ADL5354ACPZ-R7 [ADI]

2200 MHz TO 2700 MHz, Dual-Balanced Mixer, LO Buffer, IF Amplifier, and RF Balun;
ADL5354ACPZ-R7
型号: ADL5354ACPZ-R7
厂家: ADI    ADI
描述:

2200 MHz TO 2700 MHz, Dual-Balanced Mixer, LO Buffer, IF Amplifier, and RF Balun

电信 信息通信管理 电信集成电路
文件: 总24页 (文件大小:370K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
2200 MHz to 2700 MHz, Dual-Balanced  
Mixer, LO Buffer, IF Amplifier, and RF Balun  
ADL5354  
FUNCTIONAL BLOCK DIAGRAM  
FEATURES  
RF frequency range of 2200 MHz to 2700 MHz  
IF frequency range of 30 MHz to 450 MHz  
Power conversion gain: 8.6 dB  
1
2
3
4
5
6
7
8
9
27  
26  
25  
24  
23  
22  
21  
20  
19  
MNIN  
MNCT  
COMM  
VPOS  
COMM  
VPOS  
COMM  
DVCT  
DVIN  
LOI2  
SSB noise figure of 10.6 dB  
Input IP3 of 26.1 dBm  
Input P1dB of 10.6 dBm  
Typical LO power of 0 dBm  
Single-ended, 50 Ω RF and LO input ports  
High isolation SPDT LO input switch  
Single-supply operation: 3.3 V to 5 V  
Exposed paddle, 6 mm × 6 mm, 36-lead LFCSP  
1500 V HBM/500 V FICDM ESD performance  
VGS2  
VGS1  
VGS0  
LOSW  
PWDN  
VPOS  
COMM  
LOI1  
APPLICATIONS  
ADL5354  
Cellular base station receivers  
Transmit observation receivers  
Radio link downconverters  
Figure 1.  
commensurate with the desired level of performance. For low  
voltage applications, the ADL5354 is capable of operation at  
voltages as low as 3.3 V with substantially reduced current. For  
low voltage operation, an additional logic pin is provided to  
power down (~300 μA) the circuit when desired.  
GENERAL DESCRIPTION  
The ADL5354 uses a highly linear, doubly balanced, passive mixer  
core along with integrated RF and local oscillator (LO) balancing  
circuitry to allow single-ended operation. The ADL5354 incor-  
porates the RF baluns, allowing for optimal performance over a  
2200 MHz to 2700 MHz RF input frequency range. The balanced  
passive mixer arrangement provides good LO-to-RF leakage,  
typically better than −37 dBm, and excellent intermodulation  
performance. The balanced mixer core also provides extremely  
high input linearity, allowing the device to be used in demanding  
cellular applications where in-band blocking signals may other-  
wise result in the degradation of dynamic performance. A high  
linearity IF buffer amplifier follows the passive mixer core to yield  
a typical power conversion gain of 8 dB and can be used with a  
wide range of output impedances.  
The ADL5354 is fabricated using a BiCMOS high performance  
IC process. The device is available in a 6 mm × 6 mm, 36-lead  
LFCSP and operates over a −40°C to +85°C temperature range.  
An evaluation board is also available.  
Table 1. Passive Mixers  
RF Frequency  
(MHz)  
Single  
Mixer  
Single Mixer  
and IF Amp  
Dual Mixer  
and IF Amp  
500 to 1700  
1200 to 2500  
2200 to 2700  
ADL5367  
ADL5365  
ADL5357  
ADL5355  
ADL5353  
ADL5358  
ADL5356  
ADL5354  
The ADL5354 provides two switched LO paths that can be used  
in time division duplex (TDD) applications where it is desirable  
to ping-pong between two local oscillators. LO current can be  
externally set using a resistor to minimize dc current  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2011 Analog Devices, Inc. All rights reserved.  
 
ADL5354  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Spur Tables ...................................................................................... 15  
5 V Performance......................................................................... 15  
3.3 V Performance...................................................................... 15  
Circuit Description......................................................................... 16  
RF Subsystem.............................................................................. 16  
LO Subsystem ............................................................................. 16  
Applications Information.............................................................. 18  
Basic Connections...................................................................... 18  
IF Port .......................................................................................... 18  
Bias Resistor Selection ............................................................... 18  
Mixer VGS Control DAC.......................................................... 18  
Evaluation Board ............................................................................ 20  
Outline Dimensions....................................................................... 22  
Ordering Guide .......................................................................... 22  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
5 V Performance........................................................................... 4  
3.3 V Performance........................................................................ 4  
Absolute Maximum Ratings............................................................ 5  
ESD Caution.................................................................................. 5  
Pin Configuration and Function Descriptions............................. 6  
Typical Performance Characteristics ............................................. 7  
5 V Performance........................................................................... 7  
3.3 V Performance...................................................................... 14  
REVISION HISTORY  
2/11—Revision 0: Initial Version  
Rev. 0 | Page 2 of 24  
 
ADL5354  
SPECIFICATIONS  
VS = 5 V, IS = 350 mA, TA = 25°C, fRF = 2535 MHz, fLO = 2332 MHz, LO power = 0 dBm, RF power = −10 dBm, R1 = R4 = 1.3 kΩ, R2 =  
R5 = 1 kΩ, ZO = 50 ꢀ, VGS0 = VGS1 = VGS2 = 0 V, unless otherwise noted.  
Table 2.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
RF INPUT INTERFACE  
Return Loss  
Tunable to >20 dB over a limited bandwidth  
20  
50  
dB  
Ω
MHz  
Input Impedance  
RF Frequency Range  
OUTPUT INTERFACE  
Output Impedance  
IF Frequency Range  
DC Bias Voltage1  
LO INTERFACE  
2200  
2700  
Differential impedance, f = 200 MHz  
Externally generated  
230||0.75  
5.0  
Ω||pF  
MHz  
V
30  
3.3  
450  
5.5  
LO Power  
−6  
0
+10  
2670  
0.4  
dBm  
dB  
Ω
Return Loss  
13  
50  
Input Impedance  
LO Frequency Range  
POWER-DOWN (PWDN) INTERFACE2  
PWDN Threshold  
Logic 0 Level  
1750  
MHz  
1.0  
V
V
Logic 1 Level  
1.4  
V
PWDN Response Time  
Device enabled, IF output to 90% of its final level  
Device disabled, supply current < 5 mA  
Device enabled  
160  
230  
0
ns  
ns  
μA  
μA  
PWDN Input Bias Current  
Device disabled  
70  
1 Apply supply voltage from external circuit through choke inductors.  
2 PWDN function is intended for use with VS ≤ 3.6 V only.  
Rev. 0 | Page 3 of 24  
 
 
ADL5354  
5 V PERFORMANCE  
VS = 5 V, IS = 350 mA, TA = 25°C, fRF = 2535 MHz, fLO = 2332 MHz, LO power = 0 dBm, RF power = −10 dBm, R1 = R4 = 1.3 kΩ, R2 = R5 = 1 kΩ,  
VGS0 = VGS1 = VGS2 = 0 V, and ZO = 50 ꢀ, unless otherwise noted.  
Table 3.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
DYNAMIC PERFORMANCE  
Power Conversion Gain  
Voltage Conversion Gain  
SSB Noise Figure  
Including 4:1 IF port transformer and PCB loss  
ZSOURCE = 50 Ω, differential ZLOAD = 200 Ω differential  
8.6  
dB  
dB  
dB  
dBm  
14.6  
10.6  
26.1  
Input Third-Order Intercept (IIP3)  
fRF1 = 2534.5 MHz, fRF2 = 2535.5 MHz, fLO = 2332 MHz,  
each RF tone at −10 dBm  
Input Second-Order Intercept (IIP2)  
fRF1 = 2535 MHz, fRF2 = 2585 MHz, fLO = 2332 MHz,  
each RF tone at −10 dBm  
50  
dBm  
Input 1 dB Compression Point (IP1dB)  
LO-to-IF Leakage  
LO-to-RF Leakage  
RF-to-IF Isolation  
IF/2 Spurious  
IF/3 Spurious  
IF Channel-to-Channel Isolation  
POWER SUPPLY  
10.6  
−20.7  
−37  
−34  
−73  
−71  
52  
dBm  
dBm  
dBm  
dBc  
dBc  
dBc  
dB  
Unfiltered IF output  
−10 dBm input power  
−10 dBm input power  
Positive Supply Voltage  
Quiescent Current  
4.75  
5
5.25  
V
LO supply  
IF supply  
VS = 5 V  
170  
180  
350  
mA  
mA  
mA  
Total Quiescent Current  
3.3 V PERFORMANCE  
VS = 3.3 V, IS = 200 mA, TA = 25°C, fRF = 2535 MHz, fLO = 2332 MHz, LO power = 0 dBm, R9 = 226 Ω, R14 = 604 Ω, VGS0 = VGS1 = 0 V,  
and ZO = 50 Ω, unless otherwise noted.  
Table 4.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
DYNAMIC PERFORMANCE  
Power Conversion Gain  
Voltage Conversion Gain  
SSB Noise Figure  
Including 4:1 IF port transformer and PCB loss  
ZSOURCE = 50 Ω, differential ZLOAD = 200 Ω differential  
8
14  
9.9  
17.5  
dB  
dB  
dB  
dBm  
Input Third-Order Intercept (IIP3)  
fRF1 = 2534.5 MHz, fRF2 = 2535.5 MHz, fLO = 2332 MHz, each  
RF tone at −10 dBm  
Input Second-Order Intercept (IIP2)  
fRF1 = 2535 MHz, fRF2 = 2585 MHz, fLO = 2332 MHz, each RF  
tone at −10 dBm  
49  
7
dBm  
dBm  
Input 1 dB Compression Point (IP1dB)  
POWER INTERFACE  
Supply Voltage  
3.0  
3.3  
3.6  
V
Quiescent Current  
Power-Down Current  
Resistor programmable  
Device disabled  
200  
300  
mA  
ꢀA  
Rev. 0 | Page 4 of 24  
 
 
ADL5354  
ABSOLUTE MAXIMUM RATINGS  
Table 5.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Parameter  
Rating  
Supply Voltage, VS  
RF Input Level  
LO Input Level  
MNOP, MNON, DVOP, DVON Bias  
VGS2,VGS1,VGS0, LOSW, PWDN  
Internal Power Dissipation  
Thermal Characteristic θJA  
Maximum Junction Temperature  
Temperature Range  
Operating  
5.5 V  
20 dBm  
13 dBm  
6.0 V  
5.5 V  
2.2 W  
22°C/W  
150°C  
ESD CAUTION  
−40°C to +85°C  
−65°C to +150°C  
260°C  
Storage  
Lead Temperature (Soldering, 60 sec)  
Rev. 0 | Page 5 of 24  
 
ADL5354  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
1
2
3
4
5
6
7
8
9
27 LOI2  
VGS2  
MNIN  
MNCT  
COMM  
VPOS  
COMM  
VPOS  
COMM  
DVCT  
DVIN  
26  
25 VGS1  
VGS0  
ADL5354  
TOP VIEW  
(Not to Scale)  
24  
23 LOSW  
22 PWDN  
21 VPOS  
20  
19  
COMM  
LOI1  
NOTES  
1. NC = NO CONNECT.  
2. EXPOSED PAD MUST BE CONNECTED TO GROUND.  
Figure 2. Pin Configuration  
Table 6. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
2
MNIN  
MNCT  
COMM  
VPOS  
RF Input for Main Channel. Internally matched to 50 Ω. Must be ac-coupled.  
Center Tap for Main Channel Input Balun. Bypass to ground using low inductance capacitor.  
Device Common (DC Ground).  
3, 5, 7, 12, 20, 34  
4, 6, 10, 16, 21, 30, 36  
Positive Supply Voltage.  
8
9
11  
DVCT  
DVIN  
DVGM  
Center Tap for Diversity Channel Input Balun. Bypass to ground using low inductance capacitor.  
RF Input for Diversity Channel. Internally matched to 50 Ω. Must be ac-coupled.  
Diversity Amplifier Bias Setting. Connect a 1.3 kΩ resistor to ground for typical operation.  
13, 14  
DVOP, DVON  
Diversity Channel Differential Open-Collector Outputs. DVOP and DVON should be pulled up to  
VCC using external inductors, see Figure 53 for details.  
15  
17  
18, 28  
19  
DVLE  
DVLG  
NC  
Diversity Channel IF Return. This pin must be grounded.  
Diversity Channel LO Buffer Bias Setting. Connect a 1 kΩ resistor to ground for typical operation.  
No Connect. Do not connect to this pin.  
LOI1  
Local Oscillator Input 1. Internally matched to 50 Ω. Must be ac-coupled.  
22  
PWDN  
Power Down. Connect this pin to ground for normal operation. Connect pin to 3 V for disable  
mode when using VPOS ≤ 3.6 V. PWDN pin must be grounded when VPOS > 3.6 V.  
23  
LOSW  
Local Oscillator Input Selection Switch. Set LOSW high to select LOI1 or set LOSW low to select LOI2.  
24, 25, 26  
VGS0, VGS1,  
VGS2  
Gate to Source Control Voltages. For typical operation, set VGS0, VGS1, and VGS2 to a low logic  
level.  
27  
29  
31  
LOI2  
MNLG  
MNLE  
Local Oscillator Input 2. Internally matched to 50 Ω. Must be ac-coupled.  
Main Channel LO Buffer Bias Setting. Connect a 1 kΩ resistor to ground for typical operation.  
Main Channel IF Return. This pin must be grounded.  
32, 33  
MNOP, MNON  
Main Channel Differential Open-Collector Outputs. Pull up MNOP and MNON to VCC by using  
external inductors, see Figure 53 for details.  
35  
MNGM  
EPAD  
Main Amplifier Bias Setting. Connect a 1.3 kΩ resistor to ground for typical operation.  
Exposed Paddle. Exposed pad must be connected to ground.  
Rev. 0 | Page 6 of 24  
 
