ADL5354 [ADI]

2300 MHz to 2900 MHz Balanced Mixer; 2300 MHz至2900 MHz的平衡混频器
ADL5354
型号: ADL5354
厂家: ADI    ADI
描述:

2300 MHz to 2900 MHz Balanced Mixer
2300 MHz至2900 MHz的平衡混频器

文件: 总24页 (文件大小:616K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
2300 MHz to 2900 MHz Balanced Mixer,  
LO Buffer and RF Balun  
ADL5363  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
VCMI  
20  
IFOP  
19  
IFON  
18  
PWDN  
17  
COMM  
16  
RF frequency range of 2300 MHz to 2900 MHz  
IF frequency range of dc to 450 MHz  
Power conversion loss: 7.7 dB  
SSB noise figure of 7.6 dB  
Input IP3 of 31 dBm  
ADL5363  
1
2
3
4
5
15  
14  
13  
12  
11  
VPMX  
RFIN  
LOI2  
Typical LO drive of 0 dBm  
VPSW  
VGS1  
VGS0  
LOI1  
Single-ended, 50 Ω RF and LO input ports  
High isolation SPDT LO input switch  
Single-supply operation: 3.3 V to 5 V  
Exposed pad, 5 mm × 5 mm 20-lead LFCSP  
1500 V HBM/1250 V FICDM ESD performance  
RFCT  
COMM  
COMM  
BIAS  
GENERATOR  
APPLICATIONS  
Cellular base station receivers  
Transmit observation receivers  
Radio link downconverters  
6
7
LGM3  
8
9
10  
GENERAL DESCRIPTION  
VLO3  
VLO2  
LOSW  
NC  
The ADL5363 uses a highly linear, doubly balanced passive  
mixer core along with integrated RF and local oscillator (LO)  
balancing circuitry to allow for single-ended operation. The  
ADL5363 incorporates an RF balun to provide optimal  
performance over a 2300 MHz to 2900 MHz input frequency  
range. The balanced passive mixer arrangement provides good  
LO-to-RF leakage, typically better than −30 dBm, and excellent  
intermodulation performance. The balanced mixer core also  
provides extremely high input linearity, allowing the device to  
be used in demanding cellular applications where in-band  
blocking signals might otherwise result in the degradation of  
dynamic performance.  
NC = NO CONNECT  
Figure 1.  
The ADL5363 provides two switched LO paths that can be used  
in TDD applications where it is desirable to rapidly switch between  
two local oscillators. LO current can be externally set using a  
resistor to minimize dc current commensurate with the desired  
level of performance. For low voltage applications, the ADL5363 is  
capable of operation at voltages down to 3.3 V with substantially  
reduced current. For low voltage operation, an additional logic  
pin is provided to power down (<200 μA) the circuit when desired.  
The ADL5363 is fabricated using a BiCMOS high performance  
IC process. The device is available in a 5 mm × 5 mm, 20-lead  
LFCSP and operates over a −40°C to +85°C temperature range.  
An evaluation board is also available.  
Table 1. Passive Mixers  
Single  
Single Mixer Dual Mixer  
RF Frequency (MHz) Mixer  
and IF Amp  
and IF Amp  
ADL5358  
ADL5356  
ADL5354  
500 to 1700  
1200 to 2500  
2300 to 2900  
ADL5367 ADL5357  
ADL5365 ADL5355  
ADL5363 ADL5353  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2011 Analog Devices, Inc. All rights reserved.  
 
ADL5363  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Upconversion.............................................................................. 15  
Spurious Performance ............................................................... 16  
Circuit Description......................................................................... 17  
RF Subsystem.............................................................................. 17  
LO Subsystem ............................................................................. 18  
Applications Information.............................................................. 19  
Basic Connections...................................................................... 19  
IF Port .......................................................................................... 19  
Bias Resistor Selection ............................................................... 19  
Mixer VGS Control DAC.......................................................... 19  
Evaluation Board ............................................................................ 20  
Outline Dimensions....................................................................... 23  
Ordering Guide .......................................................................... 23  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
5 V Performance........................................................................... 4  
3.3 V Performance........................................................................ 4  
Absolute Maximum Ratings............................................................ 5  
ESD Caution.................................................................................. 5  
Pin Configuration and Function Descriptions............................. 6  
Typical Performance Characteristics ............................................. 7  
5 V Performance........................................................................... 7  
3.3 V Performance...................................................................... 14  
REVISION HISTORY  
7/11—Revision 0: Initial Version  
Rev. 0 | Page 2 of 24  
 
ADL5363  
SPECIFICATIONS  
VS = 5 V, IS = 100 mA, TA = 25°C, fRF = 2535 MHz, fLO = 2738 MHz, LO power = 0 dBm, ZO = 50 Ω, unless otherwise noted.  
Table 2.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
RF INPUT INTERFACE  
Return Loss  
Tunable to >20 dB over a limited bandwidth  
16  
50  
dB  
Ω
MHz  
Input Impedance  
RF Frequency Range  
OUTPUT INTERFACE  
Output Impedance  
IF Frequency Range  
DC Bias Voltage1  
LO INTERFACE  
2300  
2900  
Differential impedance, f = 200 MHz  
Externally generated  
33||-0.3  
5.0  
Ω||pF  
MHz  
V
dc  
3.3  
450  
5.5  
LO Power  
−6  
0
+10  
3350  
0.4  
dBm  
dB  
Ω
Return Loss  
15  
50  
Input Impedance  
LO Frequency Range  
POWER-DOWN (PWDN) INTERFACE2  
PWDN Threshold  
Logic 0 Level  
2330  
MHz  
1.0  
V
V
Logic 1 Level  
1.4  
V
PWDN Response Time  
Device enabled, IF output to 90% of its final level  
Device disabled, supply current <5 mA  
Device enabled  
160  
220  
0.0  
70  
ns  
ns  
μA  
μA  
PWDN Input Bias Current  
Device disabled  
1 Apply the supply voltage from the external circuit through the choke inductors.  
2 The PWDN function is intended for use with VS ≤ 3.6 V only.  
Rev. 0 | Page 3 of 24  
 
ADL5363  
5 V PERFORMANCE  
VS = 5 V, IS = 100 mA, TA = 25°C, fRF = 2535 MHz, fLO = 2738 MHz, LO power = 0 dBm, VGS0 = VGS1 = 0 V, and ZO = 50 Ω, unless  
otherwise noted.  
Table 3.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
DYNAMIC PERFORMANCE  
Power Conversion Loss  
SSB Noise Figure  
Including 1:1 IF port transformer and PCB loss  
7.7  
7.6  
31  
dB  
dB  
dBm  
Input Third-Order Intercept (IIP3)  
fRF1 = 2534.5 MHz, fRF2 = 2535.5 MHz, fLO = 2738 MHz,  
each RF tone at 0 dBm  
Input Second-Order Intercept (IIP2)  
fRF1 = 2535 MHz, fRF2 = 2585 MHz, fLO = 2738 MHz,  
each RF tone at 0 dBm  
62  
dBm  
Input 1 dB Compression Point (IP1dB)1 Exceeding 20 dBm RF power results in damage to the device  
25  
dBm  
dBm  
dBm  
dBc  
dBc  
dBc  
LO-to-IF Leakage  
LO-to-RF Leakage  
RF-to-IF Isolation  
IF/2 Spurious  
Unfiltered IF output  
−22  
−32  
−44  
−61  
−70  
−10 dBm input power  
−10 dBm input power  
IF/3 Spurious  
POWER SUPPLY  
Positive Supply Voltage  
Quiescent Current  
4.5  
5
100  
5.5  
V
mA  
VS = 5 V  
1 Exceeding 20 dBm RF power results in damage to the device.  
3.3 V PERFORMANCE  
VS = 3.3 V, IS = 60 mA, TA = 25°C, fRF = 2535 MHz, fLO = 2738 MHz, LO power = 0 dBm, R9 = 226 Ω, VGS0 = VGS1 = 0 V, and ZO = 50 Ω,  
unless otherwise noted.  
Table 4.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
DYNAMIC PERFORMANCE  
Power Conversion Loss  
SSB Noise Figure  
Including 1:1 IF port transformer and PCB loss  
7.4  
6.8  
26  
dB  
dB  
dBm  
Input Third-Order Intercept (IIP3)  
fRF1 = 2534.5 MHz, fRF2 = 2535.5 MHz, fLO = 2738 MHz,  
each RF tone at 0 dBm  
Input Second-Order Intercept (IIP2)  
fRF1 = 2535 MHz, fRF2 = 2585 MHz, fLO = 2738 MHz,  
each RF tone at 0 dBm  
56  
dBm  
POWER SUPPLY  
Positive Supply Voltage  
Quiescent Current  
3.3  
60  
V
mA  
VS = 5 V  
Rev. 0 | Page 4 of 24  
 
 
 
ADL5363  
ABSOLUTE MAXIMUM RATINGS  
Table 5.  
Parameter  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rating  
5.5 V  
20 dBm  
13 dBm  
6.0 V  
5.5 V  
0.5 W  
25°C/W  
Supply Voltage, VS  
RF Input Level  
LO Input Level  
IFOP, IFON Bias Voltage  
VGS0, VGS1, LOSW, PWDN  
Internal Power Dissipation  
Thermal Resistance, θJA  
Temperature  
ESD CAUTION  
Maximum Junction Temperature  
Operating Temperature Range  
Storage Temperature Range  
Lead Temperature (Soldering, 60 sec)  
150°C  
−40°C to +85°C  
−65°C to +150°C  
260°C  
Rev. 0 | Page 5 of 24  
 
ADL5363  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
PIN 1  
INDICATOR  
VPMX 1  
RFIN 2  
RFCT 3  
COMM 4  
COMM 5  
15 LOI2  
14 VPSW  
13 VGS1  
12 VGS0  
11 LOI1  
ADL5363  
TOP VIEW  
(Not to Scale)  
NOTES  
1. NC = NO CONNECT. DO NOT CONNECT  
TO THIS PIN.  
2. EXPOSED PAD. MUST BE SOLDERED  
TO GROUND.  
Figure 2. Pin Configuration  
Table 6. Pin Function Descriptions  
Pin No. Mnemonic  
Description  
1
2
3
VPMX  
RFIN  
RFCT  
COMM  
Positive Supply Voltage.  
RF Input. Must be ac-coupled.  
RF Balun Center Tap (AC Ground).  
Device Common (DC Ground).  
4, 5,16  
6, 8  
7
9
10  
VLO3, VLO2 Positive Supply Voltages for LO Amplifier.  
LGM3  
LOSW  
NC  
LO Amplifier Bias Control.  
LO Switch. LOI1 selected for 0 V, and LOI2 selected for 3 V.  
No Connect.  
11, 15  
12, 13  
14  
LOI1, LOI2  
LO Inputs. Must be ac-coupled.  
VGS0, VGS1 Mixer Gate Bias Controls. 3 V logic. Ground these pins for nominal setting.  
VPSW  
Positive Supply Voltage for LO Switch.  
17  
18, 19  
20  
PWDN  
IFON, IFOP  
VCMI  
Power Down. Connect this pin to ground for normal operation and connect this pin to 3.0 V for disable mode.  
Differential IF Outputs.  
No Connect. This pin can be grounded.  
EPAD (EP)  
Exposed pad. Must be soldered to ground.  
Rev. 0 | Page 6 of 24  
 
ADL5363  
TYPICAL PERFORMANCE CHARACTERISTICS  
5 V PERFORMANCE  
VS = 5 V, IS = 100 mA, TA = 25°C, fRF = 2535 MHz, fLO = 2738 MHz, LO power = 0 dBm, VGS0 = VGS1 = 0 V, and ZO = 50 Ω, unless  
otherwise noted.  
105  
104  
103  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
T
T
= –40°C  
= +25°C  
A
102  
T
= +85°C  
A
A
101  
100  
T
= +25°C  
A
T
= +85°C  
A
99  
98  
97  
96  
95  
T
= –40°C  
A
2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.70 2.75 2.80 2.85 2.90  
2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.70 2.75 2.80 2.85 2.90  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 3. Supply Current vs. RF Frequency  
Figure 6. Input IP2 vs. RF Frequency  
11  
10.0  
9.5  
9.0  
8.5  
8.0  
7.5  
7.0  
6.5  
6.0  
5.5  
5.0  
10  
9
T
= +25°C  
A
T
= +85°C  
T = +85°C  
A
A
8
T
= –40°C  
A
7
T
= +25°C  
T
= –40°C  
A
A
6
5
2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.70 2.75 2.80 2.85 2.90  
2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.70 2.75 2.80 2.85 2.90  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 7. SSB Noise Figure vs. RF Frequency  
Figure 4. Power Conversion Loss vs. RF Frequency  
40  
38  
36  
34  
32  
30  
28  
26  
24  
22  
20  
T
= –40°C  
A
T
= +25°C  
A
T
= +85°C  
A
2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.70 2.75 2.80 2.85 2.90  
RF FREQUENCY (GHz)  
Figure 5. Input IP3 vs. RF Frequency  
Rev. 0 | Page 7 of 24  
 
ADL5363  
VS = 5 V, IS = 100 mA, TA = 25°C, fRF = 2535 MHz, fLO = 2738 MHz, LO power = 0 dBm, VGS0 = VGS1 = 0 V, and ZO = 50 Ω, unless  
otherwise noted.  
140  
130  
120  
110  
100  
90  
74  
71  
68  
65  
62  
59  
56  
53  
50  
5.25V  
5.00V  
4.75V  
5.25V  
4.75V  
5.00V  
80  
70  
60  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80  
TEMPERATURE (°C)  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80  
TEMPERATURE (°C)  
Figure 8. Supply Current vs. Temperature  
Figure 11. Input IP2 vs. Temperature  
9.1  
8.8  
8.5  
8.2  
7.9  
7.6  
7.3  
7.0  
6.7  
10.0  
9.5  
9.0  
8.5  
8.0  
7.5  
7.0  
6.5  
6.0  
5.5  
5.0  
4.75V  
5.00V  
5.25V  
4.75V  
5.00V  
5.25V  
6.4  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 12. SSB Noise Figure vs. Temperature  
Figure 9. Power Conversion Loss vs. Temperature  
39  
37  
4.75V  
5.00V  
5.25V  
35  
33  
31  
29  
27  
25  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80  
TEMPERATURE (°C)  
Figure 10. Input IP3 vs. Temperature  
Rev. 0 | Page 8 of 24  
ADL5363  
VS = 5 V, IS = 100 mA, TA = 25°C, fRF = 2535 MHz, fLO = 2738 MHz, LO power = 0 dBm, VGS0 = VGS1 = 0 V, and ZO = 50 Ω, unless  
otherwise noted.  
120  
100  
90  
80  
70  
60  
50  
40  
115  
110  
105  
100  
95  
T
= +85°C  
A
T
= –40°C  
A
T
= +85°C  
T
= +25°C  
A
A
T
= +25°C  
A
90  
T
= –40°C  
330  
A
85  
80  
30  
80  
130  
180  
230  
280  
330  
380  
430  
430  
430  
30  
80  
130  
180  
230  
280  
380  
430  
IF FREQUENCY (MHz)  
IF FREQUENCY (MHz)  
Figure 13. Supply Current vs. IF Frequency  
Figure 16. Input IP2 vs. IF Frequency  
8.4  
10.0  
9.5  
9.0  
8.5  
8.0  
7.5  
7.0  
6.5  
8.2  
8.0  
7.8  
7.6  
7.4  
7.2  
T
= +85°C  
A
T
= +25°C  
A
T
= –40°C  
A
7.0  
30  
6.0  
30  
80  
130  
180  
230  
280  
330  
380  
80  
130  
180  
230  
280  
330  
380  
430  
IF FREQUENCY (MHz)  
IF FREQUENCY (MHz)  
Figure 14. Power Conversion Loss vs. IF Frequency  
Figure 17. SSB Noise Figure vs. IF Frequency  
41  
38  
35  
32  
29  
T
= –40°C  
A
T
= +25°C  
T = +85°C  
A
A
26  
23  
20  
30  
80  
130  
180  
230  
280  
330  
380  
IF FREQUENCY (MHz)  
Figure 15. Input IP3 vs. IF Frequency  
Rev. 0 | Page 9 of 24  
ADL5363  
VS = 5 V, IS = 100 mA, TA = 25°C, fRF = 2535 MHz, fLO = 2738 MHz, LO power = 0 dBm, VGS0 = VGS1 = 0 V, and ZO = 50 Ω, unless  
otherwise noted.  
12  
11  
10  
9
–30  
–35  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
T
= +85°C  
A
8
T
= +85°C  
A
7
T
= +25°C  
T
= –40°C  
A
A
6
T
= +25°C  
A
T
= –40°C  
A
5
4
2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.70 2.75 2.80 2.85 2.90  
–6  
–4  
–2  
0
2
4
6
8
10  
10  
10  
RF FREQUENCY (GHz)  
LO POWER (dBm)  
Figure 21. IF/2 Spurious vs. RF Frequency  
Figure 18. Power Conversion Loss vs. LO Power  
–20  
36  
34  
32  
30  
28  
26  
24  
22  
20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
T
= –40°C  
A
T
= +25°C  
A
T
= +85°C  
A
T
= +85°C  
= +25°C  
A
T
= –40°C  
A
T
A
2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.70 2.75 2.80 2.85 2.90  
–6  
–4  
–2  
0
2
4
6
8
RF FREQUENCY (GHz)  
LO POWER (dBm)  
Figure 22. IF/3 Spurious vs. RF Frequency  
Figure 19. Input IP3 vs. LO Power  
80  
70  
T
= +85°C  
= +25°C  
A
60  
50  
40  
30  
20  
10  
0
T
= –40°C  
A
T
A
–6  
–4  
–2  
0
2
4
6
8
LO POWER (dBm)  
Figure 20. Input IP2 vs. LO Power  
Rev. 0 | Page 10 of 24  
ADL5363  
VS = 5 V, IS = 100 mA, TA = 25°C, fRF = 2535 MHz, fLO = 2738 MHz, LO power = 0 dBm, VGS0 = VGS1 = 0 V, and ZO = 50 Ω, unless  
otherwise noted.  
100  
50  
45  
50  
4
3
80  
60  
40  
20  
40  
35  
30  
25  
20  
15  
10  
5
RESISTANCE ()  
2
1
0
–1  
–2  
–3  
–4  
0
CAPACITANCE (pF)  
MEAN: 101.06  
SD: 0.0008%  
0
80  
0
30  
90  
100  
110  
120  
80  
130  
180  
230  
280  
330  
380  
430  
IF FREQUENCY (MHz)  
I
(mA)  
SUPPLY  
Figure 23. Supply Current Distribution  
Figure 26. IF Output Impedance (R Parallel, C Equivalent)  
100  
80  
0
–2  
–4  
–6  
–8  
60  
–10  
–12  
–14  
–16  
–18  
–20  
40  
20  
MEAN: 7.7  
SD: 0.104%  
0
8.2  
8.0  
7.8  
7.6  
7.4  
7.2  
2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.70 2.75 2.80 2.85 2.90  
CONVERSION LOSS DISTRIBUTION (dB)  
RF FREQUENCY (GHz)  
Figure 27. RF Port Return Loss, Fixed IF  
Figure 24.Conversion Loss Distribution  
0
100  
80  
60  
40  
20  
–3  
–6  
–9  
–12  
–15  
–18  
–21  
–24  
–27  
–30  
–33  
–36  
–39  
–42  
–45  
SELECTED  
UNSELECTED  
MEAN: 31.13  
SD: 0.286%  
0
21  
24  
27  
30  
33  
36 39  
2.50 2.55 2.60 2.65 2.70 2.75 2.80 2.85 2.90 2.95 3.00 3.05 3.10  
LO FREQUENCY (GHz)  
INPUT IP3 (dBm)  
Figure 25. Input IP3 Distribution  
Figure 28. LO Return Loss, Selected and Unselected  
Rev. 0 | Page 11 of 24  
 
ADL5363  
VS = 5 V, IS = 100 mA, TA = 25°C, fRF = 2535 MHz, fLO = 2738 MHz, LO power = 0 dBm, VGS0 = VGS1 = 0 V, and ZO = 50 Ω, unless  
otherwise noted.  
60  
57  
54  
0
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
T
= +85°C  
A
51  
T
= –40°C  
A
48  
45  
T
= –40°C  
A
42  
39  
36  
33  
30  
T = +25°C  
A
T
= +85°C  
A
T
= +25°C  
A
2.50 2.55 2.60 2.65 2.70 2.75 2.80 2.85 2.90 2.95 3.00 3.05 3.10  
2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.70 2.75 2.80 2.85 2.90  
LO FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 29. LO Switch Isolation vs. RF Frequency  
Figure 32. LO-to-RF Leakage vs. LO Frequency  
–30  
0
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
–35  
–40  
–45  
–50  
–55  
2xLO TO RF  
2xLO TO IF  
T
= –40°C  
A
T
= +25°C  
= +85°C  
A
T
A
–60  
2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.70 2.75 2.80 2.85 2.90  
2.50 2.55 2.60 2.65 2.70 2.75 2.80 2.85 2.90 2.95 3.00 3.05 3.10  
RF FREQUENCY (GHz)  
LO FREQUENCY (GHz)  
Figure 30. RF-to-IF Isolation vs. RF Frequency  
Figure 33. 2LO Leakage vs. LO Frequency  
–5  
–52  
–55  
–58  
–61  
–64  
–67  
–70  
–73  
–76  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
T
= –40°C  
A
T
= +25°C  
3xLO TO RF  
3xLO TO IF  
A
T
= +85°C  
A
2.50 2.55 2.60 2.65 2.70 2.75 2.80 2.85 2.90 2.95 3.00 3.05 3.10  
2.50 2.55 2.60 2.65 2.70 2.75 2.80 2.85 2.90 2.95 3.00 3.05 3.10  
LO FREQUENCY (GHz)  
LO FREQUENCY (GHz)  
Figure 31. LO-to-IF Leakage vs. LO Frequency  
Figure 34. 3LO Leakage vs. LO Frequency  
Rev. 0 | Page 12 of 24  
ADL5363  
VS = 5 V, IS = 100 mA, TA = 25°C, fRF = 2535 MHz, fLO = 2738 MHz, LO power = 0 dBm, VGS0 = VGS1 = 0 V, and ZO = 50 Ω, unless  
otherwise noted.  
12  
23  
21  
11.0  
10.5  
10.0  
9.5  
32  
31  
30  
29  
28  
27  
26  
VGS = 0, 0  
INPUT IP3 (dBm)  
VGS = 0, 1  
VGS = 1, 0  
VGS = 1, 1  
11  
10  
9
GAIN  
19  
17  
15  
13  
11  
9
8
7
9.0  
6
8.5  
NOISE FIGURE  
5
8.0  
CONVERSION LOSS (dB)  
NOISE FIGURE (dB)  
4
7
7.5  
7.0  
25  
24  
3
5
2
3
2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.70 2.75 2.80 2.85 2.90  
600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800  
RF FREQUENCY (GHz)  
BIAS RESISTOR VALUE ()  
Figure 35. Power Conversion Loss and SSB Noise Figure vs. RF Frequency  
Figure 37. Power Conversion Loss, SSB Noise Figure, and  
Input IP3 vs. IF Bias Resistor Value  
40  
140  
130  
VGS = 0, 0  
VGS = 0, 1  
VGS = 1, 0  
38  
VGS = 1, 1  
36  
120  
110  
100  
90  
34  
32  
30  
28  
26  
24  
22  
80  
70  
20  
60  
2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.70 2.75 2.80 2.85 2.90  
600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800  
RF FREQUENCY (GHz)  
BIAS RESISTOR VALUE ()  
Figure 36. Input IP3 vs. RF Frequency  
Figure 38. Supply Current vs. Bias Resistor Value  
Rev. 0 | Page 13 of 24  
 
 
ADL5363  
3.3 V PERFORMANCE  
VS = 3.3 V, IS = 60 mA, TA = 25°C, fRF = 2535 MHz, fLO = 2738 MHz, LO power = 0 dBm, VGS0 = VGS1 = 0 V, and ZO = 50 Ω, unless  
otherwise noted.  
67  
65  
63  
61  
59  
57  
100  
90  
80  
70  
60  
50  
40  
30  
20  
T
= –40°C  
A
T
= +25°C  
A
T
= +85°C  
A
T = +85°C  
A
T
= +25°C  
A
T
= –40°C  
A
56  
2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.70 2.75 2.80 2.85 2.90  
2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.70 2.75 2.80 2.85 2.90  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 39. Supply Current vs. RF Frequency at 3.3 V  
Figure 42. Input IP2 vs. RF Frequency at 3.3 V  
9.0  
9.0  
8.5  
8.0  
7.5  
7.0  
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
8.5  
8.0  
7.5  
7.0  
6.5  
6.0  
5.5  
5.0  
T
= +85°C  
A
T
= +85°C  
A
T
= +25°C  
A
T
= –40°C  
T
= –40°C  
A
A
T
= +25°C  
A
2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.70 2.75 2.80 2.85 2.90  
2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.70 2.75 2.80 2.85 2.90  
RF FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 40. Power Conversion Loss vs. RF Frequency at 3.3 V  
Figure 43. SSB Noise Figure vs. RF Frequency at 3.3 V  
34  
31  
28  
25  
22  
19  
16  
13  
10  
T
= –40°C  
= +85°C  
A
T
= +25°C  
A
T
A
2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.70 2.75 2.80 2.85 2.90  
RF FREQUENCY (GHz)  
Figure 41. Input IP3 vs. RF Frequency at 3.3 V  
Rev. 0 | Page 14 of 24  
 
ADL5363  
UPCONVERSION  
VS = 5 V, IS = 100 mA, TA = 25°C, fRF = 2535 MHz, fLO = 2738 MHz, LO power = 0 dBm, VGS0 = VGS1 = 0 V, and ZO = 50 Ω, unless  
otherwise noted.  
13  
12  
11  
10  
9
9.0  
8.5  
8.0  
7.5  
7.0  
6.5  
6.0  
5.5  
5.0  
4.5  
T
= +85°C  
= +25°C  
A
T
A
T
= –40°C  
A
8
T
= –40°C  
A
7
T
= +85°C  
A
6
T
= +25°C  
A
5
4
3
4.0  
2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.70 2.75 2.80 2.85 2.90  
2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.70 2.75 2.80 2.85 2.90  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 44. Power Conversion Loss vs. RF Frequency, VS = 5 V, Upconversion  
Figure 46. Power Conversion Loss vs. RF Frequency at 3.3 V, Upconversion  
30  
29  
28  
35  
33  
31  
T
= +85°C  
A
27  
26  
25  
24  
23  
22  
21  
20  
29  
27  
25  
23  
21  
19  
17  
15  
T
= –40°C  
A
T
= +25°C  
A
T
= +25°C  
A
T
= –40°C  
A
T
= +85°C  
A
2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.70 2.75 2.80 2.85 2.90  
2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.70 2.75 2.80 2.85 2.90  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 45. Input IP3 vs. RF Frequency, VS = 5 V, Upconversion  
Figure 47. Input IP3 vs. RF Frequency at 3.3 V, Upconversion  
Rev. 0 | Page 15 of 24  
 
ADL5363  
SPURIOUS PERFORMANCE  
(N × fRF) − (M × fLO) spur measurements were made using the standard evaluation board. Mixer spurious products are measured in dBc  
from the IF output power level. Data was measured only for frequencies less than 6 GHz. Typical noise floor of the measurement system  
= −100 dBm.  
5 V Performance  
VS = 5 V, IS = 100 mA, TA = 25°C, fRF = 2535 MHz, fLO = 2738 MHz, LO power = 0 dBm, RF power = 0 dBm, VGS0 = VGS1 = 0 V, and  
ZO = 50 ꢀ, unless otherwise noted.  
M
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
0
−10.9  
0.0  
−28.3  
−49.3  
−64.6  
−44.5  
−31.2  
−78.4  
1
−42.2  
−75.8  
−49.8  
−78.5  
−90.9  
2
−76.5  
−94.7  
−89.8  
3
<−100 −83.0  
<−100 −73.5  
<−100  
4
<−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100 <−100 <−100 <−100  
5
6
7
N
8
9
10  
11  
12  
13  
14  
15  
<−100 <−100 <−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100  
<−100 <−100 <−100  
<−100 <−100  
3.3 V Performance  
VS = 3.3 V, IS = 56 mA, TA = 25°C, fRF = 2535 MHz, fLO = 2738 MHz, LO power = 0 dBm, RF power = 0 dBm, R9 = 226 Ω, VGS0 = VGS1 =  
0 V, and ZO = 50 Ω, unless otherwise noted.  
M
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
0
−16.9  
0.0  
−35.1  
−49.1  
−62.7  
−61.4  
−30.4  
−68.5  
1
−41.9  
−72.3  
−94.6  
−52.6  
−71.9  
−92.7  
2
−80.3  
−71.6  
<−100  
−75.1  
3
<−100 −61.2  
<−100  
4
<−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100 <−100 <−100 <−100  
5
6
7
N
8
9
10  
11  
12  
13  
14  
15  
<−100 <−100 <−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100  
<−100 <−100 <−100  
<−100  
Rev. 0 | Page 16 of 24  
 
ADL5363  
CIRCUIT DESCRIPTION  
The ADL5363 consists of two primary components: the radio  
frequency (RF) subsystem and the local oscillator (LO) subsystem.  
The combination of design, process, and packaging technology  
allows the functions of these subsystems to be integrated  
into a single die, using mature packaging and interconnection  
technologies to provide a high performance, low cost design  
with excellent electrical, mechanical, and thermal properties.  
In addition, the need for external components is minimized,  
optimizing cost and size.  
RF SUBSYSTEM  
The single-ended, 50 Ω RF input is internally transformed to a  
balanced signal using a low loss (<1 dB) unbalanced-to-balanced  
(balun) transformer. This transformer is made possible by an  
extremely low loss metal stack, which provides both excellent  
balance and dc isolation for the RF port. Although the port can  
be dc connected, it is recommended that a blocking capacitor be  
used to avoid running excessive dc current through the part.  
The RF balun can easily support an RF input frequency range  
of 2300 MHz to 2900 MHz.  
The RF subsystem consists of an integrated, low loss RF balun,  
passive MOSFET mixer, sum termination network.  
The resulting balanced RF signal is applied to a passive mixer  
that commutates the RF input with the output of the LO subsystem.  
The passive mixer is essentially a balanced, low loss switch that  
adds minimum noise to the frequency translation. The only  
noise contribution from the mixer is due to the resistive loss  
of the switches, which is in the order of a few ohms.  
The LO subsystem consists of an SPDT-terminated FET switch  
and a three-stage limiting LO amplifier. The purpose of the LO  
subsystem is to provide a large, fixed amplitude, balanced signal  
to drive the mixer independent of the level of the LO input.  
A block diagram of the device is shown in Figure 48.  
As the mixer is inherently broadband and bidirectional, it  
is necessary to properly terminate all the idler (M × N product)  
frequencies generated by the mixing process. Terminating the  
mixer avoids the generation of unwanted intermodulation  
products and reduces the level of unwanted signals at the IF  
output. This termination is accomplished by the addition of a  
sum network between the IF output and the mixer.  
VCMI  
IFOP  
19  
IFON  
18  
PWDN  
17  
COMM  
16  
20  
ADL5363  
1
2
3
4
5
15  
14  
13  
12  
11  
VPMX  
RFIN  
LOI2  
VPSW  
VGS1  
VGS0  
LOI1  
The IP3 performance can be optimized by adjusting the supply  
current with an external resistor. Figure 37 and 38 illustrate how  
the bias resistor affects the performance with a 5 V supply.  
Additionally, dc current can be saved by increasing either or  
both resistors. It is permissible to reduce the dc supply voltage  
to as low as 3.3 V, further reducing the dissipated power of the  
part. (Note that no performance enhancement is obtained by  
reducing the value of these resistors and excessive dc power  
dissipation may result.)  
RFCT  
COMM  
COMM  
BIAS  
GENERATOR  
6
7
LGM3  
8
9
10  
VLO3  
VLO2  
LOSW  
NC  
NC = NO CONNECT  
Figure 48. Simplified Schematic  
Rev. 0 | Page 17 of 24  
 
 
ADL5363  
interferers can limit mixer performance. The bandwidth of the  
intermodulation performance is somewhat influenced by the  
current in the LO amplifier chain. For dc current sensitive  
applications, it is permissible to reduce the current in the  
LO amplifier by raising the value of the external bias control  
resistor. For dc current critical applications, the LO chain  
can operate with a supply voltage as low as 3.3 V, resulting in  
substantial dc power savings.  
LO SUBSYSTEM  
The ADL5363 has two LO inputs permitting multiple synthesizers  
to be rapidly switched with extremely short switching times  
(<40 ns) for frequency agile applications. The two inputs are  
applied to a high isolation SPDT switch that provides a constant  
input impedance, regardless of whether the port is selected, to  
avoid pulling the LO sources. This multiple section switch also  
ensures high isolation to the off input, minimizing any leakage  
from the unwanted LO input that may result in undesired IF  
responses.  
In addition, when operating with supply voltages below 3.6 V,  
the ADL5363 has a power-down mode that permits the dc  
current to drop to <200 μA.  
The single-ended LO input is converted to a fixed amplitude  
differential signal using a multistage, limiting LO amplifier.  
This results in consistent performance over a range of LO input  
power. Optimum performance is achieved from −6 dBm to  
+10 dBm, but the circuit continues to function at considerably  
lower levels of LO input power.  
All of the logic inputs are designed to work with any logic family  
that provides a Logic 0 input level of less than 0.4 V and a Logic 1  
input level that exceeds 1.4 V. All logic inputs are high impedance  
up to Logic 1 levels of 3.3 V. At levels exceeding 3.3 V, protection  
circuitry permits operation up to 5.5 V, although a small bias  
current is drawn.  
The performance of this amplifier is critical in achieving a  
high intercept passive mixer without degrading the noise floor  
of the system. This is a critical requirement in an interferer rich  
environment, such as cellular infrastructure, where blocking  
All pins, including the RF pins, are ESD protected and have  
been tested up to a level of 1500 V HBM and 1250 V CDM.  
Rev. 0 | Page 18 of 24  
 
ADL5363  
APPLICATIONS INFORMATION  
BASIC CONNECTIONS  
BIAS RESISTOR SELECTION  
An external resistor, RBIAS LO, is used to adjust the bias current  
of the integrated amplifiers at the LO terminals. It is necessary  
to have a sufficient amount of current to bias the internal LO  
amplifier to optimize dc current vs. optimum IIP3 performance.  
Figure 37 and Figure 38 provide the reference for the bias  
resistor selection when lower power consumption is considered  
at the expense of conversion gain and IP3 performance.  
The ADL5363 mixer is designed to downconvert radio frequen-  
cies (RF) primarily between 2300 MHz and 2900 MHz to lower  
intermediate frequencies (IF) between 30 MHz and 450 MHz.  
Figure 49 depicts the basic connections of the mixer. To prevent  
nonzero dc voltages from damaging the RF balun or LO input  
circuit, ac-couple the RF and LO input ports. The RFIN  
matching network consists of a series 1.5 pF capacitor and a  
shunt 12 nH inductor to provide the optimized RF input return  
loss for the desired frequency band.  
MIXER VGS CONTROL DAC  
The ADL5363 features two logic control pins, VGS0 (Pin 12) and  
VGS1 (Pin 13), that allow programmability for internal gate-to-  
source voltages for optimizing mixer performance over desired  
frequency bands. The evaluation board defaults both VGS0 and  
VGS1 to ground.  
IF PORT  
The real part of the output impedance is approximately 50 ꢀ, as  
seen in Figure 26, which matches many commonly used SAW  
filters without the need for a transformer. This results in a  
voltage conversion loss that is approximately the same as the  
power conversion loss, as shown in Table 3.  
IF1_OUT  
R1  
0  
T1  
C25  
560pF  
C24  
560pF  
10kΩ  
+5V  
20  
19  
18  
17  
16  
10pF  
4.7µF  
22pF  
ADL5363  
+5V  
1
2
3
4
5
15  
14  
13  
12  
11  
LO2_IN  
+5V  
10µH  
1.5pF  
12nH  
RF-IN  
10pF  
0.01µF  
10pF  
BIAS  
GENERATOR  
22pF  
LO1_IN  
6
7
8
9
10  
R
BIAS LO  
10kΩ  
+5V  
10pF  
10pF  
Figure 49. Typical Application Circuit  
Rev. 0 | Page 19 of 24  
 
 
ADL5363  
EVALUATION BOARD  
An evaluation board is available for the family of double balanced mixers. The standard evaluation board schematic is shown in Figure 50.  
The evaluation board is fabricated using Rogers® RO3003 material. Table 7 describes the various configuration options of the evaluation  
board. Evaluation board layout is shown in Figure 51 to Figure 54.  
IF1_OUT  
R1  
0  
T1  
C25  
560pF  
C24  
560pF  
PWR_UP  
R21  
10kΩ  
R14  
0Ω  
L3  
0Ω  
C12  
22pF  
LO2_IN  
VPOS  
VPOS  
VPMX  
RFIN  
LOI2  
VPSW  
VGS1  
VGS0  
LOI1  
C2  
C21  
C20  
R22  
10kΩ  
10µF  
10pF  
10pF  
RF-IN  
Z1  
12nH  
C22  
1nF  
C1  
1.5pF  
R23  
15kΩ  
RFCT  
COMM  
COMM  
ADL5363  
C5  
0.01µF  
C4  
10pF  
VGS1  
VGS0  
LO1_IN  
C10  
22pF  
LOSEL  
VPOS  
R9  
1.1kΩ  
C6  
10pF  
R4  
10kΩ  
VPOS  
C8  
10pF  
Figure 50. Evaluation Board Schematic  
Rev. 0 | Page 20 of 24  
 
 
ADL5363  
Table 7. Evaluation Board Configuration  
Components  
Function  
Description  
Default Conditions  
C2, C6, C8,  
C20, C21  
Power supply  
decoupling  
Power Supply Decoupling. Nominal supply decoupling  
consists of a 10 μF capacitor to ground in parallel with a  
10 pF capacitor to ground positioned as close to the device  
as possible.  
C2 = 10 μF (size 0603),  
C6, C8, C20, C21 = 10 pF (size 0402)  
C1, C4, C5, Z1  
T1, R1, C24, C25  
C10, C12, R4  
RF input interface  
RF Input Interface. The input channels are ac-coupled  
through C1. C4 and C5 provide bypassing for the center taps  
of the RF input baluns.  
C1 = 1.5 pF (size 0402),  
C4 = 10 pF (size 0402),  
C5 = 0.01 μF (size 0402)  
Z1= 12 nH (size 0402)  
IF output interface IF Output Interface. T1 is a 1:1 impedance transformer used T1 = TC1-1-13M+ (Mini-Circuits),  
to provide a single-ended IF output interface. Remove R1  
for balanced output operation. C24 and C25 are used to  
block the dc bias at the IF ports.  
R1 = 0 Ω (size 0402),  
C24, C25 = 560 pF (size 0402)  
LO interface  
PWDN interface  
Bias control  
LO Interface. C10 and C12 provide ac coupling for the  
LO1_IN and LO2_IN local oscillator inputs. LOSEL selects  
the appropriate LO input for both mixer cores. R4 provides  
a pull-down to ensure that LO1_IN is enabled when the  
LOSEL test point is logic low. LO2_IN is enabled when  
LOSEL is pulled to logic high.  
C10, C12 = 22 pF (size 0402),  
R4 = 10 kΩ (size 0402)  
R21  
PWDN Interface. R21 pulls the PWDN logic low and enables R21 = 10 kΩ (size 0402)  
the device. The PWR_UP test point allows the PWDN  
interface to be exercised using the an external logic  
generator. Grounding the PWDN pin for nominal operation  
is allowed. Using the PWDN pin when supply voltages  
exceed 3.3 V is not allowed.  
C22, L3, R9, R14,  
R22, R23, VGS0,  
VGS1  
Bias Control. R22 and R23 form a voltage divider to provide  
3 V for logic control, bypassed to ground through C22.  
VGS0 and VGS1 jumpers provide programmability at the  
VGS0 and VGS1 pins. It is recommended to pull these two  
pins to ground for nominal operation. R9 sets the bias  
point for the internal LO buffers.  
C22 = 1 nF (size 0402),  
L3 = 0 Ω (size 0603),  
R9 = 1.1 kΩ (size 0402),  
R14 = 0 Ω (size 0402),  
R22 = 10 kΩ (size 0402),  
R23 = 15 kΩ (size 0402),  
VGS0 = VGS1 = 3-pin shunt  
Rev. 0 | Page 21 of 24  
 
ADL5363  
Figure 51. Evaluation Board Top Layer  
Figure 53. Evaluation Board Power Plane, Internal Layer 2  
Figure 54. Evaluation Board Bottom Layer  
Figure 52. Evaluation Board Ground Plane, Internal Layer 1  
Rev. 0 | Page 22 of 24  
 
 
ADL5363  
OUTLINE DIMENSIONS  
0.60 MAX  
5.00  
BSC SQ  
0.60 MAX  
PIN 1  
INDICATOR  
15  
16  
20  
1
5
0.65  
BSC  
PIN 1  
INDICATOR  
4.75  
BSC SQ  
3.20  
3.10 SQ  
3.00  
EXPOSED  
PAD  
(BOTTOM VIEW)  
10  
11  
6
0.75  
0.60  
0.50  
TOP VIEW  
2.60 BSC  
0.70  
0.65  
0.60  
12° MAX  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.90  
0.85  
0.80  
0.05 MAX  
0.01 NOM  
SECTION OF THIS DATA SHEET.  
COPLANARITY  
0.05  
0.35  
0.28  
0.23  
SEATING  
PLANE  
0.20 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-VHHC  
Figure 55. 20-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
5 mm × 5 mm Body, Very Thin Quad  
(CP-20-5)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range Package Description  
Package Option Ordering Quantity  
ADL5363ACPZ-R7 −40°C to +85°C  
20-Lead Lead Frame Chip Scale Package [LFCSP_VQ] CP-20-5  
1,500  
7”Tape and Reel  
ADL5363-EVALZ  
Evaluation Board  
1
1 Z = RoHS Compliant Part.  
Rev. 0 | Page 23 of 24  
 
ADL5363  
NOTES  
©2011 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D09914-0-7/11(0)  
Rev. 0 | Page 24 of 24  
 
 
 

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY