ADL5369ACPZ-R7 [ADI]

300 MHz to 1100 MHz Balanced Mixer, LO Buffer, and RF Balun;
ADL5369ACPZ-R7
型号: ADL5369ACPZ-R7
厂家: ADI    ADI
描述:

300 MHz to 1100 MHz Balanced Mixer, LO Buffer, and RF Balun

文件: 总23页 (文件大小:486K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
300 MHz to 1100 MHz Balanced Mixer,  
LO Buffer, and RF Balun  
Data Sheet  
ADL5369  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
VCMI  
20  
IFOP  
19  
IFON  
18  
PWDN  
17  
COMM  
16  
RF frequency range of 300 MHz to 1100 MHz  
IF frequency range of 30 MHz to 450 MHz  
Power conversion loss: 6.2 dB  
ADL5369  
1
2
3
4
5
15  
14  
13  
12  
11  
VPMX  
RFIN  
LOI2  
SSB noise figure of 7.2 dB  
Input IP3 of 28 dBm  
Typical LO interface return loss of 0 dBm  
Single-ended, 50 Ω RF and LO input ports  
High isolation SPDT LO input switch  
Typical single-supply operation: 3.3 V to 5 V  
Exposed pad, 5 mm × 5 mm, 20-lead LFCSP  
VPSW  
VGS1  
VGS0  
LOI1  
RFCT  
COMM  
COMM  
BIAS  
GENERATOR  
APPLICATIONS  
Cellular base station receivers  
Transmit observation receivers  
Radio link downconverters  
6
7
LGM3  
8
9
10  
VLO3  
VLO2  
LOSW  
NIC  
NIC = NOT INTERNALLY CONNECTED.  
Figure 1.  
GENERAL DESCRIPTION  
The ADL5369 uses a highly linear, doubly balanced passive mixer  
core along with integrated radio frequency (RF) and local oscillator  
(LO) balancing circuitry to allow single-ended operation. The  
ADL5369 incorporates an RF balun, allowing optimal performance  
over a 300 MHz to 1100 MHz RF input frequency range. The  
balanced passive mixer arrangement provides good LO to RF  
leakage, typically better than −25 dBm, and excellent intermod-  
ulation performance. The balanced mixer core also provides  
extremely high input linearity, allowing the device to be used in  
demanding cellular applications where in-band blocking signals  
may otherwise result in the degradation of dynamic perform-  
ance. The passive mixer core yields a typical power conversion loss  
of 6.2 dB.  
The ADL5369 provides two switched LO paths that can be  
used in time division duplex (TDD) applications where it is  
desirable to rapidly switch between two local oscillators. LO  
current can be externally set using a resistor to minimize dc  
current commensurate with the desired level of performance.  
For low voltage applications, the ADL5369 is capable of operation  
at voltages down to 3.3 V with substantially reduced current.  
Under low voltage operation, an additional logic pin is provided  
to power down (<200 μA) the circuit when desired.  
The ADL5369 is fabricated using a BiCMOS high performance  
IC process. The device is available in a 5 mm × 5 mm, 20-lead  
LFCSP and operates over a −40°C to +85°C temperature range.  
An evaluation board is also available.  
Table 1. Passive Mixers  
RF Frequency Single  
Single Mixer  
and IF Amp  
Dual Mixer  
and IF Amp  
(MHz)  
Mixer  
300 to 1100  
500 to 1700  
1200 to 2500  
2200 to 2700  
ADL5369  
ADL5367  
ADL5365  
Not applicable  
ADL5357  
ADL5355  
Not applicable  
ADL5358  
ADL5356  
Not  
ADL5353  
ADL5354  
applicable  
2300 to 2900  
ADL5363  
Not applicable  
Not applicable  
Rev. A  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2016 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
 
ADL5369  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
3.3 V Performance Characteristics .......................................... 14  
Upconversion Characteristics................................................... 15  
Spurious Performance ............................................................... 16  
Circuit Description......................................................................... 17  
RF Subsystem.............................................................................. 17  
LO Subsystem ............................................................................. 17  
Applications Information.............................................................. 19  
Basic Connections...................................................................... 19  
IF Port .......................................................................................... 19  
Mixer VGS Control DAC.......................................................... 19  
Evaluation Board ............................................................................ 20  
Outline Dimensions....................................................................... 23  
Ordering Guide .......................................................................... 23  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
5 V Performance........................................................................... 4  
3.3 V Performance........................................................................ 4  
Absolute Maximum Ratings............................................................ 5  
Thermal Resistance ...................................................................... 5  
ESD Caution.................................................................................. 5  
Pin Configuration and Function Descriptions............................. 6  
Typical Performance Characteristics ............................................. 7  
5 V Performance Characteristics................................................ 7  
REVISION HISTORY  
5/16—Rev. 0 to Rev. A  
Changes to Conversion Loss Distribution, Input IP3 Distribution,  
and Return Loss Section.................................................................. 11  
Changes to Isolation, Leakage, Power Conversion Loss, Input  
IP3, and SSB Noise Figure Section............................................... 12  
Changes to 3.3 V Performance Characteristics Section............ 14  
Changes to Upconversion Characteristics Section .................... 15  
Changes to 5 V Performance Section .......................................... 16  
Change to Figure 45 ....................................................................... 19  
Change to Figure 46 ....................................................................... 20  
Changes to Table 8.......................................................................... 21  
Changes to Specifications Section .......................................................3  
Changes to 5 V Performance Section and 3.3 V Performance  
Section .........................................................................................................4  
Changes to Table 5.....................................................................................5  
Added Thermal Resistance Section, Table 6, and Junction to Board  
Thermal Impedance Section; Renumbered Sequentially ..................5  
Changes to RF Frequency Section.................................................. 7  
Changes to Temperature Section.................................................... 8  
Changes to IF Frequency Section................................................... 9  
Changes to LO Power and Spurious Performance Section....... 10  
1/16—Revision 0: Initial Version  
Rev. A | Page 2 of 23  
 
Data Sheet  
ADL5369  
SPECIFICATIONS  
Supply voltage (VS) = 5 V, supply current (IS) = 84 mA, TA = 25°C, fRF = 450 MHz, fLO = 543 MHz, LO power = 0 dBm, ZO = 50 Ω,  
R9 = 1.7 kꢀ, unless otherwise noted.  
Table 2.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
RF INPUT INTERFACE  
Return Loss  
Tunable to >20 dB over a limited bandwidth  
10  
50  
dB  
Ω
MHz  
Input Impedance  
RF Frequency Range  
OUTPUT INTERFACE  
Output Impedance  
IF Frequency Range  
DC Bias Voltage1  
LO INTERFACE  
300  
1100  
Differential impedance, f = 93 MHz  
Externally generated  
35.2||11.9  
5.0  
Ω||pF  
MHz  
V
30  
3.3  
450  
5.5  
LO Power  
−6  
0
+10  
1550  
0.4  
dBm  
dB  
Ω
Return Loss  
16.5  
50  
Input Impedance  
LO Frequency Range  
POWER-DOWN (PWDN) INTERFACE2  
PWDN Threshold  
Logic 0 Level  
330  
MHz  
1.0  
V
V
Logic 1 Level  
1.4  
V
PWDN Response Time  
Device enabled, IF output to 90% of its final level  
Device disabled, supply current < 5 mA  
Device enabled  
160  
220  
0.0  
70  
ns  
ns  
μA  
μA  
PWDN Input Bias Current  
Device disabled  
1 Apply the supply voltage from the external circuit through the choke inductors.  
2 PWDN function is intended for use with VS ≤ 3.6 V only.  
Rev. A | Page 3 of 23  
 
ADL5369  
Data Sheet  
5 V PERFORMANCE  
VS = 5 V, IS = 84 mA, TA = 25°C, fRF = 450 MHz, fLO = 543 MHz, LO power = 0 dBm, VGS0 = VGS1 = 0 V, and ZO = 50 Ω, R9 = 1.7 kꢀ, unless  
otherwise noted.  
Table 3.  
Parameter  
Test Conditions/Comments  
Min Typ Max Unit  
DYNAMIC PERFORMANCE  
Power Conversion Loss  
Voltage Conversion Loss  
Single Sideband (SSB) Noise Figure  
Input Third-Order Intercept (IIP3)  
Including 1:1 IF port transformer and printed circuit board (PCB) loss  
ZSOURCE = 50 Ω, differential ZLOAD = 50 Ω differential  
6.2  
1.4  
7.2  
28  
dB  
dB  
dB  
dBm  
fRF1 = 449.5 MHz, fRF2 = 451.5 MHz, fLO = 543 MHz, each RF tone  
at 0 dBm  
Input Second-Order Intercept (IIP2)  
fRF1 = 500 MHz, fRF2 = 450 MHz, fLO = 543 MHz, each RF tone  
at −10 dBm  
56  
dBm  
Input 1 dB Compression Point (IP1dB)1 Exceeding 20 dBm RF power results in damage to the device  
20  
dBm  
dBm  
dBm  
dBc  
dBc  
dBc  
LO to IF Leakage  
LO to RF Leakage  
RF to IF Isolation  
IF/2 Spurious  
Unfiltered IF output  
−16  
−27  
−42  
−57  
−60  
0 dBm input power  
0 dBm input power  
IF/3 Spurious  
POWER SUPPLY  
Positive Supply Voltage  
Total Quiescent Current  
4.5  
5
84  
5.5  
V
mA  
VS = 5 V  
1 Exceeding 20 dBm RF power results in damage to the device.  
3.3 V PERFORMANCE  
VS = 3.3 V, IS = 55 mA, TA = 25°C, fRF = 450 MHz, fLO = 543 MHz, LO power = 0 dBm, R9 = 226 Ω, VGS0 = VGS1 = 0 V, and ZO = 50 Ω,  
unless otherwise noted.  
Table 4.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
DYNAMIC PERFORMANCE  
Power Conversion Loss  
SSB Noise Figure  
IIP3  
Including 1:1 IF port transformer and PCB loss  
6.5  
7.4  
24  
dB  
dB  
dBm  
fRF1 = 449.5 MHz, fRF2 = 451.5 MHz, fLO = 543 MHz, each RF  
tone at −10 dBm  
IIP2  
fRF1 = 500 MHz, fRF2 = 450 MHz, fLO = 543 MHz, each RF tone  
at −10 dBm  
53  
dBm  
POWER INTERFACE  
Supply Voltage  
Quiescent Current  
Power-Down Current  
3.0  
3.3  
55  
150  
3.6  
V
mA  
μA  
Resistor programmable  
Device disabled  
Rev. A | Page 4 of 23  
 
 
 
Data Sheet  
ADL5369  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Table 5.  
θJA is the junction to ambient thermal resistance (°C/W), θJB is  
the junction to board thermal resistance (°C/W), and θJC is the  
junction to case thermal resistance (°C/W). θJC is determined by  
the mechanical design of the ADL5369 and is optimized to the  
lowest possible value. θJA and θJB are functions of the design of  
the PCB, and are under the control of the user. The data shown  
in Table 6 is based on a JEDEC standard design and is provided  
for comparison purposes.  
Parameter  
Rating  
VS  
5.5 V  
RF Input Level  
LO Input Level  
20 dBm  
13 dBm  
6.0 V  
5.5 V  
0.6 W  
IFOP, IFON Bias Voltage  
VGS0, VGS1, LOSW, PWDN  
Internal Power Dissipation  
Maximum Junction Temperature  
Operating Temperature Range  
Storage Temperature Range  
Lead Temperature (Soldering, 60 sec)  
150°C  
−40°C to +85°C  
−65°C to +150°C  
260°C  
Table 6. Thermal Resistance  
1
1
1
Package Type  
θJA  
θJB  
14.74  
θJC  
1.08  
Unit  
20-Lead LFCSP  
25  
°C/W  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
1 See JEDEC Standard JESD51-2 for information on optimizing thermal  
impedance (PCB with 3 × 3 vias).  
Junction to Board Thermal Impedance  
The junction to board thermal impedance (θJB) is the thermal  
impedance from the die to or near the component lead of the  
ADL5369. For the ADL5369, θJB was determined experimentally to  
be 14.74°C/W with the device mounted on a 4-layer circuit board  
(two of the layers being ground planes) in a configuration  
similar to that of the ADL5369-EVALZ evaluation board. Board  
size and complexity (number of layers) affect θJB; more layers tend  
to reduce the thermal impedance slightly.  
If the board temperature is known, use the junction to board  
thermal impedance to calculate die temperature (also known as  
junction temperature) to ensure that it does not exceed the speci-  
fied limit of 150°C. For example, if the board temperature is  
85°C, the die temperature is given by the equation  
TJ = TB + (PDISS × θJB)  
where:  
TJ is the junction temperature.  
TB is the board temperature measured at or near the component  
lead.  
P
DISS is the power dissipated from the device.  
The typical worst case power dissipation for the ADL5369 is  
522 mW (5.5 V × 95 mA). Therefore, TJ is  
TJ = 85°C + (0.522 W × 14.74°C/W) = 92.70°C  
ESD CAUTION  
Rev. A | Page 5 of 23  
 
 
 
 
ADL5369  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
15 LOI2  
14 VPSW  
13 VGS1  
12 VGS0  
VPMX  
RFIN  
1
2
3
4
5
ADL5369  
RFCT  
COMM  
COMM  
TOP VIEW  
(Not to Scale)  
11  
LOI1  
NOTES  
1. NIC = NOT INTERNALLY CONNECTED.  
2. EXPOSED PAD MUST BE SOLDERED TO GROUND.  
Figure 2. Pin Configuration  
Table 7. Pin Function Descriptions  
Pin No. Mnemonic Description  
1
2
3
VPMX  
RFIN  
RFCT  
COMM  
Positive Supply Voltage for the IF Amplifier.  
RF Input. This pin must be ac-coupled.  
RF Balun Center Tap (AC Ground).  
Device Common (DC Ground).  
4, 5, 16  
6, 8  
7
9
10  
VLO3, VLO2 Positive Supply Voltages for LO Amplifier.  
LGM3  
LOSW  
NIC  
LO Amplifier Bias Control.  
LO Switch. LOI1 is selected for 0 V, or LOI2 is selected for 3 V.  
Not Internally Connected.  
11, 15  
12, 13  
14  
LOI1, LOI2  
LO Inputs. These pins must be ac-coupled.  
VGS0, VGS1 Mixer Gate Bias Controls (3 V Logic). Ground these pins for the nominal setting.  
VPSW  
Positive Supply Voltage for LO Switch.  
17  
18, 19  
20  
PWDN  
IFON, IFOP  
VCMI  
Power-Down. Connect this pin to ground for normal operation or connect this pin to 3.0 V for disable mode.  
Differential IF Outputs.  
No Connect. This pin can be grounded.  
EPAD (EP)  
Exposed Pad. The exposed pad must be soldered to ground.  
Rev. A | Page 6 of 23  
 
Data Sheet  
ADL5369  
TYPICAL PERFORMANCE CHARACTERISTICS  
5 V PERFORMANCE CHARACTERISTICS  
RF Frequency  
VS = 5 V, IS = 84 mA, TA = 25°C, fRF = 450 MHz, fLO = 543 MHz, LO power = 0 dBm, VGS0 = VGS1 = 0 V, R9 = 1.7 kꢀ, and ZO = 50 Ω, unless  
otherwise noted.  
0.100  
0.095  
0.090  
0.085  
0.080  
0.075  
0.070  
90  
80  
70  
60  
50  
40  
30  
20  
–40°C  
+25°C  
+85°C  
–40°C  
+25°C  
+85°C  
300  
400  
500  
600  
700  
800  
900  
1000  
1100  
300  
400  
500  
600  
700  
800  
900  
1000  
1100  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
Figure 6. Input IP2 vs. RF Frequency  
Figure 3. Supply Current vs. RF Frequency  
14  
12  
10  
8
16  
–40°C  
+25°C  
+85°C  
–40°C  
+25°C  
+85°C  
14  
12  
10  
8
6
6
4
4
2
2
0
300  
0
300  
400  
500  
600  
700  
800  
900  
1000  
1100  
400  
500  
600  
700  
800  
900  
1000  
1100  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
Figure 4. Power Conversion Loss vs. RF Frequency  
Figure 7. SSB Noise Figure vs. RF Frequency  
40  
–40°C  
+25°C  
+85°C  
35  
30  
25  
20  
15  
10  
300  
400  
500  
600  
700  
800  
900  
1000  
1100  
RF FREQUENCY (MHz)  
Figure 5. Input IP3 vs. RF Frequency  
Rev. A | Page 7 of 23  
 
 
ADL5369  
Data Sheet  
Temperature  
VS = 5 V, IS = 84 mA, TA = 25°C, fRF = 450 MHz, fLO = 543 MHz, LO power = 0 dBm, VGS0 = VGS1 = 0 V, R9 = 1.7 kꢀ, and ZO = 50 Ω, unless  
otherwise noted.  
0.100  
4.75V  
4.75V  
5V  
59  
57  
55  
53  
51  
49  
47  
45  
5V  
5.25V  
5.25V  
0.095  
0.090  
0.085  
0.080  
0.075  
0.070  
0.065  
–45  
–25  
–5  
15  
35  
55  
75  
–40  
–20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 8. Supply Current vs. Temperature  
Figure 11. Input IP2 vs. Temperature  
8.0  
7.0  
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
10  
4.75V  
4.75V  
5V  
5V  
5.25V  
5.25V  
9
8
7
6
5
4
–40  
–20  
0
20  
40  
60  
80  
–40  
–20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 9. Power Conversion Loss vs. Temperature  
Figure 12. SSB Noise Figure vs. Temperature  
34  
4.75V  
5V  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
5.25V  
–40  
–20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
Figure 10. Input IP3 vs. Temperature  
Rev. A | Page 8 of 23  
Data Sheet  
ADL5369  
IF Frequency  
VS = 5 V, IS = 84 mA, TA = 25°C, fRF = 450 MHz, fLO = 543 MHz, LO power = 0 dBm, VGS0 = VGS1 = 0 V, R9 = 1.7 kꢀ, and ZO = 50 Ω, unless  
otherwise noted.  
0.100  
0.095  
0.090  
0.085  
0.080  
0.075  
0.070  
65  
60  
55  
50  
45  
40  
35  
–40°C  
+25°C  
+85°C  
–40°C  
+25°C  
+85°C  
30  
80  
130  
180  
230  
280  
330  
380  
430  
30  
80  
130  
180  
230  
280  
330  
380  
430  
IF FREQUENCY (MHz)  
IF FREQUENCY (MHz)  
Figure 16. Input IP2 vs. IF Frequency  
Figure 13. Supply Current vs. IF Frequency  
14  
12  
10  
8
12  
10  
8
–40°C  
+25°C  
+85°C  
6
6
4
4
2
2
0
30  
0
30  
80  
130  
180  
230  
280  
330  
380  
430  
80  
130  
180  
230  
280  
330  
380  
430  
IF FREQUENCY (MHz)  
IF FREQUENCY (MHz)  
Figure 17. SSB Noise Figure vs. IF Frequency  
Figure 14. Power Conversion Loss vs. IF Frequency  
26.0  
25.5  
25.0  
24.5  
24.0  
23.5  
23.0  
22.5  
22.0  
21.5  
21.0  
–40°C  
+25°C  
+85°C  
30  
80  
130  
180  
230  
280  
330  
380  
430  
IF FREQUENCY (MHz)  
Figure 15. Input IP3 vs. IF Frequency  
Rev. A | Page 9 of 23  
ADL5369  
Data Sheet  
LO Power and Spurious Performance  
VS = 5 V, IS = 84 mA, TA = 25°C, fRF = 450 MHz, fLO = 543 MHz, LO power = 0 dBm, VGS0 = VGS1 = 0 V, R9 = 1.7 kꢀ, and ZO = 50 Ω, unless  
otherwise noted.  
8.0  
7.5  
7.0  
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–40°C  
+25°C  
+85°C  
–40°C  
+25°C  
+85°C  
–6  
–4  
–2  
0
2
4
6
8
10  
10  
10  
300  
400  
500  
600  
700  
800  
900  
1000  
1100  
LO POWER (dBm)  
RF FREQUENCY (MHz)  
Figure 18. Power Conversion Loss vs. LO Power  
Figure 21. IF/2 Spurious vs. RF Frequency  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–40°C  
+25°C  
+85°C  
–40°C  
+25°C  
+85°C  
–6  
–4  
–2  
0
2
4
6
8
300  
400  
500  
600  
700  
800  
900  
1000  
1100  
LO POWER (dBm)  
RF FREQUENCY (MHz)  
Figure 19. Input IP3 vs. LO Power  
Figure 22. IF/3 Spurious vs. RF Frequency  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
–40°C  
+25°C  
+85°C  
–6  
–4  
–2  
0
2
4
6
8
LO POWER (dBm)  
Figure 20. Input IP2 vs. LO Power  
Rev. A | Page 10 of 23  
Data Sheet  
ADL5369  
Conversion Loss Distribution, Input IP3 Distribution, and Return Loss  
VS = 5 V, IS = 84 mA, TA = 25°C, fRF = 450 MHz, fLO = 543 MHz, LO power = 0 dBm, VGS0 = VGS1 = 0 V, R9 = 1.7 kꢀ, and ZO = 50 Ω, unless  
otherwise noted.  
0
100  
80  
60  
40  
20  
0
–5  
–10  
–15  
–20  
–25  
5.8  
6.0  
6.2  
6.4  
6.6  
300  
400  
500  
600  
700  
800  
900  
1000  
1100  
CONVERSION LOSS (dB)  
RF FREQUENCY (MHz)  
Figure 23. Conversion Loss Distribution  
Figure 26. RF Port Return Loss, Fixed IF vs. Frequency  
0
–5  
100  
80  
60  
40  
20  
0
–10  
–15  
–20  
–25  
–30  
–35  
SELECTED  
UNSELECTED  
24  
25  
26  
27  
28  
29  
30  
31  
32  
300  
400  
500  
600  
700  
800  
900 1000 1100 1200  
INPUT IP3 (dBm)  
LO FREQUENCY (MHz)  
Figure 24. Input IP3 Distribution  
Figure 27. LO Return Loss vs. LO Frequency, Selected and Unselected  
40  
22  
20  
18  
16  
14  
12  
10  
R11 LO1  
R11 LO2  
C11 (pF )LO1  
C11 (pF) LO2  
35  
30  
25  
20  
15  
10  
50  
100  
150  
200  
250  
300  
IF FREQUENCY (MHz)  
Figure 25. IF Port Return Loss  
Rev. A | Page 11 of 23  
 
ADL5369  
Data Sheet  
Isolation, Leakage, Power Conversion Loss, Input IP3, and SSB Noise Figure  
VS = 5 V, IS = 84 mA, TA = 25°C, fRF = 450 MHz, fLO = 543 MHz, LO power = 0 dBm, VGS0 = VGS1 = 0 V, R9 = 1.7 kꢀ, and ZO = 50 Ω, unless  
otherwise noted.  
70  
65  
60  
55  
50  
45  
40  
–20  
–25  
–30  
–35  
–40  
–45  
–40°C  
+25°C  
+85°C  
393  
493  
593  
693  
793  
893  
993  
1093  
1193  
300  
400  
500  
600  
700  
800  
900  
1000  
1100  
LO FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
Figure 28. LO Switch Isolation vs. RF Frequency  
Figure 31. LO to RF Leakage vs. LO Frequency  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
–20  
–40°C  
+25°C  
+85°C  
–25  
–30  
–35  
–40  
–45  
–50  
–55  
2LO TO IF  
2LO TO RF  
300  
400  
500  
600  
700  
800  
900  
1000  
1100  
393  
493  
593  
693  
793  
893  
993  
1093  
1193  
RF FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
Figure 29. RF to IF Isolation vs. RF Frequency  
Figure 32. 2LO Leakage vs. LO Frequency  
0
–5  
–20  
–40°C  
+25°C  
+85°C  
–25  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
3LO TO RF  
3LO TO IF  
393  
493  
593  
693  
793  
893  
993  
1093  
1193  
393  
493  
593  
693  
793  
893  
993  
1093  
1193  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
Figure 30. LO to IF Leakage vs. LO Frequency  
Figure 33. 3LO Leakage vs. LO Frequency  
Rev. A | Page 12 of 23  
Data Sheet  
ADL5369  
40  
35  
30  
25  
20  
15  
10  
5
10  
9
17  
15  
13  
11  
9
8
7
CONVERSION LOSS  
6
5
4
3
NOISE FIGURE  
2
1
0
7
V
V
V
V
= 0, 0  
= 0, 1  
= 1, 0  
= 1, 1  
GS  
GS  
GS  
GS  
0
–30  
5
1100  
–25  
–20  
–15  
–10  
–5  
0
5
300  
400  
500  
600  
700  
800  
900  
1000  
BLOCKER POWER (dBm)  
RF FREQUENCY (MHz)  
Figure 34. Power Conversion Loss and SSB Noise Figure vs. RF Frequency  
Figure 36. SSB Noise Figure vs.10 MHz Offset Blocker Level  
35  
V
V
V
V
= 0, 0  
= 0, 1  
= 1, 0  
= 1, 1  
GS  
GS  
GS  
GS  
30  
25  
20  
15  
10  
5
0
300  
400  
500  
600  
700  
800  
900  
1000  
1100  
RF FREQUENCY (MHz)  
Figure 35. Input IP3 vs. RF Frequency  
Rev. A | Page 13 of 23  
 
 
ADL5369  
Data Sheet  
3.3 V PERFORMANCE CHARACTERISTICS  
VS = 3.3 V, IS = 56 mA, TA = 25°C, fRF = 450 MHz, fLO = 543 MHz, LO power = 0 dBm, R9 = 226 Ω, VGS0 = VGS1 = 0 V, and ZO = 50 Ω,  
unless otherwise noted.  
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
80  
70  
60  
50  
40  
30  
20  
10  
–40°C  
+25°C  
+85°C  
–40°C  
+25°C  
+85°C  
300  
400  
500  
600  
700  
800  
900  
1000  
1100  
300  
400  
500  
600  
700  
800  
900  
1000  
1100  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
Figure 37. Supply Current vs. RF Frequency  
Figure 40. Input IP2 vs. RF Frequency  
18  
16  
14  
12  
10  
8
14  
12  
10  
8
–40°C  
+25°C  
+85°C  
–40°C  
+25°C  
+85°C  
6
6
4
4
2
2
0
300  
0
300  
400  
500  
600  
700  
800  
900  
1000  
1100  
400  
500  
600  
700  
800  
900  
1000  
1100  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
Figure 38. Power Conversion Loss vs. RF Frequency  
Figure 41. SSB Noise Figure vs. RF Frequency  
35  
–40°C  
+25°C  
+85°C  
30  
25  
20  
15  
10  
300  
400  
500  
600  
700  
800  
900  
1000  
RF FREQUENCY (MHz)  
Figure 39. Input IP3 vs. RF Frequency  
Rev. A | Page 14 of 23  
 
Data Sheet  
ADL5369  
UPCONVERSION CHARACTERISTICS  
TA = 25°C, fIF = 93 MHz, fLO = 543 MHz, LO power = 0 dBm, RF power = 0 dBm, VGS0 = VGS1 = 0 V, R9 = 1.7 kꢀ, and ZO = 50 Ω, unless  
otherwise noted.  
16  
14  
12  
10  
8
35  
30  
25  
20  
15  
10  
5
–40°C  
+25°C  
+85°C  
–40°C  
+25°C  
+85°C  
6
4
2
0
300  
0
300  
400  
500  
600  
700  
800  
900  
1000  
1100  
400  
500  
600  
700  
800  
900  
1000  
1100  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
Figure 42. Power Conversion Loss vs. RF Frequency, VS = 5 V, Upconversion  
Figure 43. Input IP3 vs. RF Frequency, VS = 5 V, Upconversion  
Rev. A | Page 15 of 23  
 
ADL5369  
Data Sheet  
SPURIOUS PERFORMANCE  
All spur tables are (N × fRF) − (M × fLO) and were measured using the standard evaluation board. Mixer spurious products are measured  
in dBc from the IF output power level. Data was measured only for frequencies less than 6 GHz. Typical noise floor of the measurement  
system = −100 dBm.  
5 V Performance  
VS = 5 V, IS = 84 mA, TA = 25°C, fRF = 450 MHz, fLO = 543 MHz, LO power = 0 dBm, RF power = 0 dBm, VGS0 = VGS1 = 0 V, R9 = 1.7 kꢀ,  
and ZO = 50 Ω, unless otherwise noted.  
M
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
0
−16.885  
0
−33.42  
−45.535  
−58.999  
−79.147  
−93.128  
<−100  
<−100  
<−100  
<−100  
<−100  
−42.57  
−17.948  
−60.289  
−64.17  
−81.092  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
−38.358  
−54.779  
−72.545  
−90.573  
−99.503  
−95.9  
−49.375  
−32.507  
−70.273  
−70.476  
−87.794  
−90.504  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
−61.446  
−47.242  
−58.881  
−92.162  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
−49.819  
−42.403  
−73.383  
−81.353  
−99.13  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
−51.873  
−45.589  
−65.824  
−87.574  
−98.082  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
−60.951  
−45.324  
−78.819  
−89.786  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
−52.666  
−67.094  
−68.754  
−82.829  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
−60.115  
−47.641  
−97.834  
−93.849  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
−61.09  
−61.494  
−72.556  
−86.249  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
1
−41.537  
2
−71.919 −50.753  
−95.982 −72.895  
3
4
<−100  
<−100  
<−100  
−78.49  
<−100  
<−100  
<−100  
5
N
6
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
7
8
9
10  
11  
12  
Rev. A | Page 16 of 23  
 
Data Sheet  
ADL5369  
CIRCUIT DESCRIPTION  
The ADL5369 consists of two primary components: the RF  
subsystem and the LO subsystem. The combination of design,  
process, and packaging technology allows the functions of these  
subsystems to be integrated into a single die, using mature  
packaging and interconnection technologies to provide a high  
performance, low cost design with excellent electrical,  
mechanical, and thermal properties. In addition, the need for  
external components is minimized, optimizing cost and size.  
The resulting balanced RF signal is applied to a passive mixer  
that commutates the RF input with the output of the LO subsystem.  
The passive mixer is essentially a balanced, low loss switch that  
adds minimum noise to the frequency translation. The only  
noise contribution from the mixer is due to the resistive loss  
of the switches, which is in the order of a few ohms.  
Because the mixer is inherently broadband and bidirectional, it  
is necessary to properly terminate all the idler (M × N product)  
frequencies generated by the mixing process. Terminating the  
mixer avoids the generation of unwanted intermodulation  
products and reduces the level of unwanted signals at the IF  
output. This termination is accomplished by the addition of a  
sum network between the IF output and the mixer.  
The RF subsystem consists of an integrated, low loss RF balun,  
passive metal-oxide semiconductor field-effect transistor  
(MOSFET) mixer, sum termination network, and IF amplifier.  
The LO subsystem consists of a single pole, double throw (SPDT)-  
terminated FET switch and a three-stage limiting LO amplifier.  
The purpose of the LO subsystem is to provide a large, fixed  
amplitude, balanced signal to drive the mixer independent of  
the level of the LO input.  
Additionally, dc current can be saved by reducing the dc supply  
voltage to as low as 3.3 V, further reducing the dissipated power  
of the device. Note that no performance enhancement is obtained  
by reducing the value of the resistors; reducing the value of the  
resistors may result in excessive dc power dissipation.  
A block diagram of the device is shown in Figure 44.  
VCMI  
IFOP  
IFON  
PWDN  
COMM  
20  
19  
18  
17  
16  
LO SUBSYSTEM  
The LO amplifier provides a large signal level to the mixer to  
obtain optimum intermodulation performance. The resulting  
amplifier provides extremely high performance centered on an  
operating frequency of 700 MHz. The best operation is achieved  
with high-side LO injection for RF signals in the 300 MHz to  
1100 MHz range. Operation outside these ranges is permissible,  
and conversion loss is extremely wideband, easily spanning 300  
MHz to 1100 MHz, but intermodulation is optimal over the  
aforementioned ranges.  
ADL5369  
1
2
3
4
5
15  
14  
13  
12  
11  
VPMX  
RFIN  
LOI2  
VPSW  
VGS1  
VGS0  
LOI1  
RFCT  
COMM  
COMM  
BIAS  
GENERATOR  
The ADL5369 has two LO inputs permitting multiple synthesizers  
to be rapidly switched with extremely short switching times  
(<40 ns) for frequency agile applications. The two inputs are  
applied to a high isolation SPDT switch that provides a constant  
input impedance, regardless of whether the port is selected, to  
avoid pulling the LO sources. This multiple section switch also  
ensures high isolation to the off input, minimizing any leakage  
from the unwanted LO input that may result in undesired IF  
responses.  
6
7
LGM3  
8
9
10  
VLO3  
VLO2  
LOSW  
NIC  
NIC = NOT INTERNALLY CONNECTED.  
Figure 44. Simplified Schematic  
RF SUBSYSTEM  
The single-ended LO input is converted to a fixed amplitude  
differential signal using a multistage, limiting LO amplifier.  
This results in consistent performance over a range of LO input  
power. Optimum performance is achieved from −6 dBm to  
+10 dBm, but the circuit continues to function at considerably  
lower levels of LO input power.  
The single-ended, 50 Ω RF input is internally transformed to a  
balanced signal using a low loss (<1 dB), unbalanced to balanced  
(balun) transformer. This transformer is made possible by an  
extremely low loss metal stack, which provides both excellent  
balance and dc isolation for the RF port. Although the port can  
be dc connected, using a blocking capacitor is recommended to  
avoid running excessive dc current through the device. The RF  
balun can easily support an RF input frequency range of 300 MHz  
to 1100 MHz.  
Rev. A | Page 17 of 23  
 
 
 
 
ADL5369  
Data Sheet  
The performance of this amplifier is critical in achieving a  
high intercept passive mixer without degrading the noise floor  
of the system. This is a critical requirement in an interferer rich  
environment, such as cellular infrastructure, where blocking  
interferers can limit mixer performance. The bandwidth of the  
intermodulation performance is somewhat influenced by the  
current in the LO amplifier chain. For dc current sensitive  
applications, it is permissible to reduce the current in the LO  
amplifier by raising the value of the external bias control resistor.  
For dc current critical applications, the LO chain can operate  
with a supply voltage as low as 3.3 V, resulting in substantial dc  
power savings.  
In addition, when operating with supply voltages below 3.6 V,  
the ADL5369 has a power-down mode that permits the dc  
current to drop to <200 μA.  
All of the logic inputs work with any logic family that provides a  
Logic 0 input level of less than 0.4 V and a Logic 1 input level that  
exceeds 1.4 V. All logic inputs are high impedance up to Logic 1  
levels of 3.3 V. At levels exceeding 3.3 V, protection circuitry  
permits operation up to 5.5 V, although a small bias current  
is drawn.  
Rev. A | Page 18 of 23  
Data Sheet  
ADL5369  
APPLICATIONS INFORMATION  
BASIC CONNECTIONS  
IF PORT  
The ADL5369 mixer is designed to upconvert or downconvert  
between radio frequencies (RF) from 300 MHz to 1100 MHz and  
intermediate frequencies (IF) from 30 MHz to 450 MHz. Figure 45  
depicts the basic connections of the mixer. It is recommended  
to ac-couple the RF and LO input ports to prevent non-zero dc  
voltages from damaging the RF balun or LO input circuit. The  
RFIN capacitor value of 8 pF is recommended to provide the  
optimized RF input return loss for the desired frequency band.  
The real part of the output impedance is approximately 50 Ω,  
as seen in Figure 25, which matches many commonly used SAW  
filters without the need for a transformer. This results in a voltage  
conversion loss that is approximately the same as the power  
conversion loss, as shown in Table 3.  
MIXER VGS CONTROL DAC  
The ADL5369 features two logic control pins, Pin 12 (VGS0)  
and Pin 13 (VGS1), that allow programmability for internal  
gate to source voltages for optimizing mixer performance over  
desired frequency bands. The evaluation board defaults both  
VGS0 and VGS1 to ground. Power conversion loss, NF, and  
IIP3 can be optimized, as shown in Figure 34 and Figure 35.  
For upconversion, drive the IF inputs, Pin 18 (IFON) and Pin 19  
(IFOP), differentially or use a 1:1 ratio transformer for single-  
ended operation. An 8 pF capacitor is recommended for the RF  
output, Pin 2 (RFIN).  
IF1_OUT  
T1  
R1  
0  
C25  
560pF  
C24  
560pF  
10kꢀ  
910ꢀ  
+5V  
20  
19  
18  
17  
16  
10pF  
4.7µF  
100pF  
ADL5369  
+5V  
1
2
3
4
5
15  
14  
13  
12  
11  
LO2_IN  
+5V  
100pF  
RFIN  
10pF  
0.01µF  
10pF  
BIAS  
GENERATOR  
100pF  
LO1_IN  
6
7
8
9
10  
R
BIAS LO  
10kꢀ  
+5V  
10pF  
10pF  
Figure 45. Typical Application Circuit  
Rev. A | Page 19 of 23  
 
 
 
 
 
ADL5369  
Data Sheet  
EVALUATION BOARD  
An evaluation board is available for the family of double balanced  
mixers. The standard evaluation board schematic is shown in  
Figure 46. The evaluation board is fabricated using Rogers®  
RO3003 material.  
Table 8 describes the various configuration options of the  
evaluation board. Evaluation board layout is shown in Figure 47 to  
Figure 50.  
IF1_OUT  
R1  
0  
T1  
C25  
560pF  
C24  
560pF  
PWR_UP  
R21  
10kꢀ  
R14  
910ꢀ  
L3  
0ꢀ  
C12  
100pF  
LO2_IN  
VPOS  
VPOS  
LOI2  
VPMX  
RFIN  
C2  
10µF  
C21  
10pF  
C20  
10pF  
R22  
10kꢀ  
VPSW  
RFIN  
C22  
R23  
C1  
100pF  
1nF  
15kꢀ  
VGS1  
ADL5369  
RFCT  
COMM  
COMM  
C5  
0.01µF  
C4  
10pF  
VGS1  
VGS0  
LOI1  
VGS0  
LO1_IN  
C10  
100pF  
VPOS  
LOSEL  
R9  
1.7kꢀ  
C6  
10pF  
R4  
10kꢀ  
VPOS  
C8  
10pF  
NIC = NOT INTERNALLY CONNECTED.  
Figure 46. Evaluation Board Schematic  
Rev. A | Page 20 of 23  
 
 
Data Sheet  
ADL5369  
Table 8. Evaluation Board Configuration  
Components  
Description  
Default Conditions  
C2, C6, C8,  
C20, C21  
Power supply decoupling. Nominal supply decoupling consists of  
a 10 μF capacitor to ground in parallel with a 10 pF capacitor to  
ground positioned as close to the device as possible.  
C2 = 10 μF (Size 0603),  
C6, C8, C20, C21 = 10 pF (Size 0402)  
C1, C4, C5  
RF input interface. The input channels are ac-coupled through C1.  
C4 and C5 provide bypassing for the center taps of the RF input baluns.  
C1 = 100 pF (Size 0402), C4 = 10 pF (Size 0402),  
C5 = 0.01 μF (Size 0402)  
T1, R1, C24, C25 IF output interface. T1 is a 1:1 impedance transformer used to provide  
a single-ended IF output interface. Remove R1 for balanced output  
T1 = TC1-1-13M+ (Mini-Circuits),  
R1 = 0 Ω (Size 0402),  
operation. C24 and C25 are used to block the dc bias at the IF ports.  
C24, C25 = 560 pF (Size 0402)  
C10, C12, R4  
LO interface. C10 and C12 provide ac coupling for the LO1_IN and  
LO2_IN local oscillator inputs. LOSEL selects the appropriate LO input  
for both mixer cores. R4 provides a pull-down to ensure that LO1_IN is  
enabled when the LOSEL test point is logic low. LO2_IN is enabled  
when LOSEL is pulled to logic high.  
C10, C12 = 100 pF (Size 0402),  
R4 = 10 kΩ (Size 0402)  
R21  
PWDN interface. R21 pulls the PWDN logic low and enables the device.  
The PWR_UP test point allows the PWDN interface to be exercised  
using the an external logic generator. Grounding the PWDN pin for  
nominal operation is allowed. Using the PWDN pin when supply  
voltages exceed 3.3 V is not allowed.  
R21 = 10 kΩ (Size 0402)  
C22, L3, R9, R14,  
R22, R23, VGS0,  
VGS1  
Bias control. R22 and R23 form a voltage divider to provide 3 V for  
logic control, bypassed to ground through C22. VGS0 and VGS1  
jumpers provide programmability at the VGS0 and VGS1 pins. It is  
recommended to pull these two pins to ground for nominal operation.  
R9 sets the bias point for the internal LO buffers.  
C22 = 1 nF (Size 0402), L3 = 0 Ω (Size 0603),  
R9 = 1.7 kΩ (Size 0402), R14 = 910 Ω (Size 0402),  
R22 = 10 kΩ (Size 0402), R23 = 15 kΩ (Size 0402),  
VGS0 = VGS1 = 3-pin shunt  
Rev. A | Page 21 of 23  
 
ADL5369  
Data Sheet  
Figure 49. Evaluation Board Power Plane, Internal Layer 2  
Figure 47. Evaluation Board Top Layer  
Figure 48. Evaluation Board Ground Plane, Internal Layer 1  
Figure 50. Evaluation Board Bottom Layer  
Rev. A | Page 22 of 23  
 
 
Data Sheet  
ADL5369  
OUTLINE DIMENSIONS  
5.10  
5.00 SQ  
4.90  
0.35  
0.28  
0.23  
PIN 1  
INDICATOR  
PIN 1  
INDICATOR  
16  
15  
20  
0.65  
BSC  
1
EXPOSED  
PAD  
3.25  
3.10 SQ  
2.95  
5
11  
6
10  
0.70  
0.60  
0.40  
0.25 MIN  
TOP VIEW  
BOTTOM VIEW  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.20 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-WHHC.  
Figure 51. 20-Lead Lead Frame Chip Scale Package [LFCSP]  
5 mm × 5 mm Body and 0.75 mm Package Height  
(CP-20-9)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Package Ordering  
Model1  
Temperature Range  
Package Description  
Option  
Quantity  
1,500  
1
ADL5369ACPZ-R7  
ADL5369-EVALZ  
−40°C to +85°C  
20-Lead Lead Frame Chip Scale Package [LFCSP], 7Tape and Reel  
Evaluation Board  
CP-20-9  
1 Z = RoHS Compliant Part.  
©2016 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D13361-0-5/16(A)  
Rev. A | Page 23 of 23  
 
 

相关型号:

ADL5370

300 MHz to 1000 MHz Quadrature Modulator
ADI

ADL5370-EVALZ

300 MHz to 1000 MHz Quadrature Modulator
ADI

ADL5370ACPZ-R2

300 MHz to 1000 MHz Quadrature Modulator
ADI

ADL5370ACPZ-R7

300 MHz to 1000 MHz Quadrature Modulator
ADI

ADL5370ACPZ-R7

250 MHz - 1300 MHz RF/MICROWAVE QUADRAPHASE MODULATOR, LEAD FREE, MO-220VGGD-2, LFCSP-24
ROCHESTER

ADL5370ACPZ-WP

300 MHz to 1000 MHz Quadrature Modulator
ADI

ADL5370ACPZ-WP

250 MHz - 1300 MHz RF/MICROWAVE QUADRAPHASE MODULATOR, LEAD FREE, MO-220VGGD-2, LFCSP-24
ROCHESTER

ADL5371

300 MHz to 1000 MHz Quadrature Modulator
ADI

ADL5371ACPZ-R7

500 MHz TO 1500 MHz Quadrature Modulator
ADI

ADL5371ACPZ-WP

RF/Microwave Modulator/Demodulator, 700 MHz - 1300 MHz RF/MICROWAVE QUADRAPHASE MODULATOR, LEAD FREE, MO-220VGGD-2, LFCSP-24
ADI

ADL5372

300 MHz to 1000 MHz Quadrature Modulator
ADI

ADL5372-EVALZ1

1500 MHz to 2500 MHz Quadrature Modulator
ADI