ADL5354  
TYPICAL PERFORMANCE CHARACTERISTICS  
5 V PERFORMANCE  
VS = 5 V, IS = 350 mA, TA = 25°C, fRF = 2535 MHz, fLO = 2332 MHz, LO power = 0 dBm, RF power = −10 dBm, R1 = R4 = 1.3 kꢀ, R2 = R5 = 1 kꢀ,  
ZO = 50 ꢀ, VGS0 = VGS1 = VGS2 = 0 V, unless otherwise noted.  
400  
390  
380  
370  
360  
350  
340  
330  
320  
310  
300  
60  
58  
56  
54  
52  
50  
48  
46  
44  
42  
40  
T
= –40°C  
A
T
T
= –40°C  
= +85°C  
A
T
T
= +25°C  
= +85°C  
A
A
A
T
= +25°C  
A
2.20 2.25 2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.70  
2.20 2.25 2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.70  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 3. Supply Current vs. RF Frequency  
Figure 6. Input IP2 vs. RF Frequency  
12  
18  
11  
10  
9
16  
14  
12  
10  
8
T
= –40°C  
A
T
= +85°C  
A
T
T
= +25°C  
= +85°C  
A
8
A
T
= –40°C  
A
T
= +25°C  
A
7
6
6
5
4
2.20 2.25 2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.70  
2.20 2.25 2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.70  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 4. Power Conversion Gain vs. RF Frequency  
Figure 7. Input P1dB vs. RF Frequency  
14  
35  
13  
12  
11  
10  
9
30  
25  
20  
15  
10  
5
T
T
= –40°C  
= +85°C  
A
T
= +85°C  
A
T
= +25°C  
A
T
T
= +25°C  
= –40°C  
A
A
A
8
7
6
2.20 2.25 2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.70  
2.20 2.25 2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.70  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 8. SSB Noise Figure vs. RF Frequency  
Figure 5. Input IP3 vs. RF Frequency  
Rev. 0 | Page 7 of 24  
 
ADL5354  
VS = 5 V, IS = 350 mA, TA = 25°C, fRF = 2535 MHz, fLO = 2332 MHz, LO power = 0 dBm, RF power = −10 dBm, R1 = R4 = 1.3 kꢀ, R2 = R5 = 1 kꢀ,  
ZO = 50 ꢀ, VGS0 = VGS1 = VGS2 = 0 V, unless otherwise noted.  
400  
390  
380  
370  
360  
350  
340  
330  
320  
310  
300  
53  
52  
51  
50  
49  
48  
47  
46  
V
= 5.25V  
S
V
= 5.25V  
S
V
V
= 5.00V  
= 4.75V  
S
S
V
V
= 5.00V  
= 4.75V  
S
S
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80  
TEMPERATURE (°C)  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80  
TEMPERATURE (°C)  
Figure 9. Supply Current vs. Temperature  
Figure 12. Input IP2 vs. Temperature  
9.4  
9.2  
9.0  
8.8  
8.6  
8.4  
8.2  
8.0  
7.8  
15  
14  
13  
12  
11  
10  
9
V
V
= 5.25V  
= 4.75V  
S
S
V
= 5.00V  
S
V
= 5.25V  
S
8
7
V
= 4.75V  
S
6
V
= 5.00V  
S
5
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80  
TEMPERATURE (°C)  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80  
TEMPERATURE (°C)  
Figure 10. Power Conversion Gain vs. Temperature  
Figure 13. Input P1dB vs. Temperature  
12.0  
11.5  
11.0  
10.5  
10.0  
9.5  
29  
28  
27  
26  
25  
24  
23  
22  
21  
V
= 5.25V  
S
V
V
= 5.25V  
= 4.75V  
S
S
V
= 5.00V  
= 4.75V  
S
V
= 5.00V  
S
V
S
9.0  
8.5  
8.0  
7.5  
7.0  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80  
TEMPERATURE (°C)  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80  
TEMPERATURE (°C)  
Figure 14. SSB Noise Figure vs. Temperature  
Figure 11. Input IP3 vs. Temperature  
Rev. 0 | Page 8 of 24  
ADL5354  
VS = 5 V, IS = 350 mA, TA = 25°C, fRF = 2535 MHz, fLO = 2332 MHz, LO power = 0 dBm, RF power = −10 dBm, R1 = R4 = 1.3 kꢀ,  
R2 = R5 = 1 kꢀ, ZO = 50 ꢀ, VGS0 = VGS1 = VGS2 = 0 V, unless otherwise noted.  
400  
390  
380  
60  
58  
56  
54  
52  
50  
48  
46  
44  
42  
40  
T
= –40°C  
A
370  
360  
350  
340  
330  
320  
310  
300  
T
= –40°C  
A
T
= +25°C  
A
T
T
= +25°C  
= +85°C  
A
T
= +85°C  
A
A
30  
80  
130  
180  
230  
280  
330  
380  
430  
430  
430  
30  
80  
130  
180  
230  
280  
330  
380  
430  
430  
430  
IF FREQUENCY (MHz)  
IF FREQUENCY (MHz)  
Figure 15. Supply Current vs. IF Frequency  
Figure 18. Input IP2 vs. IF Frequency  
12  
11  
10  
9
12  
11  
10  
9
T
= +85°C  
= +25°C  
A
T
T
= –40°C  
= +85°C  
A
T
= –40°C  
A
T
A
8
T
= +25°C  
A
A
7
8
6
7
5
4
30  
6
30  
80  
130  
180  
230  
280  
330  
380  
80  
130  
180  
230  
280  
330  
380  
IF FREQUENCY (MHz)  
IF FREQUENCY (MHz)  
Figure 16. Power Conversion Gain vs. IF Frequency  
Figure 19. Input P1dB vs. IF Frequency  
40  
35  
30  
25  
20  
15  
10  
14  
13  
12  
11  
10  
9
T
= –40°C  
A
T
= +25°C  
A
T
= +85°C  
A
8
7
30  
30  
80  
130  
180  
230  
280  
330  
380  
80  
130  
180  
230  
280  
330  
380  
IF FREQUENCY (MHz)  
IF FREQUENCY (MHz)  
Figure 17. Input IP3 vs. IF Frequency  
Figure 20. SSB Noise Figure vs. IF Frequency  
Rev. 0 | Page 9 of 24  
ADL5354  
VS = 5 V, IS = 350 mA, TA = 25°C, fRF = 2535 MHz, fLO = 2332 MHz, LO power = 0 dBm, RF power = −10 dBm, R1 = R4 = 1.3 kꢀ, R2 = R5 = 1 kꢀ,  
ZO = 50 ꢀ, VGS0 = VGS1 = VGS2 = 0 V, unless otherwise noted.  
12  
11  
10  
9
12.0  
11.6  
11.2  
10.8  
10.4  
10.0  
9.6  
T
= +85°C  
A
T
= –40°C  
A
T
= +25°C  
A
T
T
= +25°C  
= +85°C  
A
T
= –40°C  
A
8
A
9.2  
7
8.8  
6
8.4  
5
–6  
8.0  
–6  
–4  
–2  
0
2
4
6
8
10  
10  
10  
–4  
–2  
0
2
4
6
8
10  
LO POWER (dBm)  
LO POWER (dBm)  
Figure 21. Power Conversion Gain vs. LO Power  
Figure 24. Input P1dB vs. LO Power  
32  
30  
28  
26  
24  
22  
20  
18  
16  
–66  
–68  
–70  
–72  
–74  
–76  
–78  
–80  
T
= –40°C  
A
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
T
= +85°C  
A
T
= +25°C  
A
–6  
–4  
–2  
0
2
4
6
8
2.20 2.25 2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.70  
LO POWER (dBm)  
RF FREQUENCY (GHz)  
Figure 22. Input IP3 vs. LO Power  
Figure 25. IF/2 Spurious vs. RF Frequency, RF Power = −10 dBm  
58  
56  
54  
52  
50  
48  
46  
44  
42  
40  
–60  
–62  
–64  
–66  
T
= –40°C  
A
T
= +25°C  
A
T
= +85°C  
A
T
= +85°C  
A
–68  
–70  
–72  
–74  
T
= +25°C  
A
T
= –40°C  
A
–6  
–4  
–2  
0
2
4
6
8
2.20 2.25 2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.70  
LO POWER (dBm)  
RF FREQUENCY (GHz)  
Figure 23. Input IP2 vs. LO Power  
Figure 26. IF/3 Spurious vs. RF Frequency, RF Power = −10 dBm  
Rev. 0 | Page 10 of 24  
ADL5354  
VS = 5 V, IS = 350 mA, TA = 25°C, fRF = 2535 MHz, fLO = 2332 MHz, LO power = 0 dBm, RF power = −10 dBm, R1 = R4 = 1.3 kꢀ, R2 = R5 = 1 kꢀ,  
ZO = 50 ꢀ, VGS0 = VGS1 = VGS2 = 0 V, unless otherwise noted.  
500  
400  
300  
200  
100  
0
10  
100  
80  
60  
40  
20  
0
MEAN = 8.6  
SD = 0.28%  
8
6
RESISTANCE  
4
2
CAPACITANCE  
0
8.3  
8.4  
8.5  
8.6  
8.7  
30  
80  
130  
180  
230  
280  
330  
380  
430  
CONVERSION GAIN (dB)  
IF FREQUENCY (MHz)  
Figure 27. Conversion Gain Distribution  
Figure 30. IF Output Impedance (R Parallel, C Equivalent)  
0
100  
80  
60  
40  
20  
0
MEAN = 26.1  
SD = 0.5%  
–3  
–6  
–9  
–12  
–15  
–18  
–21  
–24  
–27  
23  
24  
25  
26  
27  
28  
2.20 2.25 2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.70  
INPUT IP3 (dBm)  
RF FREQUENCY (GHz)  
Figure 28. Input IP3 Distribution  
Figure 31. RF Return Loss, Fixed IF  
0
–5  
100  
80  
60  
40  
20  
0
MEAN = 10.6  
SD = 0.36%  
–10  
–15  
–20  
–25  
–30  
–35  
SELECTED  
UNSELECTED  
2.00 2.05 2.10 2.15 2.20 2.25 2.30 2.35 2.40 2.45 2.50  
10.0  
10.3  
10.6  
10.9  
11.2  
LO FREQUENCY (GHz)  
INPUT P1dB (dBm)  
Figure 32. LO Return Loss, Selected and Unselected  
Figure 29. Input P1dB Distribution  
Rev. 0 | Page 11 of 24  
ADL5354  
VS = 5 V, IS = 350 mA, TA = 25°C, fRF = 2535 MHz, fLO = 2332 MHz, LO power = 0 dBm, RF power = −10 dBm, R1 = R4 = 1.3 kꢀ,  
R2 = R5 = 1 kꢀ, ZO = 50 ꢀ, VGS0 = VGS1 = VGS2 = 0 V, unless otherwise noted.  
60  
55  
50  
45  
40  
35  
30  
–30  
–32  
–34  
–36  
–38  
–40  
–42  
–44  
–46  
–48  
T
= –40°C  
A
T
= –40°C  
A
T
T
= +25°C  
= +85°C  
A
A
T
= +85°C  
A
T
= +25°C  
A
2.20 2.25 2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.70  
2.00 2.05 2.10 2.15 2.20 2.25 2.30 2.35 2.40 2.45 2.50  
RF FREQUENCY (GHz)  
LO FREQUENCY (GHz)  
Figure 33. LO Switch Isolation vs. RF Frequency  
Figure 36. LO-to-RF Leakages vs. LO Frequency  
–30  
0
–31  
–32  
–33  
–34  
–35  
–36  
–37  
–38  
–39  
–40  
–5  
T
= +85°C  
A
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
2 × LO-TO-RF  
2 × LO-TO-IF  
T
T
= +25°C  
= –40°C  
A
A
2.20 2.25 2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.70  
2.00 2.05 2.10 2.15 2.20 2.25 2.30 2.35 2.40 2.45 2.50  
RF FREQUENCY (GHz)  
LO FREQUENCY (GHz)  
Figure 34 RF-to-IF Isolation vs. RF Frequency  
Figure 37. 2 × LO Leakage vs. LO Frequency  
–30  
0
–35  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
T
= +25°C  
3 × LO-TO-RF  
T
T
= –40°C  
= +85°C  
A
A
A
3 × LO-TO-IF  
2.00 2.05 2.10 2.15 2.20 2.25 2.30 2.35 2.40 2.45 2.50  
2.00 2.05 2.10 2.15 2.20 2.25 2.30 2.35 2.40 2.45 2.50  
LO FREQUENCY (GHz)  
LO FREQUENCY (GHz)  
Figure 38. 3 × LO Leakage vs. LO Frequency  
Figure 35. LO-to-IF Leakage vs. LO Frequency  
Rev. 0 | Page 12 of 24  
ADL5354  
VS = 5 V, IS = 350 mA, TA = 25°C, fRF = 2535 MHz, fLO = 2332 MHz, LO power = 0 dBm, RF power = −10 dBm, R1 = R4 = 1.3 kꢀ, R2 = R5 = 1 kꢀ,  
ZO = 50 ꢀ, VGS0 = VGS1 = VGS2 = 0 V, unless otherwise noted.  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
10  
18  
16  
14  
12  
10  
8
IF BIAS SUPPLY CURRENT  
9
8
7
LO BIAS SUPPLY CURRENT  
6
VGS = 000  
VGS = 011  
VGS = 100  
VGS = 110  
5
4
6
2.20 2.25 2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.70  
0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8  
RF FREQUENCY (GHz)  
BIAS RESISTOR VALUE (k)  
Figure 39. Power Conversion Gain and SSB Noise Figure vs. RF Frequency for  
Various VGS Settings  
Figure 42. LO and IF Supply Current vs. IF and LO Bias Resistor Value  
20  
18  
16  
14  
12  
10  
8
32  
29  
26  
23  
20  
17  
16  
15  
14  
13  
12  
11  
10  
9
30  
27  
24  
21  
18  
15  
12  
9
INPUT IP3  
SSB NOISE FIGURE  
CONVERSION GAIN  
8
6
VGS = 000  
VGS = 011 14  
VGS = 100  
7
3
VGS = 110  
6
11  
6
0
2.20 2.25 2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.70  
0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8  
RF FREQUENCY (GHz)  
IF BIAS RESISTOR VALUE (k)  
Figure 40. Input P1dB and Input IP3 vs. RF Frequency for Various VGS Settings  
Figure 43. Power Conversion Gain, SSB Noise Figure, and Input IP3 vs. IF Bias  
Resistor Value  
62  
14  
13  
12  
11  
10  
9
32  
29  
26  
23  
20  
17  
14  
11  
8
T
= –40°C  
A
60  
58  
56  
54  
52  
50  
INPUT IP3  
T
= +25°C  
A
SSB NOISE FIGURE  
T
= +85°C  
A
CONVERSION GAIN  
8
7
6
0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8  
2.20 2.25 2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.70  
LO BIAS RESISTOR VALUE (k)  
RF FREQUENCY (GHz)  
Figure 41. Power Conversion Gain, SSB Noise Figure, and Input IP3 vs. LO Bias  
Resistor Value  
Figure 44. IF Channel-to-Channel Isolation vs. RF Frequency  
Rev. 0 | Page 13 of 24  
ADL5354  
3.3 V PERFORMANCE  
VS = 3.3 V, IS = 200 mA, TA = 25°C, fRF = 2535 MHz, fLO = 2332 MHz, LO power = 0 dBm, R9 = 226 Ω, R14 = 604 Ω, VGS0 = VGS1 = 0 V,  
and ZO = 50 Ω, unless otherwise noted.  
208  
206  
204  
202  
200  
198  
196  
194  
192  
190  
188  
60  
50  
40  
30  
20  
10  
0
T
= +25°C  
A
T
= –40°C  
= +25°C  
A
T
= +85°C  
A
T
A
T
= –40°C  
A
T
= +85°C  
A
2.20 2.25 2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.70  
2.20 2.25 2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.70  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 45. Supply Current vs. RF Frequency at 3.3 V  
Figure 48. Input IP2 vs. RF Frequency at 3.3 V  
15  
8
6
4
13  
11  
9
T
T
= –40°C  
= +85°C  
A
T
= +25°C  
T
= +85°C  
A
A
2
0
7
T
= +25°C  
A
A
5
–2  
–4  
–6  
–8  
–10  
3
1
–1  
–3  
–5  
T
= –40°C  
A
2.20 2.25 2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.70  
2.20 2.25 2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.70  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 46. Power Conversion Gain vs. RF Frequency at 3.3 V  
Figure 49. Input P1dB vs. RF Frequency at 3.3 V  
25  
22  
20  
18  
16  
14  
12  
10  
8
20  
T
T
= –40°C  
= +85°C  
A
15  
10  
5
T
= +25°C  
A
A
T
T
= +85°C  
= +25°C  
A
A
T
= –40°C  
A
0
6
2.20 2.25 2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.70  
2.20 2.25 2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.70  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 47. Input IP3 vs. RF Frequency at 3.3 V  
Figure 50. SSB Noise Figure vs. RF Frequency at 3.3 V  
Rev. 0 | Page 14 of 24  
 
ADL5354  
SPUR TABLES  
All spur tables are (N × fRF) − (M × fLO) and were measured using the standard evaluation board. Mixer spurious products are measured  
in dBc from the IF output power level. Data was measured only for frequencies less than 6 GHz. Typical noise floor of the measurement  
system = −100 dBm.  
5 V PERFORMANCE  
VS = 5 V, IS = 350 mA, TA = 25°C, fRF = 2500 MHz, fLO = 2297 MHz, LO power = 0 dBm, RF power = −10 dBm, VGS0 = VGS1 = VGS2 = 0 V,  
and ZO = 50 ꢀ, unless otherwise noted.  
M
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
0
−19.7  
0.00  
−95.3  
−28.9  
−65.2  
−73.6  
1
−41.5  
−92.6  
−51.9  
−90.2  
2
−84.3  
3
<−100 <−100 −77.6  
<−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100 <−100  
<−100 <−100  
4
5
6
7
N
8
9
10  
11  
12  
13  
14  
15  
<−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100  
<−100 <−100 <−100  
<−100 <−100  
<−100  
3.3 V PERFORMANCE  
VS = 3.3 V, IS = 200 mA, TA = 25°C, fRF = 2500 MHz, fLO = 2297 MHz, LO power = 0 dBm, RF power = −10 dBm, R1 = R4 = 1.2 kꢀ, R2 =  
R5 = 400 ꢀ, VGS0 = VGS1 = VG2 = 0 V, and ZO = 50 ꢀ, unless otherwise noted.  
M
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
0
−26.5  
0.00  
−36.3  
−58.8  
−64.2  
<−100  
<−100  
1
−40.6  
−87.8  
−55.5  
−79.1  
−70.2  
<−100  
<−100  
2
−77.7  
<−100  
−84.3  
3
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
4
<−100  
<−100  
<−100  
<−100  
<−100  
5
<−100 <−100 <−100  
<−100 <−100 <−100 <−100  
6
7
<−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100 <−100  
N
8
9
<−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100 <−100  
10  
11  
12  
13  
14  
15  
<−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100  
<−100 <−100 <−100  
<−100 <−100  
<−100  
Rev. 0 | Page 15 of 24  
 
ADL5354  
CIRCUIT DESCRIPTION  
The ADL5354 consists of two primary components: the radio  
frequency (RF) subsystem and the local oscillator (LO) subsystem.  
The combination of design, process, and packaging technology  
allows the functions of these subsystems to be integrated into  
a single die using mature packaging and interconnection tech-  
nologies to provide a high performance, low cost design with  
excellent electrical, mechanical, and thermal properties. In  
addition, the need for external components is minimized,  
optimizing cost and size.  
contribution from the mixer is due to the resistive loss of the  
switches, which is in the order of a few ohms.  
Because the mixer is inherently broadband and bidirectional, it  
is necessary to properly terminate all the idler (M × N product)  
frequencies generated by the mixing process. Terminating the  
mixer avoids the generation of unwanted intermodulation  
products and reduces the level of unwanted signals at the input  
of the IF amplifier, where high peak signal levels can compromise  
the compression and intermodulation performance of the system.  
This termination is accomplished by the addition of a sum network  
between the IF amplifier and the mixer and in the feedback  
elements in the IF amplifier.  
The RF subsystem consists of integrated, low loss RF baluns,  
passive MOSFET mixers, sum termination networks, and IF  
amplifiers. The LO subsystem consists of an SPDT-terminated FET  
switch and two multistage limiting LO amplifiers. The purpose of  
the LO subsystem is to provide a large, fixed amplitude, balanced  
signal to drive the mixer independent of the level of the LO input.  
A block diagram of the device is shown in Figure 51.  
The IF amplifier is a balanced feedback design that simultaneously  
provides the desired gain, noise figure, and input impedance that is  
required to achieve the overall performance. The balanced open-  
collector output of the IF amplifier, with impedance modified by  
the feedback within the amplifier, permits the output to be con-  
nected directly to a high impedance filter, differential amplifier, or  
an analog-to-digital input while providing optimum second-order  
intermodulation suppression. The differential output impedance of  
the IF amplifier is approximately 200 Ω. If operation in a 50 Ω  
system is desired, the output can be transformed to 50 Ω by using  
a 4:1 transformer.  
1
2
3
4
5
6
7
8
9
27  
26  
25  
24  
23  
22  
21  
20  
19  
MNIN  
MNCT  
COMM  
VPOS  
COMM  
VPOS  
COMM  
DVCT  
DVIN  
LOI2  
VGS2  
VGS1  
VGS0  
LOSW  
PWDN  
VPOS  
COMM  
LOI1  
The intermodulation performance of the design is generally limited  
by the IF amplifier. The IP3 performance can be optimized by  
adjusting the IF current with an external resistor. Additionally,  
dc current can be saved by increasing either or both resistors. It  
is permissible to reduce the dc supply voltage to as low as 3.3 V,  
further reducing the dissipated power of the part. (No performance  
enhancement is obtained by reducing the value of these resistors,  
and excessive dc power dissipation may result.)  
ADL5354  
LO SUBSYSTEM  
The ADL5354 has two LO inputs permitting multiple synthesizers  
to be rapidly switched with extremely short switching times  
(<40 ns) for frequency agile applications. The two inputs are  
applied to a high isolation SPDT switch that provides a constant  
input impedance, regardless of whether the port is selected, to  
avoid pulling the LO sources. This multiple section switch also  
ensures high isolation to the off input, minimizing any leakage  
from the unwanted LO input that may result in undesired IF  
responses.  
Figure 51. Simplified Schematic  
RF SUBSYSTEM  
The single-ended, 50 Ω RF input is internally transformed to a  
balanced signal using a low loss (<1 dB) unbalanced-to-balanced  
(balun) transformer. This transformer is made possible by an  
extremely low loss metal stack, which provides both excellent  
balance and dc isolation for the RF port. Although the port can be  
dc connected, it is recommended that a blocking capacitor be used  
to avoid running excessive dc current through the part. The RF  
balun can easily support an RF input frequency range of 2200 MHz  
to 2700 MHz.  
The single-ended LO input is converted to a fixed amplitude  
differential signal using a multistage, limiting LO amplifier. This  
results in consistent performance over a range of LO input power.  
Optimum performance is achieved from −6 dBm to +10 dBm,  
but the circuit continues to function at considerably lower levels  
of LO input power.  
The resulting balanced RF signal is applied to a passive mixer that  
commutates the RF input with the output of the LO subsystem.  
The passive mixer is essentially a balanced, low loss switch that  
adds minimal noise to the frequency translation. The only noise  
The performance of this amplifier is critical in achieving a high  
intercept passive mixer without degrading the noise floor of the  
Rev. 0 | Page 16 of 24  
 
 
ADL5354  
system. This is a critical requirement in an interferer rich  
environment, such as cellular infrastructure, where blocking  
interferers can limit mixer performance. The bandwidth of the  
intermodulation performance is somewhat influenced by the  
current in the LO amplifier chain. For dc current sensitive  
applications, it is permissible to reduce the current in the LO  
amplifier by raising the value of the external bias control resistor.  
For dc current critical applications, the LO chain can operate  
with a supply voltage as low as 3.3 V, resulting in substantial  
dc power savings.  
In addition, when operating with supply voltages below 3.6 V, the  
ADL5354 has a power-down mode that permits the dc current  
to drop to ~300 μA.  
The logic inputs are designed to work with any logic family that  
provides a Logic 0 input level of less than 0.4 V and a Logic 1  
input level that exceeds 1.4 V. All logic inputs are high impedance  
up to Logic 1 levels of 3.3 V. At levels exceeding 3.3 V, protection  
circuitry permits operation up to 5.5 V, although a small bias  
current is drawn.  
All pins, including the RF pins, are ESD protected and have  
been tested to a level of 1500 V HBM and 500 V FICDM.  
Rev. 0 | Page 17 of 24  
ADL5354  
APPLICATIONS INFORMATION  
need for a transformer. This results in a voltage conversion gain  
that is approximately 6 dB higher than the power conversion gain,  
as shown in Table 3. When a 50 ꢀ output impedance is needed,  
use a 4:1 impedance transformer, as shown in Figure 52.  
BASIC CONNECTIONS  
The ADL5354 mixer is designed to downconvert radio frequencies  
(RF) primarily between 2200 MHz and 2700 MHz to lower inter-  
mediate frequencies (IF) between 30 MHz and 450 MHz. Figure 52  
depicts the basic connections of the mixer. It is recommended to  
ac couple the RF and LO input ports to prevent nonzero dc  
voltages from damaging the RF balun or LO input circuit. The  
RFIN matching network consists of a series 1.5 pF capacitor and  
a shunt 4.3 nH inductor to provide the optimized RF input return  
loss for the desired frequency band.  
BIAS RESISTOR SELECTION  
The IF bias resistors (R1 and R4) and LO bias resistors (R2 and R5)  
are used to adjust the bias current of the integrated amplifiers at the  
IF and LO terminals. It is necessary to have a sufficient amount  
of current to bias both the internal IF and LO amplifiers to optimize  
dc current vs. optimum IIP3 performance.  
IF PORT  
MIXER VGS CONTROL DAC  
The mixer differential IF interface requires pull-up choke inductors  
to bias the open-collector outputs and to set the output match.  
The shunting impedance of the choke inductors used to couple  
dc current into the IF amplifier should be selected to provide  
the desired output return loss.  
The ADL5354 features three logic control pins, VGS0 (Pin 24),  
VGS1 (Pin 25), and VGS2 (Pin26), that allow programmability for  
internal gate-to-source voltages for optimizing mixer performance  
over desired frequency bands. The evaluation board defaults  
VGS0, VGS1, and VGS2 to ground.  
The real part of the output impedance is approximately 200 ꢀ,  
which matches many commonly used SAW filters without the  
Rev. 0 | Page 18 of 24  
 
ADL5354  
R10  
MAIN_OUTN  
MAIN_OUTP  
C33  
C32  
T1  
C19  
C17  
C27  
C8  
C21  
L2  
L1  
R3  
VCC  
C25  
C18  
R1  
C22  
VCC  
L6  
R2  
28  
VCC  
36  
35  
34  
33  
32  
31  
30  
29  
C9  
C16  
1
2
27  
26  
25  
24  
23  
22  
21  
20  
19  
MAIN_IN  
LO2  
VCC  
Z1  
Z2  
R12  
R7  
R16  
C34  
C3  
C2  
R13  
R8  
3
4
5
6
7
8
9
R14  
R11  
R17  
R15  
VCC  
R19  
VCC  
C26  
C15  
C6  
C7  
ADL5354  
C11  
LO1  
DIV_IN  
C14  
Z3  
Z4  
10  
11  
12  
13  
14  
15  
L3  
C24  
16  
17  
18  
VCC  
+
VCC  
R5  
VCC  
C23  
R4  
C10  
VCC  
R6  
C13  
GND  
L5  
L4  
C1  
C12  
C28  
C20  
C29  
T2  
DIV_OUTP  
DIV_OUTN  
C30  
C31  
R9  
Figure 52. Typical Application Circuit  
Rev. 0 | Page 19 of 24  
 
ADL5354  
EVALUATION BOARD  
An evaluation board is available for the family of double balanced  
mixers. The standard evaluation board schematic is shown in  
Figure 53. The evaluation board is fabricated using Rogers®  
RO3003 material. Table 7 describes the various configuration  
options of the evaluation board. Evaluation board layout is shown  
in Figure 54 and Figure 55.  
R10  
MAIN_OUTN  
C33  
MAIN_OUTP  
C32  
T1  
C19  
C17  
C27  
C8  
C21  
L2  
L1  
R3  
VCC  
C25  
C18  
R1  
C22  
VCC  
R2  
L6  
VCC  
C9  
C16  
LOI2  
MNIN  
MAIN_IN  
LO2  
R12  
R7  
R16  
C34  
Z1  
Z2  
C3  
VGS2  
VGS1  
VGS0  
LOSW  
PWDN  
VPOS  
COMM  
LOI1  
VCC  
MNCT  
COMM  
VPOS  
COMM  
VPOS  
COMM  
DVCT  
DVIN  
C2  
R13  
R8  
R14  
R11  
R17  
ADL5354  
TOP VIEW  
(Not to Scale)  
VCC  
R15  
C6  
C7  
R19  
VCC  
C11  
C26  
C15  
DIV_IN  
Z3  
Z4  
LO1  
C14  
VCC  
VCC  
L3  
R5  
+
C10  
C23  
R4  
VCC  
VCC  
GND  
C24  
C13  
R6  
L4  
L5  
C1  
C12  
C28  
C20  
C29  
T2  
DIV_OUTP  
DIV_OUTN  
C30  
C31  
R9  
Figure 53. Evaluation Board Schematic  
Rev. 0 | Page 20 of 24  
 
 
ADL5354  
Table 7. Evaluation Board Configuration  
Components  
Description  
Default Conditions  
C1, C8, C10, C12,  
C13, C15, C18,  
C21, C22, C23,  
C24, C25, C26  
Power supply decoupling. Nominal supply decoupling consists of  
a 0.01 μF capacitor to ground in parallel with 10 pF capacitors to  
ground positioned as close to the device as possible.  
C10 = 4.7 μF (Size 3216),  
C1, C8, C12, C21 = 150 pF (Size 0402),  
C22, C23, C24, C25, C26 = 10 pF (Size 0402),  
C13, C15, C18 = 0.1 μF (Size 0402)  
Z1 to Z4, C2, C3,  
C6, C7, C9, C11  
RF main and diversity input interface. Main and diversity input  
channels are ac-coupled through C9 and C11. Z1 to Z4 provide  
additional component placement for external matching/filter  
C2, C7 = 10 pF (Size 0402),  
C3, C6 = 0.01 μF (Size 0402),  
C9, C11 = 1.5 pF (Size 0402),  
networks. C2, C3, C6, and C7 provide bypassing for the center taps of Z2, Z4 = 4.3 nH (Size 0402),  
the main and diversity on-chip input baluns. Z1, Z3 = open (Size 0402)  
IF main and diversity output interface. The open-collector IF output C17, C19, C20, C29 to C33 = 0.001 μF (Size 0402),  
T1, T2, C17, C19,  
C20, C27 to C33,  
L1, L2, L4, L5,  
interfaces are biased through the pull-up choke inductors (L1, L2,  
L4, and L5), leaving R3 and R6 available for additional supply  
bypassing. T1 and T2 are 4:1 impedance transformers that are used  
to provide a single-ended IF output interface, and C27 and C28  
provide the center tap bypassing. C17, C19, C20, C29, C30, C31, C32,  
and C33 ensure an ac-coupled output interface. Remove R9 and  
R10 for balanced output operation.  
C27, C28 = 150 pF (Size 0402),  
T1, T2 = TC4-1T+ (Mini-Circuits),  
L1, L2, L4, L5 = 330 nH (Size 0805),  
R3, R6, R9, R10 = 0 Ω (Size 0402)  
R3, R6, R9, R10  
C14, C16,  
R15, LOSEL  
LO interface. C14 and C16 provide ac coupling for the LOI1 and LOI2 C14, C16 = 10 pF (Size 0402),  
local oscillator inputs. LOSEL selects the appropriate LO input for  
both mixer cores. R15 provides a pull-down to ensure LOI2 is enabled  
when the LOSEL jumper is removed. The jumper can be removed to  
allow the LOSEL interface to be exercised by using an external logic  
generator.  
R15 = 10 kΩ (Size 0402),  
LOSEL = 2-pin shunt  
R19, PWDN  
PWDN interface. When the PWDN 2-pin shunt is inserted, the  
ADL5354 is powered down. When R19 is open, it pulls the PWDN  
logic low and enables the device. The jumper can be removed to  
allow PWDN interface to be exercised using an external logic  
generator. Grounding the PWDN pin is allowed during nominal  
operation but is not permitted when supply voltages exceed 3.3 V.  
R19 = 10 kΩ (Size 0402),  
PWDN = 2-pin shunt  
R1, R2, R4, R5, L3,  
L6, R7, R8, R11 to  
Bias control. R16 and R17 form a voltage divider to provide a 3 V for  
logic control, bypassed to ground through C34. Resistors R7, R8, R11,  
R1, R4 = 1.3 kΩ (Size 0402),  
R2, R5 = 1 kΩ (Size 0402),  
L3, L6 = 0 Ω (Size 0603),  
R12, R13, R14 = open (Size 0402),  
R7, R8, R11 = 0 Ω (Size 0402),  
R16 = 10 kΩ (Size 0402),  
R17 = 15 kΩ (Size 0402),  
C34 = 1 nF (Size 0402)  
R14, R16, R17, C34 R12, R13, and R14 provide resistor programmability of VGS0, VGS1,  
and VGS2. Typically, these nodes can be hardwired for nominal  
operation. Grounding these pins is allowed for nominal operation.  
R2 and R5 set the bias point for the internal LO buffers. R1 and R4 set  
the bias point for the internal IF amplifiers. L3 and L6 are external  
inductors used to improve isolation and common-mode rejection.  
Figure 54. Evaluation Board Top Layer  
Figure 55. Evaluation Board Bottom Layer  
Rev. 0 | Page 21 of 24  
 
 
ADL5354  
OUTLINE DIMENSIONS  
6.00  
BSC SQ  
0.60 MAX  
0.60 MAX  
PIN 1  
INDICATOR  
36  
28  
1
9
27  
0.50  
BSC  
PIN 1  
INDICATOR  
3.85  
3.70 SQ  
3.55  
TOP  
VIEW  
5.75  
BSC SQ  
EXPOSED  
PAD  
(BOTTOM VIEW)  
0.75  
0.60  
0.50  
19  
18  
10  
0.20 MIN  
4.00  
REF  
0.80 MAX  
0.65 TYP  
12° MAX  
1.00  
0.85  
0.80  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
0.35  
0.28  
0.23  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.20 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-VJJD-1  
Figure 56. 36-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
6 mm × 6 mm Body, Very Thin Quad (CP-36-1)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
ADL5354ACPZ-R2  
ADL5354ACPZ-R7  
ADL5354-EVALZ  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
Package Description  
Package Option  
CP-36-1  
CP-36-1  
36-Lead LFCSP_VQ  
36-Lead LFCSP_VQ  
Evaluation Board  
1 Z = RoHS Compliant Part.  
Rev. 0 | Page 22 of 24  
 
 
ADL5354  
NOTES  
Rev. 0 | Page 23 of 24  
ADL5354  
NOTES  
©2011 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D09118-0-2/11(0)  
Rev. 0 | Page 24 of 24  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY