ADL5353XCPZ-R7 [ADI]

IC,RF MIXER,BICMOS,LLCC,20PIN,PLASTIC;
ADL5353XCPZ-R7
型号: ADL5353XCPZ-R7
厂家: ADI    ADI
描述:

IC,RF MIXER,BICMOS,LLCC,20PIN,PLASTIC

信息通信管理
文件: 总16页 (文件大小:1262K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
2300 MHz to 2900 MHz Balanced Mixer,  
LO Buffer, IF Amplifier, and RF Balun  
ADL5353  
Preliminary Technical Datasheet  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
IFGM  
20  
IFOP  
19  
IFON  
18  
PWDN  
17  
LEXT  
16  
RF frequency range of 2300 MHz to 2900 MHz  
IF frequency range of 30 MHz to 450 MHz  
Power conversion gain: 8.5 dB  
ADL5353  
1
2
3
4
5
15  
14  
13  
12  
11  
VPIF  
RFIN  
LOI2  
SSB noise figure of 9.9 dB  
SSB noise figure with 5 dBm blocker of 21 dB  
Input IP3 of 25 dBm  
Input P1dB of 10.6 dBm  
Typical LO drive of 0 dBm  
Single-ended, 50 Ω RF and LO input ports  
High isolation SPDT LO input switch  
Single-supply operation: 3.3 V to 5 V  
Exposed paddle 5 mm × 5 mm, 20-lead LFCSP  
1500 V HBM/500 V FICDM ESD performance  
VPSW  
VGS1  
VGS0  
LOI1  
RFCT  
COMM  
COMM  
BIAS  
GENERATOR  
APPLICATIONS  
6
7
LGM3  
8
9
10  
Cellular base station receivers  
Transmit observation receivers  
Radio link downconverters  
VLO3  
VLO2  
LOSW  
NC  
NC = NO CONNECT  
Figure 1.  
The ADL5353 provides two switched LO paths that can be used  
in TDD applications where it is desirable to rapidly switch  
between two local oscillators. LO current can be externally set  
using a resistor to minimize dc current commensurate with the  
desired level of performance. For low voltage applications, the  
ADL5353 is capable of operation at voltages down to 3.3 V with  
substantially reduced current. Under low voltage operation, an  
additional logic pin is provided to power down (<200 μA) the  
circuit when desired.  
GENERAL DESCRIPTION  
The ADL5353 uses a highly linear, doubly balanced passive  
mixer core along with integrated RF and LO balancing circuitry  
to allow for single-ended operation. The ADL5353 incorporates  
an RF balun, allowing for optimal performance over a 2300 MHz  
to 2900 MHz The balanced passive mixer arrangement provides  
good LO-to-RF leakage, typically better than −39 dBm, and  
excellent intermodulation performance. The balanced mixer  
core also provides extremely high input linearity, allowing the  
device to be used in demanding cellular applications where in-  
band blocking signals may otherwise result in the degradation  
of dynamic performance. A high linearity IF buffer amplifier  
follows the passive mixer core to yield a typical power conversion  
gain of 8.4 dB and can be used with a wide range of output  
impedances.  
The ADL5353 is fabricated using a BiCMOS high performance  
IC process. The device is available in a 5 mm × 5 mm, 20-lead  
LFCSP and operates over a −40°C to +85°C temperature range.  
An evaluation board is also available.  
Table 1. Passive Mixers  
RF Frequency  
(MHz)  
Single  
Mixer  
Single Mixer  
and IF Amp  
Dual Mixer  
and IF Amp  
500 to 1700  
1200 to 2500  
2300 to 2900  
ADL5367  
ADL5365  
ADL5357  
ADL5355  
ADL5353  
ADL5358  
ADL5356  
ADL5854  
PrA  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks are theproperty of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2010 Analog Devices, Inc. All rights reserved.  
ADL5353  
Preliminary Technical Datasheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
RF Subsystem.................................................................................8  
LO Subsystem ................................................................................8  
Applications Information.............................................................. 10  
Basic Connections...................................................................... 10  
IF Port .......................................................................................... 10  
Bias Resistor Selection............................................................... 10  
Mixer VGS Control DAC .......................................................... 10  
Evaluation Board ............................................................................ 12  
Outline Dimensions....................................................................... 15  
Ordering Guide .......................................................................... 15  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Specifications..................................................................................... 3  
5 V Performance........................................................................... 4  
Absolute Maximum Ratings............................................................ 5  
ESD Caution.................................................................................. 5  
Pin Configuration and Function Descriptions............................. 6  
Typical Performance Characteristics ............................................. 7  
5 V Performance........................................................................... 7  
Circuit Description........................................................................... 8  
Rev. PrA | Page 2 of 16  
Preliminary Technical Datasheet  
ADL5353  
SPECIFICATIONS  
VS = 5 V, IS = 190 mA, TA = 25°C, fRF = 2600 MHz, fLO = 2803 MHz, LO power = 0 dBm, ZO = 50 Ω, unless otherwise noted.  
Table 2.  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
RF INPUT INTERFACE  
Return Loss  
Tunable to >20 dB over a limited bandwidth  
TBD  
50  
dB  
Ω
MHz  
Input Impedance  
RF Frequency Range  
OUTPUT INTERFACE  
Output Impedance  
IF Frequency Range  
DC Bias Voltage1  
LO INTERFACE  
2300  
2900  
Differential impedance, f = 200 MHz  
Externally generated  
230||0.75  
5.0  
Ω||pF  
MHz  
V
30  
3.3  
450  
5.5  
LO Power  
Return Loss  
−6  
0
TBD  
50  
+10  
TBD  
0.4  
dBm  
dB  
Ω
Input Impedance  
LO Frequency Range  
POWER-DOWN (PWDN) INTERFACE 2  
PWDN Threshold  
Logic 0 Level  
TBD  
MHz  
1.0  
V
V
Logic 1 Level  
1.4  
V
PWDN Response Time  
Device enabled, IF output to 90% of its final level  
Device disabled, supply current < 5 mA  
Device enabled  
160  
220  
0.0  
70  
ns  
ns  
μA  
μA  
PWDN Input Bias Current  
Device disabled  
1 Apply the supply voltage from the external circuit through the choke inductors.  
2 PWDN function is intended for use with VS ≤ 3.6 V only.  
Rev. PrA | Page 3 of 16  
ADL5353  
Preliminary Technical Datasheet  
5 V PERFORMANCE  
VS = 5 V, IS = 190 mA, TA = 25°C, fRF = 2600 MHz, fLO = 2803 MHz, LO power = 0 dBm, VGS0 = VGS1 = 0 V, and ZO = 50 Ω, unless  
otherwise noted.  
Table 3.  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
DYNAMIC PERFORMANCE  
Power Conversion Gain  
Voltage Conversion Gain  
SSB Noise Figure  
Including 4:1 IF port transformer and PCB loss  
ZSOURCE = 50 Ω, differential ZLOAD = 200 Ω differential  
8.5  
14.5  
9.9  
dB  
dB  
dB  
dB  
SSB Noise Figure Under Blocking  
5 dBm blocker present 10 MHz from wanted RF input,  
LO source filtered  
TBD  
Input Third-Order Intercept (IIP3)  
Input Second-Order Intercept (IIP2)  
fRF1 = 2599.5 MHz, fRF2 = 2600.5 MHz, fLO = 2803 MHz,  
each RF tone at −10 dBm  
fRF1 = 2600 MHz, fRF2 = 2650 MHz, fLO = 2803 MHz,  
each RF tone at −10 dBm  
25  
48  
dBm  
dBm  
Input 1 dB Compression Point (IP1dB)  
LO-to-IF Leakage  
LO-to-RF Leakage  
RF-to-IF Isolation  
IF/2 Spurious  
IF/3 Spurious  
10.6  
−15  
−36  
−28  
−63  
−73  
dBm  
dBm  
dBm  
dBc  
dBc  
dBc  
Unfiltered IF output  
−10 dBm input power  
−10 dBm input power  
POWER SUPPLY  
Positive Supply Voltage  
Quiescent Current  
4.5  
5
5.5  
V
LO supply, resistor programmable  
IF supply, resistor programmable  
VS = 5 V  
TBD  
TBD  
186  
mA  
mA  
mA  
Total Quiescent Current  
Rev. PrA | Page 4 of 16  
Preliminary Technical Datasheet  
ADL5353  
ABSOLUTE MAXIMUM RATINGS  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Table 4.  
Parameter  
Supply Voltage, VS  
RF Input Level  
Rating  
5.5 V  
20 dBm  
13 dBm  
6.0 V  
LO Input Level  
IFOP, IFON Bias Voltage  
VGS0, VGS1, LOSW, PWDN  
Internal Power Dissipation  
θJA  
Maximum Junction Temperature  
Operating Temperature Range  
Storage Temperature Range  
Lead Temperature Range (Soldering, 60 sec)  
5.5 V  
1.2 W  
25°C/W  
150°C  
−40°C to +85°C  
−65°C to +150°C  
260°C  
ESD CAUTION  
Rev. PrA | Page 5 of 16  
ADL5353  
Preliminary Technical Datasheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
PIN 1  
INDICATOR  
VPIF 1  
RFIN 2  
15 LOI2  
14 VPSW  
13 VGS1  
12 VGS0  
11 LOI1  
ADL5353  
TOP VIEW  
(Not to Scale)  
RFCT  
COMM  
COMM  
3
4
5
NOTES  
1. NC = NO CONNECT.  
2. EXPOSED PAD. MUST BE SOLDERED  
TO GROUND.  
Figure 2. Pin Conꢀguration  
Table 5. Pin Function Descriptions  
Pin No. Mnemonic Description  
1
2
VPIF  
RFIN  
Positive Supply Voltage for IF Ampliꢀer.  
RF Input. Must be ac-coupled.  
3
RFCT  
COMM  
RF Balun Center Tap (AC Ground).  
Device Common (DC Ground).  
4, 5  
6, 8  
7
9
10  
VLO3, VLO2 Positive Supply Voltages for LO Ampliꢀer.  
LGM3  
LOSW  
NC  
LO Ampliꢀer Bias Control.  
LO Switch. LOI1 selected for 0 V, and LOI2 selected for 3 V.  
No Connect.  
11, 15  
12, 13  
14  
LOI1, LOI2  
LO Inputs. Must be ac-coupled.  
VGS0, VGS1 Mixer Gate Bias Controls. 3 V logic. Ground these pins for nominal setting.  
VPSW  
Positive Supply Voltage for LO Switch.  
16  
LEXT  
IF Return. This pin must be grounded.  
17  
18, 19  
20  
PWDN  
IFON, IFOP  
IFGM  
Power Down. Connect this pin to ground for normal operation and connect this pin to 3.0 V for disable mode.  
Diꢁerential IF Outputs (Open Collectors). Each requires an external dc bias.  
IF Ampliꢀer Bias Control.  
EPAD (EP)  
Exposed pad. Must be soldered to ground.  
Rev. PrA | Page 6 of 16  
Preliminary Technical Datasheet  
ADL5353  
TYPICAL PERFORMANCE CHARACTERISTICS  
5 V PERFORMANCE  
VS = 5 V, IS = 190 mA, TA = 25°C, fRF = 2600 MHz, fLO = 2803 MHz, LO power = 0 dBm, R9 = 1.1 kΩ, R14 = 910 Ω, VGS0 = VGS1 = 0 V,  
and ZO = 50 Ω, unless otherwise noted.  
Figure 3. Supply Current vs. RF Frequency  
Figure 6. Input IP2 vs. RF Frequency  
Figure 4. Power Conversion Gain vs. RF Frequency  
Figure 7. Input P1dB vs. RF Frequency  
Figure 5 .Input IP3 vs. RF Frequency  
Figure 8. SSB Noise Figure vs. RF Frequency  
Rev. PrA | Page 7 of 16  
ADL5353  
Preliminary Technical Datasheet  
CIRCUIT DESCRIPTION  
The ADL5353 consists of two primary components: the radio  
frequency (RF) subsystem and the local oscillator (LO) subsystem.  
The combination of design, process, and packaging technology  
allows the functions of these subsystems to be integrated  
into a single die, using mature packaging and interconnection  
technologies to provide a high performance, low cost design  
with excellent electrical, mechanical, and thermal properties.  
In addition, the need for external components is minimized,  
optimizing cost and size.  
The resulting balanced RF signal is applied to a passive mixer  
that commutates the RF input with the output of the LO subsystem.  
The passive mixer is essentially a balanced, low loss switch that  
adds minimum noise to the frequency translation. The only  
noise contribution from the mixer is due to the resistive loss  
of the switches, which is in the order of a few ohms.  
As the mixer is inherently broadband and bidirectional, it  
is necessary to properly terminate all the idler (M × N product)  
frequencies generated by the mixing process. Terminating the  
mixer avoids the generation of unwanted intermodulation  
products and reduces the level of unwanted signals at the input  
of the IF amplifier, where high peak signal levels can compromise  
the compression and intermodulation performance of the system.  
This termination is accomplished by the addition of a sum  
network between the IF amplifier and the mixer and also in  
the feedback elements in the IF amplifier.  
The RF subsystem consists of an integrated, low loss RF balun,  
passive MOSFET mixer, sum termination network, and IF  
amplifier.  
The LO subsystem consists of an SPDT-terminated FET switch  
and a three-stage limiting LO amplifier. The purpose of the LO  
subsystem is to provide a large, fixed amplitude, balanced signal  
to drive the mixer independent of the level of the LO input.  
The IF amplifier is a balanced feedback design that simultaneously  
provides the desired gain, noise figure, and input impedance that is  
required to achieve the overall performance. The balanced open-  
collector output of the IF amplifier, with impedance modified  
by the feedback within the amplifier, permits the output to be  
connected directly to a high impedance filter, differential amplifier,  
or an analog-to-digital input while providing optimum second-  
order intermodulation suppression. The differential output  
impedance of the IF amplifier is approximately 200 Ω. If operation  
in a 50 Ω system is desired, the output can be transformed to  
50 Ω by using a 4:1 transformer.  
A block diagram of the device is shown in Figure 9.  
IFGM  
IFOP  
IFON  
PWDN  
LEXT  
20  
19  
18  
17  
16  
ADL5353  
1
2
3
4
5
15  
14  
13  
12  
11  
VPIF  
RFIN  
LOI2  
VPSW  
VGS1  
VGS0  
LOI1  
RFCT  
COMM  
COMM  
BIAS  
GENERATOR  
The intermodulation performance of the design is generally  
limited by the IF amplifier. The IP3 performance can be optimized  
by adjusting the IF current with an external resistor.  
Additionally, dc current can be saved by increasing either or  
both resistors. It is permissible to reduce the dc supply voltage  
to as low as 3.3 V, further reducing the dissipated power of the  
part. (Note that no performance enhancement is obtained by  
reducing the value of these resistors and excessive dc power  
dissipation may result.)  
6
7
LGM3  
8
9
10  
VLO3  
VLO2  
LOSW  
NC  
NC = NO CONNECT  
Figure 9. Simplified Schematic  
LO SUBSYSTEM  
RF SUBSYSTEM  
The ADL5353 has two LO inputs permitting multiple synthesizers  
to be rapidly switched with extremely short switching times  
(<40 ns) for frequency agile applications. The two inputs are  
applied to a high isolation SPDT switch that provides a constant  
input impedance, regardless of whether the port is selected, to  
avoid pulling the LO sources. This multiple section switch also  
ensures high isolation to the off input, minimizing any leakage  
from the unwanted LO input that may result in undesired IF  
responses.  
The single-ended, 50 Ω RF input is internally transformed to a  
balanced signal using a low loss (<1 dB) unbalanced-to-balanced  
(balun) transformer. This transformer is made possible by an  
extremely low loss metal stack, which provides both excellent  
balance and dc isolation for the RF port. Although the port can be  
dc connected, it is recommended that a blocking capacitor be  
used to avoid running excessive dc current through the part.  
The RF balun can easily support an RF input frequency range  
of 2300 MHz to 2900 MHz.  
Rev. PrA | Page 8 of 16  
Preliminary Technical Datasheet  
ADL5353  
The single-ended LO input is converted to a fixed amplitude  
differential signal using a multistage, limiting LO amplifier.  
This results in consistent performance over a range of LO input  
power. Optimum performance is achieved from −6 dBm to  
+10 dBm, but the circuit continues to function at considerably  
lower levels of LO input power.  
can operate with a supply voltage as low as 3.3 V, resulting in  
substantial dc power savings.  
In addition, when operating with supply voltages below 3.6 V,  
the ADL5353 has a power-down mode that permits the dc  
current to drop to <200 μA.  
All of the logic inputs are designed to work with any logic family  
that provides a Logic 0 input level of less than 0.4 V and a Logic 1  
input level that exceeds 1.4 V. All logic inputs are high impedance  
up to Logic 1 levels of 3.3 V. At levels exceeding 3.3 V, protection  
circuitry permits operation up to 5.5 V, although a small bias  
current is drawn.  
The performance of this amplifier is critical in achieving a  
high intercept passive mixer without degrading the noise floor  
of the system. This is a critical requirement in an interferer rich  
environment, such as cellular infrastructure, where blocking  
interferers can limit mixer performance. The bandwidth of the  
intermodulation performance is somewhat influenced by the  
current in the LO amplifier chain. For dc current sensitive  
applications, it is permissible to reduce the current in the  
LO amplifier by raising the value of the external bias control  
resistor. For dc current critical applications, the LO chain  
All pins, including the RF pins, are ESD protected and have  
been tested up to a level of 1500 V HBM and 500 V CDM.  
Rev. PrA | Page 9 of 16  
ADL5353  
Preliminary Technical Datasheet  
APPLICATIONS INFORMATION  
BASIC CONNECTIONS  
impedance is needed, use a 4:1 impedance transformer, as  
shown in Figure 10.  
The ADL5353 mixer is designed to downconvert radio  
frequencies (RF) primarily between 2300 MHz and 2900 MHz  
to lower intermediate frequencies (IF) between 30 MHz and  
450 MHz. Figure 10 depicts the basic connections of the mixer.  
It is recommended to ac-couple RF and LO input ports to  
prevent non-zero dc voltages from damaging the RF balun or LO  
input circuit. The RFIN capacitor value of 3 pF is recommended  
to provide the optimized RF input return loss for the desired  
frequency band.  
BIAS RESISTOR SELECTION  
Two external resistors, RBIAS IF and RBIAS LO, are used to adjust the  
bias current of the integrated amplifiers at the IF and LO terminals.  
It is necessary to have a sufficient amount of current to bias both  
the internal IF and LO amplifiers to optimize dc current vs.  
optimum IIP3 performance.  
MIXER VGS CONTROL DAC  
The ADL5353 features two logic control pins, VGS0 (Pin 12) and  
VGS1 (Pin 13), that allow programmability for internal gate-to-  
source voltages for optimizing mixer performance over desired  
frequency bands. The evaluation board defaults both VGS0 and  
VGS1 to ground.  
IF PORT  
The mixer differential IF interface requires pull-up choke inductors  
to bias the open-collector outputs and to set the output match.  
The shunting impedance of the choke inductors used to couple  
dc current into the IF amplifier should be selected to provide  
the desired output return loss.  
The real part of the output impedance is approximately  
200 Ω, which matches many commonly used SAW filters  
without the need for a transformer. This results in a voltage  
conversion gain that is approximately 6 dB higher than the  
power conversion gain, as shown in Table 3. When a 50 Ω output  
Rev. PrA | Page 10 of 16  
Preliminary Technical Datasheet  
ADL5353  
+5V  
100pF  
150pF  
470nH  
470nH  
4:1  
IF OUT  
R
10k  
BIAS IF  
+5V  
20  
19  
18  
17  
16  
10pF  
4.7µF  
22pF  
ADL5353  
+5V  
1
2
3
4
5
15  
14  
13  
12  
11  
LO2 IN  
+5V  
3pF  
RF IN  
10pF  
10pF  
0.1µF  
BIAS  
GENERATOR  
22pF  
LO1 IN  
6
7
8
9
10  
R
BIAS LO  
10kΩ  
+5V  
10pF  
10pF  
Figure 10. Typical Application Circuit  
Rev. PrA | Page 11 of 16  
ADL5353  
Preliminary Technical Datasheet  
EVALUATION BOARD  
An evaluation board is available for the family of double balanced  
mixers. ꢀe standard evaluation board schematic is shown in  
Figure 11. ꢀe evaluation board is fabricated using Rogers®  
RO3003 material. Table 6 describes the various conꢁguration  
options of the evaluation board. Evaluation board layout is shown  
in Figure 12 to Figure 15.  
L5  
470nH  
T1  
IF1-OUT  
VPOS  
C18  
100pF  
C19  
100pF  
L4  
470nH  
R1  
0  
C17  
150pF  
R24  
0Ω  
R25  
0Ω  
PWR_UP  
R21  
10kΩ  
R14  
910Ω  
L3  
0Ω  
C12  
22pF  
LO2_IN  
VPOS  
VPOS  
VPIF  
LOI2  
VPSW  
VGS1  
VGS0  
LOI1  
C2  
C21  
C20  
R22  
10kΩ  
10µF  
10pF  
10pF  
RFIN  
RF-IN  
C22  
1nF  
C1  
3pF  
R23  
15kΩ  
ADL5353  
RFCT  
COMM  
COMM  
C5  
0.01µF  
C4  
10pF  
VGS1  
VGS0  
LO1_IN  
C10  
22nF  
LOSEL  
VPOS  
R9  
1.1kΩ  
C6  
10pF  
R4  
10kΩ  
VPOS  
C8  
10pF  
Figure 11. Evaluation Board Schematic  
Rev. PrA | Page 12 of 16  
Preliminary Technical Datasheet  
ADL5353  
Table 6. Evaluation Board Configuration  
Components  
Description  
Default Conditions  
C2, C6, C8, C18, C19, Power Supply Decoupling. Nominal supply decoupling consists of  
C2 = 10 μF (size 0603),  
C20, C21  
a 10 μF capacitor to ground in parallel with a 10 pF capacitor to  
ground positioned as close to the device as possible.  
C6, C8, C20, C21 = 10 pF (size 0402),  
C18, C19 = 100 pF (size 0402)  
C1, C4, C5  
RF Input Interface. The input channels are ac-coupled through C1.  
C4 and C5 provide bypassing for the center taps of the RF input baluns.  
C1 = 3 pF (size 0402), C4 = 10 pF (size 0402),  
C5 = 0.01 μF (size 0402)  
T1, C17, L4, L5,  
R1, R24, R25  
IF Output Interface. The open-collector IF output interfaces are  
biased through pull-up choke inductors L4 and L5. T1is a 4:1  
impedance transformer used to provide a single-ended IF output  
interface, with C17 providing center-tap bypassing. Remove R1 for  
balanced output operation.  
T1 = TC4-1W+ (Mini-Circuits),  
C17 = 150 pF (size 0402),  
L4, L5 = 470 nH (size 1008),  
R1, R24, R25 = 0 Ω (size 0402)  
C10, C12, R4  
LO Interface. C10 and C12 provide ac coupling for the LO1_IN and  
LO2_IN local oscillator inputs. LOSEL selects the appropriate LO  
input for both mixer cores. R4 provides a pull-down to ensure that  
LO1_IN is enabled when the LOSEL test point is logic low.  
LO2_IN is enabled when LOSEL is pulled to logic high.  
C10, C12 = 22 pF (size 0402),  
R4 = 10 kΩ (size 0402)  
R21  
PWDN Interface. R21 pulls the PWDN logic low and enables the  
device. The PWR_UP test point allows the PWDN interface to be  
exercised using the external logic generator. Grounding the  
PWDN pin for nominal operation is allowed. Using the PWDN pin  
when supply voltages exceed 3.3 V is not allowed.  
R21 = 10 kΩ (size 0402)  
C22, L3, R9, R14, R22, Bias Control. R22 and R23 form a voltage divider to provide 3 V  
C22 = 1 nF (size 0402), L3 = 0 Ω (size 0603),  
R9 = 1.1 kΩ (size 0402), R14 = 910 Ω (size 0402),  
R22 = 10 kΩ (size 0402), R23 = 15 kΩ (size 0402),  
VGS0 = VGS1 = 3-pin shunt  
R23, VGS0, VGS1  
for logic control, bypassed to ground through C22. VGS0 and VGS1  
jumpers provide programmability at the VGS0 and VGS1 pins. It is  
recommended to pull these two pins to ground for nominal  
operation. R9 sets the bias point for the internal LO buffers.  
R14 sets the bias point for the internal IF amplifier.  
Rev. PrA | Page 13 of 16  
ADL5353  
Preliminary Technical Datasheet  
Figure 12. Evaluation Board Top Layer  
Figure 14. Evaluation Board Power Plane, Internal Layer 2  
Figure 13. Evaluation Board Ground Plane, Internal Layer 1  
Figure 15. Evaluation Board Bottom Layer  
Rev. PrA | Page 14 of 16  
Preliminary Technical Datasheet  
OUTLINE DIMENSIONS  
ADL5353  
0.60 MAX  
5.00  
BSC SQ  
0.60 MAX  
PIN 1  
INDICATOR  
15  
16  
20  
1
5
0.65  
BSC  
PIN 1  
INDICATOR  
4.75  
BSC SQ  
3.20  
3.10 SQ  
3.00  
EXPOSED  
PAD  
(BOTTOM VIEW)  
10  
11  
6
0.75  
0.60  
0.50  
TOP VIEW  
2.60 BSC  
0.70  
0.65  
0.60  
12° MAX  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.90  
0.85  
0.80  
0.05 MAX  
0.01 NOM  
SECTION OF THIS DATA SHEET.  
COPLANARITY  
0.05  
0.35  
0.28  
0.23  
SEATING  
PLANE  
0.20 REF  
COMPLIANT TOJEDEC STANDARDS MO-220-VHHC  
Figure 16. 20-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
5 mm × 5 mm Body, Very Thin Quad (CP-20-5)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Temperature  
Range  
Package  
Option  
Ordering  
Quantity  
Model  
Package Description  
ADL5353XCPZ-R71  
ADL5353XCPZ-WP1  
ADL5353-EVALZ1  
−40°C to +85°C  
−40°C to +85°C  
20-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
20-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
Evaluation Board  
CP-20-5  
CP-20-5  
1,500, 7”Tape and Reel  
36, Waꢀe Pack  
1
1 Z = RoHS Compliant Part.  
Rev. PrA | Page 15 of 16  
ADL5353  
NOTES  
Preliminary Technical Datasheet  
©2010 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
PR09117-0-4/10(PrA)  
Rev. PrA | Page 16 of 16  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY