  
0x30, 0x31  
0x32, 0x33  
0x34, 0x35  
0x36, 0x37  
0x38, 0x39  
0x3A, 0x3B  
0x3C to 0x3F  
0x40, 0x41  
0x42, 0x43  
0x44, 0x45  
0x46, 0x47  
0x48, 0x49  
0x4A, 0x4B  
0x4C, 0x4D  
0x4E, 0x4F  
0x50, 0x51  
0x52, 0x53  
0x54, 0x55  
0x56, 0x57  
0x58 to 0x5B  
0x5C, 0x5D  
0x5E, 0x5F  
N/A  
0x0000  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
N/A  
Reserved  
Output, system error flags  
X_GYRO_LOW  
X_GYRO_OUT  
Y_GYRO_LOW  
Y_GYRO_OUT  
Z_GYRO_LOW  
Z_GYRO_OUT  
X_ACCL_LOW  
X_ACCL_OUT  
Y_ACCL_LOW  
Y_ACCL_OUT  
Z_ACCL_LOW  
Z_ACCL_OUT  
TEMP_OUT  
Output, x-axis gyroscope, low word  
Output, x-axis gyroscope, high word  
Output, y-axis gyroscope, low word  
Output, y-axis gyroscope, high word  
Output, z-axis gyroscope, low word  
Output, z-axis gyroscope, high word  
Output, x-axis accelerometer, low word  
Output, x-axis accelerometer, high word  
Output, y-axis accelerometer, low word  
Output, y-axis accelerometer, high word  
Output, z-axis accelerometer, low word  
Output, z-axis accelerometer, high word  
Output, temperature  
TIME_STAMP  
Reserved  
DATA_CNTR  
Output, time stamp  
Reserved  
New data counter  
X_DELTANG_LOW  
X_DELTANG_OUT  
Y_DELTANG_LOW  
Y_DELTANG_OUT  
Z_DELTANG_LOW  
Z_DELTANG_OUT  
X_DELTVEL_LOW  
X_DELTVEL_OUT  
Y_DELTVEL_LOW  
Y_DELTVEL_OUT  
Z_DELTVEL_LOW  
Z_DELTVEL_OUT  
Reserved  
XG_BIAS_LOW  
XG_BIAS_HIGH  
YG_BIAS_LOW  
YG_BIAS_HIGH  
ZG_BIAS_LOW  
ZG_BIAS_HIGH  
XA_BIAS_LOW  
XA_BIAS_HIGH  
YA_BIAS_LOW  
YA_BIAS_HIGH  
ZA_BIAS_LOW  
ZA_BIAS_HIGH  
Reserved  
Output, x-axis delta angle, low word  
Output, x-axis delta angle, high word  
Output, y-axis delta angle, low word  
Output, y-axis delta angle, high word  
Output, z-axis delta angle, low word  
Output, z-axis delta angle, high word  
Output, x-axis delta velocity, low word  
Output, x-axis delta velocity, high word  
Output, y-axis delta velocity, low word  
Output, y-axis delta velocity, high word  
Output, z-axis delta velocity, low word  
Output, z-axis delta velocity, high word  
Reserved  
Calibration, offset, gyroscope, x-axis, low word  
Calibration, offset, gyroscope, x-axis, high word  
Calibration, offset, gyroscope, y-axis, low word  
Calibration, offset, gyroscope, y-axis, high word  
Calibration, offset, gyroscope, z-axis, low word  
Calibration, offset, gyroscope, z-axis, high word  
Calibration, offset, accelerometer, x-axis, low word  
Calibration, offset, accelerometer, x-axis, high word  
Calibration, offset, accelerometer, y-axis, low word  
Calibration, offset, accelerometer, y-axis, high word  
Calibration, offset, accelerometer, z-axis, low word  
Calibration, offset, accelerometer, z-axis, high word  
Reserved  
R
No  
N/A  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
N/A  
R/W  
R
N/A  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
N/A  
Yes  
No  
FILT_CTRL  
RANG_MDL  
0x0000  
N/A1  
Control, Bartlett window FIR filter  
Measurement range (model specific) identifier  
Rev. B | Page 22 of 41  
 
 
Data Sheet  
ADIS16505  
Name  
R/W  
R/W  
R/W  
R/W  
N/A  
W
N/A  
R
R
R
R
R
R/W  
R/W  
R/W  
R
Flash Backup  
Yes  
Yes  
Yes  
N/A  
No  
N/A  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Address  
Default  
0x00C1  
0x07D0  
0x0000  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
0x4079  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Register Description  
MSC_CTRL  
UP_SCALE  
DEC_RATE  
Reserved  
GLOB_CMD  
Reserved  
FIRM_REV  
FIRM_DM  
FIRM_Y  
0x60, 0x61  
0x62, 0x63  
0x64, 0x65  
0x66, 0x67  
0x68, 0x69  
0x6A to 0x6B  
0x6C, 0x6D  
0x6E, 0x6F  
0x70, 0x71  
0x72, 0x73  
0x74, 0x75  
0x76, 0x77  
0x78, 0x79  
0x7A, 0x7B  
0x7C, 0x7D  
0x7E, 0x7E  
Control, input/output and other miscellaneous options  
Control, scale factor for input clock, scaled sync mode  
Control, decimation filter (output data rate)  
Reserved  
Control, global commands  
Reserved  
Identification, firmware revision  
Identification, date code, day and month  
Identification, date code, year  
Identification, device number (0x4079 = 16,505 decimal)  
Identification, serial number  
User Scratch Register 1  
PROD_ID  
SERIAL_NUM  
USER_SCR_1  
USER_SCR_2  
USER_SCR_3  
FLSHCNT_LOW  
FLSHCNT_HIGH  
User Scratch Register 2  
User Scratch Register 3  
Output, flash memory write cycle counter, lower word  
Output, flash memory write cycle counter, upper word  
R
1 See Table 103 for the model specific default value for this register.  
Rev. B | Page 23 of 41  
ADIS16505  
Data Sheet  
USER REGISTER DEFINTIONS  
Bits  
Description  
Status/Error Flag Indicators (DIAG_STAT)  
2
Flash memory update failure. A 1 indicates that the  
most recent flash memory update (Register GLOB_CMD,  
Bit 3, see Table 112) failed. If this error occurs, ensure that  
VDD ≥ 3 V and repeat the update attempt. If this error  
persists, replace the ADIS16505.  
Table 10. DIAG_STAT Register Definition  
Addresses  
Default  
Access  
Flash Backup  
0x02, 0x03  
0x0000  
R
No  
1
0
Data path overrun. A 1 indicates that one of the data  
paths experienced an overrun condition. If this error  
occurs, initiate a reset using the RST pin (see Table 5,  
Pin F3) or Register GLOB_CMD, Bit 7 (see Table 112).  
Table 11. DIAG_STAT Bit Assignments  
Bits Description  
[15:11] Reserved.  
10  
Accelerometer failure. A 1 indicates failure of the  
accelerometer at the conclusion of the self test  
(Register GLOB_CMD, Bit 2, see Table 112). If this error  
occurs, repeat the same test. If this error persists,  
replace the ADIS16507. Motion during this test may  
cause a false failure.  
Reserved.  
The DIAG_STAT register (see Table 10 and Table 11) provides  
error flags for monitoring the integrity and operation of the  
ADIS16505. Reading this register resets its bits to 0. The error  
flags in DIAG_STAT are sticky, meaning that when they raise  
to a 1, they remain there until a read request clears them. If an  
error condition persists, the flag (bit) automatically returns to  
an alarm value of 1.  
9
8
7
Gyroscope 2 failure. A 1 indicates failure of Gyroscope 2 at  
the conclusion of the self test (Register GLOB_CMD, Bit 2,  
see Table 112). If this error occurs, repeat the same test.  
If this error persists, replace the ADIS16507. Motion  
during this test may cause a false failure.  
GYROSCOPE DATA  
Gyroscope 1 failure. A 1 indicates failure of Gyroscope 1 at  
the conclusion of the self test (Register GLOB_CMD, Bit 2,  
see Table 112). If this error occurs, repeat the same test.  
If this error persists, replace the ADIS16507. Motion  
during this test may cause a false failure.  
The gyroscopes in the ADIS16505 measure the angular rate of  
rotation around three orthogonal axes (x, y, and z). Figure 48  
shows the orientation of each gyroscope axis along with the  
direction of rotation that produces a positive response in each  
of their measurements.  
Clock error. A 1 indicates that the internal data  
sampling clock (fSM, see Figure 30) does not  
Z-AXIS  
synchronize with the external clock, which only applies  
when using scaled sync mode (Register MSC_CTRL,  
Bits[3:2] = 10, see Table 106). When this error occurs,  
adjust the frequency of the clock signal on the SYNC pin  
to operate within the appropriate range.  
ω
Z
X-AXIS  
Y-AXIS  
6
5
Memory failure. A 1 indicates a failure in the flash memory  
test (Register GLOB_CMD, Bit 4, see Table 112), which  
involves a comparison between a cyclic redundancy  
check (CRC) calculation of the present flash memory  
and a CRC calculation from the same memory locations at  
the time of initial programming (during the production  
process). If this error occurs, repeat the same test. If this  
error persists, replace the ADIS16505.  
ω
X
ω
Y
K1  
A10  
A1  
Figure 48. Gyroscope Axis and Polarity Assignments  
Each gyroscope has two output data registers. Figure 49 shows  
how these two registers combine to support a 32-bit, twos  
complement data format for the x-axis gyroscope measurements.  
This format also applies to the y- and z-axes.  
Sensor failure. A 1 indicates failure of at least one  
sensor, at the conclusion of the self test (Register  
GLOB_CMD, Bit 2, see Table 112). If this error occurs,  
repeat the same test. If this error persists, replace the  
ADIS16505. Motion during this test may cause a false  
failure.  
X_GYRO_OUT  
X_GYRO_LOW  
4
3
Standby mode. A 1 indicates that the voltage across  
VDD and GND is <2.8 V, which causes data processing  
to stop. When VDD ≥ 2.8 V for 250 ms, the ADIS16505  
reinitializes itself and starts producing data again.  
BIT 15  
BIT 0 BIT 15  
BIT 0  
X-AXIS GYROSCOPE DATA  
Figure 49. Gyroscope Output Data Structure  
SPI communication error. A 1 indicates that the total  
number of SCLK cycles is not equal to an integer  
multiple of 16. When this error occurs, repeat the  
previous communication sequence. Persistence in this  
error can indicate that the SPI connection between the  
host and the ADIS16505 is not robust (for example,  
marginal voltage levels, timing, or signal integrity).  
Rev. B | Page 24 of 41  
 
 
 
 
 
 
Data Sheet  
ADIS16505  
Gyroscope Measurement Range/Scale Factor  
The X_GYRO_LOW (see Table 15 and Table 16) and X_GYRO_  
OUT (see Table 17 and Table 18) registers contain the gyroscope  
data for the x-axis.  
Table 12 provides the range and scale factor for the angular rate  
(gyroscope) measurements in each ADIS16505 model.  
Y-Axis Gyroscope (Y_GYRO_LOW and Y_GYRO_OUT)  
Table 12. Gyroscope Measurement Range and Scale Factors  
Table 19. Y_GYRO_LOW Register Definition  
Range, ±±MAX  
(°/sec)  
Scale Factor, KG  
(°/sec/LSB)  
Model  
Addresses  
Default  
Access  
Flash Backup  
ADIS16505-1BMLZ  
ADIS16505-2BMLZ  
ADIS16505-3BMLZ  
125  
500  
2000  
0.00625  
0.025  
0.1  
0x08, 0x09  
Not applicable  
R
No  
Table 20. Y_GYRO_LOW Bit Definitions  
Bits  
Description  
[15:0]  
Y-axis gyroscope data; additional resolution bits  
Gyroscope Data Formatting  
Table 21. Y_GYRO_OUT Register Definition  
Table 13 and Table 14 offer various numerical examples that  
demonstrate the format of the rotation rate data in both 16-bit  
and 32-bit formats.  
Addresses  
Default  
Access  
Flash Backup  
0x0A, 0x0B  
Not applicable  
R
No  
Table 22. Y_GYRO_OUT Bit Definitions  
Table 13. 16-Bit Gyroscope Data Format Examples  
Bits  
Description  
Rotation Rate  
MAX  
+2 KG  
Decimal Hex  
Binary  
[15:0]  
Y-axis gyroscope data; high word; twos complement,  
0°/sec = 0x0000, 1 LSB = KG (see Table 12 for KG)  
+20,000  
0x4E20  
0100 1110 0010 0000  
0000 0000 0000 0010  
0000 0000 0000 0001  
0000 0000 0000 0000  
1111 1111 1111 1111  
1111 1111 1111 1110  
1011 0001 1110 0000  
+2  
0x0002  
0x0001  
0x0000  
0xFFFF  
0xFFFE  
0xB1E0  
+KG  
+1  
The Y_GYRO_LOW (see Table 19 and Table 20) and Y_GYRO_  
OUT (see Table 21 and Table 22) registers contain the gyroscope  
data for the y-axis.  
0°/sec  
−KG  
0
−1  
−2 KG  
−2  
Z-Axis Gyroscope (Z_GYRO_LOW and Z_GYRO_OUT)  
−ωMAX  
−20,000  
Table 23. Z_GYRO_LOW Register Definition  
Table 14. 32-Bit Gyroscope Data Format Examples  
Addresses  
Default  
Access  
Flash Backup  
Rotation Rate (°/sec)  
Decimal  
Hex  
0x0C, 0x0D  
Not applicable  
R
No  
MAX  
+KG/215  
+KG/216  
0
−KG /216  
−KG /215  
−ωMAX  
+1,310,720,000 0x4E200000  
+2  
+1  
0
−1  
−2  
0x00000002  
0x00000001  
0x0000000  
0xFFFFFFFF  
0xFFFFFFFE  
Table 24. Z_GYRO_LOW Bit Definitions  
Bits  
Description  
[15:0]  
Z-axis gyroscope data; additional resolution bits  
Table 25. Z_GYRO_OUT Register Definition  
Addresses  
Default  
Access  
Flash Backup  
−1,310,720,000 0xB1E00000  
0x0E, 0x0F  
Not applicable  
R
No  
X-Axis Gyroscope (X_GYRO_LOW and X_GYRO_OUT)  
Table 26. Z_GYRO_OUT Bit Definitions  
Table 15. X_GYRO_LOW Register Definition  
Bits  
Description  
Addresses  
Default  
Access  
Flash Backup  
[15:0]  
Z-axis gyroscope data; high word; twos complement,  
0°/sec = 0x0000, 1 LSB = KG (see Table 12 for KG)  
0x04, 0x05  
Not applicable  
R
No  
The Z_GYRO_LOW (see Table 23 and Table 24) and Z_GYRO_  
OUT (see Table 25 and Table 26) registers contain the gyroscope  
data for the z-axis.  
Table 16. X_GYRO_LOW Bit Definitions  
Bits  
Description  
[15:0]  
X-axis gyroscope data; additional resolution bits  
Table 17. X_GYRO_OUT Register Definition  
Addresses  
Default  
Access  
Flash Backup  
0x06, 0x07  
Not applicable  
R
No  
Table 18. X_GYRO_OUT Bit Definitions  
Bits  
Description  
[15:0]  
X-axis gyroscope data; high word; twos complement,  
0°/sec = 0x0000, 1 LSB = KG (See Table 12 for KG)  
Rev. B | Page 25 of 41  
 
 
 
 
 
 
 
 
 
 
ADIS16505  
Data Sheet  
Acceleration Data  
X-Axis Accelerometer (X_ACCL_LOW and X_ACCL_OUT)  
The accelerometers in the ADIS16505 measure both dynamic  
and static (response to gravity) acceleration along the same three  
orthogonal axes that define the axes of rotation for the gyroscopes  
(x, y, and z). Figure 50 shows the orientation of each accelerometer  
axis along with the direction of acceleration that produces a  
positive response in each of their measurements.  
Table 29. X_ACCL_LOW Register Definition  
Addresses  
Default  
Access  
Flash Backup  
0x10, 0x11  
Not applicable  
R
No  
Table 30. X_ACCL_LOW Bit Definitions  
Bits Description  
Z-AXIS  
[15:0] X-axis accelerometer data; additional resolution bits  
Table 31. X_ACCL_OUT Register Definition  
Addresses  
Default  
Access  
Flash Backup  
aZ  
X-AXIS  
0x12, 0x13  
Not applicable  
R
No  
Y-AXIS  
aY  
aX  
Table 32. X_ACCL_OUT Bit Definitions  
Bits Description  
K1  
A10  
[15:0] X-axis accelerometer data, high word; twos complement,  
78.3 m/sec2 range; 0 m/sec2 = 0x0000,  
1 LSB = 2.45 mm/sec2  
A1  
Figure 50. Accelerometer Axis and Polarity Assignments  
The X_ACCL_LOW (see Table 29 and Table 30) and X_ACCL_  
OUT (see Table 31 and Table 32) registers contain the  
accelerometer data for the x-axis.  
Each accelerometer has two output data registers. Figure 51  
shows how these two registers combine to support a 32-bit,  
twos complement data format for the x-axis accelerometer  
measurements. This format also applies to the y- and z-axes.  
Y-Axis Accelerometer (Y_ACCL_LOW and Y_ACCL_OUT)  
X_ACCL_OUT  
X_ACCL_LOW  
Table 33. Y_ACCL_LOW Register Definition  
BIT 15  
BIT 0 BIT 15  
X-AXIS ACCELEROMETER DATA  
BIT 0  
Addresses  
Default  
Access  
Flash Backup  
0x14, 0x15  
Not applicable  
R
No  
Figure 51. Accelerometer Output Data Structure  
Table 34. Y_ACCL_LOW Bit Definitions  
Bits Description  
Accelerometer Resolution  
Table 27 and Table 28 offer various numerical examples that  
demonstrate the format of the linear acceleration data in both  
16-bit and 32-bit formats.  
[15:0] Y-axis accelerometer data; additional resolution bits  
Table 35. Y_ACCL_OUT Register Definition  
Addresses Default  
Access  
Flash Backup  
Table 27. 16-Bit Accelerometer Data Format Examples  
0x16, 0x17 Not applicable  
R
No  
Acceleration  
+78.3 m/sec2  
Dec  
Hex  
Binary  
Table 36. Y_ACCL_OUT Bit Definitions  
Bits Description  
+32,000 0x7D00 0111 1101 0000 0000  
+2  
+4.9/215 mm/sec2  
0x0002 0000 0000 0000 0010  
0x0001 0000 0000 0000 0001  
0x0000 0000 0000 0000 0000  
0xFFFF  
0xFFFE  
+2.45/216 mm/sec2 +1  
[15:0] Y-axis accelerometer data, high word; twos complement,  
78.3 m/sec2 range; 0 m/sec2 = 0x0000,  
1 LSB = 2.45 mm/sec2  
0
0
−2.45/216 mm/sec2 −1  
1111 1111 1111 1111  
1111 1111 1111 1110  
−4.9/215 mm/sec2  
−78.3 m/sec2  
−2  
The Y_ACCL_LOW (see Table 33 and Table 34) and  
Y_ACCL_ OUT (see Table 35 and Table 36) registers contain  
the accelerometer data for the y-axis.  
−32,000 0x8300 1000 0011 0000 0000  
Table 28. 32-Bit Accelerometer Data Format Examples  
Acceleration  
+78.3 m/sec2  
+4.9/215 mm/sec2  
+2.45/216 mm/sec2  
0
−2.45/216 mm/sec2  
−4.9/215 mm/sec2  
−78.3 m/sec2  
Decimal  
Hex  
+2,097,152,000  
+2  
+1  
0
−1  
−2  
0x7D000000  
0x00000002  
0x00000001  
0x00000000  
0xFFFFFFFF  
0xFFFFFFFE  
0x83000000  
−2,097,152,000  
Rev. B | Page 26 of 41  
 
 
 
 
 
 
 
 
 
 
 
 
Data Sheet  
ADIS16505  
Z-Axis Accelerometer (Z_ACCL_LOW and Z_ACCL_OUT)  
Time Stamp (TIME_STAMP)  
Table 37. Z_ACCL_LOW Register Definition  
Table 44. TIME_STAMP Register Definition  
Addresses  
Default  
Access  
Flash Backup  
Addresses  
Default  
Access  
Flash Backup  
0x18, 0x19  
Not applicable  
R
No  
0x1E, 0x1F  
Not applicable  
R
No  
Table 38. Z_ACCL_LOW Bit Definitions  
Bits Description  
Table 45. TIME_STAMP Bit Definitions  
Bits  
Description  
[15:0] Z-axis accelerometer data; additional resolution bits  
[15:0]  
Time from the last pulse on the SYNC pin; offset binary  
format, 1 LSB = 49.02 μs  
Table 39. Z_ACCL_OUT Register Definition  
The TIME_STAMP register (see Table 44 and Table 45) works  
in conjunction with scaled sync mode (Register MSC_CTRL,  
Bits[3:2] = 10, see Table 106). The 16-bit number in TIME_  
STAMP contains the time associated with the last sample in  
each data update relative to the most recent edge of the clock  
signal in the SYNC pin. For example, when the value in the  
UP_SCALE register (see Table 108) represents a scale factor of  
20, DEC_RATE = 0, and the external SYNC rate = 100 Hz, the  
following time stamp sequence results: 0 LSB, 10 LSB, 20 LSB,  
30 LSB, 40 LSB, 50 LSB, 61 LSB, 71 LSB, … , 193 LSB for the 20th  
sample, which translates to 0 ꢀs, 490 ꢀs, … , 9460 ꢀs, the time  
from the first SYNC edge.  
Addresses  
Default  
Access  
Flash Backup  
0x1A, 0x1B  
Not applicable  
R
No  
Table 40. Z_ACCL_OUT Bit Definitions  
Bits Description  
[15:0] Z-axis accelerometer data, high word; twos complement,  
78.3 m/sec2 range; 0 m/sec2 = 0x0000,  
1 LSB = 2.45 mm/sec2  
The Z_ACCL_LOW (see Table 37 and Table 38) and Z_ACCL_  
OUT (see Table 39 and Table 40) registers contain the  
accelerometer data for the z-axis.  
Internal Temperature (TEMP_OUT)  
Data Update Counter (DATA_CNTR)  
Table 41. TEMP_OUT Register Definition  
Addresses  
Table 46. DATA_CNTR Register Definition  
Default  
Access  
Flash Backup  
Addresses  
Default  
Access  
Flash Backup  
0x1C, 0x1D  
Not applicable  
R
No  
0x22, 0x23  
Not applicable  
R
No  
Table 42. TEMP_OUT Bit Definitions  
Table 47. DATA_CNTR Bit Definitions  
Bits  
Description  
Bits  
Description  
[15:0]  
Temperature data; twos complement, 1 LSB = 0.1°C,  
0°C = 0x0000  
[15:0]  
Data update counter, offset binary format  
When the ADIS16505 goes through its power-on sequence or  
when it recovers from a reset command, DATA_CNTR (see  
Table 46 and Table 47) starts with a value of 0x0000 and  
increments every time new data loads into the output registers.  
When the DATA_CNTR value reaches 0xFFFF, the next data  
update causes it to wrap back around to 0x0000 where it  
continues to increment every time new data loads into the  
output registers.  
The TEMP_OUT register (see Table 41 and Table 42) provides  
a coarse measurement of the temperature inside of the ADIS16505.  
This data is most useful for monitoring relative changes in the  
thermal environment.  
Table 43. TEMP_OUT Data Format Examples  
Temperature (°C)  
Decimal Hex  
Binary  
+105  
+25  
+0.2  
+0.1  
+0  
+0.1  
+0.2  
−40  
+1050  
+250  
+2  
+1  
0
−1  
−2  
−400  
0x041A 0000 0100 0001 1010  
0x00FA 0000 0000 1111 1010  
0x0002 0000 0000 0000 0010  
0x0001 0000 0000 0000 0001  
0x0000 0000 0000 0000 0000  
0xFFFF 1111 1111 1111 1111  
0xFFFE 1111 1111 1111 1110  
0xFE70 1111 1110 0111 0000  
Rev. B | Page 27 of 41  
 
 
 
 
 
 
 
ADIS16505  
Data Sheet  
Delta Angle Measurement Range  
DELTA ANGLES  
Table 48 shows the measurement range and scale factor for  
each ADIS16505 model.  
In addition to the angular rate of rotation (gyroscope)  
measurements around each axis (x, y, and z), the ADIS16505 also  
provides delta angle measurements that represent a calculation  
of angular displacement between each sample update.  
Z-AXIS  
Table 48. Delta Angle Measurement Range and Scale Factor  
Model  
Measurement Range, ±θMAX (°)  
ADIS16505-1BMLZ  
ADIS16505-2BMLZ  
ADIS16505-3BMLZ  
360  
720  
2160  
Δθ  
Z
X-AXIS  
X-Axis Delta Angle (X_DELTANG_LOW and  
X_DELTANG_OUT)  
Y-AXIS  
Δθ  
X
Δθ  
Y
Table 49. X_DELTANG_LOW Register Definitions  
K1  
A10  
Addresses  
Default  
Access  
Flash Backup  
0x24, 0x25  
Not applicable  
R
No  
A1  
Figure 52. Delta Angle Axis and Polarity Assignments  
Table 50. X_DELTANG_LOW Bit Definitions  
Bits  
Description  
The delta angle outputs represent an integration of the gyroscope  
measurements and use the following formula for all three axes  
(x-axis displayed):  
[15:0]  
X-axis delta angle data; low word  
Table 51. X_DELTANG_OUT Register Definitions  
Addresses  
D 1  
1
Default  
Access  
Flash Backup  
x, nD  
x, nD d 1  
x, nD d  
2fS  
d 0  
0x26, 0x27  
Not applicable  
R
No  
where:  
Table 52. X_DELTANG_OUT Bit Definitions  
Bits Description  
[15:0] X-axis delta angle data; twos complement, 0° = 0x0000,  
1 LSB = ΔθMAX/215 (see Table 48 for ΔθMAX  
D is the decimation rate (DEC_RATE + 1, see Table 110).  
fS is the sample rate.  
d is the incremental variable in the summation formula.  
ωX is the x-axis rate of rotation (gyroscope).  
n is the sample time, prior to the decimation filter.  
)
The X_DELTANG_LOW (see Table 49 and Table 50) and  
X_DELTANG_OUT (see Table 51 and Table 52) registers  
contain the delta angle data for the x-axis.  
When using the internal sample clock, fS is equal to a nominal  
rate of 2000 SPS. For better precision in this measurement,  
measure the internal sample rate (fS) using the data ready signal  
on the DR pin (DEC_RATE = 0x0000, see Table 109), divide  
each delta angle result (from the delta angle output registers) by  
the data ready frequency, and multiply it by 2000. Each axis of  
the delta angle measurements has two output data registers.  
Figure 53 shows how these two registers combine to support a  
32-bit, twos complement data format for the x-axis delta angle  
measurements. This format also applies to the y- and z-axes.  
Y-Axis Delta Angle (Y_DELTANG_LOW and  
Y_DELTANG_OUT)  
Table 53. Y_DELTANG_LOW Register Definitions  
Addresses  
Default  
Access  
Flash Backup  
0x28, 0x29  
Not applicable  
R
No  
Table 54. Y_DELTANG_LOW Bit Definitions  
Bits  
Description  
[15:0]  
Y-axis delta angle data; low word  
X_DELTANG_OUT  
X_DELTANG_LOW  
BIT 0 BIT 15  
BIT 15  
BIT 0  
Table 55. Y_DELTANG_OUT Register Definitions  
Addresses  
X-AXIS DELTA ANGLE DATA  
Default  
Access  
Flash Backup  
0x2A, 0x2B  
Not applicable  
R
No  
Figure 53. Delta Angle Output Data Structure  
Table 56. Y_DELTANG_OUT Bit Definitions  
Bits Description  
[15:0] Y-axis delta angle data; twos complement, 0° = 0x0000,  
1 LSB = ΔθMAX/215 (see Table 48 for ΔθMAX  
)
The Y_DELTANG_LOW (see Table 53 and Table 54) and  
Y_DELTANG_OUT (see Table 55 and Table 56) registers  
contain the delta angle data for the y-axis.  
Rev. B | Page 28 of 41  
 
 
 
 
 
 
 
 
 
Data Sheet  
ADIS16505  
Z-Axis Delta Angle (Z_DELTANG_LOW and  
Z_DELTANG_OUT)  
DELTA VELOCITY  
In addition to the linear acceleration measurements along each  
axis (x, y, and z), the ADIS16505 also provides delta velocity  
measurements that represent a calculation of linear velocity  
change between each sample update.  
Table 57. Z_DELTANG_LOW Register Definitions  
Addresses  
Default  
Access  
Flash Backup  
0x2C, 0x2D  
Not applicable  
R
No  
Z-AXIS  
Table 58. Z_DELTANG_LOW Bit Definitions  
Bits  
Description  
[15:0]  
Z-axis delta angle data; low word  
X-AXIS  
Δ
VZ  
ΔVX  
Y-AXIS  
Δ
VY  
Table 59. Z_DELTANG_OUT Register Definitions  
Addresses  
Default  
Access  
Flash Backup  
K1  
0x2E, 0x2F  
Not applicable  
R
No  
A10  
Table 60. Z_DELTANG_OUT Bit Definitions  
Bits Description  
[15:0] Z-axis delta angle data; twos complement, 0° = 0x0000,  
1 LSB = ΔθMAX/215 (see Table 48 for ΔθMAX  
A1  
Figure 54. Delta Velocity Axis and Polarity Assignments  
The delta velocity outputs represent an integration of the  
acceleration measurements and use the following formula for  
all three axes (x-axis displayed):  
)
The Z_DELTANG_LOW (see Table 57 and Table 58) and  
Z_DELTANG_OUT (see Table 59 and Table 60) registers  
contain the delta angle data for the z-axis.  
D 1  
1
Vx, nD  
a
ax, nD d 1  
x, nD d  
2fS  
d 0  
Delta Angle Resolution  
where:  
x is the x-axis.  
Table 61 and Table 62 show various numerical examples that  
demonstrate the format of the delta angle data in both 16-bit  
and 32-bit formats.  
n is the sample time, prior to the decimation filter.  
D is the decimation rate (DEC_RATE + 1, see Table 110).  
fS is the sample rate.  
Table 61. 16-Bit Delta Angle Data Format Examples  
Delta Angle (°)  
ΔθMAX × (215−1)/215 +32,767  
Decimal Hex  
Binary  
d is the incremental variable in the summation formula.  
aX is the x-axis acceleration.  
0x7FFF 0111 1111 1110 1111  
0x0002 0000 0000 0000 0010  
0x0001 0000 0000 0000 0001  
0x0000 0000 0000 0000 0000  
0xFFFF 1111 1111 1111 1111  
0xFFFE 1111 1111 1111 1110  
0x8000 1000 0000 0000 0000  
+ΔθMAX/214  
+ΔθMAX/215  
0
−ΔθMAX/215  
−ΔθMAX/214  
−ΔθMAX  
+2  
+1  
0
−1  
−2  
−32,768  
When using the internal sample clock, fS is equal to a nominal  
rate of 2000 SPS. For better precision in this measurement,  
measure the internal sample rate (fS) using the data ready signal  
on the DR pin (DEC_RATE = 0x0000, see Table 109), divide  
each delta angle result (from the delta angle output registers) by  
the data ready frequency, and multiply it by 2000. Each axis of  
the delta velocity measurements has two output data registers.  
Figure 55 shows how these two registers combine to support  
32-bit, twos complement data format for the delta velocity  
measurements along the x-axis. This format also applies to the  
y- and z-axes.  
Table 62. 32-Bit Delta Angle Data Format Examples  
Delta Angle (°)  
+ΔθMAX × (231 − 1)/231  
+ΔθMAX/230  
+ΔθMAX/231  
0
−ΔθMAX/231  
−ΔθMAX/230  
−ΔθMAX  
Decimal  
Hex  
+2,147,483,647 0x7FFFFFFF  
+2  
+1  
0
−1  
−2  
0x00000002  
0x00000001  
0x00000000  
0xFFFFFFFF  
0xFFFFFFFE  
X_ DELTVEL_OUT  
BIT 0 BIT 15  
X_ DELTVEL_LOW  
BIT 0  
BIT 15  
X-AXIS DELTA VELOCITY DATA  
−2,147,483,648 0x80000000  
Figure 55. Delta Velocity Output Data Structure  
Rev. B | Page 29 of 41  
 
 
 
 
 
 
ADIS16505  
Data Sheet  
X-Axis Delta Velocity (X_DELTVEL_LOW and  
X_DELTVEL_OUT)  
Z-Axis Delta Velocity (Z_DELTVEL_LOW and  
Z_DELTVEL_OUT)  
Table 63. X_DELTVEL_LOW Register Definition  
Table 71. Z_DELTVEL_LOW Register Definition  
Addresses  
Default  
Access  
Flash Backup  
Addresses  
Default  
Access  
Flash Backup  
0x30, 0x31  
Not applicable  
R
No  
0x38, 0x39  
Not applicable  
R
No  
Table 64. X_DELTVEL_LOW Bit Definitions  
Table 72. Z_DELTVEL_LOW Bit Definitions  
Bits  
Description  
Bits  
Description  
[15:0]  
X-axis delta velocity data; additional resolution bits  
[15:0]  
Z-axis delta velocity data; additional resolution bits  
Table 65. X_DELTVEL_OUT Register Definition  
Table 73. Z_DELTVEL_OUT Register Definition  
Addresses  
Default  
Access  
Flash Backup  
Addresses  
Default  
Access  
Flash Backup  
0x32, 0x33  
Not applicable  
R
No  
0x3A, 0x3B  
Not applicable  
R
No  
Table 66. X_DELTVEL_OUT Bit Definitions  
Table 74. Z_DELTVEL_OUT Bit Definitions  
Bits Description  
Bits  
Description  
[15:0]  
X-axis delta velocity data; twos complement,  
100 m/sec range, 0 m/sec = 0x0000;  
[15:0] Z-axis delta velocity data; twos complement,  
100 m/sec range, 0 m/sec = 0x0000;  
1 LSB = +100 m/sec ÷ 215 = ~+0.003052 m/sec  
1 LSB = +100 m/sec ÷ 215 = ~+0.003052 m/sec  
The X_DELTVEL_LOW (see Table 63 and Table 64) and  
X_DELTVEL_OUT (see Table 65 and Table 66) registers  
contain the delta velocity data for the x-axis.  
The Z_DELTVEL_LOW (see Table 71 and Table 72) and  
Z_DELTVEL_OUT (see Table 73 and Table 74) registers  
contain the delta velocity data for the z-axis.  
Y-Axis Delta Velocity (Y_DELTVEL_LOW and  
Y_DELTVEL_OUT)  
Delta Velocity Resolution  
Table 75 and Table 76 offer various numerical examples that  
demonstrate the format of the delta velocity data in both 16-bit  
and 32-bit formats.  
Table 67. Y_DELTVEL_LOW Register Definition  
Addresses  
Default  
Access  
Flash Backup  
0x34, 0x35  
Not applicable  
R
No  
Table 75. 16-Bit Delta Velocity Data Format Examples  
Velocity (m/sec)  
+100 × (215 − 1)/215 +32,767  
Decimal Hex  
Binary  
Table 68. Y_DELTVEL_LOW Bit Definitions  
0x7FFF 0111 1111 1111 1111  
0x0002 0000 0000 0000 0010  
0x0001 0000 0000 0000 0001  
0x0000 0000 0000 0000 0000  
0xFFFF 1111 1111 1111 1111  
0xFFFE 1111 1111 1111 1110  
0x8000 1000 0000 0000 0000  
Bits  
Description  
+100/214  
+100/215  
0
−100/215  
−100/214  
−100  
+2  
+1  
0
−1  
−2  
−32,768  
[15:0]  
Y-axis delta velocity data; additional resolution bits  
Table 69. Y_DELTVEL_OUT Register Definition  
Addresses  
Default  
Access  
Flash Backup  
0x36, 0x37  
Not applicable  
R
No  
Table 70. Y_DELTVEL_OUT Bit Definitions  
Bits Description  
Table 76. 32-Bit Delta Velocity Data Format Examples  
Velocity (m/sec)  
+100 × (231 − 1)/231  
+100/230  
+100/231  
0
−100/231  
−100/230  
−100  
Decimal  
Hex  
[15:0] Y-axis delta velocity data; twos complement,  
100 m/sec range, 0 m/sec = 0x0000;  
+2,147,483,647  
+2  
+1  
0
−1  
−2  
0x7FFFFFFF  
0x00000002  
0x00000001  
0x00000000  
0xFFFFFFFF  
0xFFFFFFFE  
0x80000000  
1 LSB = +100 m/sec ÷ 215 = ~+0.003052 m/sec  
The Y_DELTVEL_LOW (see Table 67 and Table 68) and  
Y_DELTVEL_OUT (see Table 69 and Table 70) registers  
contain the delta velocity data for the y-axis.  
+2,147,483,648  
Rev. B | Page 30 of 41  
 
 
 
 
 
 
 
 
 
 
Data Sheet  
ADIS16505  
Calibration, Gyroscope Bias (YG_BIAS_LOW and  
YG_BIAS_HIGH)  
CALIBRATION  
The signal chain of each inertial sensor (accelerometers and  
gyroscopes) includes the application of unique correction  
formulas, which are derived from extensive characterization  
of bias, sensitivity, alignment, response to linear acceleration  
(gyroscopes), and point of percussion (accelerometer location)  
over a temperature range of −40°C to +85°C, for each ADIS16505.  
These correction formulas are not accessible, but users do have  
the opportunity to adjust the bias for each sensor individually  
through user accessible registers. These correction factors  
follow immediately after the factory derived correction formulas  
in the signal chain, which processes at a rate of 2000 Hz when  
using the internal sample clock.  
Table 81. YG_BIAS_LOW Register Definition  
Addresses  
Default  
Access  
Flash Backup  
0x44, 0x45  
0x0000  
R/W  
Yes  
Table 82. YG_BIAS_LOW Bit Definitions  
Bits Description  
[15:0] Y-axis gyroscope offset correction; lower word  
Table 83. YG_BIAS_HIGH Register Definition  
Addresses  
Default  
Access  
Flash Backup  
0x46, 0x47  
0x0000  
R/W  
Yes  
Table 84. YG_BIAS_HIGH Bit Definitions  
Bits Description  
Calibration, Gyroscope Bias (XG_BIAS_LOW and  
XG_BIAS_HIGH)  
[15:0] Y-axis gyroscope offset correction factor, upper word  
The YG_BIAS_LOW (see Table 81 and Table 82) and YG_BIAS_  
HIGH (see Table 83 and Table 84) registers combine to allow  
users to adjust the bias of the y-axis gyroscopes. The data format  
examples in Table 13 also apply to the YG_BIAS_HIGH register,  
and the data format examples in Table 14 apply to the 32-bit  
combination of the YG_BIAS_LOW and YG_BIAS_HIGH  
registers. These registers influence the y-axis gyroscope  
measurements in the same manner that the XG_BIAS_LOW  
and XG_BIAS_HIGH registers influence the x-axis gyroscope  
measurements (see Figure 56).  
Table 77. XG_BIAS_LOW Register Definition  
Addresses  
Default  
Access  
Flash Backup  
0x40, 0x41  
0x0000  
R/W  
Yes  
Table 78. XG_BIAS_LOW Bit Definitions  
Bits  
Description  
[15:0]  
X-axis gyroscope offset correction; lower word  
Table 79. XG_BIAS_HIGH Register Definition  
Addresses  
Default  
Access  
Flash Backup  
0x42, 0x43  
0x0000  
R/W  
Yes  
Calibration, Gyroscope Bias (ZG_BIAS_LOW and  
ZG_BIAS_HIGH)  
Table 80. XG_BIAS_HIGH Bit Definitions  
Bits Description  
Table 85. ZG_BIAS_LOW Register Definition  
Addresses  
Default  
Access  
Flash Backup  
[15:0] X-axis gyroscope offset correction factor, upper word  
0x48, 0x49  
0x0000  
R/W  
Yes  
The XG_BIAS_LOW (see Table 77 and Table 78) and XG_BIAS_  
HIGH (see Table 79 and Table 80) registers combine to allow  
users to adjust the bias of the x-axis gyroscopes. The data format  
examples in Table 13 also apply to the XG_BIAS_HIGH register,  
and the data format examples in Table 14 apply to the 32-bit  
combination of the XG_BIAS_LOW and XG_BIAS_HIGH  
registers. See Figure 56 for an illustration of how these two  
registers combine and influence the x-axis gyroscope  
measurements.  
Table 86. ZG_BIAS_LOW Bit Definitions  
Bits Description  
[15:0] Z-axis gyroscope offset correction; lower word  
Table 87. ZG_BIAS_HIGH Register Definition  
Addresses  
Default  
Access  
Flash Backup  
0x4A, 0x4B  
0x0000  
R/W  
Yes  
Table 88. ZG_BIAS_HIGH Bit Definitions  
Bits Description  
FACTORY  
X-AXIS  
GYRO  
CALIBRATION  
AND  
[15:0] Z-axis gyroscope offset correction factor, upper word  
X_GYRO_OUT X_GYRO_LOW  
FILTERING  
The ZG_BIAS_LOW (see Table 85 and Table 86) and ZG_BIAS_  
HIGH (see Table 87 and Table 88) registers combine to allow  
users to adjust the bias of the z-axis gyroscopes. The data format  
examples in Table 13 also apply to the ZG_BIAS_HIGH register,  
and the data format examples in Table 14 apply to the 32-bit  
combination of the ZG_BIAS_LOW and ZG_BIAS_HIGH registers.  
XG_BIAS_HIGH XG_BIAS_LOW  
Figure 56. User Calibration Signal Path, Gyroscopes  
Rev. B | Page 31 of 41  
 
 
 
 
 
 
 
 
 
 
 
 
ADIS16505  
Data Sheet  
These registers influence the z-axis gyroscope measurements in  
the same manner that the XG_BIAS_LOW and XG_BIAS_HIGH  
registers influence the x-axis gyroscope measurements (see  
Figure 56).  
The YA_BIAS_LOW (see Table 93 and Table 94) and  
YA_BIAS_HIGH (see Table 95 and Table 96) registers combine to  
allow users to adjust the bias of the y-axis accelerometers. The data  
format examples in Table 27 also apply to the YA_BIAS_HIGH  
register, and the data format examples in Table 28 apply to the  
32-bit combination of the YA_BIAS_LOW and YA_BIAS_HIGH  
registers. These registers influence the y-axis accelerometer  
measurements in the same manner that the XA_BIAS_LOW  
and XA_BIAS_HIGH registers influence the x-axis accelerometer  
measurements (see Figure 57).  
Calibration, Accelerometer Bias (XA_BIAS_LOW and  
XA_BIAS_HIGH)  
Table 89. XA_BIAS_LOW Register Definition  
Addresses  
Default  
Access  
Flash Backup  
0x4C, 0x4D  
0x0000  
R/W  
Yes  
Calibration, Accelerometer Bias (ZA_BIAS_LOW and  
ZA_BIAS_HIGH)  
Table 90. XA_BIAS_LOW Bit Definitions  
Bits  
Description  
[15:0]  
X-axis accelerometer offset correction; lower word  
Table 97. ZA_BIAS_LOW Register Definition  
Addresses  
Default  
Access  
Flash Backup  
Table 91. XA_BIAS_HIGH Register Definition  
0x54, 0x55  
0x0000  
R/W  
Yes  
Addresses  
Default  
Access  
Flash Backup  
0x4E, 0x4F  
0x0000  
R/W  
Yes  
Table 98. ZA_BIAS_LOW Bit Definitions  
Bits Description  
Table 92. XA_BIAS_HIGH Bit Definitions  
Bits Description  
[15:0] Z-axis accelerometer offset correction; lower word  
[15:0] X-axis accelerometer offset correction, upper word  
Table 99. ZA_BIAS_HIGH Register Definition  
Addresses  
Default  
Access  
Flash Backup  
The XA_BIAS_LOW (see Table 89 and Table 90) and XA_BIAS_  
HIGH (see Table 91 and Table 92) registers combine to allow  
users to adjust the bias of the x-axis accelerometers. The data  
format examples in Table 27 also apply to the XA_BIAS_HIGH  
register and the data format examples in Table 28 apply to the  
32-bit combination of the XA_BIAS_LOW and XA_BIAS_HIGH  
registers. See Figure 57 for an illustration of how these two registers  
combine and influence the x-axis accelerometer measurements.  
0x56, 0x57  
0x0000  
R/W  
Yes  
Table 100. ZA_BIAS_HIGH Bit Definitions  
Bits Description  
[15:0] Z-axis accelerometer offset correction, upper word  
The ZA_BIAS_LOW (see Table 97 and Table 98) and ZA_BIAS_  
HIGH (see Table 99 and Table 100) registers combine to allow  
users to adjust the bias of the z-axis accelerometers. The data  
format examples in Table 27 also apply to the ZA_BIAS_HIGH  
register and the data format examples in Table 28 apply to the  
32-bit combination of the ZA_BIAS_LOW and ZA_BIAS_HIGH  
registers. These registers influence the z-axis accelerometer  
measurements in the same manner that the XA_BIAS_LOW  
and XA_BIAS_HIGH registers influence the x-axis accelerometer  
measurements (see Figure 57).  
FACTORY  
X-AXIS  
ACCL  
CALIBRATION  
AND  
X_ACCL_OUT X_ACCL_LOW  
FILTERING  
XA_BIAS_HIGH  
XA_BIAS_LOW  
Figure 57. User Calibration Signal Path, Accelerometers  
Calibration, Accelerometer Bias (YA_BIAS_LOW and  
YA_BIAS_HIGH)  
Table 93. YA_BIAS_LOW Register Definition  
Addresses  
Default  
Access  
Flash Backup  
0x50, 0x51  
0x0000  
R/W  
Yes  
Table 94. YA_BIAS_LOW Bit Definitions  
Bits  
Description  
[15:0]  
Y-axis accelerometer offset correction; lower word  
Table 95. YA_BIAS_HIGH Register Definition  
Addresses  
Default  
Access  
Flash Backup  
0x52, 0x53  
0x0000  
R/W  
Yes  
Table 96. YA_BIAS_HIGH Bit Definitions  
Bits Description  
[15:0] Y-axis accelerometer offset correction, upper word  
Rev. B | Page 32 of 41  
 
 
 
 
 
 
 
 
 
 
Data Sheet  
ADIS16505  
Filter Control Register (FILT_CTRL)  
Miscellaneous Control Register (MSC_CTRL)  
Table 101. FILT_CTRL Register Definition  
Table 105. MSC_CTRL Register Definition  
Addresses  
Default  
Access  
Flash Backup  
Addresses  
Default  
Access  
Flash Backup  
0x5C, 0x5D  
0x0000  
R/W  
Yes  
0x60, 0x61  
0x00C1  
R/W  
Yes  
Table 102. FILT_CTRL Bit Definitions  
Bits Description  
[15:3] Not used  
Table 106. MSC_CTRL Bit Definitions  
Bits Description  
[15:10] Not used  
[2:0]  
Filter Size Variable B; number of taps in each stage; N = 2B,  
where B = 0 to 6 (decimal). Changes to this register may  
take up to 30 ꢀs after writing to indicate the new value  
during readback.  
9
8
7
6
BURST32. 32-bit burst enable bit. The user must wait  
until a full data ready cycle until the burst array  
updates with the desired data type. Changes to this bit  
may take up to 200 ꢀs after writing to indicate the new  
value during readback.  
1 = 32-bit burst data.  
0 = 16-bit burst data (default).  
The FILT_CTRL register (see Table 101 and Table 102) provides  
user controls for the Bartlett window FIR filter (see Figure 31),  
which contains two cascaded averaging filters. For example, use  
the following sequence to set Register FILT_CTRL, Bits[2:0] =  
0100, which sets each stage to have 16 taps: 0xCC04 and 0xCD00.  
Figure 58 provides the frequency response for several settings in  
the FILT_CTRL register.  
BURST_SEL. Burst read output array selection. This bit  
controls what calibrated data is in a burst read.  
Changes to this bit may take up to 200 ꢀs after writing  
to indicate the new value during readback.  
1 = burst data has delta angle and delta velocity data.  
0 = burst data has gyroscope and accelerometer data  
(default).  
0
–20  
–40  
–60  
–80  
Linear acceleration compensation for gyroscopes.  
When enabled, factory calibrated linear acceleration  
compensation data is applied to the gyroscope  
outputs. Changes to this bit may take up to 200 ꢀs after  
writing to indicate the new value during readback.  
1 = enabled.  
0 = disabled (default).  
Point of percussion alignment. When set, this bit allows  
for relocation of the acceleration sensors to a common  
point of percussion on the package corner by  
considering angular rotations. Changes to this bit may  
take up to 200 ꢀs after writing to indicate the new  
value during readback.  
–100  
N = 2  
–120  
N = 4  
N = 16  
N = 64  
–140  
0.001  
0.01  
0.1  
1
FREQUENCY (f/fS)  
1 = enabled.  
Figure 58. Bartlett Window, FIR Filter Frequency Response  
(Phase Delay = N Samples)  
0 = disabled (default).  
Not used. Always set to 0.  
5
4
Range Identifier (RANG_MDL)  
SENS_BW. Internal sensor bandwidth. Changing this  
bit reinitializes the sensors, and the user must wait  
until the DR pin starts toggling after changing this bit.  
This operation may require up to 250 ms to complete.  
Table 103. RANG_MDL Register Definition  
Addresses  
Default  
Access  
Flash Backup  
0x5E, 0x5F  
Not applicable  
R
No  
0 = wide bandwidth (default), see Table 1.  
1 = 370 Hz. The gyroscope group delay increases by  
0.17 ms and the accelerometer group delay increases  
by 0.63 ms in this mode.  
Table 104. RANG_MDL Bit Definitions  
Bits  
Description  
[3:2]  
SYNC mode select (see the Clock Control section for  
more information). The user must wait until the DR pin  
starts toggling after changing these bits and/or the  
UP_SCALE register in order to correctly read back the  
new values. However, the user can write these registers  
in succession before waiting for the DR pin to resume  
toggling.  
[15:3]  
[3:2]  
Not used  
Gyroscope measurement range  
00 = 125°/sec (ADIS16505-1BMLZ)  
01 = 500°/sec (ADIS16505-2BMLZ)  
10 = reserved  
11 = 2000°/sec (ADIS16505-3BMLZ)  
Reserved, binary value = 11  
00 = internal SYNC (default). Internal 2 kHz clock used.  
[1:0]  
01 = direct input sync mode. The user provides an  
external input clock between 1900 Hz and 2100 Hz.  
10 = scaled sync mode. The user provides an external  
input clock between 1 Hz and 128 Hz, which upscales  
to 1900 Hz to 2100 Hz inside the ADIS16505.  
Rev. B | Page 33 of 41  
 
 
 
 
 
 
ADIS16505  
Data Sheet  
Sync Mode Select  
Bits  
Description  
11 = output sync mode. Identical to internal sync mode,  
except the SYNC pin functions as an output signal,  
indicating when the internal clock samples sensors.  
Refer to the Clock Control section for the functions of the sync  
mode select bits.  
Sync Input Frequency Multiplier (UP_SCALE)  
1
SYNC polarity (input or output). Changes to this bit  
may take up to 200 ꢀs after writing to indicate the new  
value during readback.  
1 = rising edge triggers sampling.  
0 = falling edge triggers sampling (default).  
Table 107. UP_SCALE Register Definition  
Addresses  
Default  
Access  
Flash Backup  
0x62, 0x63  
0x07D0  
R/W  
Yes  
0
DR polarity. This bit controls the polarity of the DR pin.  
Changes to this bit may take up to 200 ꢀs after writing  
to indicate the new value during readback.  
Table 108. UP_SCALE Bit Definitions  
Bits  
Description  
[15:0]  
KECSF; binary format. The user must wait until the DR  
1 = active high when data is valid.  
pin starts toggling after changing this register and/or  
MSC_CTRL[3:2] to correctly read back the new values.  
However, the user can write these registers in succession  
before waiting for the DR pin to resume toggling.  
0 = active low when data is valid (default).  
Point of Percussion  
Register MSC_CTRL, Bit 6 (see Table 106) offers an on/off control  
for the point of percussion alignment function, which maps the  
accelerometer sensors to the corner of the package that is closest  
to Pin A1 (see Figure 59). The factory default setting in the  
MSC_CTRL register activates this function. To turn this function  
off while retaining the rest of the factory default settings in the  
MSC_CTRL register, set Register MSC_CTRL, Bit 6 = 0 using  
the following command sequence on the DIN pin: 0xE081, then  
0xE100.  
Refer to the Clock Control section for the function and  
programming of the UP_SCALE register.  
Decimation Filter (DEC_RATE)  
Table 109. DEC_RATE Register Definition  
Addresses  
Default  
Access  
Flash Backup  
0x64, 0x65  
0x0000  
R/W  
Yes  
Table 110. DEC_RATE Bit Definitions  
Bits  
Description  
[15:11]  
[10:0]  
Don’t care  
Decimation rate, binary format, maximum = 1999.  
Changes to this register may take up to 30 ꢀs after  
writing to indicate the new value during readback.  
K1  
The DEC_RATE register (see Table 109 and Table 110) provides  
user control for the averaging decimating filter, which averages  
and decimates the gyroscope and accelerometer data; it also  
extends the time that the delta angle and the delta velocity track  
between each update. When the ADIS16505 operates in internal  
clock mode (see Register MSC_CTRL, Bits[3:2], in Table 106),  
the nominal output data rate is equal to 2000/(DEC_RATE + 1).  
For example, set DEC_RATE = 0x0013 to reduce the output  
sample rate to 100 SPS (2000 ÷ 20) using the following DIN pin  
sequence: 0xE413, then 0xE500.  
A10  
POINT OF  
PERCUSSION  
A1  
Figure 59. Point of Percussion Reference Point  
Linear Acceleration Effect on Gyroscope Bias  
Register MSC_CTRL, Bit 7 (see Table 106) provides an on/off  
control for the linear acceleration compensation in the signal  
calibration routines of the gyroscope. The factory default  
contents in the MSC_CTRL register enable this compensation.  
To turn the compensation off, set Register MSC_CTRL,  
Bit 7 = 0 using the following sequence on the DIN pin: 0xE041,  
0xEF00.  
Data Update Rate in External Sync Modes  
When using the input sync option in scaled sync mode  
(Register MSC_CTRL, Bits[3:2] = 10, see Table 106), the  
output data rate is equal to  
(fSYNC × KECSF)/(DEC_RATE + 1)  
where:  
f
K
SYNC is the frequency of the clock signal on the SYNC pin.  
ESCF is the value from the UP_SCALE register (see Table 108).  
When using direct sync mode, KESCF = 1.  
Rev. B | Page 34 of 41  
 
 
 
 
 
Data Sheet  
ADIS16505  
Flash Memory Update  
Global Commands (GLOB_CMD)  
Use the following DIN sequence to set Register GLOB_CMD,  
Bit 3 = 1, which triggers a backup of all user configurable registers  
in the flash memory: 0xE808, then 0xE900. Register DIAG_STAT,  
Bit 2 (see Table 11), identifies success (0) or failure (1) in  
completing this process.  
Table 111. GLOB_CMD Register Definition  
Addresses  
Default  
Access  
Flash Backup  
0x68, 0x69  
Not applicable  
W
No  
Table 112. GLOB_CMD Bit Definitions  
Bits  
Description  
Sensor Self Test  
[15:8]  
Not used  
Use the following DIN sequence to set Register GLOB_CMD,  
Bit 2 = 1, which triggers the self test routine for the inertial sensors:  
0xE804, then 0xE900. The self test routine uses the following  
steps to validate the integrity of each inertial sensor:  
7
Software reset  
Not used  
[6:5]  
4
Flash memory test  
Flash memory update  
Sensor self test  
Factory calibration restore  
Not used  
3
1. Measure the output on each sensor.  
2
2. Activate an internal stimulus on the mechanical elements of  
each sensor to move them in a predicable manner and  
create an observable response in the sensors.  
1
0
The GLOB_CMD register (see Table 111 and Table 112) provides  
trigger bits for several operations. Write a 1 to the appropriate  
bit in GLOB_CMD to start a particular function. During the  
execution of these commands, data production stops, pulsing stops  
on the DR pin, and the SPI interface does not respond to requests.  
Table 1 provides the execution time for each GLOB_CMD  
command.  
3. Measure the output response on each sensor.  
4. Deactivate the internal stimulus on each sensor.  
5. Calculate the difference between the sensor measurements  
from Step 1 (stimulus is off) and from Step 4 (stimulus is on).  
6. Compare the difference with internal pass and fail criteria.  
7. Report the pass and fail result to Register DIAG_STAT, Bit 5  
(see Table 11).  
Software Reset  
Motion during the execution of this test can indicate a false failure.  
Use the following DIN sequence to set Register GLOB_CMD,  
Bit 7 = 1, which triggers a reset: 0xE880, then 0xE900. This reset  
clears all data, and then restarts data sampling and processing.  
This function provides a firmware alternative to toggling the  
Factory Calibration Restore  
Use the following DIN sequence to set Register GLOB_CMD,  
Bit 1 = 1, to restore the factory default settings for the MSC_  
CTRL, DEC_RATE, and FILT_CTRL registers and to clear all  
user configurable bias correction settings: 0xE802, then 0xE900.  
Executing this command results in writing 0x0000 to the following  
registers: XG_BIAS_LOW, XG_BIAS_HIGH, YG_BIAS_LOW,  
YG_BIAS_HIGH, ZG_BIAS_LOW, ZG_BIAS_ HIGH,  
XA_BIAS_LOW, XA_BIAS_HIGH, YA_BIAS_LOW,  
RST  
pin (see Table 5, Pin F3).  
Flash Memory Test  
Use the following DIN sequence to set Register GLOB_CMD,  
Bit 4 = 1, which tests the flash memory: 0xE810, then 0xE900.  
The command performs a CRC computation on the flash memory  
(excluding user register locations) and compares it to the original  
CRC value, which comes from the factory configuration process.  
If the current CRC value does not match the original CRC  
value, Register DIAG_STAT, Bit 6 (see Table 11), rises to 1,  
indicating a failing result.  
YA_BIAS_HIGH, ZA_BIAS_LOW, and ZA_BIAS_HIGH.  
Rev. B | Page 35 of 41  
 
 
ADIS16505  
Data Sheet  
The PROD_ID register (see Table 119 and Table 120) contains  
the numerical portion of the device number (16,505). See Figure 41  
for an example of how to use a looping read of this register to  
validate the integrity of the communication.  
Firmware Revision (FIRM_REV)  
Table 113. FIRM_REV Register Definition  
Addresses  
Default  
Access  
Flash Backup  
0x6C, 0x6D  
Not applicable  
R
Yes  
Serial Number (SERIAL_NUM)  
Table 114. FIRM_REV Bit Definitions  
Table 121. SERIAL_NUM Register Definition  
Bits  
Description  
Addresses  
Default  
Access  
Flash Backup  
[15:0]  
Firmware revision, binary coded decimal (BCD) format  
0x74, 0x75  
Not applicable  
R
Yes  
The FIRM_REV register (see Table 113 and Table 114) provides  
the firmware revision for the internal firmware. This register uses a  
BCD format where each nibble represents a digit. For example,  
if FIRM_REV = 0x0104, the firmware revision is 1.04.  
Table 122. SERIAL_NUM Bit Definitions  
Bits Description  
[15:0] Lot specific serial number  
Firmware Revision Day and Month (FIRM_DM)  
Scratch Registers (USER_SCR_1 to USER_SCR_3)  
Table 115. FIRM_DM Register Definition  
Table 123. USER_SCR_1 Register Definition  
Addresses  
Default  
Access  
Flash Backup  
Addresses  
Default  
Access  
Flash Backup  
0x6E, 0x6F  
Not applicable  
R
Yes  
0x76, 0x77  
Not applicable  
R/W  
Yes  
Table 116. FIRM_DM Bit Definitions  
Table 124. USER_SCR_1 Bit Definitions  
Bits Description  
Bits  
Description  
[15:8]  
[7:0]  
Factory configuration month, BCD format  
Factory configuration day, BCD format  
[15:0] User defined  
Table 125. USER_SCR_2 Register Definition  
The FIRM_DM register (see Table 115 and Table 116)  
Addresses  
Default  
Access  
Flash Backup  
contains the month and day of the factory configuration date.  
Register FIRM_DM, Bits[15:8], contain digits that represent the  
month of the factory configuration. For example, November is  
the 11th month in a year and is represented by Register FIRM_DM,  
Bits[15:8] = 0x11. Register FIRM_DM, Bits[7:0], contain the  
day of factory configuration. For example, the 27th day of the  
month is represented by Register FIRM_DM, Bits[7:0] = 0x27.  
0x78, 0x79  
Not applicable  
R/W  
Yes  
Table 126. USER_SCR_2 Bit Definitions  
Bits Description  
[15:0] User defined  
Table 127. USER_SCR_3 Register Definition  
Firmware Revision Year (FIRM_Y)  
Addresses  
Default  
Access  
Flash Backup  
0x7A, 0x7B  
Not applicable  
R/W  
Yes  
Table 117. FIRM_Y Register Definition  
Addresses  
Default  
Access  
Flash Backup  
Table 128. USER_SCR_3 Bit Definitions  
Bits Description  
[15:0] User defined  
0x70, 0x71  
Not applicable  
R
Yes  
Table 118. FIRM_Y Bit Definitions  
The USER_SCR_1 (see Table 123 and Table 124), USER_SCR_2  
(see Table 125 and Table 126), and USER_SCR_3 (see Table 127  
and Table 128) registers provide three locations for the user to  
store information. For nonvolatile storage, use the manual flash  
memory update command (Register GLOB_CMD, Bit 3, see  
Table 112) after writing information to these registers.  
Bits  
Description  
[15:0]  
Factory configuration year, BCD format  
The FIRM_Y register (see Table 117 and Table 118) contains  
the year of the factory configuration date. For example, the  
year, 2017, is represented by FIRM_Y = 0x2017.  
Product Identification (PROD_ID)  
Table 119. PROD_ID Register Definition  
Addresses  
Default  
Access  
Flash Backup  
0x72, 0x73  
0x4079  
R
Yes  
Table 120. PROD_ID Bit Definitions  
Bits  
Description  
[15:0]  
Product identification = 0x4079  
Rev. B | Page 36 of 41  
 
 
 
 
 
 
 
 
 
 
 
 
 
Data Sheet  
ADIS16505  
Flash Memory Endurance Counter (FLSHCNT_LOW and  
FLSHCNT_HIGH)  
The FLSHCNT_LOW (see Table 129 and Table 130) and  
FLSHCNT_HIGH (see Table 131 and Table 132) registers  
combine to provide a 32-bit, binary counter that tracks the  
number of flash memory write cycles. In addition to the  
number of write cycles, the flash memory has a finite service  
lifetime, which depends on the junction temperature. Figure 60  
provides guidance for estimating the retention life for the flash  
memory at specific junction temperatures. The junction  
temperature is approximately 7°C above the case temperature.  
Table 129. FLSHCNT_LOW Register Definition  
Addresses  
Default  
Access  
Flash Backup  
0x7C, 0x7D  
Not applicable  
R
Yes  
Table 130. FLSHCNT_LOW Bit Definitions  
Bits Description  
[15:0] Flash memory write counter, low word  
Table 131. FLSHCNT_HIGH Register Definition  
600  
450  
300  
Addresses  
Default  
Access  
Flash Backup  
0x7E, 0x7F  
Not applicable  
R
Yes  
Table 132. FLSHCNT_HIGH Bit Definitions  
Bits Description  
[15:0] Flash memory write counter, high word  
150  
0
30  
40  
55  
70  
85  
100  
125  
135  
150  
JUNCTION TEMPERATURE (°C)  
Figure 60. Flash Memory Retention  
Rev. B | Page 37 of 41  
 
 
 
 
 
ADIS16505  
Data Sheet  
APPLICATIONS INFORMATION  
ASSEMBLY AND HANDLING TIPS  
Package Attributes  
PCB Layout Suggestions  
Figure 62 shows an example of the pad design and layout  
for the ADIS16505 on a PCB. This example uses a solder mask  
opening with a diameter of 0.73 mm, around a metal pad that  
has a diameter of 0.56 mm. When using a material for the system  
PCB that has similar thermal expansion properties as the  
substrate material of the ADIS16505, the system PCB can also  
use the solder mask to define the pads that support attachment  
to the balls of the ADIS16505. The coefficient of thermal  
expansion (CTE) in the substrate of the ADIS16505 is  
approximately 14 ppm/°C.  
The ADIS16505 is a multichip module package that has a 100-ball  
BGA interface. This package has three basic attributes that  
influence its handling and assembly to the PCB of the system:  
the lid, the substrate, and the BGA pattern. The material of the  
lid is a liquid crystal polymer (LCP), and its nominal thickness  
is 0.5 mm. The substrate is a laminate that has a nominal thickness  
of 1.57 mm. The solder ball material is SAC305, and each ball  
has a nominal diameter of 0.75 mm ( 0.15 mm). The BGA  
pattern is a 10 × 10 array.  
0.73  
All electrical and physical connections are through the 10 × 10  
array shown in Figure 62. The bottom view in Figure 66 shows  
additional features from the manufacture of the ADIS16505  
that are not relevant to the mounting or use of the ADIS16505.  
(MASK OPENING)  
0.56  
(COPPER PAD)  
Assembly Tips  
When attaching the ADIS16505 to a PCB, follow these guidelines:  
The ADIS16505 supports solder reflow attachment processes  
in accordance with J-STD-020E.  
Limit device exposure to one pass through the solder  
reflow process (no rework).  
The hole in the top of the lid (see Figure 61) provides venting  
and pressure relief during the assembly process of the  
ADIS16505. This hole must be kept clear while attaching  
the ADIS16505 to a PCB. Although, covering the hole in  
normal operation is not typically a problem.  
1.27  
1.27  
ALL DIMENSIONS IN MILLIMETERS  
Figure 62. Recommend PCB Pattern, Solder Mask Defined Pads  
Underfill  
Underfill can be a useful technique in managing certain threats  
to the integrity of the solder joints of the ADIS16505, including  
peeling stress and extended exposure to vibration. When selecting  
underfill material and developing an application and curing  
process, ensure that the material fills the gap between each surface  
(the ADIS16505 substrate and system PCB) and adheres to  
both surfaces. The ADIS16505 does not require the use of  
underfill materials in applications that do not anticipate exposure  
to these types of mechanical stresses and when the CTE of the  
system PCB is close to the same value as the CTE of the  
substrate of the ADIS16505 (~14 ppm/°C).  
OPENING IN  
PACKAGE LID  
K1  
A10  
A1  
Figure 61. Pressure Relief Hole  
Use no clean flux and avoid exposing the device to  
cleaning solvents that can penetrate the inside of the  
ADIS16505 through multiple paths.  
Manage moisture exposure prior to the solder reflow  
processing in accordance with J-STD-033, Moisture  
Sensitivity Level 5.  
Avoid exposing the ADIS16505 to mechanical shock  
survivability that exceeds the maximum rating in Table 3.  
In standard PCB processing, high speed handling equipment  
and panel separation processes often present the most risk of  
introducing harmful levels of mechanical shock survivability.  
Process Validation and Control  
These guidelines provide a starting point for developing a process  
for attaching the ADIS16505 to a system PCB. Because each  
system and situation can present unique requirements for this  
attachment process, ensure that the process supports optimal  
solder joint integrity, verify that the final system meets all  
environmental test requirements, and establish observation  
and control strategies for all key process attributes (for example,  
peak temperatures, dwell times, and ramp rates).  
Rev. B | Page 38 of 41  
 
 
 
 
Data Sheet  
ADIS16505  
POWER SUPPLY CONSIDERATIONS  
The electrical interface (J1) on each breakout board comes from  
a dual row, 2 mm pitch, 16-pin interface, which supports standard  
ribbon cabling (1 mm pitch). Table 134 provides the J1 pin  
assignments, which support direct connection with an  
embedded processor board using standard ribbon cables.  
Although each case may present its own set of sensitivities  
(such as electromagnetic interference (EMI)), these boards can  
typically support reliable communication over ribbon cables up  
to 20 cm in length.  
The ADIS16505 contains 6 ꢀF of decoupling capacitance across  
the VDD and GND pins. When the VDD voltage rises from 0 V  
to 3.3 V, the charging current for this capacitor bank imposes  
the following current profile (in amperes):  
dVDD  
dt  
dVDD  
dt  
t
   
IDD  
t
C  
6106   
where:  
IDD(t) is the current demand on the VDD pin during the initial  
power supply ramp, with respect to time.  
Table 134. J1 Pin Assignments, Breakout Board  
C is the internal capacitance across the VDD and GND pins (6 ꢀF).  
VDD(t) is the voltage on the VDD pin, with respect to time.  
J1 Pin Number  
Signal  
Function  
1
RST  
Reset  
2
3
SCLK  
CS  
SPI  
SPI  
For example, if VDD follows a linear ramp from 0 V to 3.3 V,  
in 66 ꢀs, the charging current is 300 mA for that timeframe.  
The ADIS16505 also contains embedded processing functions  
that present transient current demands during initialization or  
reset recovery operations. During these processes, the peak  
current demand reaches 250 mA and occurs at a time that is  
approximately 40 ms after VDD reaches 3.0 V (or ~40 ms  
after initiating a reset sequence).  
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
DOUT  
NC  
DIN  
GND  
GND  
GND  
VDD  
VDD  
VDD  
DR  
SPI  
No connect  
SPI  
Ground  
Ground  
Ground  
Power, 3.3 V  
Power, 3.3 V  
Power, 3.3 V  
Data ready  
Input clock  
No connect  
No connect  
EVALUATION TOOLS  
Breakout Boards  
The ADIS16505 has three difference breakout boards, which  
provide a simple way to connect an ADIS16505 model and an  
existing embedded processor platform. Table 133 provides a list  
of the model numbers for each breakout board, along with the  
ADIS16505 model that is on each breakout board. Figure 63  
shows the ADIS16505-2 which is identical to the ADIS16505-1  
and ADIS16505-3 boards.  
SYNC  
NC  
NC  
Figure 64 provides a top view of the breakout board, including  
dimensional locations for all the key mechanical features, such as  
the mounting holes and the 16-pin header. Figure 65 provides an  
electrical schematic for this breakout board. For additional  
information, refer to the ADIS1650x-x/PCBZ Breakout Board  
Wiki Guide.  
PC-Based Evaluation, EVAL-ADIS2  
In addition to supporting quick prototype connections between  
the ADIS16505 and an embedded processing system, J1 on the  
breakout boards also connects directly to J1 on the EVAL-ADIS2  
evaluation system. When used in conjunction with the IMU  
Evaluation Software for the EVAL-ADISX Platforms, the  
EVAL-ADIS2 provides a simple, functional test platform that  
allows users to configure and collect data from the ADIS16505  
IMUs.  
Figure 63. ADIS16505-2 Breakout Board  
Table 133. Breakout Board Models  
Breakout Board Model  
ADIS16505-1/PCBZ  
ADIS16505-2/PCBZ  
ADIS16505-3/PCBZ  
ADIS16505 Model  
ADIS16505-1BMLZ  
ADIS16505-2BMLZ  
ADIS16505-3BMLZ  
Rev. B | Page 39 of 41  
 
 
 
 
 
ADIS16505  
Data Sheet  
6.03  
ADIS1650x - x / PCB  
08 - 050552 - 01 - A  
5.125  
Z
R2  
Y
J1  
X
U1  
10  
1
2
16.99  
A1  
33.25  
K
15  
16  
16.99  
5.125  
ML / BEL  
8 / 24 / 18  
3.62  
3.62  
30.7  
DIMENSIONS SHOWN IN MILLIMETERS  
Figure 64. Top View of the ADIS16505 Breakout Board  
VDD  
VDD  
DIN  
SCLK  
DOUT  
DR  
SYNC  
G6  
H6  
D3  
F6  
F3  
H3  
J6  
J3  
C3  
E3  
DIN  
DOUT  
DIO0  
DIO1  
DNC  
SCLK  
GND  
GND  
RST  
U1  
RST  
VDD  
ADIS16500  
CS  
G3  
CS  
GND  
GND  
VDD  
R2  
10kΩ  
J1  
RST  
SCLK  
CS  
1
2
3
DOUT  
4
5
6
DIN  
7
8
9
10  
11  
12  
13  
14  
15  
16  
DR  
SYNC  
GND  
Figure 65. ADIS16505 Breakout Board Schematic  
Rev. B | Page 40 of 41  
 
 
Data Sheet  
ADIS16505  
PACKAGING AND ORDERING INFORMATION  
OUTLINE DIMENSIONS  
15.127  
11.430  
REF  
15.000 SQ  
14.873  
1.785  
BSC  
1.270  
BSC  
A1 BALL  
CORNER INDICATOR  
A1 BALL  
CORNER  
INDICAT  
OR  
10  
9
8
7
6
5
4
3
2
1
A
B
C
D
E
F
1.785  
BSC  
G
H
J
K
0.900  
TOP VIEW  
BOTTOM VIEW  
Ø 0.750  
0.600  
3.450  
3.400  
3.350  
SIDE VIEW  
6.077  
5.720  
5.363  
0.900  
0.750  
0.600  
SEATING  
PLANE  
Figure 66. 100-Ball Ball Grid Array Module [BGA]  
(ML-100-1)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
Package Description  
Package Option  
ML-100-1  
ML-100-1  
ADIS16505-1BMLZ  
ADIS16505-2BMLZ  
ADIS16505-3BMLZ  
ADIS16505-1/PCBZ  
ADIS16505-2/PCBZ  
ADIS16505-3/PCBZ  
100-Ball Ball Grid Array Module [BGA]  
100-Ball Ball Grid Array Module [BGA]  
100-Ball Ball Grid Array Module [BGA]  
ADIS16505-1 Breakout Board  
ADIS16505-2 Breakout Board  
ADIS16505-3 Breakout Board  
ML-100-1  
1 Z = RoHS Compliant Part.  
©2019–2020 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D17328-7/20(B)  
Rev. B | Page 41 of 41  
 
 
 
 

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY