ADL5356 [ADI]

1200 MHz to 2500 MHz, Dual-Balanced Mixer, LO Buffer, IF Amplifier, and RF Balun; 1200 MHz至2500 MHz的双平衡混频器, LO缓冲器, IF放大器和RF巴伦
ADL5356
型号: ADL5356
厂家: ADI    ADI
描述:

1200 MHz to 2500 MHz, Dual-Balanced Mixer, LO Buffer, IF Amplifier, and RF Balun
1200 MHz至2500 MHz的双平衡混频器, LO缓冲器, IF放大器和RF巴伦

放大器
文件: 总24页 (文件大小:399K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
1200 MHz to 2500 MHz, Dual-Balanced  
Mixer, LO Buffer, IF Amplifier, and RF Balun  
ADL5356  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
RF frequency range of 1200 MHz to 2500 MHz  
IF frequency range of 30 MHz to 450 MHz  
Power conversion gain: 8.2 dB  
SSB noise figure of 9.9 dB  
SSB noise figure with 5 dBm blocker of 21 dB  
Input IP3 of 31 dBm  
Input P1dB of 11 dBm  
Typical LO drive of 0 dBm  
Single-ended, 50 Ω RF and LO input ports  
High isolation SPDT LO input switch  
Single-supply operation: 3.3 V to 5 V  
Exposed paddle, 6 mm × 6 mm, 36-lead LFCSP  
36  
35  
34  
33  
32  
31  
30  
29  
28  
1
2
3
4
5
6
7
8
9
27  
26  
25  
24  
23  
22  
21  
20  
19  
MNIN  
MNCT  
COMM  
VPOS  
COMM  
VPOS  
COMM  
DVCT  
DVIN  
LOI2  
VGS2  
VGS1  
VGS0  
LOSW  
PWDN  
VPOS  
COMM  
LOI1  
APPLICATIONS  
ADL5356  
Cellular base station receivers  
Transmit observation receivers  
Radio link downconverters  
10  
11  
12  
13  
14  
15  
16  
17  
18  
GENERAL DESCRIPTION  
Figure 1.  
The ADL5356 uses a highly linear, doubly balanced, passive mixer  
core along with integrated RF and local oscillator (LO) balancing  
circuitry to allow single-ended operation. The ADL5356  
incorporates the RF baluns, allowing for optimal performance over  
a 1200 MHz to 2500 MHz RF input frequency range. Performance  
is optimized for RF frequencies from 1700 MHz to 2500 MHz  
using a low-side LO and RF frequencies from 1200 MHz to  
1700 MHz using a high-side LO. The balanced passive mixer  
arrangement provides good LO-to-RF leakage, typically better  
than −35 dBm, and excellent intermodulation performance. The  
balanced mixer core also provides extremely high input linearity,  
allowing the device to be used in demanding cellular applications  
where in-band blocking signals may otherwise result in the  
degradation of dynamic performance. A high linearity IF buffer  
amplifier follows the passive mixer core to yield a typical power  
conversion gain of 8.2 dB and can be used with a wide range of  
output impedances.  
The ADL5356 is fabricated using a BiCMOS high performance  
IC process. The device is available in a 6 mm × 6 mm, 36-lead  
LFCSP and operates over a −40°C to +85°C temperature range.  
An evaluation board is also available.  
Table 1. Passive Mixers  
RF Frequency  
(MHz)  
Single  
Mixer  
Single Mixer  
and IF Amp  
Dual Mixer  
and IF Amp  
500 to 1700  
1200 to 2500  
ADL5367  
ADL5365  
ADL5357  
ADL5355  
ADL5358  
ADL5356  
The ADL5356 provides two switched LO paths that can be used  
in TDD applications where it is desirable to ping-pong between  
two local oscillators. LO current can be externally set using a  
resistor to minimize dc current commensurate with the desired  
level of performance. For low voltage applications, the ADL5356 is  
capable of operation at voltages down to 3.3 V with substantially  
reduced current. Under low voltage operation, an additional logic  
pin is provided to power down (<300 μA) the circuit when desired.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2009 Analog Devices, Inc. All rights reserved.  
 
ADL5356  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Circuit Description......................................................................... 17  
RF Subsystem.............................................................................. 17  
LO Subsystem ............................................................................. 18  
Applications Information.............................................................. 19  
Basic Connections...................................................................... 19  
IF Port .......................................................................................... 19  
Bias Resistor Selection ............................................................... 19  
Mixer VGS Control DAC.......................................................... 19  
Evaluation Board ............................................................................ 21  
Outline Dimensions....................................................................... 23  
Ordering Guide .......................................................................... 23  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
5 V Performance........................................................................... 4  
3.3 V Performance........................................................................ 4  
Absolute Maximum Ratings............................................................ 5  
ESD Caution.................................................................................. 5  
Pin Configuration and Function Descriptions............................. 6  
Typical Performance Characteristics ............................................. 7  
5 V Performance........................................................................... 7  
3.3 V Performance...................................................................... 15  
Spur Tables .................................................................................. 16  
REVISION HISTORY  
10/09—Revision 0: Initial Version  
Rev. 0 | Page 2 of 24  
 
ADL5356  
SPECIFICATIONS  
VS = 5 V, IS = 350 mA, TA = 25°C, fRF = 1900 MHz, fLO = 1697 MHz, LO power = 0 dBm, RF power = −10 dBm, R1 = R4 = 1.3 kΩ, R2 =  
R5 = 1 kΩ, ZO = 50 ꢀ, VGS0 = VGS1 = VGS2 = 0 V, unless otherwise noted.  
Table 2.  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
RF INPUT INTERFACE  
Return Loss  
Tunable to >20 dB over a limited bandwidth  
15  
50  
dB  
Ω
MHz  
Input Impedance  
RF Frequency Range  
OUTPUT INTERFACE  
Output Impedance  
IF Frequency Range  
DC Bias Voltage1  
LO INTERFACE  
1200  
2500  
Differential impedance, f = 200 MHz  
Externally generated  
230||0.75  
5.0  
Ω||pF  
MHz  
V
30  
3.3  
450  
5.5  
LO Power  
−6  
0
+10  
2470  
0.4  
dBm  
dB  
Ω
Return Loss  
13  
50  
Input Impedance  
LO Frequency Range  
POWER-DOWN (PWDN) INTERFACE2  
PWDN Threshold  
Logic 0 Level  
1230  
MHz  
1.0  
V
V
Logic 1 Level  
1.4  
V
PWDN Response Time  
Device enabled, IF output to 90% of its final level  
Device disabled, supply current < 5 mA  
Device enabled  
160  
230  
0
ns  
ns  
μA  
μA  
PWDN Input Bias Current  
Device disabled  
70  
1 Apply supply voltage from external circuit through choke inductors.  
2 PWDN function is intended for use with VS ≤ 3.6 V only.  
Rev. 0 | Page 3 of 24  
 
ADL5356  
5 V PERFORMANCE  
VS = 5 V, IS = 350 mA, TA = 25°C, fRF = 1900 MHz, fLO = 1697 MHz, LO power = 0 dBm, RF power = −10 dBm, R1 = R4 = 1.3 kΩ, R2 = R5 = 1 kΩ,  
VGS0 = VGS1 = VGS2 = 0 V, and ZO = 50 ꢀ, unless otherwise noted.  
Table 3.  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
DYNAMIC PERFORMANCE  
Power Conversion Gain  
Voltage Conversion Gain  
SSB Noise Figure  
Including 4:1 IF port transformer and PCB loss  
ZSOURCE = 50 Ω, differential ZLOAD = 200 Ω differential  
7.5  
8.2  
14.5  
9.9  
21  
8.5  
dB  
dB  
dB  
dB  
SSB Noise Figure Under Blocking  
5 dBm blocker present 10 MHz from wanted RF input,  
LO source filtered  
Input Third-Order Intercept (IIP3)  
Input Second-Order Intercept (IIP2)  
fRF1 = 1899.5 MHz, fRF2 = 1900.5 MHz, fLO = 1697 MHz,  
each RF tone at −10 dBm  
fRF1 = 1900 MHz, fRF2 = 1950 MHz, fLO = 1697 MHz,  
each RF tone at −10 dBm  
25  
31  
50  
dBm  
dBm  
Input 1 dB Compression Point (IP1dB)  
LO-to-IF Leakage  
LO-to-RF Leakage  
RF-to-IF Isolation  
IF/2 Spurious  
IF/3 Spurious  
IF Channel-to-Channel Isolation  
POWER SUPPLY  
11  
dBm  
dBm  
dBm  
dBc  
dBc  
dBc  
dB  
Unfiltered IF output  
−24  
−35  
−33  
−75  
−73  
50  
−10 dBm input power  
−10 dBm input power  
Positive Supply Voltage  
Quiescent Current  
4.75  
5
5.25  
V
LO supply  
IF supply  
VS = 5 V  
170  
180  
350  
mA  
mA  
mA  
Total Quiescent Current  
3.3 V PERFORMANCE  
VS = 3.3 V, IS = 200 mA, TA = 25°C, fRF = 1900 MHz, fLO = 1697 MHz, LO power = 0 dBm, RF power = −10 dBm, R1 = R4 = 1.2 kΩ, R2 =  
R5 = 400 Ω, VGS0 = VGS1 = VGS2 = 0 V, and ZO = 50 Ω, unless otherwise noted.  
Table 4.  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
DYNAMIC PERFORMANCE  
Power Conversion Gain  
Voltage Conversion Gain  
SSB Noise Figure  
Including 4:1 IF port transformer and PCB loss  
ZSOURCE = 50 Ω, differential ZLOAD = 200 Ω differential  
8.3  
14.6  
8.9  
dB  
dB  
dB  
Input Third-Order Intercept (IIP3)  
fRF1 = 1899.5 MHz, fRF2 = 1900.5 MHz, fLO = 1697 MHz,  
each RF tone at −10 dBm  
21.2  
dBm  
Input Second-Order Intercept (IIP2)  
fRF1 = 1950 MHz, fRF2 = 1900 MHz, fLO = 1697 MHz,  
each RF tone at −10 dBm  
48  
7
dBm  
dBm  
Input 1 dB Compression Point (IP1dB)  
POWER INTERFACE  
Supply Voltage  
3.0  
3.3  
3.6  
V
Quiescent Current  
Total Quiescent Current  
Resistor programmable  
Device disabled  
200  
300  
mA  
μA  
Rev. 0 | Page 4 of 24  
 
 
ADL5356  
ABSOLUTE MAXIMUM RATINGS  
ESD CAUTION  
Table 5.  
Parameter  
Rating  
Supply Voltage, VS  
5.5 V  
RF Input Level  
LO Input Level  
20 dBm  
13 dBm  
6.0 V  
5.5 V  
2.2 W  
22°C/W  
150°C  
−40°C to +85°C  
−65°C to +150°C  
260°C  
MNOP, MNON, DVOP, DVON Bias  
VGS2,VGS1,VGS0, LOSW, PWDN  
Internal Power Dissipation  
θJA  
Maximum Junction Temperature  
Operating Temperature Range  
Storage Temperature Range  
Lead Temperature (Soldering, 60 sec)  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. 0 | Page 5 of 24  
 
ADL5356  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
1
2
3
4
5
6
7
8
9
27 LOI2  
VGS2  
MNIN  
MNCT  
COMM  
VPOS  
COMM  
VPOS  
COMM  
DVCT  
DVIN  
26  
25 VGS1  
VGS0  
ADL5356  
TOP VIEW  
(Not to Scale)  
24  
23 LOSW  
22 PWDN  
21 VPOS  
20  
19  
COMM  
LOI1  
NOTES  
1. NC = NO CONNECT.  
2. EXPOSED PAD MUST BE CONNECTED TO GROUND.  
Figure 2. Pin Configuration  
Table 6. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
2
MNIN  
MNCT  
RF Input for Main Channel. Internally matched to 50 Ω. Must be ac-coupled.  
Center Tap for Main Channel Input Balun. Bypass to ground using low inductance capacitor.  
Device Common (DC Ground).  
3, 5, 7, 12, 20, 34 COMM  
4, 6, 10, 16,  
21, 30, 36  
VPOS  
Positive Supply Voltage.  
8
9
DVCT  
DVIN  
Center Tap for Diversity Channel Input Balun. Bypass to ground using low inductance capacitor.  
RF Input for Diversity Channel. Internally matched to 50 Ω. Must be ac-coupled.  
11  
DVGM  
Diverstiy Amplifier Bias Setting. Connect 1.3 kΩ resistor to ground for typical operation.  
13, 14  
DVOP, DVON  
Diversity Channel Differential Open-Collector Outputs. DVOP and DVON should be pulled-up to  
VCC using external inductors.  
15  
17  
18, 28  
19  
DVLE  
DVLG  
NC  
Diversity Channel IF Return. This pin must be grounded.  
Diverstiy Channel LO Buffer Bias Setting. Connect 1 kΩ resistor to ground for typical operation.  
No Connect.  
LOI1  
Local Oscillator Input 1. Internally matched to 50 Ω. Must be ac-coupled.  
22  
PWDN  
Connect to Ground for Normal Operation. Connect pin to 3 V for disable mode when using  
VPOS < 3.6 V. PWDN pin must be grounded when VPOS > 3.6 V.  
23  
LOSW  
Local Oscillator Input Selection Switch. Set LOSW high to select LOI1 or set LOSW low to select LOI2.  
24, 25, 26  
27  
29  
VGS0, VGS1, VGS2 Gate to Source Control Voltages. For typical operation, set VGS0, VGS1, and VGS2 to low logic level.  
LOI2  
Local Oscillator Input 2. Internally matched to 50 Ω. Must be ac-coupled.  
Main Channel LO Buffer Bias Setting. Connect 1 kΩ resistor to ground for typical operation.  
Main Channel IF Return. This pin must be grounded.  
MNLG  
MNLE  
31  
32, 33  
MNOP, MNON  
Main Channel Differential Open-Collector Outputs. MNOP and MNON should be pulled-up to  
VCC using external inductors.  
35  
Paddle  
MNGM  
EPAD  
Main Amplifier Bias Setting. Connect 1.3 kΩ resistor to ground for typical operation.  
Exposed pad must be connected to ground.  
Rev. 0 | Page 6 of 24  
 
ADL5356  
TYPICAL PERFORMANCE CHARACTERISTICS  
5 V PERFORMANCE  
VS = 5 V, IS = 350 mA, TA = 25°C, fRF = 1900 MHz, fLO = 1697 MHz, LO power = 0 dBm, RF power = −10 dBm, R1 = R4 = 1.3 kꢀ, R2 = R5 = 1 kꢀ,  
ZO = 50 ꢀ, VGS0 = VGS1 = VGS2 = 0 V, unless otherwise noted.  
61  
59  
57  
55  
53  
51  
49  
400  
380  
360  
340  
320  
300  
T
= –40°C  
A
T
T
= +25°C  
= +85°C  
A
T
= –40°C  
A
T
= +25°C  
A
A
T
= +85°C  
A
1700 1750 1800 1850 1900 1950 2000 2050 2100 2150 2200  
1700 1750 1800 1850 1900 1950 2000 2050 2100 2150 2200  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
Figure 6. Input IP2 vs. RF Frequency  
Figure 3. Supply Current vs. RF Frequency  
13.0  
12.5  
12.0  
11.5  
11.0  
10.5  
10.0  
9.5  
11  
10  
9
T
= +25°C  
A
T
= –40°C  
A
T
= +85°C  
A
T
= +25°C  
A
8
T
= –40°C  
A
7
T
= +85°C  
A
6
9.0  
5
1700 1750 1800 1850 1900 1950 2000 2050 2100 2150 2200  
1700 1750 1800 1850 1900 1950 2000 2050 2100 2150 2200  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
Figure 7. Input P1dB vs. RF Frequency  
Figure 4. Power Conversion Gain vs. RF Frequency  
14  
45  
13  
12  
11  
10  
9
40  
35  
30  
25  
20  
15  
T
= –40°C  
A
T
= +85°C  
A
T
= +25°C  
A
T
= +25°C  
A
T
= –40°C  
A
8
T
= +85°C  
A
7
6
5
1700 1750 1800 1850 1900 1950 2000 2050 2100 2150 2200  
1700 1750 1800 1850 1900 1950 2000 2050 2100 2150 2200  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
Figure 8. SSB Noise Figure vs. RF Frequency  
Figure 5 .Input IP3 vs. RF Frequency  
Rev. 0 | Page 7 of 24  
 
ADL5356  
VS = 5 V, IS = 350 mA, TA = 25°C, fRF = 1900 MHz, fLO = 1697 MHz, LO power = 0 dBm, RF power = −10 dBm, R1 = R4 = 1.3 kꢀ, R2 = R5 = 1 kꢀ,  
ZO = 50 ꢀ, VGS0 = VGS1 = VGS2 = 0 V, unless otherwise noted.  
400  
380  
360  
340  
320  
300  
58  
57  
56  
55  
54  
53  
V
= 5.25V  
POS  
V
= 5.25V  
POS  
V
= 5.0V  
POS  
V
V
= 5.00V  
= 4.75V  
POS  
V
= 4.75V  
POS  
POS  
52  
51  
50  
49  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80  
TEMPERATURE (°C)  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80  
TEMPERATURE (°C)  
Figure 9. Supply Current vs. Temperature  
Figure 12. Input IP2 vs. Temperature  
10.0  
14  
13  
12  
11  
10  
9
4.75V  
5.00V  
5.25V  
9.5  
9.0  
9.5  
8.0  
7.5  
7.0  
V
= 5.25V  
POS  
V
= 5.0V  
POS  
V
= 4.75V  
POS  
8
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80  
TEMPERATURE (°C)  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80  
TEMPERATURE (°C)  
Figure 10. Power Conversion Gain vs. Temperature  
Figure 13. Input P1dB vs. Temperature  
40  
12.0  
11.5  
11.0  
10.5  
10.0  
9.5  
38  
36  
34  
32  
30  
28  
26  
24  
V
= 5.25V  
POS  
V
= 5.25V  
POS  
V
= 5.0V  
POS  
V
= 4.75V  
POS  
V
= 5.0V  
POS  
9.0  
V
= 4.75V  
POS  
8.5  
8.0  
7.5  
7.0  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80  
TEMPERATURE (°C)  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80  
TEMPERATURE (°C)  
Figure 11. Input IP3 vs. Temperature  
Figure 14. SSB Noise Figure vs. Temperature  
Rev. 0 | Page 8 of 24  
ADL5356  
VS = 5 V, IS = 350 mA, TA = 25°C, fRF = 1900 MHz, fLO = 1697 MHz, LO power = 0 dBm, RF power = −10 dBm, R1 = R4 = 1.3 kꢀ, R2 = R5 = 1 kꢀ,  
ZO = 50 ꢀ, VGS0 = VGS1 = VGS2 = 0 V, unless otherwise noted.  
400  
70  
65  
60  
55  
50  
45  
380  
360  
340  
320  
300  
T
= –40°C  
A
T
= +25°C  
A
T
= +25°C  
A
T
= –40°C  
A
T
= +85°C  
A
T
= +85°C  
A
40  
30  
80  
130  
180  
230  
280  
330  
380  
430  
30  
30  
30  
80  
80  
80  
130  
180  
230  
280  
330  
380  
430  
IF FREQUENCY (MHz)  
IF FREQUENCY (MHz)  
Figure 15. Supply Current vs. IF Frequency  
Figure 18. Input IP2 vs. IF Frequency  
10  
9
8
7
6
5
4
3
2
1
0
14  
13  
12  
11  
10  
9
T
= –40°C  
A
T
= +85°C  
A
T
= +25°C  
A
T
= +85°C  
A
T
= +25°C  
A
T
= –40°C  
A
8
30  
80  
130  
180  
230  
280  
330  
380  
430  
130  
180  
230  
280  
330  
380  
430  
IF FREQUENCY (MHz)  
IF FREQUENCY (MHz)  
Figure 16. Power Conversion Gain vs. IF Frequency  
Figure 19. Input P1dB vs. IF Frequency  
40  
35  
30  
25  
20  
15  
10  
5
14  
13  
12  
11  
10  
9
T
= –40°C  
A
T
= +25°C  
A
T
= +85°C  
A
8
7
0
6
30  
80  
130  
180  
230  
280  
330  
380  
430  
130  
180  
230  
280  
330  
380  
430  
IF FREQUENCY (MHz)  
IF FREQUENCY (MHz)  
Figure 17. Input IP3 vs. IF Frequency  
Figure 20. SSB Noise Figure vs. IF Frequency  
Rev. 0 | Page 9 of 24  
ADL5356  
VS = 5 V, IS = 350 mA, TA = 25°C, fRF = 1900 MHz, fLO = 1697 MHz, LO power = 0 dBm, RF power = −10 dBm, R1 = R4 = 1.3 kꢀ, R2 = R5 = 1 kꢀ,  
ZO = 50 ꢀ, VGS0 = VGS1 = VGS2 = 0 V, unless otherwise noted.  
11  
10  
9
11.8  
T
= +85°C  
A
11.6  
11.4  
11.2  
11.0  
10.8  
10.6  
10.4  
10.2  
T
= +25°C  
A
T
= –40°C  
A
T
= –40°C  
A
8
T
= +25°C  
A
7
T
= +85°C  
A
6
5
10.0  
–6  
–4  
–2  
0
2
4
6
8
10  
–6  
–4  
–2  
0
2
4
6
8
10  
LO POWER (dBm)  
LO POWER (dBm)  
Figure 21. Power Conversion Gain vs. LO Power  
Figure 24. Input P1dB vs. LO Power  
40  
–55  
–60  
–65  
38  
36  
34  
32  
30  
28  
26  
24  
22  
20  
T
= –40°C  
A
T
= –40°C  
A
–70  
–75  
–80  
T
= +25°C  
A
T
= +25°C  
A
T
= +85°C  
A
T
= +85°C  
A
–85  
–6  
–4  
–2  
0
2
4
6
8
10  
1700 1750 1800 1850 1900 1950 2000 2050 2100 2100 2200  
LO POWER (dBm)  
RF FREQUENCY (MHz)  
Figure 25. IF/2 Spurious vs. RF Frequency, RF Power = −10 dBm  
Figure 22. Input IP3 vs. LO Power  
–65  
–66  
–67  
65  
63  
61  
59  
57  
55  
53  
51  
49  
47  
45  
T
= –40°C  
A
–68  
–69  
–70  
–71  
–72  
–73  
–74  
–75  
T
= +85°C  
A
T
= +25°C  
A
T
= +85°C  
A
T
= –40°C  
A
T
= +25°C  
A
1700 1750 1800 1850 1900 1950 2000 2050 2100 2100 2200  
–6  
–4  
–2  
0
2
4
6
8
10  
RF FREQUENCY (MHz)  
LO POWER (dBm)  
Figure 26. IF/3 Spurious vs. RF Frequency, RF Power = −10 dBm  
Figure 23. Input IP2 vs. LO Power  
Rev. 0 | Page 10 of 24  
ADL5356  
VS = 5 V, IS = 350 mA, TA = 25°C, fRF = 1900 MHz, fLO = 1697 MHz, LO power = 0 dBm, RF power = −10 dBm, R1 = R4 = 1.3 kꢀ, R2 = R5 = 1 kꢀ,  
ZO = 50 ꢀ, VGS0 = VGS1 = VGS2 = 0 V, unless otherwise noted.  
100  
80  
60  
40  
20  
0
500  
400  
300  
200  
100  
0
10  
MEAN = 8.26  
SD = 0.31%  
8
6
4
2
0
30  
80  
130  
180  
230  
280  
330  
380  
430  
7.6  
7.8  
8.0  
8.2  
8.4  
8.6  
8.8  
45  
13  
IF FREQUENCY (MHz)  
CONVERSION GAIN (dB)  
Figure 30. IF Output Impedance (R Parallel C Equivalent)  
Figure 27. Conversion Gain Distribution  
0
5
100  
80  
60  
40  
20  
0
MEAN = 31.67  
SD = 0.35%  
10  
15  
20  
25  
30  
1700 1750 1800 1850 1900 1950 2000 2050 2100 2150 2200  
20  
25  
30  
35  
40  
RF FREQUENCY (MHz)  
INPUT IP3 LO (dBm)  
Figure 28. Input IP3 Distribution  
Figure 31. RF Port Return Loss, Fixed IF  
100  
80  
60  
40  
20  
0
0
MEAN = 11.37  
SD = 0.49%  
5
10  
SELECTED  
15  
20  
25  
UNSELECTED  
10  
11  
12  
1.50 1.55 1.60 1.65 1.70 1.75 1.80 1.85 1.90 1.95 2.00  
LO FREQUENCY (GHz)  
INPUT P1dB (dBm)  
Figure 32. LO Return Loss, Selected and Unselected  
Figure 29. Input P1dB Distribution  
Rev. 0 | Page 11 of 24  
 
ADL5356  
VS = 5 V, IS = 350 mA, TA = 25°C, fRF = 1900 MHz, fLO = 1697 MHz, LO power = 0 dBm, RF power = −10 dBm, R1 = R4 = 1.3 kꢀ, R2 = R5 = 1 kꢀ,  
ZO = 50 ꢀ, VGS0 = VGS1 = VGS2 = 0 V, unless otherwise noted.  
60  
50  
40  
30  
20  
10  
0
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
T
= +25°C  
A
T
= –40°C  
A
T
= +85°C  
A
T
= –40°C  
A
T
= +25°C  
A
T
= +85°C  
A
1500 1550 1600 1650 1700 1750 1800 1850 1900 1950 2000  
1700 1750 1800 1850 1900 1950 2000 2050 2100 2150 2200  
LO FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
Figure 33. LO Switch Isolation vs. RF Frequency  
Figure 36. LO-to-RF Leakage vs. LO Frequency  
–16  
26  
28  
30  
32  
34  
36  
38  
40  
–18  
–20  
–22  
–24  
–26  
–28  
–30  
2XLO-TO-IF  
T
= +85°C  
A
2XLO-TO-RF  
T
= +25°C  
A
T
= –40°C  
A
1700 1750 1800 1850 1900 1950 2000 2050 2100 2150 2200  
1500 1550 1600 1650 1700 1750 1800 1850 1900 1950 2000  
RF FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
Figure 34. RF-to-IF Isolation vs. RF Frequency  
Figure 37. 2XLO Leakage vs. LO Frequency  
–10  
–35  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
–15  
–20  
–25  
–30  
–35  
–40  
T
= –40°C  
A
3XLO-TO-IF  
T
= +25°C  
A
T
= +85°C  
A
3XLO-TO-RF  
1500 1550 1600 1650 1700 1750 1800 1850 1900 1950 2000  
1500 1550 1600 1650 1700 1750 1800 1850 1900 1950 2000  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
Figure 35. LO-to-IF Leakage vs. LO Frequency  
Figure 38. 3XLO Leakage vs. LO Frequency  
Rev. 0 | Page 12 of 24  
ADL5356  
VS = 5 V, IS = 350 mA, TA = 25°C, fRF = 1900 MHz, fLO = 1697 MHz, LO power = 0 dBm, RF power = −10 dBm, R1 = R4 = 1.3 kꢀ, R2 = R5 = 1 kꢀ,  
ZO = 50 ꢀ, VGS0 = VGS1 = VGS2 = 0 V, unless otherwise noted.  
30  
25  
20  
15  
10  
5
10  
18  
16  
14  
12  
10  
8
9
8
7
6
VGS = 000  
VGS = 011  
VGS = 100  
VGS = 110  
5
0
4
6
1700 1750 1800 1850 1900 1950 2000 2050 2100 2150 2200  
–30  
–25  
–20  
–15  
–10  
–5  
0
5
10  
BLOCKER POWER (dBm)  
RF FREQUENCY (MHz)  
Figure 42. SSB Noise Figure vs. 10 MHz Offset Blocker Level  
Figure 39. Power Conversion Gain and SSB Noise Figure vs. RF Frequency  
for Various VGS Settings  
350  
20  
18  
16  
14  
12  
10  
8
32  
30  
28  
26  
24  
22  
20  
18  
300  
250  
200  
150  
100  
50  
IF RESISTOR SUPPLY CURRENT  
LO RESISTOR SUPPLY CURRENT  
VGS = 000  
VGS = 011  
VGS = 100  
VGS = 110  
0
6
600 700 800 900 1000 1100 1200 1300 1400 1500 1600  
1700 1750 1800 1850 1900 1950 2000 2050 2100 2150 2200  
BIAS RESISTOR VALUE ()  
RF FREQUENCY (MHz)  
Figure 43. LO and IF Supply Current vs. IF and LO Bias Resistor Value  
Figure 40. Input IP3 and Input P1dB vs. RF Frequency for Various VGS Settings  
35  
13  
12  
11  
10  
9
35  
30  
25  
20  
15  
10  
5
13  
INPUT IP3  
INPUT IP3  
30  
12  
25  
11  
NOISE FIGURE  
NOISE FIGURE  
20  
15  
10  
5
10  
9
CONVERSION GAIN  
CONVERSION GAIN  
8
8
7
7
6
0
6
0
600 700 800 900 1000 1100 1200 1300 1400 1500 1600  
600 700 800 900 1000 1100 1200 1300 1400 1500 1600  
LO BIAS RESISTOR VALUE ()  
IF BIAS RESISTOR VALUE ()  
Figure 41. Power Conversion Gain, SSB Noise Figure, and Input IP3 vs.  
LO Bias Resistor Value  
Figure 44. Power Conversion Gain, Noise Figure, and Input IP3 vs.  
IF Bias Resistor Value  
Rev. 0 | Page 13 of 24  
 
 
 
 
ADL5356  
VS = 5 V, IS = 350 mA, TA = 25°C, fRF = 1900 MHz, fLO = 1697 MHz, LO power = 0 dBm, RF power = −10 dBm, R1 = R4 = 1.3 kꢀ, R2 = R5 = 1 kꢀ,  
ZO = 50 ꢀ, VGS0 = VGS1 = VGS2 = 0 V, unless otherwise noted.  
54  
53  
52  
51  
50  
49  
48  
47  
46  
T = –40°C  
A
T
= +85°C  
A
T
= +25°C  
A
1700 1750 1800 1850 1900 1950 2000 2050 2100 2150 2200  
RF FREQUENCY (MHz)  
Figure 45. IF Channel-to-Channel Isolation vs. RF Frequency  
Rev. 0 | Page 14 of 24  
ADL5356  
3.3 V PERFORMANCE  
VS = 3.3 V, IS = 200 mA, TA = 25°C, fRF = 1900 MHz, fLO = 1697 MHz, LO power = 0 dBm, RF power = −10 dBm, R1 = R4 = 1.2 kꢀ,  
R2 = R5 = 400 ꢀ, ZO = 50 ꢀ, VGS0 = VGS1 = VGS2 = 0 V, unless otherwise noted.  
215  
210  
205  
200  
195  
190  
70  
65  
60  
55  
50  
45  
40  
35  
30  
T
= +85°C  
A
T
= –40°C  
A
T
= –40°C  
A
T
= +25°C  
A
T
T
= +25°C  
= +85°C  
A
A
1700 1750 1800 1850 1900 1950 2000 2050 2100 2150 2200  
1700 1750 1800 1850 1900 1950 2000 2050 2100 2150 2200  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
Figure 46. Supply Current vs. RF Frequency at 3.3 V  
Figure 49. Input IP2 vs. RF Frequency at 3.3 V  
11  
10  
9
14  
12  
10  
8
T
= –40°C  
A
T
= +25°C  
A
8
T
= +25°C  
A
7
6
T
= +85°C  
A
T
= –40°C  
A
6
4
T
= +85°C  
A
5
2
4
0
1700 1750 1800 1850 1900 1950 2000 2050 2100 2150 2200  
1700 1750 1800 1850 1900 1950 2000 2050 2100 2150 2200  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
Figure 47. Power Conversion Gain vs. RF Frequency at 3.3 V  
Figure 50. Input P1dB vs. RF Frequency at 3.3 V  
30  
28  
26  
24  
14  
12  
10  
8
T
= +85°C  
A
T
= –40°C  
A
22  
20  
18  
16  
14  
12  
10  
T
= +25°C  
A
T
= +25°C  
A
T
= –40°C  
A
6
T
= +85°C  
A
4
2
1700 1750 1800 1850 1900 1950 2000 2050 2100 2150 2200  
1700 1750 1800 1850 1900 1950 2000 2050 2100 2150 2200  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
Figure 48. Input IP3 vs. RF Frequency at 3.3 V  
Figure 51. SSB Noise Figure vs. RF Frequency at 3.3 V  
Rev. 0 | Page 15 of 24  
 
ADL5356  
SPUR TABLES  
All spur tables are (N × fRF) − (M × fLO) and were measured using the standard evaluation board. Mixer spurious products are measured  
in dBc from the IF output power level. Data was measured only for frequencies less than 6 GHz. Typical noise floor of the measurement  
system = −100 dBm.  
5 V Performance  
VS = 5 V, IS = 350 mA, TA = 25°C, fRF = 1900 MHz, fLO = 1697 MHz, LO power = 0 dBm, RF power = −10 dBm, VGS0 = VGS1 = VGS2 = 0 V,  
and ZO = 50 ꢀ, unless otherwise noted.  
M
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
0
−21.6  
0.00  
−91.0  
−20.2  
−72.7  
−74.4  
−64.4  
−45.9  
−82.9  
1
−40.7  
−70.5  
−69.6  
−86.4  
−96.5  
2
<−100  
<−100  
3
<−100 <−100 <−100 −79.3  
4
<−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100 <−100 <−100 <−100  
5
6
7
<−100 <−100 <−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100 <−100 <−100  
N
8
9
<−100 <−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100 <−100 <−100  
10  
11  
12  
13  
14  
15  
<−100 <−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100  
<−100 <−100  
<−100  
3.3 V Performance  
VS = 3.3 V, IS = 200 mA, TA = 25°C, fRF = 1900 MHz, fLO = 1697 MHz, LO power = 0 dBm, RF power = −10 dBm, R1 = R4 = 1.2 kꢀ, R2 =  
R5 = 400 ꢀ, VGS0 = VGS1 = VG2 = 0 V, and ZO = 50 ꢀ, unless otherwise noted.  
M
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
0
−9.84  
−20.31 −43.05 −40.75 −64.36  
−47.95 −37.36 −53.08 −57.08 −74.07  
−74.64 −56.52 −57.35 −64.17 −80.85 −91.01 −85.58 <−100  
1
−49.63 0.00  
2
3
<−100  
<−100  
<−100  
<−100  
−88.31 −98.10 −62.72 <−100  
−91.46 <−100  
<−100  
<−100 <−100  
<−100 <−100 <−100  
<−100 <−100 <−100 <−100  
4
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
−99.73 <−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
5
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
6
7
<−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100 <−100  
N
8
9
<−100 <−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100 <−100 <−100 <−100  
10  
11  
12  
13  
14  
15  
<−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100  
Rev. 0 | Page 16 of 24  
 
ADL5356  
CIRCUIT DESCRIPTION  
The ADL5356 consists of two primary components: the radio  
frequency (RF) subsystem and the local oscillator (LO) subsystem.  
The combination of design, process, and packaging technology  
allows the functions of these subsystems to be integrated into  
a single die using mature packaging and interconnection  
technologies to provide a high performance, low cost design  
with excellent electrical, mechanical, and thermal properties.  
In addition, the need for external components is minimized,  
optimizing cost and size.  
The resulting balanced RF signal is applied to a passive mixer that  
commutates the RF input with the output of the LO subsystem.  
The passive mixer is essentially a balanced, low loss switch that  
adds minimum noise to the frequency translation. The only  
noise contribution from the mixer is due to the resistive loss of  
the switches, which is in the order of a few ohms.  
Because the mixer is inherently broadband and bidirectional, it  
is necessary to properly terminate all the idler (M × N product)  
frequencies generated by the mixing process. Terminating the  
mixer avoids the generation of unwanted intermodulation  
products and reduces the level of unwanted signals at the input  
of the IF amplifier, where high peak signal levels can compromise  
the compression and intermodulation performance of the system.  
This termination is accomplished by the addition of a sum network  
between the IF amplifier and the mixer and in the feedback  
elements in the IF amplifier.  
The RF subsystem consists of integrated, low loss RF baluns,  
passive MOSFET mixers, sum termination networks, and IF  
amplifiers. The LO subsystem consists of an SPDT-terminated FET  
switch and two multistage limiting LO amplifiers. The purpose of  
the LO subsystem is to provide a large, fixed amplitude, balanced  
signal to drive the mixer independent of the level of the LO input.  
A block diagram of the device is shown in Figure 52.  
The IF amplifier is a balanced feedback design that simultaneously  
provides the desired gain, noise figure, and input impedance that  
is required to achieve the overall performance. The balanced open-  
collector output of the IF amplifier, with impedance modified  
by the feedback within the amplifier, permits the output to be  
connected directly to a high impedance filter, differential amplifier,  
or an analog-to-digital input while providing optimum second-  
order intermodulation suppression. The differential output  
impedance of the IF amplifier is approximately 200 Ω. If  
operation in a 50 Ω system is desired, the output can be  
transformed to 50 Ω by using a 4:1 transformer.  
36  
35  
34  
33  
32  
31  
30  
29  
28  
1
2
3
4
5
6
7
8
9
27  
26  
25  
24  
23  
22  
21  
20  
19  
MNIN  
MNCT  
COMM  
VPOS  
COMM  
VPOS  
COMM  
DVCT  
DVIN  
LOI2  
VGS2  
VGS1  
VGS0  
LOSW  
PWDN  
VPOS  
COMM  
LOI1  
The intermodulation performance of the design is generally limited  
by the IF amplifier. The IP3 performance can be optimized by  
adjusting the IF current with an external resistor. Figure 41,  
Figure 43, and Figure 44 illustrate how various IF and LO bias  
resistors affect the performance with a 5 V supply. Additionally,  
dc current can be saved by increasing either or both resistors. It  
is permissible to reduce the dc supply voltage to as low as 3.3 V,  
further reducing the dissipated power of the part. (No performance  
enhancement is obtained by reducing the value of these resistors,  
and excessive dc power dissipation may result.)  
ADL5356  
10  
11  
12  
13  
14  
15  
16  
17  
18  
Figure 52. Simplified Schematic  
RF SUBSYSTEM  
The single-ended, 50 Ω RF input is internally transformed to a  
balanced signal using a low loss (<1 dB) unbalanced-to-balanced  
(balun) transformer. This transformer is made possible by an  
extremely low loss metal stack, which provides both excellent  
balance and dc isolation for the RF port. Although the port can be  
dc connected, it is recommended that a blocking capacitor be used  
to avoid running excessive dc current through the part. The RF  
balun can easily support an RF input frequency range of 1200 MHz  
to 2500 MHz.  
Rev. 0 | Page 17 of 24  
 
 
ADL5356  
The performance of this amplifier is critical in achieving a  
high intercept passive mixer without degrading the noise floor  
of the system. This is a critical requirement in an interferer rich  
environment, such as cellular infrastructure, where blocking  
interferers can limit mixer performance. The bandwidth of the  
intermodulation performance is somewhat influenced by the  
current in the LO amplifier chain. For dc current sensitive  
applications, it is permissible to reduce the current in the LO  
amplifier by raising the value of the external bias control resistor.  
For dc current critical applications, the LO chain can operate  
with a supply voltage as low as 3.3 V, resulting in substantial  
dc power savings.  
LO SUBSYSTEM  
The LO amplifier is designed to provide a large signal level to  
the mixer to obtain optimum intermodulation performance.  
The resulting amplifier provides extremely high performance  
centered on an operating frequency of 1700 MHz. The best  
operation is achieved with either low-side LO injection for RF  
signals in the 1700 MHz to 2500 MHz range or high-side injection  
for RF signals in the 1200 MHz to 1700 MHz range. Operation  
outside these ranges is permissible, and conversion gain is  
extremely wideband, easily spanning 1200 MHz to 2500 MHz,  
but intermodulation is optimal over the aforementioned ranges.  
The ADL5356 has two LO inputs permitting multiple synthesizers  
to be rapidly switched with extremely short switching times  
(<40 ns) for frequency agile applications. The two inputs are  
applied to a high isolation SPDT switch that provides a constant  
input impedance, regardless of whether the port is selected, to  
avoid pulling the LO sources. This multiple section switch also  
ensures high isolation to the off input, minimizing any leakage  
from the unwanted LO input that may result in undesired IF  
responses.  
In addition, when operating with supply voltages below 3.6 V, the  
ADL5356 has a power-down mode that permits the dc current  
to drop to <300 μA.  
The logic inputs are designed to work with any logic family that  
provides a Logic 0 input level of less than 0.4 V and a Logic 1  
input level that exceeds 1.4 V. All logic inputs are high impedance  
up to Logic 1 levels of 3.3 V. At levels exceeding 3.3 V, protection  
circuitry permits operation up to 5.5 V, although a small bias  
current is drawn.  
The single-ended LO input is converted to a fixed amplitude  
differential signal using a multistage, limiting LO amplifier. This  
results in consistent performance over a range of LO input power.  
Optimum performance is achieved from −6 dBm to +10 dBm,  
but the circuit continues to function at considerably lower levels  
of LO input power.  
Rev. 0 | Page 18 of 24  
 
ADL5356  
APPLICATIONS INFORMATION  
BASIC CONNECTIONS  
BIAS RESISTOR SELECTION  
The IF bias resistors (R1 and R4) and LO bias resistors (R2 and R5)  
are used to adjust the bias current of the integrated amplifiers at the  
IF and LO terminals. It is necessary to have a sufficient amount  
of current to bias both the internal IF and LO amplifiers to optimize  
dc current vs. optimum IIP3 performance. Figure 41, Figure 43,  
and Figure 44 provide the reference for the bias resistor selection  
when lower power consumption is considered at the expense of  
conversion gain and IP3 performance.  
The ADL5356 mixer is designed to downconvert radio  
frequencies (RF) primarily between 1200 MHz and 2500 MHz  
to lower intermediate frequencies (IF) between 30 MHz and  
450 MHz. Figure 53 depicts the basic connections of the mixer.  
It is recommended to ac-couple the RF and LO input ports to  
prevent non-zero dc voltages from damaging the RF balun or  
LO input circuit. The RFIN matching network consists of a  
series 1.8 pF capacitor and a shunt 15 nH inductor to provide  
the optimized RF input return loss for the desired frequency band.  
MIXER VGS CONTROL DAC  
IF PORT  
The ADL5356 features three logic control pins, VGS0 (Pin 24),  
VGS1 (Pin 25), and VGS2 (Pin26), that allow programmability for  
internal gate-to-source voltages for optimizing mixer performance  
over desired frequency bands. The evaluation board defaults  
VGS0, VGS1, and VGS2 to ground. Power conversion gain, NF,  
IIP3, and input P1dB can be optimized, as shown in Figure 39  
and Figure 40.  
The mixer differential IF interface requires pull-up choke inductors  
to bias the open-collector outputs and to set the output match.  
The shunting impedance of the choke inductors used to couple  
dc current into the IF amplifier should be selected to provide  
the desired output return loss.  
The real part of the output impedance is approximately 200 ꢀ,  
as seen in Figure 30, which matches many commonly used SAW  
filters without the need for a transformer. This results in a voltage  
conversion gain that is approximately 6 dB higher than the power  
conversion gain, as shown in Table 3. When a 50 ꢀ output  
impedance is needed, use a 4:1 impedance transformer, as shown  
in Figure 53.  
Rev. 0 | Page 19 of 24  
 
ADL5356  
R10  
MAIN_OUTN  
MAIN_OUTP  
C33  
C32  
T1  
C19  
C17  
C27  
C8  
C21  
L2  
L1  
R3  
VCC  
C25  
C18  
R1  
C22  
VCC  
L6  
R2  
28  
VCC  
36  
35  
34  
33  
32  
31  
30  
29  
C9  
C16  
1
2
27  
26  
25  
24  
23  
22  
21  
20  
19  
MAIN_IN  
LO2  
Z1  
Z2  
R12  
R7  
R16  
C34  
VCC  
C3  
C2  
R13  
R8  
3
4
5
6
7
8
9
R14  
R11  
R17  
R15  
VCC  
R19  
VCC  
C26  
C15  
C6  
C7  
ADL5356  
C11  
LO1  
DIV_IN  
C14  
Z3  
Z4  
10  
11  
12  
13  
14  
15  
L3  
C24  
16  
17  
18  
VCC  
+
VCC  
R5  
VCC  
C23  
R4  
C10  
VCC  
R6  
C13  
GND  
L5  
L4  
C1  
C12  
C28  
C20  
C29  
T2  
DIV_OUTP  
DIV_OUTN  
C30  
C31  
R9  
Figure 53. Typical Application Circuit  
Rev. 0 | Page 20 of 24  
 
ADL5356  
EVALUATION BOARD  
An evaluation board is available for the family of double balanced  
mixers. The standard evaluation board schematic is shown in  
Figure 54. The evaluation board is fabricated using Rogers®  
RO3003 material. Table 7 describes the various configuration  
options of the evaluation board. Evaluation board layout is shown  
in Figure 55 and Figure 56.  
R10  
MAIN_OUTN  
MAIN_OUTP  
C33  
C32  
T1  
C19  
C17  
C27  
C8  
C21  
L2  
L1  
R3  
VCC  
C25  
C18  
R1  
C22  
VCC  
L6  
R2  
VCC  
C9  
C16  
LOI2  
MNIN  
MAIN_IN  
LO2  
R12  
R7  
R16  
C34  
Z1  
Z2  
C3  
VGS2  
VGS1  
VGS0  
LOSW  
PWDN  
VPOS  
COMM  
LOI1  
VCC  
MNCT  
COMM  
VPOS  
COMM  
VPOS  
COMM  
DVCT  
DVIN  
C2  
R13  
R8  
R14  
R11  
R17  
ADL5356  
TOP VIEW  
(Not to Scale)  
VCC  
R15  
C6  
C7  
R19  
VCC  
C11  
C26  
C15  
DIV_IN  
Z3  
Z4  
LO1  
C14  
VCC  
VCC  
C23  
L3  
R5  
+
C10  
R4  
VCC  
VCC  
GND  
C24  
C13  
R6  
L4  
L5  
C1  
C12  
C28  
C20  
C29  
T2  
DIV_OUTP  
DIV_OUTN  
C30  
C31  
R9  
Figure 54. Evaluation Board Schematic  
Rev. 0 | Page 21 of 24  
 
 
ADL5356  
Table 7. Evaluation Board Configuration  
Components  
Description  
Default Conditions  
C1, C8, C10, C12,  
C13, C15, C18,  
C21, C22, C23,  
C24, C25, C26  
Power Supply Decoupling. Nominal supply decoupling consists of a C10 = 4.7 μF (Size 3216),  
0.01 μF capacitor to ground in parallel with 10 pF capacitors to  
ground positioned as close to the device as possible.  
C1, C8, C12, C21 = 150 pF (Size 0402),  
C22, C23, C24, C25, C26 = 10 pF (Size 0402),  
C13, C15, C18 = 0.1 μF (Size 0402)  
Z1 to Z4, C2, C3,  
C6, C7, C9, C11  
RF Main and Diversity Input Interface. Main and diversity  
input channels are ac-coupled through C9 and C11. Z1 to  
Z4 provide additional component placement for external  
matching/filter networks. C2, C3, C6, and C7 provide bypassing  
for the center taps of the main and diversity on-chip input baluns.  
C2, C7 = 10 pF (Size 0402),  
C3, C6 = 0.01 μF (Size 0402),  
C9, C11 = 1.8 pF (Size 0402),  
Z2, Z4 = 15 nH,  
Z1, Z3 = open (Size 0402)  
T1, T2, C17, C19,  
C20, C27 - C33,  
L1, L2, L4, L5,  
IF Main and Diversity Output Interface. The open collector IF  
output interfaces are biased through pull-up choke inductors  
L1, L2, L4, and L5, with R3 and R6 available for additional  
supply bypassing. T1 and T2 are 4:1 impedance transformers  
used to provide a single-ended IF output interface with C27  
and C28 providing center-tap bypassing. C17, C19, C20, C29,  
C30, C31, C32, and C33 ensure an ac-coupled output interface.  
Remove R9 and R10 for balanced output operation.  
C17, C19, C20, C29 to C33 = 0.001 μF (Size 0402),  
C27, C28 = 150 pF (Size 0402),  
T1, T2 = TC4-1T+ (Mini-Circuits),  
L1, L2, L4, L5 = 330 nH (Size 0805),  
R3, R6, R9, R10 = 0 Ω (Size 0402)  
R3, R6, R9, R10  
C14, C16,  
R15, LOSEL  
LO Interface. C14 and C16 provide ac coupling for the LOI1 and LOI2 C14, C16 = 10 pF (Size 0402),  
local oscillator inputs. LOSEL selects the appropriate LO input for  
both mixer cores. R15 provides a pull-down to ensure LOI2 is enabled  
when the LOSEL jumper is removed. Jumper can be removed to  
allow LOSEL interface to be exercised using external logic generator.  
R15 = 10 kΩ (Size 0402),  
LOSEL = 2-pin shunt  
R19, PWDN  
PWDN Interface. When the PWDN 2-pin shunt is inserted, the  
ADL5356 is powered down. When R19 is open, it pulls the PWDN  
logic low and enables the device. Jumper can be removed to allow  
PWDN interface to be excercised using an external logic generator.  
Grounding the PWDN pin is allowed during nominal operation but  
is not permitted when supply voltages exceed 3.3 V.  
R19 = 10 kΩ (Size 0402),  
PWDN = 2-pin shunt  
R1, R2, R4, R5, L3,  
L6, R7, R8, R11 to  
Bias Control. R16 and R17 form a voltage divider to provide a 3 V for R1, R4 = 1.3 kΩ (Size 0402),  
logic control, bypassed to ground through C34. R7, R8, R11, R12, R13, R2, R5 = 1 kΩ (Size 0402),  
R14, R16, R17, C34 and R14 provide resistor programmability of VGS0, VGS1, and VGS2. L3, L6 = 0 Ω (Size 0603),  
Typically, these nodes can be hardwired for nominal operation. R12, R13, R14 = open (Size 0402),  
Grounding these pins is allowed for nominal operation. R2 and R5 set R7, R8, R11 = 0 Ω (Size 0402),  
the bias point for the internal LO buffers. R1 and R4 set the bias point  
for the internal IF amplifiers. L3 and L6 are external inductors used to  
improve isolation and common-mode rejection.  
R16 = 10 kΩ (Size 0402),  
R17 = 15 kΩ (Size 0402),  
C34 = 1 nF (Size 0402)  
Figure 55. Evaluation Board Top Layer  
Figure 56. Evaluation Board Bottom Layer  
Rev. 0 | Page 22 of 24  
 
 
ADL5356  
OUTLINE DIMENSIONS  
6.00  
BSC SQ  
0.60 MAX  
0.60 MAX  
PIN 1  
INDICATOR  
36  
28  
1
9
27  
0.50  
BSC  
PIN 1  
INDICATOR  
3.85  
3.70 SQ  
3.55  
TOP  
VIEW  
5.75  
BSC SQ  
EXPOSED  
PAD  
(BOTTOM VIEW)  
0.75  
0.60  
0.50  
19  
18  
10  
0.20 MIN  
4.00  
REF  
0.80 MAX  
0.65 TYP  
12° MAX  
1.00  
0.85  
0.80  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
0.35  
0.28  
0.23  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.20 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-VJJD-1  
Figure 57. 36-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
6mm × 6 mm Body, Very Thin Quad (CP-36-1)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
ADL5356ACPZ-R21  
ADL5356ACPZ-R71  
ADL5356-EVALZ1  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
Package Description  
Package Option  
36-Lead LFCSP_VQ  
36-Lead LFCSP_VQ  
Evaluation Board  
CP-36-1  
CP-36-1  
1 Z = RoHS Compliant Part.  
Rev. 0 | Page 23 of 24  
 
 
ADL5356  
NOTES  
©2009 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D07883-0-10/09(0)  
Rev. 0 | Page 24 of 24  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY