ADL5357ACPZ-WP [ADI]

500 MHz to 1700 MHz Balanced Mixer, LO Buffer, IF Amplifier, and RF Balun; 500 MHz至1700 MHz的平衡混频器, LO缓冲器, IF放大器和RF巴伦
ADL5357ACPZ-WP
型号: ADL5357ACPZ-WP
厂家: ADI    ADI
描述:

500 MHz to 1700 MHz Balanced Mixer, LO Buffer, IF Amplifier, and RF Balun
500 MHz至1700 MHz的平衡混频器, LO缓冲器, IF放大器和RF巴伦

射频和微波 射频混频器 微波混频器 放大器 分离技术 隔离技术 信息通信管理 局域网
文件: 总24页 (文件大小:595K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
500 MHz to 1700 MHz Balanced Mixer,  
LO Buffer, IF Amplifier, and RF Balun  
ADL5357  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
IFGM  
IFOP  
IFON  
PWDN  
LEXT  
RF frequency range of 500 MHz to 1700 MHz  
IF frequency range of 30 MHz to 450 MHz  
Power conversion gain: 8.6 dB  
SSB noise figure of 9.1 dB  
SSB noise figure with 5 dBm blocker of 19.5 dB  
Input IP3 of 26.6 dBm  
20  
19  
18  
17  
16  
ADL5357  
1
2
3
4
5
15  
14  
13  
12  
11  
VPIF  
RFIN  
LOI2  
VPSW  
VGS1  
VGS0  
LOI1  
Input P1dB of 10.2 dBm  
Typical LO drive of 0 dBm  
Single-ended, 50 Ω RF and LO input ports  
High isolation SPDT LO input switch  
Single-supply operation: 3.3 V to 5 V  
Exposed paddle 5 mm × 5 mm, 20-lead LFCSP  
1500 V HBM/500 V FICDM ESD performance  
RFCT  
COMM  
COMM  
BIAS  
GENERATOR  
APPLICATIONS  
Cellular base station receivers  
Transmit observation receivers  
Radio link downconverters  
6
7
LGM3  
8
9
10  
VLO3  
VLO2  
LOSW  
NC  
NC = NO CONNECT  
Figure 1.  
The ADL5357 provides two switched LO paths that can be  
used in TDD applications where it is desirable to rapidly switch  
between two local oscillators. LO current can be externally set  
using a resistor to minimize dc current commensurate with the  
desired level of performance. For low voltage applications, the  
ADL5357 is capable of operation at voltages down to 3.3 V with  
substantially reduced current. Under low voltage operation, an  
additional logic pin is provided to power down (<200 μA) the  
circuit when desired.  
GENERAL DESCRIPTION  
The ADL5357 uses a highly linear, doubly balanced passive  
mixer core along with integrated RF and LO balancing circuitry  
to allow for single-ended operation. The ADL5357 incorporates  
an RF balun, allowing for optimal performance over a 500 MHz to  
1700 MHz RF input frequency range using high-side LO injection  
for RF frequencies from 500 MHz to 1200 MHz and low-side  
injection for frequencies from 900 MHz to 1700 MHz. The  
balanced passive mixer arrangement provides good LO-to-RF  
leakage, typically better than −46 dBm, and excellent inter-  
modulation performance. The balanced mixer core also provides  
extremely high input linearity, allowing the device to be used in  
demanding cellular applications where in-band blocking signals  
may otherwise result in the degradation of dynamic performance.  
A high linearity IF buffer amplifier follows the passive mixer core  
to yield a typical power conversion gain of 8.6 dB and can be used  
with a wide range of output impedances.  
The ADL5357 is fabricated using a BiCMOS high performance  
IC process. The device is available in a 5 mm × 5 mm, 20-lead  
LFCSP and operates over a −40°C to +85°C temperature range.  
An evaluation board is also available.  
Table 1. Passive Mixers  
RF Frequency  
(MHz)  
Single  
Mixer  
Single Mixer +  
IF Amp  
Dual Mixer +  
IF Amp  
500 to 1700  
ADL5357  
ADL5355  
1200 to 2500  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2009 Analog Devices, Inc. All rights reserved.  
 
ADL5357  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Circuit Description......................................................................... 16  
RF Subsystem.............................................................................. 16  
LO Subsystem ............................................................................. 17  
Applications Information.............................................................. 18  
Basic Connections...................................................................... 18  
IF Port .......................................................................................... 18  
Bias Resistor Selection ............................................................... 18  
Mixer VGS Control DAC.......................................................... 18  
Evaluation Board ............................................................................ 20  
Outline Dimensions....................................................................... 23  
Ordering Guide .......................................................................... 23  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
5 V Performance........................................................................... 4  
3.3 V Performance........................................................................ 4  
Absolute Maximum Ratings............................................................ 5  
ESD Caution.................................................................................. 5  
Pin Configuration and Function Descriptions............................. 6  
Typical Performance Characteristics ............................................. 7  
5 V Performance........................................................................... 7  
3.3 V Performance...................................................................... 14  
Spur Tables .................................................................................. 15  
REVISION HISTORY  
7/09—Revision 0: Initial Version  
Rev. 0 | Page 2 of 24  
 
ADL5357  
SPECIFICATIONS  
VPOS = 5 V, IS = 190 mA, TA = 25°C, fRF = 900 MHz, fLO = 1103 MHz, LO power = 0 dBm, ZO = 50 Ω, unless otherwise noted.  
Table 2.  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
RF INPUT INTERFACE  
Return Loss  
Tunable to >20 dB over a limited bandwidth  
19  
50  
dB  
Ω
MHz  
Input Impedance  
RF Frequency Range  
OUTPUT INTERFACE  
Output Impedance  
IF Frequency Range  
DC Bias Voltage1  
LO INTERFACE  
500  
1700  
Differential impedance, f = 200 MHz  
Externally generated  
240||0.4  
5.0  
Ω||pF  
MHz  
V
30  
3.3  
450  
5.5  
LO Power  
−6  
0
+10  
1670  
0.4  
dBm  
dB  
Ω
Return Loss  
12  
50  
Input Impedance  
LO Frequency Range  
POWER-DOWN (PWDN) INTERFACE  
PWDN Threshold  
Logic 0 Level  
730  
MHz  
2
1.0  
V
V
Logic 1 Level  
1.4  
V
PWDN Response Time  
Device enabled, IF output to 90% of its final level  
Device disabled, supply current < 5 mA  
Device enabled  
160  
220  
0.0  
70  
ns  
ns  
μA  
μA  
PWDN Input Bias Current  
Device disabled  
1 Apply the supply voltage from the external circuit through the choke inductors.  
2 The PWDN function is intended for use with VPOS ≤ 3.6 V only.  
Rev. 0 | Page 3 of 24  
 
ADL5357  
5 V PERFORMANCE  
VPOS = 5 V, IS = 190 mA, TA = 25°C, fRF = 900 MHz, fLO = 1103 MHz, LO power = 0 dBm, VGS0 = VGS1 = 0 V, and ZO = 50 Ω, unless  
otherwise noted.  
Table 3.  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
DYNAMIC PERFORMANCE  
Power Conversion Gain  
Voltage Conversion Gain  
SSB Noise Figure  
Including 4:1 IF port transformer and PCB loss  
ZSOURCE = 50 Ω, differential ZLOAD = 200 Ω differential  
7
8.6  
14.9  
9.1  
9.5  
dB  
dB  
dB  
dB  
SSB Noise Figure Under Blocking  
5 dBm blocker present 10 MHz from wanted RF input,  
LO source filtered  
19.5  
Input Third-Order Intercept (IIP3)  
Input Second-Order Intercept (IIP2)  
fRF1 = 899.5 MHz, fRF2 = 900.5 MHz, fLO = 1103 MHz,  
each RF tone at −10 dBm  
fRF1 = 950 MHz, fRF2 = 900 MHz, fLO = 1103 MHz,  
each RF tone at −10 dBm  
22  
26.6  
62.8  
dBm  
dBm  
Input 1 dB Compression Point (IP1dB)  
LO-to-IF Leakage  
LO-to-RF Leakage  
RF-to-IF Isolation  
10.2  
−7  
−46.7  
−35  
dBm  
dBm  
dBm  
dBc  
Unfiltered IF output  
IF/2 Spurious  
IF/3 Spurious  
−10 dBm input power  
−10 dBm input power  
−69.2  
−83.4  
dBc  
dBc  
POWER SUPPLY  
Positive Supply Voltage  
Quiescent Current  
4.5  
5
100  
90  
5.5  
V
LO supply, resistor programmable  
IF supply, resistor programmable  
VPOS = 5 V  
mA  
mA  
mA  
Total Quiescent Current  
190  
3.3 V PERFORMANCE  
VPOS = 3.3 V, IS = 125 mA, TA = 25°C, fRF = 900 MHz, fLO = 1103 MHz, LO power = 0 dBm, R9 = 226 Ω, R14 = 604 Ω, VGS0 = VGS1 = 0 V,  
and ZO = 50 Ω, unless otherwise noted.  
Table 4.  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
DYNAMIC PERFORMANCE  
Power Conversion Gain  
Voltage Conversion Gain  
SSB Noise Figure  
Including 4:1 IF port transformer and PCB loss  
ZSOURCE = 50 Ω, differential ZLOAD = 200 Ω differential  
8.8  
15.1  
9.0  
dB  
dB  
dB  
Input Third-Order Intercept (IIP3)  
fRF1 = 899.5 MHz, fRF2 = 900.5 MHz, fLO = 1103 MHz,  
each RF tone at −10 dBm  
21.4  
dBm  
Input Second-Order Intercept (IIP2)  
fRF1 = 950 MHz, fRF2 = 900 MHz, fLO = 1103 MHz,  
each RF tone at −10 dBm  
55.7  
7.1  
dBm  
dBm  
Input 1 dB Compression Point (IP1dB)  
POWER INTERFACE  
Supply Voltage  
3.0  
3.3  
3.6  
V
Quiescent Current  
Power-Down Current  
Resistor programmable  
Device disabled  
125  
150  
mA  
μA  
Rev. 0 | Page 4 of 24  
 
 
ADL5357  
ABSOLUTE MAXIMUM RATINGS  
Table 5.  
Parameter  
Supply Voltage, VPOS  
RF Input Level  
LO Input Level  
IFOP, IFON Bias Voltage  
VGS0, VGS1, LOSW, PWDN  
Internal Power Dissipation  
θJA  
Maximum Junction Temperature  
Operating Temperature Range  
Storage Temperature Range  
Lead Temperature Range (Soldering, 60 sec)  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rating  
5.5 V  
20 dBm  
13 dBm  
6.0 V  
5.5 V  
1.2 W  
25°C/W  
150°C  
−40°C to +85°C  
−65°C to +150°C  
260°C  
ESD CAUTION  
Rev. 0 | Page 5 of 24  
 
ADL5357  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
PIN 1  
INDICATOR  
VPIF  
RFIN  
RFCT  
COMM  
COMM  
1
2
3
4
5
15 LOI2  
14 VPSW  
13 VGS1  
12 VGS0  
11 LOI1  
ADL5357  
TOP VIEW  
(Not to Scale)  
NOTES  
1. NC = NO CONNECT.  
2. EXPOSED PAD. MUST BE SOLDERED  
TO GROUND.  
Figure 2. Pin Configuration  
Table 6. Pin Function Descriptions  
Pin No. Mnemonic Description  
1
2
VPIF  
RFIN  
Positive Supply Voltage for IF Amplifier.  
RF Input. Must be ac-coupled.  
3
RFCT  
COMM  
RF Balun Center Tap (AC Ground).  
Device Common (DC Ground).  
4, 5  
6, 8  
7
9
10  
VLO3, VLO2 Positive Supply Voltages for LO Amplifier.  
LGM3  
LOSW  
NC  
LO Amplifier Bias Control.  
LO Switch. LOI1 selected for 0 V, and LOI2 selected for 3 V.  
No Connect.  
11, 15  
12, 13  
14  
LOI1, LOI2  
LO Inputs. Must be ac-coupled.  
VGS0, VGS1 Mixer Gate Bias Controls. 3 V logic. Ground these pins for nominal setting.  
VPSW  
Positive Supply Voltage for LO Switch.  
16  
LEXT  
IF Return. This pin must be grounded.  
17  
18, 19  
20  
PWDN  
IFON, IFOP  
IFGM  
Power Down. Connect this pin to ground for normal operation and connect this pin to 3.0 V for disable mode.  
Differential IF Outputs (Open Collectors). Each requires an external dc bias.  
IF Amplifier Bias Control.  
EPAD (EP)  
Exposed pad. Must be soldered to ground.  
Rev. 0 | Page 6 of 24  
 
ADL5357  
TYPICAL PERFORMANCE CHARACTERISTICS  
5 V PERFORMANCE  
VPOS = 5 V, IS = 190 mA, TA = 25°C, fRF = 900 MHz, fLO = 1103 MHz, LO power = 0 dBm, R9 = 1.1 kΩ, R14 = 910 Ω, VGS0 = VGS1 = 0 V,  
and ZO = 50 Ω, unless otherwise noted.  
220  
210  
200  
190  
180  
170  
160  
150  
80  
70  
60  
50  
40  
30  
20  
10  
0
T
= +25°C  
A
T
= –40°C  
A
T = +85°C  
A
T
T
= –40°C  
= +25°C  
A
T
= +85°C  
A
A
700 750 800 850 900 950 1000 1050 1100 1150 1200  
700 750 800 850 900 950 1000 1050 1100 1150 1200  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
Figure 3. Supply Current vs. RF Frequency  
Figure 6. Input IP2 vs. RF Frequency  
14  
12  
10  
8
13  
12  
11  
10  
9
T
= +25°C  
A
T
T
= –40°C  
= +85°C  
A
T
= +25°C  
A
T
= +85°C  
A
A
6
T
= –40°C  
A
4
8
2
7
6
0
700 750 800 850 900 950 1000 1050 1100 1150 1200  
700 750 800 850 900 950 1000 1050 1100 1150 1200  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
Figure 4. Power Conversion Gain vs. RF Frequency  
Figure 7. Input P1dB vs. RF Frequency  
35  
30  
25  
20  
15  
10  
5
20  
T
= +25°C  
18  
16  
14  
12  
10  
8
A
T
T
= –40°C  
= +85°C  
A
A
T
= +25°C  
A
T
= +85°C  
= –40°C  
A
T
A
6
4
2
0
0
700 750 800 850 900 950 1000 1050 1100 1150 1200  
700 750 800 850 900 950 1000 1050 1100 1150 1200  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
Figure 5. Input IP3 vs. RF Frequency  
Figure 8. SSB Noise Figure vs. RF Frequency  
Rev. 0 | Page 7 of 24  
 
ADL5357  
80  
70  
250  
V
= 5.0V  
POS  
V
= 5.25V  
POS  
V
= 5.25V  
= 4.75V  
POS  
200  
150  
100  
50  
60  
50  
40  
30  
20  
10  
0
V
= 4.75V  
POS  
V
POS  
V
= 5V  
POS  
0
–40  
–40  
–20  
0
20  
40  
60  
80  
–20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 12. Input IP2 vs. Temperature  
Figure 9. Supply Current vs. Temperature  
14  
13  
12  
11  
10  
9
10  
9
V
V
V
= 4.75V  
= 5.0V  
= 5.25V  
POS  
POS  
POS  
V
= 5.0V  
POS  
V
= 5.25V  
POS  
8
V
= 4.75V  
POS  
7
8
6
7
6
5
5
4
–40  
4
–40  
–20  
0
20  
40  
60  
80  
–20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 13. Input P1dB vs. Temperature  
Figure 10. Power Conversion Gain vs. Temperature  
12  
11  
10  
9
35  
33  
31  
29  
27  
25  
23  
21  
19  
17  
15  
V
= 5.0V  
POS  
V
= 5.0V  
POS  
V
= 5.25V  
POS  
V
= 5.25V  
= 4.75V  
POS  
V
= 4.75V  
POS  
V
POS  
8
7
6
–40  
–20  
0
20  
40  
60  
80  
–40  
–20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 14. SSB Noise Figure vs. Temperature  
Figure 11. Input IP3 vs. Temperature  
Rev. 0 | Page 8 of 24  
ADL5357  
80  
70  
60  
50  
40  
30  
20  
10  
0
220  
210  
200  
190  
180  
170  
160  
150  
T
= +25°C  
A
T
= –40°C  
A
T
= +85°C  
T
= –40°C  
= +85°C  
A
A
T
A
T
= +25°C  
A
30  
80  
130  
180  
230  
280  
330  
380  
430  
30  
80  
130  
180  
230  
280  
330  
380  
430  
430  
430  
IF FREQUENCY (MHz)  
IF FREQUENCY (MHz)  
Figure 15. Supply Current vs. IF Frequency  
Figure 18. Input IP2 vs. IF Frequency  
12  
10  
8
12  
10  
8
T
= +85°C  
A
T
T
= –40°C  
= +85°C  
A
T
= +25°C  
A
T
= +25°C  
A
T
= –40°C  
A
A
6
6
4
4
2
2
0
0
30  
30  
80  
130  
180  
230  
280  
330  
380  
80  
130  
180  
230  
280  
330  
380  
430  
IF FREQUENCY (MHz)  
IF FREQUENCY (MHz)  
Figure 16. Power Conversion Gain vs. IF Frequency  
Figure 19. Input P1dB vs. IF Frequency  
15  
14  
13  
12  
11  
10  
9
35  
30  
25  
20  
15  
10  
5
T
= –40°C  
T
= +25°C  
A
A
T
= +85°C  
A
8
7
6
5
30  
0
30  
80  
130  
180  
230  
280  
330  
380  
430  
80  
130  
180  
230  
280  
330  
380  
IF FREQUENCY (MHz)  
IF FREQUENCY (MHz)  
Figure 17. Input IP3 vs. IF Frequency  
Figure 20. SSB Noise Figure vs. IF Frequency  
Rev. 0 | Page 9 of 24  
ADL5357  
12  
10  
8
12  
10  
8
T
T
= +85°C  
= –40°C  
A
T
= +25°C  
A
T
T
= –40°C  
= +85°C  
A
A
T
= +25°C  
A
A
6
6
4
4
2
2
0
0
–6  
–4  
–2  
0
2
4
6
8
10  
10  
10  
–6  
–4  
–2  
0
2
4
6
8
10  
LO POWER LEVEL (dBm)  
LO POWER (dBm)  
Figure 21. Power Conversion Gain vs. LO Power  
Figure 24. Input P1dB vs. LO Power  
30  
25  
20  
15  
10  
5
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
T
= –40°C  
A
T
= +85°C  
A
T
= +25°C  
A
T
= +25°C  
T
= –40°C  
= +85°C  
A
A
T
A
0
6
4
2
0
2
4
6
8
700 750 800 850 900 950 1000 1050 1100 1150 1200  
LO POWER LEVEL (dBm)  
RF FREQUENCY (MHz)  
Figure 22. Input IP3 vs. LO Power  
Figure 25. IF/2 Spurious vs. RF Frequency  
80  
70  
60  
50  
40  
30  
20  
10  
0
0
T
= +25°C  
A
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
T
= –40°C  
A
T
= +85°C  
A
T
= +25°C  
A
T
= –40°C  
A
T
= +85°C  
A
–6  
–4  
–2  
0
2
4
6
8
700 750 800 850 900 950 1000 1050 1100 1150 1200  
LO POWER (dBm)  
RF FREQUENCY (MHz)  
Figure 26. IF/3 Spurious vs. RF Frequency  
Figure 23. Input IP2 vs. LO Power  
Rev. 0 | Page 10 of 24  
ADL5357  
100  
80  
60  
40  
20  
0
10  
500  
400  
300  
200  
100  
0
MEAN: 8.59  
SD: 0.14%  
8
6
4
2
0
30  
80  
130  
180  
230  
280  
330  
380  
430  
8.3  
8.4  
8.5  
8.6  
8.7  
8.8  
8.9  
IF FREQUENCY (MHz)  
CONVERSION GAIN (dB)  
Figure 27. Power Conversion Gain Distribution  
Figure 30. IF Port Return Loss  
100  
80  
60  
40  
20  
0
0
5
MEAN: 26.57  
SD: 0.39%  
10  
15  
20  
25  
30  
35  
40  
24  
25  
26  
27  
28  
29  
700 750 800 850 900 950 1000 1050 1100 1150 1200  
INPUT IP3 (dBm)  
RF FREQUENCY (MHz)  
Figure 28. Input IP3 Distribution  
Figure 31. RF Port Return Loss, Fixed IF  
100  
0
MEAN: 10.22  
SD: 0.50%  
5
10  
15  
20  
25  
30  
80  
60  
40  
20  
0
SELECTED  
UNSELECTED  
9.6  
9.9  
10.2  
10.5  
10.8  
900 950 1000 1050 1100 1150 1200 1250 1300 1350 1400  
INPUT P1dB (dBm)  
LO FREQUENCY (MHz)  
Figure 29. Input P1dB Distribution  
Figure 32. LO Return Loss, Selected and Unselected  
Rev. 0 | Page 11 of 24  
 
ADL5357  
70  
65  
60  
55  
50  
45  
40  
0
–10  
–20  
–30  
–40  
–50  
–60  
T
= +25°C  
A
T
= +85°C  
T = –40°C  
A
A
T
= +85°C  
A
T
= –40°C  
A
T
= +25°C  
A
900 950 1000 1050 1100 1150 1200 1250 1300 1350 1400  
900 950 1000 1050 1100 1150 1200 1250 1300 1350 1400  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
Figure 36. LO-to-RF Leakage vs. LO Frequency  
Figure 33. LO Switch Isolation vs. LO Frequency  
0
–5  
0
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
2LO TO RF  
2LO TO IF  
T
= +25°C  
A
T
= +85°C  
A
T
= –40°C  
A
900 950 1000 1050 1100 1150 1200 1250 1300 1350 1400  
700 750 800 850 900 950 1000 1050 1100 1150 1200  
LO FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
Figure 34. RF-to-IF Isolation vs. RF Frequency  
Figure 37. 2LO Leakage vs. LO Frequency  
0
–5  
0
T
= –40°C  
= +85°C  
A
–10  
–20  
–30  
–40  
–50  
–60  
T
A
T
= +25°C  
A
–10  
–15  
–20  
–25  
–30  
3LO TO RF  
3LO TO IF  
900 950 1000 1050 1100 1150 1200 1250 1300 1350 1400  
900 950 1000 1050 1100 1150 1200 1250 1300 1350 1400  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
Figure 38. 3LO Leakage vs. LO Frequency  
Figure 35. LO-to-IF Leakage vs. LO Frequency  
Rev. 0 | Page 12 of 24  
ADL5357  
10  
9
8
7
6
5
4
3
2
1
0
15  
14  
13  
12  
11  
10  
9
30  
25  
20  
15  
10  
5
CONVERSION  
GAIN  
SSB NOISE  
FIGURE  
8
7
VGS = 00  
VGS = 01  
VGS = 10  
VGS = 11  
6
5
0
700 750 800 850 900 950 1000 1050 1100 1150 1200  
–30  
–25  
–20  
–15  
–10  
–5  
0
5
10  
RF FREQUENCY (MHz)  
BLOCKER POWER (dBm)  
Figure 39. Power Conversion Gain and SSB Noise Figure vs. RF Frequency  
Figure 42. SSB Noise Figure vs.10 MHz Offset Blocker Level  
20  
18  
16  
14  
12  
10  
8
30  
28  
26  
24  
22  
20  
18  
16  
140  
VGS = 00  
VGS = 01  
VGS = 10  
VGS = 11  
120  
100  
80  
60  
40  
20  
0
R9 LO SET RESISTOR  
INPUT IP3  
R14 IF SET RESISTOR  
INPUT P1dB  
6
700 750 800 850 900 950 1000 1050 1100 1150 1200  
600  
800  
1000  
1200  
1400  
1600  
1800  
RF FREQUENCY (MHz)  
BIAS RESISTOR VALUE ()  
Figure 40. Input P1dB and Input IP3 vs. RF Frequency  
Figure 43. IF or LO Supply Current vs. IF or LO Bias Resistor Value  
12  
30  
12  
30  
25  
20  
15  
10  
5
INPUT IP3  
INPUT IP3  
11  
10  
9
25  
20  
15  
10  
5
11  
10  
9
SSB NOISE FIGURE  
CONVERSION GAIN  
SSB NOISE FIGURE  
CONVERSION GAIN  
8
8
7
7
6
0.6  
0
6
0
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
LO BIAS RESISTOR VALUE (k)  
IF BIAS RESISTOR VALUE (k)  
Figure 41. Power Conversion Gain, SSB Noise Figure, and  
Input IP3 vs. LO Bias Resistor Value  
Figure 44. Power Conversion Gain, SSB Noise Figure, and  
Input IP3 vs. IF Bias Resistor Value  
Rev. 0 | Page 13 of 24  
 
 
 
 
 
ADL5357  
3.3 V PERFORMANCE  
VPOS = 3.3 V, IS = 125 mA, TA = 25°C, fRF = 900 MHz, fLO = 1103 MHz, LO power = 0 dBm, R9 = 226 Ω, R14 = 604 Ω, VGS0 = VGS1 = 0 V,  
and ZO = 50 Ω, unless otherwise noted.  
160  
150  
140  
130  
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
T
= +85°C  
A
T
= +25°C  
T
= +25°C  
A
A
T
= –40°C  
= +85°C  
A
T
T
= –40°C  
A
A
80  
70  
60  
700 750 800 850 900 950 1000 1050 1100 1150 1200  
700 750 800 850 900 950 1000 1050 1100 1150 1200  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
Figure 48. Input IP2 vs. RF Frequency at 3.3 V  
Figure 45. Supply Current vs. RF Frequency at 3.3 V  
12  
12  
10  
8
10  
8
T
= +25°C  
A
T
= –40°C  
A
T
= +25°C  
A
T
= +85°C  
A
T
= +85°C  
A
6
6
T
= –40°C  
A
4
4
2
2
0
0
700 750 800 850 900 950 1000 1050 1100 1150 1200  
700 750 800 850 900 950 1000 1050 1100 1150 1200  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
Figure 49. Input P1dB vs. RF Frequency at 3.3 V  
Figure 46. Power Conversion Gain vs. RF Frequency at 3.3 V  
14  
25  
T
= +25°C  
T
= –40°C  
= +85°C  
A
A
12  
10  
8
20  
15  
10  
5
T
= +25°C  
T
A
A
T
= +85°C  
A
T
= –40°C  
A
6
4
2
0
700 750 800 850 900 950 1000 1050 1100 1150 1200  
700 750 800 850 900 950 1000 1050 1100 1150 1200  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
Figure 50. SSB Noise Figure vs. RF Frequency at 3.3 V  
Figure 47. Input IP3 vs. RF Frequency at 3.3 V  
Rev. 0 | Page 14 of 24  
 
ADL5357  
SPUR TABLES  
All spur tables are (N × fRF) − (M × fLO) and were measured using the standard evaluation board. Mixer spurious products are measured  
in dBc from the IF output power level. Data was only measured for frequencies less than 6 GHz. Typical noise floor of the measurement  
system = −100 dBm.  
5 V Performance  
VPOS = 5 V, IS = 190 mA, TA = 25°C, fRF = 900 MHz, fLO = 1103 MHz, LO power = 0 dBm, VGS0 = VGS1 = 0 V, and ZO = 50 Ω,  
unless otherwise noted.  
Table 7.  
M
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
0
−4.8  
0.0  
−15.8  
−47.1  
−73.4  
−33.5  
−37.9  
−78.8  
−38.6  
−57.9  
−87.3  
−55.7  
−57.3  
−93.1  
1
−41.3  
−87.1  
−74.9  
−92.1  
2
−65.5  
<−100  
3
<−100 <−100 <−100 −94.0  
<−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100  
4
5
6
7
<−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100  
N
8
9
<−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100  
10  
11  
12  
13  
14  
15  
<−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100  
3.3 V Performance  
VPOS = 3.3 V, IS = 125 mA, TA = 25°C, fRF = 900 MHz, fLO = 1103 MHz, LO power = 0 dBm, R9 = 226 Ω, R14 = 604 Ω, VGS0 = VGS1 = 0 V,  
and ZO = 50 Ω, unless otherwise noted.  
Table 8.  
M
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
0
−9.9  
0.0  
−20.0  
−50.1  
−69.6  
−43.5  
−37.1  
−71.4  
−40.8  
−53.5  
−81.6  
−99.8  
−62.2  
−56.0  
−90.7  
1
−50.8  
−75.0  
−72.8  
−86.7  
2
−59.1  
<−100  
3
<−100 −93.8  
<−100 −82.0  
<−100 <−100 <−100  
4
<−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100  
5
6
7
<−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100  
N
8
9
<−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100  
10  
11  
12  
13  
14  
15  
<−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100  
Rev. 0 | Page 15 of 24  
 
ADL5357  
CIRCUIT DESCRIPTION  
The ADL5357 consists of two primary components: the radio  
frequency (RF) subsystem and the local oscillator (LO) subsystem.  
The combination of design, process, and packaging technology  
allows the functions of these subsystems to be integrated  
into a single die, using mature packaging and interconnection  
technologies to provide a high performance, low cost design  
with excellent electrical, mechanical, and thermal properties.  
In addition, the need for external components is minimized,  
optimizing cost and size.  
RF SUBSYSTEM  
The single-ended, 50 Ω RF input is internally transformed to a  
balanced signal using a low loss (<1 dB) unbalanced-to-balanced  
(balun) transformer. This transformer is made possible by an  
extremely low loss metal stack, which provides both excellent  
balance and dc isolation for the RF port. Although the port can  
be dc connected, it is recommended that a blocking capacitor be  
used to avoid running excessive dc current through the part.  
The RF balun can easily support an RF input frequency range  
of 500 MHz to 1700 MHz.  
The RF subsystem consists of an integrated, low loss RF balun,  
passive MOSFET mixer, sum termination network, and IF  
amplifier.  
The resulting balanced RF signal is applied to a passive mixer  
that commutates the RF input with the output of the LO subsystem.  
The passive mixer is essentially a balanced, low loss switch that  
adds minimum noise to the frequency translation. The only  
noise contribution from the mixer is due to the resistive loss  
of the switches, which is in the order of a few ohms.  
The LO subsystem consists of an SPDT-terminated FET switch  
and a three-stage limiting LO amplifier. The purpose of the LO  
subsystem is to provide a large, fixed amplitude, balanced signal  
to drive the mixer independent of the level of the LO input.  
A block diagram of the device is shown in Figure 51.  
Because the mixer is inherently broadband and bidirectional, it  
is necessary to properly terminate all the idler (M × N product)  
frequencies generated by the mixing process. Terminating the  
mixer avoids the generation of unwanted intermodulation  
products and reduces the level of unwanted signals at the input  
of the IF amplifier, where high peak signal levels can compromise  
the compression and intermodulation performance of the system.  
This termination is accomplished by the addition of a sum  
network between the IF amplifier and the mixer and also in  
the feedback elements in the IF amplifier.  
IFGM  
IFOP  
19  
IFON  
18  
PWDN  
17  
LEXT  
16  
20  
ADL5357  
1
2
3
4
5
15  
14  
13  
12  
11  
VPIF  
RFIN  
LOI2  
VPSW  
VGS1  
VGS0  
LOI1  
RFCT  
COMM  
COMM  
The IF amplifier is a balanced feedback design that simultaneously  
provides the desired gain, noise figure, and input impedance that are  
required to achieve the overall performance. The balanced open-  
collector output of the IF amplifier, with impedance modified  
by the feedback within the amplifier, permits the output to be  
connected directly to a high impedance filter, differential amplifier,  
or an analog-to-digital input while providing optimum second-  
order intermodulation suppression. The differential output  
impedance of the IF amplifier is approximately 200 Ω. If operation  
in a 50 Ω system is desired, the output can be transformed to  
50 Ω by using a 4:1 transformer.  
BIAS  
GENERATOR  
6
7
LGM3  
8
9
10  
VLO3  
VLO2  
LOSW  
NC  
NC = NO CONNECT  
Figure 51. Simplified Schematic  
The intermodulation performance of the design is generally  
limited by the IF amplifier. The IP3 performance can be optimized  
by adjusting the IF current with an external resistor. Figure 41,  
Figure 43, and Figure 44 illustrate how various IF and LO bias  
resistors affect the performance with a 5 V supply. Additionally,  
dc current can be saved by increasing either or both resistors. It  
is permissible to reduce the dc supply voltage to as low as 3.3 V,  
further reducing the dissipated power of the part. (Note that no  
performance enhancement is obtained by reducing the value of  
these resistors, and excessive dc power dissipation may result.)  
Rev. 0 | Page 16 of 24  
 
 
ADL5357  
The performance of this amplifier is critical in achieving a  
LO SUBSYSTEM  
high intercept passive mixer without degrading the noise floor  
of the system. This is a critical requirement in an interferer rich  
environment, such as cellular infrastructure, where blocking  
interferers can limit mixer performance. The bandwidth of the  
intermodulation performance is somewhat influenced by the  
current in the LO amplifier chain. For dc current sensitive  
applications, it is permissible to reduce the current in the  
LO amplifier by raising the value of the external bias control  
resistor. For dc current critical applications, the LO chain  
can operate with a supply voltage as low as 3.3 V, resulting in  
substantial dc power savings.  
The LO amplifier is designed to provide a large signal level to  
the mixer to obtain optimum intermodulation performance.  
The resulting amplifier provides extremely high performance  
centered on an operating frequency of 1100 MHz. The best  
operation is achieved with either high-side LO injection for RF  
signals in the 500 MHz to 1200 MHz range or high-side injection  
for RF signals in the 900 MHz to 1700 MHz range. Operation  
outside these ranges is permissible, and conversion gain is  
extremely wideband, easily spanning 500 MHz to 1700 MHz,  
but intermodulation is optimal over the aforementioned ranges.  
The ADL5357 has two LO inputs permitting multiple synthesizers  
to be rapidly switched with extremely short switching times  
(<40 ns) for frequency agile applications. The two inputs are  
applied to a high isolation SPDT switch that provides a constant  
input impedance, regardless of whether the port is selected, to  
avoid pulling the LO sources. This multiple section switch also  
ensures high isolation to the off input, minimizing any leakage  
from the unwanted LO input that may result in undesired IF  
responses.  
In addition, when operating with supply voltages below 3.6 V,  
the ADL5357 has a power-down mode that permits the dc  
current to drop to <200 μA.  
All of the logic inputs are designed to work with any logic family  
that provides a Logic 0 input level of less than 0.4 V and a Logic 1  
input level that exceeds 1.4 V. All logic inputs are high impedance  
up to Logic 1 levels of 3.3 V. At levels exceeding 3.3 V, protection  
circuitry permits operation up to 5.5 V, although a small bias  
current is drawn.  
The single-ended LO input is converted to a fixed amplitude  
differential signal using a multistage, limiting LO amplifier.  
This results in consistent performance over a range of LO input  
power. Optimum performance is achieved from −6 dBm to  
+10 dBm, but the circuit continues to function at considerably  
lower levels of LO input power.  
All pins, including the RF pins, are ESD protected and have  
been tested up to a level of 1500 V HBM and 500 V CDM.  
Rev. 0 | Page 17 of 24  
 
ADL5357  
APPLICATIONS INFORMATION  
BASIC CONNECTIONS  
BIAS RESISTOR SELECTION  
Two external resistors, RBIAS IF and RBIAS LO, are used to adjust the  
bias current of the integrated amplifiers at the IF and LO terminals.  
It is necessary to have a sufficient amount of current to bias both  
the internal IF and LO amplifiers to optimize dc current vs.  
optimum IIP3 performance. Figure 41, Figure 43, and Figure 44  
provide the reference for the bias resistor selection when lower  
power consumption is considered at the expense of conversion  
gain and IP3 performance.  
The ADL5357 mixer is designed to downconvert radio  
frequencies (RF) primarily between 500 MHz and 1700 MHz  
to lower intermediate frequencies (IF) between 30 MHz and  
450 MHz. Figure 52 depicts the basic connections of the mixer.  
It is recommended to ac couple RF and LO input ports to prevent  
non-zero dc voltages from damaging the RF balun or LO input  
circuit. The RFIN capacitor value of 8 pF is recommended to  
provide the optimized RF input return loss for the desired  
frequency band.  
MIXER VGS CONTROL DAC  
IF PORT  
The ADL5357 features two logic control pins, VGS0 (Pin 12) and  
VGS1 (Pin 13), that allow programmability for internal gate-to-  
source voltages for optimizing mixer performance over desired  
frequency bands. The evaluation board defaults both VGS0 and  
VGS1 to ground. Power conversion gain, IIP3, NF, and IP1dB  
can be optimized, as is shown in Figure 39 and Figure 40.  
The mixer differential IF interface requires pull-up choke inductors  
to bias the open-collector outputs and to set the output match.  
The shunting impedance of the choke inductors used to couple  
dc current into the IF amplifier should be selected to provide  
the desired output return loss.  
The real part of the output impedance is approximately  
200 Ω, as seen in Figure 30, which matches many commonly  
used SAW filters without the need for a transformer. This results in  
a voltage conversion gain that is approximately 6 dB higher than  
the power conversion gain, as shown in Table 3. When a 50 Ω  
output impedance is needed, use a 4:1 impedance transformer,  
as shown in Figure 52.  
Rev. 0 | Page 18 of 24  
 
ADL5357  
+5V  
100pF  
150pF  
470nH  
470nH  
4:1  
IF OUT  
R
10k  
BIAS IF  
+5V  
20  
19  
18  
17  
16  
10pF  
4.7µF  
22pF  
ADL5357  
+5V  
1
2
3
4
5
15  
14  
13  
12  
11  
LO2 IN  
+5V  
8pF  
RF IN  
10pF  
10pF  
0.1µF  
BIAS  
GENERATOR  
22pF  
LO1 IN  
6
7
8
9
10  
R
BIAS LO  
10kΩ  
+5V  
10pF  
10pF  
Figure 52. Typical Application Circuit  
Rev. 0 | Page 19 of 24  
 
ADL5357  
EVALUATION BOARD  
An evaluation board is available for the family of double balanced  
mixers. The standard evaluation board schematic is shown in  
Figure 53. The evaluation board is fabricated using Rogers®  
RO3003 material. Table 9 describes the various configuration  
options of the evaluation board. Evaluation board layout is shown  
in Figure 54 to Figure 57.  
L5  
470nH  
T1  
IF1-OUT  
VPOS  
C18  
100pF  
C19  
100pF  
L4  
470nH  
R1  
0Ω  
C17  
150pF  
R24  
0Ω  
R25  
0Ω  
PWR_UP  
R21  
10kΩ  
R14  
910Ω  
L3  
0Ω  
C12  
22pF  
LO2_IN  
VPOS  
VPOS  
VPIF  
LOI2  
VPSW  
VGS1  
VGS0  
LOI1  
C2  
C21  
C20  
R22  
10kΩ  
10µF  
10pF  
10pF  
RFIN  
RF-IN  
C22  
1nF  
C1  
8pF  
R23  
15kΩ  
ADL5357  
RFCT  
COMM  
COMM  
C5  
0.01µF  
C4  
10pF  
VGS1  
VGS0  
LO1_IN  
C10  
22nF  
LOSEL  
VPOS  
R9  
1.1kΩ  
C6  
10pF  
R4  
10kΩ  
VPOS  
C8  
10pF  
Figure 53. Evaluation Board Schematic  
Rev. 0 | Page 20 of 24  
 
 
ADL5357  
Table 9. Evaluation Board Configuration  
Components Description  
C2, C6, C8, C18, C19, Power Supply Decoupling. Nominal supply decoupling consists of  
Default Conditions  
C2 = 10 μF (size 0603),  
C6, C8, C20, C21 = 10 pF (size 0402),  
C18, C19 = 100 pF (size 0402)  
C20, C21  
a 10 μF capacitor to ground in parallel with a 10 pF capacitor to  
ground positioned as close to the device as possible.  
C1, C4, C5  
RF Input Interface. The input channels are ac-coupled through C1.  
C4 and C5 provide bypassing for the center taps of the RF input baluns.  
C1 = 8 pF (size 0402), C4 = 10 pF (size 0402),  
C5 = 0.01 μF (size 0402)  
T1, C17, L4, L5,  
R1, R24, R25  
IF Output Interface. The open-collector IF output interfaces are  
biased through pull-up choke inductors L4 and L5. T1 is a 4:1  
impedance transformer used to provide a single-ended IF output  
interface, with C17 providing center-tap bypassing. Remove R1 for  
balanced output operation.  
T1 = TC4-1W+ (Mini-Circuits),  
C17 = 150 pF (size 0402),  
L4, L5 = 470 nH (size 1008),  
R1, R24, R25 = 0 Ω (size 0402)  
C10, C12, R4  
LO Interface. C10 and C12 provide ac coupling for the LO1_IN and  
LO2_IN local oscillator inputs. LOSEL selects the appropriate LO  
input for both mixer cores. R4 provides a pull-down to ensure that  
LO1_IN is enabled when the LOSEL test point is logic low.  
LO2_IN is enabled when LOSEL is pulled to logic high.  
C10, C12 = 22 pF (size 0402),  
R4 = 10 kΩ (size 0402)  
R21  
PWDN Interface. R21 pulls the PWDN logic low and enables the  
device. The PWR_UP test point allows the PWDN interface to be  
exercised using the external logic generator. Grounding the  
PWDN pin for nominal operation is allowed. Using the PWDN pin  
when supply voltages exceed 3.3 V is not allowed.  
R21 = 10 kΩ (size 0402)  
C22, L3, R9, R14, R22, Bias Control. R22 and R23 form a voltage divider to provide 3 V  
C22 = 1 nF (size 0402), L3 = 0 Ω (size 0603),  
R9 = 1.1 kΩ (size 0402), R14 = 910 Ω (size 0402),  
R22 = 10 kΩ (size 0402), R23 = 15 kΩ (size 0402),  
VGS0 = VGS1 = 3-pin shunt  
R23, VGS0, VGS1  
for logic control, bypassed to ground through C22. VGS0 and VGS1  
jumpers provide programmability at the VGS0 and VGS1 pins. It is  
recommended to pull these two pins to ground for nominal  
operation. R9 sets the bias point for the internal LO buffers.  
R14 sets the bias point for the internal IF amplifier.  
Rev. 0 | Page 21 of 24  
 
ADL5357  
Figure 54. Evaluation Board Top Layer  
Figure 56. Evaluation Board Power Plane, Internal Layer 2  
Figure 55. Evaluation Board Ground Plane, Internal Layer 1  
Figure 57. Evaluation Board Bottom Layer  
Rev. 0 | Page 22 of 24  
 
 
ADL5357  
OUTLINE DIMENSIONS  
0.60 MAX  
5.00  
BSC SQ  
0.60 MAX  
PIN 1  
INDICATOR  
15  
16  
20  
1
5
0.65  
BSC  
PIN 1  
INDICATOR  
4.75  
BSC SQ  
3.20  
3.10 SQ  
3.00  
EXPOSED  
PAD  
(BOTTOM VIEW)  
10  
11  
6
0.75  
0.60  
0.50  
TOP VIEW  
2.60 BSC  
0.70  
0.65  
0.60  
12° MAX  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.90  
0.85  
0.80  
0.05 MAX  
0.01 NOM  
SECTION OF THIS DATA SHEET.  
COPLANARITY  
0.05  
0.35  
0.28  
0.23  
SEATING  
PLANE  
0.20 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-VHHC  
Figure 58. 20-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
5 mm × 5 mm Body, Very Thin Quad (CP-20-5)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Package  
Option  
Model  
ADL5357ACPZ-R71  
Temperature Range Package Description  
−40°C to +85°C 20-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
Ordering Quantity  
CP-20-5  
CP-20-5  
1,500, 7”Tape and Reel  
36, Waffle Pack  
1
ADL5357ACPZ-WP1 −40°C to +85°C  
ADL5357-EVALZ1  
20-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
Evaluation Board  
1 Z = RoHS Compliant Part.  
Rev. 0 | Page 23 of 24  
 
 
ADL5357  
NOTES  
©2009 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D08081-0-7/09(0)  
Rev. 0 | Page 24 of 24  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY