ADL5375-05-EVALZ [ADI]

400 MHz to 6 GHz Broadband Quadrature Modulator; 400 MHz至6 GHz的宽带正交调制器
ADL5375-05-EVALZ
型号: ADL5375-05-EVALZ
厂家: ADI    ADI
描述:

400 MHz to 6 GHz Broadband Quadrature Modulator
400 MHz至6 GHz的宽带正交调制器

文件: 总36页 (文件大小:926K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
400 MHz to 6 GHz  
Broadband Quadrature Modulator  
Data Sheet  
ADL5375  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
Output frequency range: 400 MHz to 6 GHz  
1 dB output compression: ≥9.4 dBm from 450 MHz to 4 GHz  
Output return loss ≤ 12 dB from 450 MHz to 4.5 GHz  
Noise floor: −160 dBm/Hz @ 900 MHz  
Sideband suppression: ≤−50 dBc @ 900 MHz  
Carrier feedthrough: ≤−40 dBm @ 900 MHz  
IQ3dB bandwidth: ≥ 750 MHz  
IBBP  
ADL5375  
IBBN  
LOIP  
LOIN  
QUADRATURE  
PHASE  
SPLITTER  
RFOUT  
DSOP  
Baseband input bias level  
ADL5375-05: 500 mV  
ADL5375-15: 1500 mV  
Single supply: 4.75 V to 5.25 V  
24-lead LFCSP_VQ package  
QBBN  
QBBP  
Figure 1.  
APPLICATIONS  
Cellular communication systems  
GSM/EDGE, CDMA2000, W-CDMA, TD-SCDMA  
WiMAX/LTE broadband wireless access systems  
Satellite modems  
GENERAL DESCRIPTION  
The ADL5375 is a broadband quadrature modulator designed for  
operation from 400 MHz to 6 GHz. Its excellent phase accuracy  
and amplitude balance enable high performance intermediate  
frequency or direct radio frequency modulation for commu-  
nication systems.  
broadband digital predistortion transmitters, and multiband  
radio designs.  
The ADL5375 accepts two differential baseband inputs and  
a single-ended LO. It generates a single-ended 50 Ω output.  
The two versions offer input baseband bias levels of 500 mV  
(ADL5375-05) and 1500 mV (ADL5375-15).  
The ADL5375 features a broad baseband bandwidth, along  
with an output gain flatness that varies no more than 1 dB  
from 450 MHz to 3.5 GHz. These features, coupled with a broad-  
band output return loss of ≤−12 dB, make the ADL5375 ideally  
suited for broadband zero IF or low IF-to-RF applications,  
The ADL5375 is fabricated using an advanced silicon-germanium  
bipolar process. It is available in a 24-lead, exposed paddle, lead-  
free, LFCSP_VQ package. Performance is specified over a −40°C  
to +85°C temperature range. A lead-free evaluation board is  
also available.  
Rev. C  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2007–2013 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
ADL5375  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
LO Input ...................................................................................... 20  
RF Output.................................................................................... 20  
Output Disable............................................................................ 21  
Applications Information .............................................................. 22  
Carrier Feedthrough Nulling.................................................... 22  
Sideband Suppression Optimization ....................................... 22  
Interfacing the ADF4350 PLL to the ADL5375 ..................... 23  
DAC Modulator Interfacing ..................................................... 24  
GSM/EDGE Operation ............................................................. 27  
W-CDMA Operation................................................................. 28  
LO Generation Using PLLs....................................................... 29  
Transmit DAC Options ............................................................. 29  
Modulator/Demodulator Options ........................................... 29  
Evaluation Board ............................................................................ 30  
Characterization Setup .................................................................. 33  
Outline Dimensions....................................................................... 35  
Ordering Guide .......................................................................... 35  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description ......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 7  
ESD Caution.................................................................................. 7  
Pin Configuration and Function Descriptions............................. 8  
Typical Performance Characteristics ............................................. 9  
ADL5375-05.................................................................................. 9  
ADL5375-15................................................................................ 14  
Theory of Operation ...................................................................... 19  
Circuit Description..................................................................... 19  
Basic Connections .......................................................................... 20  
Power Supply and Grounding................................................... 20  
Baseband Inputs.......................................................................... 20  
REVISION HISTORY  
7/13—Rev. B to Rev. C  
11/08—Rev. 0 to Rev. A  
Changed CP-24-3 to CP-24-7 ...........................................Universal  
Change AD9779 to AD9779A ..........................................Universal  
Added Endnote, I/Q Input Bias Level and Absolute  
Voltage Level Parameters, Table 1 ...................................................6  
Added Absolute Voltage Level Parameter, Table 1........................6  
9/11—Rev. A to Rev. B  
Changes to Features Section............................................................ 1  
Replaced Table 1 ............................................................................... 3  
Changes to Typical Performance Characteristics Section........... 9  
Updated Output Disable Section.................................................. 21  
Changes to Application Information Section ............................ 22  
Changes to Evaluation Board Section.......................................... 30  
Changes to Figure 80...................................................................... 34  
Added Exposed Pad Notation to Outline Dimensions ............. 35  
12/07—Revision 0: Initial Version  
Rev. C | Page 2 of 36  
 
Data Sheet  
ADL5375  
SPECIFICATIONS  
VS = 5 V; TA = 25°C; LO = 0 dBm single-ended drive; baseband I/Q amplitude = 1 V p-p differential sine waves in quadrature with a  
500 mV (ADL5375-05) or 1500 mV (ADL5375-15) dc bias; baseband I/Q frequency (fBB) = 1 MHz, unless otherwise noted.  
Table 1.  
ADL5375-05  
ADL5375-15  
Parameter  
Conditions  
Min Typ Max Min Typ  
Max Unit  
OPERATING FREQUENCY RANGE  
Low frequency  
High frequency  
LO = 450 MHz  
400  
6000  
400  
6000  
MHz  
MHz  
Output Power, POUT  
Modulator Voltage Gain  
Output P1dB  
Output Return Loss  
Carrier Feedthrough  
Sideband Suppression  
Quadrature Error  
I/Q Amplitude Balance  
Second Harmonic  
ADL5375-05  
VIQ = 1 V p-p differential  
RF output divided by baseband input voltage  
0.85  
−3.1  
9.6  
−16.4  
−47.5  
−37.6  
1.7  
0.47  
−3.5  
10  
−15.2  
-42.5  
−38  
1.49  
0.10  
−81.5  
dBm  
dB  
dBm  
dB  
dBm  
dBc  
Degrees  
0.07  
−75.9  
dB  
dBc  
POUT − (fLO + (2 × fBB))  
POUT =0.85 dBm  
ADL5375-15  
Third Harmonic  
ADL5375-05  
POUT = 0.47 dBm  
POUT − (fLO + (3 × fBB))  
POUT = 0.85 dBm  
POUT = 0.47 dBm  
−51.5  
−81.6  
dBc  
ADL5375-15  
Output IP2  
f1BB = 3.5 MHz, f2BB = 4.5 MHz, baseband I/Q  
amplitude per tone = 0.5 V p-p differential  
65.4  
64.7  
dBm  
Output IP3  
Noise Floor  
f1BB = 3.5 MHz, f2BB = 4.5 MHz, baseband I/Q  
amplitude per tone = 0.5 V p-p differential  
I/Q inputs = 0 V differential with a dc bias  
only, 20 MHz carrier offset  
26.6  
23.6  
dBm  
−160.5  
−157.0  
dBm/Hz  
LO = 900 MHz  
Output Power, POUT  
Modulator Voltage Gain  
Output P1dB  
Output Return Loss  
Carrier Feedthrough  
Sideband Suppression  
Quadrature Error  
I/Q Amplitude Balance  
Second Harmonic  
ADL5375-05  
VIQ = 1 V p-p differential  
RF output divided by baseband input voltage  
0.75  
−3.2  
9.6  
−15.7  
−45.1  
−52.8  
0.01  
0.41  
−3.5  
10  
−14.7  
−39.9  
−49.9  
0.20  
dBm  
dB  
dBm  
dB  
dBm  
dBc  
Degrees  
dB  
0.07  
−75.8  
0.10  
−77.2  
POUT − (fLO + (2 × fBB))  
POUT = 0.75 dBm  
POUT = 0.41 dBm  
POUT − (fLO + (3 × fBB))  
POUT = 0.75 dBm  
POUT = 0.41 dBm  
dBc  
ADL5375-15  
Third Harmonic  
ADL5375-05  
−50.7  
−72.7  
dBc  
ADL5375-15  
Output IP2  
f1BB = 3.5 MHz, f2BB = 4.5 MHz, baseband I/Q  
amplitude per tone = 0.5 V p-p differential  
62.6  
64.5  
dBm  
Output IP3  
Noise Floor  
f1BB = 3.5 MHz, f2BB = 4.5 MHz, baseband I/Q  
amplitude per tone = 0.5 V p-p differential  
I/Q inputs = 0 V differential with a dc bias  
only, 20 MHz carrier offset  
25.9  
23.4  
dBm  
−160.0  
−157.1  
dBm/Hz  
Rev. C | Page 3 of 36  
ADL5375  
Data Sheet  
ADL5375-05  
Min Typ  
ADL5375-15  
Parameter  
Conditions  
Max Min Typ  
Max Unit  
LO = 1900 MHz  
Output Power, POUT  
Modulator Voltage Gain  
Output P1dB  
Output Return Loss  
Carrier Feedthrough  
Sideband Suppression  
Quadrature Error  
I/Q Amplitude Balance  
Second Harmonic  
ADL5375-05  
VIQ = 1 V p-p differential  
RF output divided by baseband input voltage  
0.53  
−3.4  
9.9  
−16.2  
−40.3  
−50.2  
0.02  
0.49  
−3.4  
10.5  
−15.5  
−35.5  
−49.4  
0.21  
0.10  
−72.1  
dBm  
dB  
dBm  
dB  
dBm  
dBc  
Degrees  
0.07  
−67.9  
dB  
dBc  
POUT − (fLO + (2 × fBB))  
POUT = 0.53dBm  
POUT = 0.49dBm  
ADL5375-15  
Third Harmonic  
ADL5375-05  
ADL5375-15  
POUT − (fLO + (3 × fBB))  
POUT = 0.53dBm  
POUT = 0.49dBm  
−51.8  
−62.8  
dBc  
Output IP2  
f1BB = 3.5 MHz, f2BB = 4.5 MHz, baseband I/Q  
amplitude per tone = 0.5 V p-p differential  
62.6  
61  
dBm  
Output IP3  
Noise Floor  
f1BB = 3.5 MHz, f2BB = 4.5 MHz, baseband I/Q  
amplitude per tone = 0.5 V p-p differential  
I/Q inputs = 0 V differential with a dc bias  
only, 20 MHz carrier offset  
24.3  
22.1  
−158.2  
dBm  
−160.0  
dBm/Hz  
LO = 2150 MHz  
Output Power, POUT  
Modulator Voltage Gain  
Output P1dB  
Output Return Loss  
Carrier Feedthrough  
Sideband Suppression  
Quadrature Error  
I/Q Amplitude Balance  
Second Harmonic  
ADL5375-05  
VIQ = 1 V p-p differential  
RF output divided by baseband input voltage  
0.73  
−3.2  
10.0  
−17.1  
−39.7  
−47.3  
−0.16  
0.07  
0.57  
−3.4  
10.6  
−16.1  
−34.2  
−50.2  
−0.18  
0.10  
dBm  
dB  
dBm  
dB  
dBm  
dBc  
Degrees  
dB  
POUT − (fLO + (2 × fBB))  
POUT = 0.73 dBm  
POUT = 0.57 dBm  
POUT − (fLO + (3 × fBB))  
POUT = 0.73 dBm  
POUT = 0.57 dBm  
−71.3  
−81.7  
dBc  
ADL5375-15  
Third Harmonic  
ADL5375-05  
−52.4  
−65.3  
dBc  
ADL5375-15  
Output IP2  
f1BB = 3.5 MHz, f2BB = 4.5 MHz, baseband I/Q  
amplitude per tone = 0.5 V p-p differential  
61.6  
61.8  
dBm  
Output IP3  
Noise Floor  
f1BB = 3.5 MHz, f2BB = 4.5 MHz, baseband I/Q  
amplitude per tone = 0.5 V p-p differential  
I/Q inputs = 0 V differential with a dc bias  
only, 20 MHz carrier offset  
24.2  
22.3  
dBm  
−159.5  
−157.9  
dBm/Hz  
LO = 2600 MHz  
Output Power, POUT  
Modulator Voltage Gain  
Output P1dB  
Output Return Loss  
Carrier Feedthrough  
Sideband Suppression  
Quadrature Error  
VIQ = 1 V p-p differential  
RF output divided by baseband input voltage  
0.61  
−3.4  
9.6  
−19.3  
−36.5  
−48.3  
−0.37  
0.07  
0.62  
−3.3  
10.6  
dBm  
dB  
dBm  
dB  
dBm  
dBc  
Degrees  
dB  
−18  
−33.3  
−48.5  
0.19  
0.11  
−55.9  
I/Q Amplitude Balance  
Second Harmonic  
POUT − (fLO + (2 × fBB))  
−60.9  
dBc  
Rev. C | Page 4 of 36  
Data Sheet  
ADL5375  
ADL5375-05  
ADL5375-15  
Parameter  
Conditions  
Min Typ Max Min Typ  
Max Unit  
ADL5375-05  
ADL5375-15  
Third Harmonic  
ADL5375-05  
ADL5375-15  
Output IP2  
POUT = 0.61 dBm  
POUT = 0.62 dBm  
POUT − (fLO + (3 × fBB))  
POUT = 0.61 dBm  
POUT = 0.62 dBm  
−51.3  
−57.6  
dBc  
f1BB = 3.5 MHz, f2BB = 4.5 MHz, baseband I/Q  
amplitude per tone = 0.5 V p-p differential  
55.0  
50.1  
dBm  
Output IP3  
Noise Floor  
f1BB = 3.5 MHz, f2BB = 4.5 MHz, baseband I/Q  
amplitude per tone = 0.5 V p-p differential  
I/Q inputs = 0 V differential with a dc bias  
only, 20 MHz carrier offset  
22.7  
20.7  
dBm  
−159.0  
−157.6  
dBm/Hz  
LO = 3500 MHz  
Output Power, POUT  
Modulator Voltage Gain  
Output P1dB  
Output Return Loss  
Carrier Feedthrough  
Sideband Suppression  
Quadrature Error  
I/Q Amplitude Balance  
Second Harmonic  
ADL5375-05  
VIQ = 1 V p-p differential  
RF output divided by baseband input voltage  
0.21  
−3.8  
9.6  
−20.7  
−30.4  
−48.3  
0.01  
0.87  
−3.1  
10.2  
−19.4  
−28.6  
−48.8  
0.13  
dBm  
dB  
dBm  
dB  
dBm  
dBc  
Degrees  
dB  
0.08  
−55.8  
0.11  
−63  
POUT − (fLO + (2 × fBB))  
POUT = 0.21 dBm  
POUT = 0.87 dBm  
POUT − (fLO + (3 × fBB))  
POUT = 0.21 dBm  
POUT = 0.87 dBm  
dBc  
ADL5375-15  
Third Harmonic  
ADL5375-05  
−50.2  
−56.2  
dBc  
ADL5375-15  
Output IP2  
f1BB = 3.5 MHz, f2BB = 4.5 MHz, baseband I/Q  
amplitude per tone = 0.5 V p-p differential  
51.1  
57.9  
dBm  
Output IP3  
Noise Floor  
f1BB = 3.5 MHz, f2BB = 4.5 MHz, baseband I/Q  
amplitude per tone = 0.5 V p-p differential  
I/Q inputs = 0 V differential with a dc bias  
only, 20 MHz carrier offset  
23.1  
20.2  
dBm  
−157.6  
−156.3  
dBm/Hz  
LO = 5800 MHz  
Output Power, POUT  
Modulator Voltage Gain  
Output P1dB  
Output Return Loss  
Carrier Feedthrough  
Sideband Suppression  
Quadrature Error  
I/Q Amplitude Balance  
Second Harmonic  
ADL5375-05  
VIQ = 1 V p-p differential  
RF output divided by baseband input voltage  
−1.36  
−5.3  
4.9  
0.16  
−3.8  
4.4  
−8.6  
−16.7  
−39  
−0.50  
−0.70  
−50  
dBm  
dB  
dBm  
dB  
dBm  
dBc  
Degrees  
dB  
−7.4  
−19.5  
−38.2  
−0.51  
−0.05  
−52.6  
POUT − (fLO + (2 × fBB))  
POUT = -1.36 dBm  
POUT = 0.16 dBm  
dBc  
ADL5375-15  
Third Harmonic  
ADL5375-05  
ADL5375-15  
POUT − (fLO + (3 × fBB))  
POUT = -1.36 dBm  
POUT = 0.16 dBm  
−45.7  
−48.4  
dBc  
Output IP2  
f1BB = 3.5 MHz, f2BB = 4.5 MHz, baseband I/Q  
amplitude per tone = 0.5 V p-p differential  
39.1  
38.7  
dBm  
Output IP3  
Noise Floor  
f1BB = 3.5 MHz, f2BB = 4.5 MHz, baseband I/Q  
amplitude per tone = 0.5 V p-p differential  
I/Q inputs = 0 V differential with a dc bias  
only, 20 MHz carrier offset  
14.6  
11.2  
dBm  
−153.0  
−153.4  
dBm/Hz  
Rev. C | Page 5 of 36  
ADL5375  
Data Sheet  
ADL5375-05  
ADL5375-15  
Max Unit  
Parameter  
Conditions  
Min Typ Max Min Typ  
LO INPUTS  
LO Drive Level  
Input Return Loss  
Characterization performed at typical level  
−6  
0
+6  
−6  
0
+6  
dBm  
dB  
500 MHz < fLO < 3.3 GHz  
See Figure 7 and Figure 32 for return loss vs.  
frequency  
≤−10  
≤−10  
BASEBAND INPUTS  
I/Q Input Bias Level1  
Absolute Voltage Level1  
Input Bias Current  
Input Offset Current  
Differential Input  
Impedance  
Pin IBBP, Pin IBBN, Pin QBBP, Pin QBBN  
500  
1500  
mV  
V
µA  
µA  
kΩ  
On Pin IBBP, Pin IBBN, Pin QBBP, Pin QBBN  
Current sourcing from each baseband input  
0
1
1
2
41  
0.1  
60  
32  
0.1  
100  
Bandwidth (0.1 dB)  
LO = 1900 MHz, baseband input =  
500 mV p-p sine wave  
95  
80  
MHz  
OUTPUT DISABLE  
Off Isolation  
Pin DSOP  
POUT (DSOP low) − POUT (DSOP high)  
DSOP high, LO leakage, LO = 2150 MHz  
DSOP high to low (90% of envelope)  
DSOP low to high (10% of envelope)  
84  
85  
dB  
dBm  
ns  
ns  
V
−55  
220  
100  
−53  
220  
100  
Turn-On Settling Time  
Turn-Off Settling Time  
DSOP High Level (Logic 1)  
DSOP Low Level (Logic 0)  
POWER SUPPLIES  
2.0  
2.0  
0.8  
0.8  
V
Pin VPS1 and Pin VPS2  
Voltage  
4.75  
5.25 4.75  
5.25  
V
Supply Current  
DSOP = low  
DSOP = high  
194  
126  
203  
127  
mA  
mA  
1 The input bias level can vary as long as the voltages on the individual IBBP, IBBN, QBBP, and QBBN pins remain within the specified absolute voltage level.  
Rev. C | Page 6 of 36  
 
Data Sheet  
ADL5375  
ABSOLUTE MAXIMUM RATINGS  
Table 2.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Parameter  
Rating  
Supply Voltage, VPOS  
IBBP, IBBN, QBBP, QBBN  
LOIP and LOIN  
5.5 V  
0 V to 2 V  
13 dBm  
Internal Power Dissipation  
ADL5375-05  
1500 mW  
ADL5375-15  
1200 mW  
54°C/W  
150°C  
−40°C to +85°C  
−65°C to +150°C  
ESD CAUTION  
θJA (Exposed Paddle Soldered Down)1  
Maximum Junction Temperature  
Operating Temperature Range  
Storage Temperature Range  
1 Per JDEC standard JESD 51-2. For information on optimizing thermal  
impedance, see the Thermal Grounding and Evaluation Board  
Layout section.  
Rev. C | Page 7 of 36  
 
 
ADL5375  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
DSOP 1  
COMM 2  
LOIP 3  
LOIN 4  
COMM 5  
NC 6  
18 VPS1  
17 COMM  
16 RFOUT  
15 NC  
14 COMM  
13 NC  
ADL5375  
TOP VIEW  
(Not to Scale)  
NOTES  
1. NC = NO CONNECT. DO NOT CONNECT TO THIS PIN.  
2. CONNECT TO THE GROUND LANE VIA A LOW  
IMPEDANCE PATH.  
Figure 2. Pin Configuration  
Table 3. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
DSOP  
Output Disable. A logic high on this pin disables the RF output. Connect this pin to ground or leave it  
floating to enable the output.  
2, 5, 8, 11, 12,  
COMM  
Input Common Pins. Connect to the ground plane via a low impedance path.  
14, 17, 19, 20, 23  
3, 4  
LOIP, LOIN  
Local Oscillator Inputs.  
Single-ended operation: The LOIP pin is driven from the LO source through an ac-coupling capacitor  
while the LOIN pin is ac-coupled to ground through a capacitor.  
Differential operation: The LOIP and LOIN pins must be driven differentially through ac-coupling  
capacitors in this mode of operation.  
6, 7, 13, 15,  
9, 10, 21, 22  
NC  
No Connect. These pins can be left open or tied to ground.  
QBBN, QBBP,  
IBBP, IBBN  
Differential In-Phase and Quadrature Baseband Inputs. These high impedance inputs should be dc-  
biased to the recommended level depending on the version.  
ADL5375-05: 500 mV  
ADL5375-15: 1500 mV  
These inputs should be driven from a low impedance source. Nominal characterized ac signal swing is  
500 mV p-p on each pin. This results in a differential drive of 1 V p-p. These inputs are not self-biased  
and have to be externally biased.  
16  
RFOUT  
RF Output. Single-ended, 50 Ω internally biased RF output. RFOUT must be ac-coupled to the load.  
18, 24  
VPS1, VPS2  
Positive Supply Voltage Pins. All pins should be connected to the same supply (VS). To ensure adequate  
external bypassing, connect 0.1 µF and 100 pF capacitors between each pin and ground.  
EP  
Exposed Paddle. Connect to the ground plane via a low impedance path.  
Rev. C | Page 8 of 36  
 
Data Sheet  
ADL5375  
TYPICAL PERFORMANCE CHARACTERISTICS  
ADL5375-05  
VS = 5 V; TA = 25°C; LO = 0 dBm single-ended drive; baseband I/Q amplitude = 1 V p-p differential sine waves in quadrature with a  
500 mV dc bias; baseband I/Q frequency (fBB) = 1 MHz, unless otherwise noted.  
12  
10  
8
5
4
V
= 5.25V  
V
S
= 5.0V  
S
3
T
= –40°C  
T
= +25°C  
A
2
A
V
= 4.75V  
S
1
6
0
–1  
–2  
–3  
–4  
–5  
T
= +85°C  
A
4
2
0
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
LO FREQUENCY (GHz)  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
LO FREQUENCY (GHz)  
Figure 6. SSB Output 1dB Compression Point (OP1dB) vs. LO Frequency (fLO  
)
Figure 3. Single-Sideband (SSB) Output Power (POUT) vs.  
LO Frequency (fLO) and Temperature  
and Supply  
90  
5
60  
120  
4
3
1
2
400MHz  
150  
30  
2
25.73 – j8.14Ω  
V
= 5.25V  
S
3
4
S11  
6GHz  
75.88 – j76.94Ω  
1
400MHz  
1
0
0
180  
3
4
S22  
400MHz  
40.01 + j9.20Ω  
400MHz  
V
= 5.0V  
S
–1  
–2  
–3  
–4  
–5  
2
V
= 4.75V  
S22  
6GHz  
30.52 – j30.09Ω  
S
210  
330  
6GHz  
300  
6GHz  
S11  
S22  
240  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
LO FREQUENCY (GHz)  
270  
Figure 7. Smith Chart of LOIP (LOIN AC-Coupled to Ground) S11 and RFOUT  
S22 from 450 MHz to 6000 MHz  
Figure 4. Single-Sideband (SSB) Output Power (POUT) vs.  
LO Frequency (fLO) and Supply  
14  
0
LOIP  
12  
10  
8
–5  
T
= –40°C  
A
–10  
T
= +85°C  
T
= +25°C  
A
A
–15  
6
RFOUT  
–20  
–25  
–30  
4
2
0
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
LO FREQUENCY (GHz)  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
FREQUENCY (GHz)  
Figure 5. SSB Output 1dB Compression Point (OP1dB) vs. LO Frequency (fLO  
)
Figure 8. Return Loss of LOIP (LOIN AC-Coupled to Ground) S11 and RFOUT  
S22 from 450 MHz to 6000 MHz  
and Temperature  
Rev. C | Page 9 of 36  
 
 
 
ADL5375  
Data Sheet  
0
–5  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
T
= +25°C  
= –40°C  
A
T
= +85°C  
A
T
= +25°C  
A
T
= +85°C  
A
T
A
T
= –40°C  
A
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
LO FREQUENCY (GHz)  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
LO FREQUENCY (GHz)  
Figure 9. Carrier Feedthrough vs. LO Frequency (fLO) and Temperature;  
Multiple Devices Shown  
Figure 12. Sideband Suppression vs. LO Frequency (fLO) and Temperature After  
Nulling at 25°C; Multiple Devices Shown  
0
–10  
–20  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
10  
5
SSB OUTPUT  
POWER (dBm)  
CARRIER  
FEEDTHROUGH (dBm)  
T
= +85°C  
A
–30  
–40  
–50  
–60  
–70  
–80  
0
–5  
–10  
–15  
T
A
= –40°C  
= +25°C  
SIDEBAND  
T
A
SUPPRESSION (dBc)  
SECOND-ORDER  
DISTORTION (dBc)  
THIRD-ORDER  
DISTORTION (dBc)  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
LO FREQUENCY (GHz)  
0.1  
1
2
BASEBAND INPUT VOLTAGE (V p-p)  
Figure 10. Carrier Feedthrough vs. LO Frequency (fLO) and Temperature After  
Nulling at 25°C; Multiple Devices Shown  
Figure 13. Second- and Third-Order Distortion, Carrier Feedthrough,  
Sideband Suppression, and SSB POUT vs. Baseband Differential Input Level  
(fLO = 900 MHz)  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
10  
0
–10  
–20  
SSB OUTPUT  
POWER (dBm)  
CARRIER  
FEEDTHROUGH (dBm)  
5
T
= +85°C  
A
0
–30  
–40  
–50  
–60  
–70  
–80  
–5  
–10  
–15  
SIDEBAND  
SUPPRESSION (dBc)  
SECOND-ORDER  
DISTORTION (dBc)  
T
= –40°C  
A
THIRD-ORDER  
DISTORTION (dBc)  
T
= +25°C  
A
0.1  
1
2
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
LO FREQUENCY (GHz)  
BASEBAND INPUT VOLTAGE (V p-p)  
Figure 14. Second- and Third-Order Distortion, Carrier Feedthrough,  
Sideband Suppression, and SSB POUT vs. Baseband Differential Input Level  
(fLO = 2150 MHz)  
Figure 11. Sideband Suppression vs. LO Frequency (fLO) and Temperature;  
Multiple Devices Shown  
Rev. C | Page 10 of 36  
Data Sheet  
ADL5375  
30  
25  
20  
15  
10  
5
0
10  
5
SSB OUTPUT  
POWER (dBm)  
–10  
CARRIER  
FEEDTHROUGH (dBm)  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
T
= –40°C  
A
0
T
= +25°C  
A
–5  
–10  
–15  
T
= +85°C  
A
SIDEBAND  
SUPPRESSION (dBc)  
SECOND-ORDER  
DISTORTION (dBc)  
THIRD-ORDER  
DISTORTION (dBc)  
0
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
LO FREQUENCY (GHz)  
0.1  
1
BASEBAND INPUT VOLTAGE (V p-p)  
2
Figure 18. OIP3 vs. LO Frequency (fLO) and Temperature (POUT ≈ −5 dBm)  
Figure 15. Second- and Third-Order Distortion, Carrier Feedthrough,  
Sideband Suppression, and SSB POUT vs. Baseband Differential Input Level  
(fLO = 3500 MHz)  
80  
70  
60  
–10  
–20  
–30  
T
= –40°C  
A
50  
40  
30  
20  
10  
0
T
= +85°C  
–40  
–50  
–60  
–70  
–80  
A
T
= –40°C  
A
THIRD-ORDER  
T
= +25°C  
A
T
= +85°C  
A
SECOND-ORDER  
T
= +25°C  
A
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
LO FREQUENCY (GHz)  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
LO FREQUENCY (GHz)  
Figure 19. OIP2 vs. LO Frequency (fLO) and Temperature (POUT ≈ −5 dBm)  
Figure 16. Second- and Third-Order Distortion vs. LO Frequency (fLO) and  
Temperature (Baseband I/Q Amplitude = 1 V p-p Differential)  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
2
–20  
–30  
–40  
–50  
–60  
–70  
1.5  
SSB OUTPUT  
POWER (dBm)  
SSB OUTPUT POWER (dBm)  
1
0.5  
CARRIER  
FEEDTHROUGH (dBm)  
CARRIER  
FEEDTHROUGH (dBm)  
0
–0.5  
–1.5  
–2.5  
–3.5  
–1  
–2  
–3  
–4  
SIDEBAND  
SUPPRESSION (dBc)  
THIRD-ORDER  
SIDEBAND  
SUPPRESSION (dBc)  
DISTORTION (dBc)  
SECOND-ORDER  
DISTORTION (dBc)  
SECOND-ORDER  
DISTORTION (dBc)  
–6  
–4  
–2  
0
2
4
6
1
10  
BASEBAND FREQUENCY (MHz)  
100  
LO AMPLITUDE (dBm)  
Figure 20. Second- and Third-Order Distortion, Carrier Feedthrough,  
Sideband Suppression, and SSB POUT vs. LO Amplitude (fLO = 900 MHz)  
Figure 17. Second-Order Distortion, Carrier Feedthrough, Sideband  
Suppression, and SSB POUT vs. Baseband Frequency (fBB); fLO = 2140 MHz  
Rev. C | Page 11 of 36  
ADL5375  
Data Sheet  
–20  
–30  
–40  
2
18  
16  
14  
12  
10  
8
SSB OUTPUT  
POWER (dBm)  
1
0
CARRIER  
FEEDTHROUGH (dBm)  
–50  
–60  
–70  
–80  
–1  
–2  
–3  
–4  
SIDEBAND  
SUPPRESSION (dBc)  
6
THIRD-ORDER  
DISTORTION (dBc)  
4
2
SECOND-ORDER  
DISTORTION (dBc)  
0
–6  
–4  
–2  
0
2
4
6
–160.5 –160.3 –160.1 –159.9 –159.7 –159.5 –159.3 –159.1  
NOISE (dBm/Hz)  
LO AMPLITUDE (dBm)  
Figure 24. 20 MHz Offset Noise Floor Distribution at fLO = 900 MHz  
(I/Q Amplitude = 0 mV p-p with 500 mV DC Bias)  
Figure 21. Second- and Third-Order Distortion, Carrier Feedthrough,  
Sideband Suppression, and SSB POUT vs. LO Amplitude (fLO = 2150 MHz)  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
1
8
7
6
5
4
3
2
1
0
0
CARRIER  
SSB OUTPUT  
POWER (dBm)  
FEEDTHROUGH (dBm)  
–1  
–2  
–3  
–4  
–5  
SIDEBAND  
SUPPRESSION (dBc)  
THIRD-ORDER  
DISTORTION (dBc)  
SECOND-ORDER  
DISTORTION (dBc)  
–6  
–4  
–2  
0
2
4
6
–160.5  
–160.1  
–159.7  
–159.3  
–158.9  
–158.5  
LO AMPLITUDE (dBm)  
NOISE (dBm/Hz)  
Figure 22. Second- and Third-Order Distortion, Carrier Feedthrough,  
Sideband Suppression, and SSB POUT vs. LO Amplitude (fLO = 3500 MHz)  
Figure 25. 20 MHz Offset Noise Floor Distribution at fLO = 2140 MHz  
(I/Q Amplitude = 0 mV p-p with 500 mV DC Bias)  
210  
10  
9
8
7
6
5
4
3
2
1
0
V
= 5.25V  
= 5.0V  
S
205  
200  
195  
190  
185  
180  
175  
170  
165  
V
S
V
= 4.75V  
S
–158.9  
–158.5  
–158.1  
–157.7  
–157.3  
–156.9  
–156.5  
–40  
25  
TEMPERATURE (°C)  
85  
NOISE (dBm/Hz)  
Figure 26. 20 MHz Offset Noise Floor Distribution at fLO = 3500 MHz  
(I/Q Amplitude = 0 mV p-p with 500 mV DC Bias)  
Figure 23. Power Supply Current vs. Temperature  
Rev. C | Page 12 of 36  
Data Sheet  
ADL5375  
0
86  
88  
85  
83  
82  
81  
80  
79  
78  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
SSB OUTPUT POWER ISOLATION (dB)  
CARRIER FEEDTHROUGH (dBm)  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
LO FREQUENCY (GHz)  
Figure 27. SSB POUT Isolation and Carrier Feedthrough with DSOP High  
Rev. C | Page 13 of 36  
 
ADL5375  
Data Sheet  
ADL5375-15  
VS = 5 V; TA = 25°C; LO = 0 dBm single-ended drive; baseband I/Q amplitude = 1 V p-p differential sine waves in quadrature with a  
1500 mV dc bias; baseband I/Q frequency (fBB) = 1 MHz, unless otherwise noted.  
5
12  
10  
8
4
V
= 5.25V  
S
V
= 5.0V  
S
3
2
T
= +25°C  
T
= –40°C  
A
A
V
= 4.75V  
S
1
0
6
T
= +85°C  
A
–1  
–2  
–3  
–4  
–5  
4
2
0
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
LO FREQUENCY (GHz)  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
LO FREQUENCY (GHz)  
Figure 28. Single-Sideband (SSB) Output Power (POUT) vs. LO Frequency (fLO  
)
Figure 31. SSB Output 1dB Compression Point (OP1dB) vs. LO Frequency (fLO  
)
and Temperature  
and Supply  
90  
5
4
3
2
60  
120  
S11  
1
2
150  
30  
400MHz  
25.07 – j7.11Ω  
400MHz  
V
= 4.75V  
S
3
1
0
V = 5.0V  
S
S11  
6GHz  
96.98 – j74.75Ω  
0
180  
1
400MHz  
3
4
S22  
–1  
–2  
–3  
–4  
–5  
400MHz  
6GHz  
2
38.63 + j10.34Ω  
V
= 5.25V  
S
4
S22  
6GHz  
34.35 – j30.63Ω  
210  
6GHz  
330  
S11  
S22  
240  
300  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
LO FREQUENCY (GHz)  
270  
Figure 29. Single-Sideband (SSB) Output Power (POUT) vs. LO Frequency  
(fLO) and Supply  
Figure 32. Smith Chart of LOIP (LOIN AC-Coupled to Ground) S11 and RFOUT  
S22 from 450 MHz to 6000 MHz  
12  
0
T
= –40°C  
A
10  
8
–5  
T
= +25°C  
A
LOIP  
–10  
T
= +85°C  
A
6
–15  
RFOUT  
4
–20  
–25  
–30  
2
0
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
LO FREQUENCY (GHz)  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
FREQUENCY (GHz)  
Figure 30. SSB Output 1dB Compression Point (OP1dB) vs. LO Frequency (fLO  
)
Figure 33. Return Loss of LOIP (LOIN AC-Coupled to Ground) S11 and RFOUT  
S22 from 450 MHz to 6000 MHz  
and Temperature  
Rev. C | Page 14 of 36  
 
 
Data Sheet  
ADL5375  
0
–5  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
T
= +85°C  
A
T
= +85°C  
A
T
= –40°C  
A
T
= –40°C  
A
T
= +25°C  
A
T
= +25°C  
A
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
LO FREQUENCY (GHz)  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
LO FREQUENCY (GHz)  
Figure 34. Carrier Feedthrough vs. LO Frequency (fLO) and Temperature;  
Multiple Devices Shown  
Figure 37. Sideband Suppression vs. LO Frequency (fLO) and Temperature After  
Nulling at 25°C; Multiple Devices Shown  
0
–10  
–20  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
10  
5
SSB OUTPUT  
POWER (dBm)  
CARRIER  
FEEDTHROUGH (dBm)  
SIDEBAND  
SUPPRESSION (dBc)  
–30  
–40  
–50  
–60  
–70  
–80  
T
= –40°C  
A
0
–5  
–10  
–15  
T
= +85°C  
A
T
= +25°C  
SECOND-ORDER  
A
DISTORTION (dBc)  
THIRD-ORDER  
DISTORTION (dBc)  
0.1  
1
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
LO FREQUENCY (GHz)  
BASEBAND INPUT VOLTAGE (V p-p)  
Figure 38. Second- and Third-Order Distortion, Carrier Feedthrough,  
Sideband Suppression, and SSB POUT vs. Baseband Differential Input Level  
(fLO = 900 MHz)  
Figure 35. Carrier Feedthrough vs. LO Frequency (fLO) and Temperature After  
Nulling at 25°C; Multiple Devices Shown  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
10  
5
0
–10  
–20  
–30  
SSB OUTPUT  
POWER (dBm)  
CARRIER  
FEEDTHROUGH (dBm)  
0
SIDEBAND  
SUPPRESSION (dBc)  
T
= +25°C  
T
= –40°C  
A
A
–40  
–50  
–60  
–70  
–80  
–5  
–10  
–15  
T
= +85°C  
A
SECOND-ORDER  
DISTORTION (dBc)  
THIRD-ORDER  
DISTORTION (dBc)  
0.1  
1
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
LO FREQUENCY (GHz)  
BASEBAND INPUT VOLTAGE (V p-p)  
Figure 39. Second- and Third-Order Distortion, Carrier Feedthrough,  
Sideband Suppression, and SSB POUT vs. Baseband Differential Input Level  
(fLO = 2150 MHz)  
Figure 36. Sideband Suppression vs. LO Frequency (fLO) and Temperature;  
Multiple Devices Shown  
Rev. C | Page 15 of 36  
ADL5375  
Data Sheet  
0
10  
5
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
SSB OUTPUT  
POWER (dBm)  
–10  
CARRIER  
FEEDTHROUGH (dBm)  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
T
= –40°C  
A
0
SIDEBAND  
SUPPRESSION (dBc)  
–5  
–10  
–15  
T
= +25°C  
A
SECOND-ORDER  
DISTORTION (dBc)  
T
= +85°C  
A
6
THIRD-ORDER  
DISTORTION (dBc)  
4
2
0
0.1  
1
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
LO FREQUENCY (GHz)  
BASEBAND INPUT VOLTAGE (V p-p)  
Figure 40. Second- and Third-Order Distortion, Carrier Feedthrough,  
Sideband Suppression, and SSB POUT vs. Baseband Differential Input Level  
(fLO = 3500 MHz)  
Figure 43. OIP3 vs. LO Frequency (fLO) and Temperature (POUT ≈ −5 dBm @  
LO = 900 MHz)  
f
0
–10  
–20  
70  
60  
50  
40  
30  
20  
10  
0
T
= –40°C  
A
–30  
THIRD-ORDER  
–40  
T
= +25°C  
A
T
= +25°C  
A
–50  
–60  
–70  
–80  
T
= +85°C  
A
T
= +85°C  
A
T
= –40°C  
A
SECOND-ORDER  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
LO FREQUENCY (GHz)  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
LO FREQUENCY (GHz)  
Figure 44. OIP2 vs. LO Frequency (fLO) and Temperature (POUT ≈ −5 dBm @  
Figure 41. Second- and Third-Order Distortion vs. LO Frequency (fLO) and  
Temperature (Baseband I/Q Amplitude = 1 V p-p Differential)  
f
LO = 900 MHz)  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
2
–20  
–30  
–40  
–50  
–60  
–70  
1.5  
SSB OUTPUT POWER (dBm)  
CARRIER  
FEEDTHROUGH (dBm)  
SSB OUTPUT  
POWER (dBm)  
0.5  
1
SIDEBAND  
SUPPRESSION (dBc)  
–0.5  
–1.5  
–2.5  
–3.5  
0
SIDEBAND  
SUPPRESSION (dBc)  
THIRD-ORDER  
DISTORTION (dBc)  
CARRIER  
FEEDTHROUGH (dBm)  
–1  
–2  
SECOND-ORDER  
SECOND-ORDER  
DISTORTION (dBc)  
DISTORTION (dBc)  
–6 –4 –2  
0
2
4
6
1
10  
100  
LO AMPLITUDE (dBm)  
BASEBAND FREQUENCY (MHz)  
Figure 45. Second- and Third-Order Distortion, Carrier Feedthrough,  
Sideband Suppression, and SSB POUT vs. LO Amplitude (fLO = 900 MHz)  
Figure 42. Second-Order Distortion, Carrier Feedthrough, Sideband  
Suppression, and SSB POUT vs. Baseband Frequency (fBB); fLO = 2140 MHz  
Rev. C | Page 16 of 36  
Data Sheet  
ADL5375  
18  
16  
14  
12  
10  
8
–20  
2
CARRIER  
FEEDTHROUGH (dBm)  
SSB OUTPUT  
POWER (dBm)  
–30  
–40  
–50  
–60  
–70  
–80  
1
SIDEBAND  
SUPPRESSION (dBc)  
0
THIRD-ORDER  
DISTORTION (dBc)  
6
–1  
–2  
4
2
SECOND-ORDER  
DISTORTION (dBc)  
0
–158.0 –157.8 –157.6 –157.4 –157.2 –157.0 –156.8 –156.6  
–6  
–4  
–2  
0
2
4
6
NOISE (dBm/Hz)  
LO AMPLITUDE (dBm)  
Figure 49. 20 MHz Offset Noise Floor Distribution at fLO = 900 MHz  
(I/Q Amplitude = 0 mV p-p with 1500 mV DC Bias)  
Figure 46. Second- and Third-Order Distortion, Carrier Feedthrough,  
Sideband Suppression, and SSB POUT vs. LO Amplitude (fLO = 2150 MHz)  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
2.0  
12  
10  
8
CARRIER  
FEEDTHROUGH (dBm)  
1.5  
SSB OUTPUT  
POWER (dBm)  
1.0  
SIDEBAND  
SUPPRESSION (dBc)  
0.5  
0
6
–0.5  
–1.0  
–1.5  
–2.0  
4
THIRD-ORDER  
DISTORTION (dBc)  
SECOND-ORDER  
DISTORTION (dBc)  
2
0
–6  
–4  
–2  
0
2
4
6
–158.5 –158.3 –158.1 –157.9 –157.7 –157.5 –157.3 –157.1  
LO AMPLITUDE (dBm)  
NOISE (dBm/Hz)  
Figure 47. Second- and Third-Order Distortion, Carrier Feedthrough,  
Sideband Suppression, and SSB POUT vs. LO Amplitude (fLO = 3500 MHz)  
Figure 50. 20 MHz Offset Noise Floor Distribution at fLO = 2140 MHz  
(I/Q Amplitude = 0 mV p-p with 1500 mV DC Bias)  
0.230  
0.220  
9
8
7
6
5
4
3
2
1
0
V
= 5.25V  
= 5.0V  
S
0.210  
0.200  
0.190  
0.180  
0.170  
0.160  
V
S
V
= 4.75V  
S
–40  
25  
85  
–157.5  
–157.1  
–156.7  
–156.3  
–155.9  
–155.5  
TEMPERATURE (°C)  
NOISE (dBm/Hz)  
Figure 48. Power Supply Current vs. Temperature  
Figure 51. 20 MHz Offset Noise Floor Distribution at fLO = 3500 MHz  
(I/Q Amplitude = 0 mV p-p with 500 mV DC Bias)  
Rev. C | Page 17 of 36  
ADL5375  
Data Sheet  
0
88  
86  
84  
82  
80  
78  
76  
74  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
SSB OUTPUT POWER ISOLATION (dB)  
CARRIER FEEDTHROUGH (dBm)  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
LO FREQUENCY (GHz)  
Figure 52. SSB POUT Isolation and Carrier Feedthrough with DSOP High  
Rev. C | Page 18 of 36  
 
Data Sheet  
ADL5375  
THEORY OF OPERATION  
V-to-I Converter  
CIRCUIT DESCRIPTION  
The differential baseband inputs (QBBP, QBBN, IBBN, and  
IBBP) present a high impedance. The voltages applied to these  
pins drive the V-to-I stage that converts baseband voltages into  
currents. The differential output currents of the V-to-I stages  
feed each of their respective mixers. The dc common-mode  
voltage at the baseband inputs sets the currents in the two  
mixer cores. Varying the baseband common-mode voltage  
influences the current in the mixer and affects overall modula-  
tor performance. The recommended dc voltage for the baseband  
common-mode voltage is 500 mV dc for the ADL5375-05 and  
1500 mV for the ADL5375-15.  
The ADL5375 can be divided into five circuit blocks: the LO  
interface, the baseband voltage-to-current (V-to-I) converter,  
the mixers, the differential-to-single-ended (D-to-S) stage,  
and the bias circuit. A block diagram of the device is shown in  
Figure 53.  
LOIP  
PHASE  
SPLITTER  
LOIN  
IBBP  
IBBN  
Mixers  
Σ
RFOUT  
DSOP  
The ADL5375 has two double-balanced mixers: one for the  
in-phase channel (I channel) and one for the quadrature chan-  
nel (Q-channel). The output currents from the two mixers sum  
together into an internal load. The signal developed across this  
load is used to drive the D-to-S stage.  
QBBP  
QBBN  
Figure 53. Block Diagram  
The LO interface generates two LO signals in quadrature.  
These signals are used to drive the mixers. The I/Q baseband  
input signals are converted to currents by the V-to-I stages,  
which then drive the two mixers. The outputs of these mixers  
combine to feed the output balun, which provides a single-  
ended output. The bias cell generates reference currents for  
the V-to-I stage.  
D-to-S Stage  
The output D-to-S stage consists of an on-chip active balun  
that converts the differential signal to a single-ended signal.  
The balun presents 50 Ω impedance to the output (VOUT).  
Therefore, no matching network is needed at the RF output  
for optimal power transfer in a 50 Ω environment.  
LO Interface  
Bias Circuit  
The LO interface consists of a polyphase quadrature splitter  
and a limiting amplifier. The LO input impedance is set by  
the polyphase splitter. Each quadrature LO signal then passes  
through a limiting amplifier that provides the mixer with a  
limited drive signal.  
An on-chip band gap reference circuit is used to generate a  
proportional-to-absolute temperature (PTAT) reference current  
for the V-to-I stage.  
DSOP  
The DSOP pin can be used to disable the output stage of the  
modulator. If the DSOP pin is connected to ground or left  
unconnected, the part operates normally. If the DSOP pin is  
connected to the positive voltage supply, the output stage is  
disabled and the LO leakage is also reduced.  
The LO input can be driven single-ended or differentially.  
For applications above 3 GHz, improved OIP2 and LO leakage  
may result from driving the LO input differentially.  
Rev. C | Page 19 of 36  
 
 
 
ADL5375  
Data Sheet  
BASIC CONNECTIONS  
IBBN  
IBBP  
VPOS  
VPOS  
S1  
C5  
0.1µF  
C3  
100pF  
A
B
VPOS  
C2  
100pF  
C4  
0.1µF  
DSOP  
VPS1  
1
2
3
4
5
6
18  
17  
16  
15  
14  
13  
C6  
100pF  
COMM  
COMM  
LOIP  
Z1  
RFOUT  
ADL5375  
LOIP  
RFOUT  
LOIN  
C1  
100pF  
NC  
COMM  
C7  
100pF  
COMM  
EXPOSED PADDLE  
NC  
NC  
GND  
QBBN  
QBBP  
Figure 54. Basic Connections for the ADL5375  
Figure 54 shows the basic connections for the ADL5375.  
All the baseband inputs must be externally dc biased. The  
recommended common-mode level is dependent on the  
version of the ADL5375.  
POWER SUPPLY AND GROUNDING  
Pin VPS1 and Pin VPS2 should be connected to the same 5 V  
source. Each pin should be decoupled with a 100 pF and  
0.1 μF capacitor. These capacitors should be located as close  
as possible to the device. The power supply can range between  
4.75 V and 5.25 V.  
ADL5375-05: 500 mV  
ADL5375-15: 1500 mV  
LO INPUT  
The LO input is designed to be driven from a single-ended  
source. The LO source is ac-coupled through a series capacitor  
to the LOIP pin while the LOIN pin is ac-coupled to ground  
through a second capacitor.  
The ten COMM pins should be tied to the same ground plane  
through low impedance paths.  
The exposed paddle on the underside of the package should  
also be soldered to a ground plane with low thermal and  
electrical impedance. If the ground plane spans multiple layers  
on the circuit board, they should be stitched together with nine  
vias under the exposed paddle as illustrated in the Evaluation  
Board section. The AN-772 Application Note discusses the  
thermal and electrical grounding of the LFCSP (QFN) package  
in detail.  
The typical LO drive level, which was used for the characterization  
of the ADL5375, is 0 dBm.  
Differential operation is also possible, in which case both sides  
of the differential LO source should be ac-coupled through a  
pair of series capacitors to the LOIP and LOIN pins.  
RF OUTPUT  
BASEBAND INPUTS  
The RF output is available at the RFOUT pin (Pin 16), which can  
drive a 50 Ω load. The internal balun provides a low dc path to  
ground. In most situations, the RFOUT pin must be ac-coupled  
to the load.  
The baseband inputs (IBBP, IBBN, QBBP, and QBBN) should be  
driven from a differential source. The nominal drive level used  
in the characterization of the ADL5375 is 1 V p-p differential  
(or 500 mV p-p on each pin).  
Rev. C | Page 20 of 36  
 
 
 
 
 
 
Data Sheet  
ADL5375  
to just above the KT thermal noise level. Asserting DSOP also  
reduces the supply current of the ADL5375 from 200 mA to  
127 mA.  
OUTPUT DISABLE  
The ADL5375 incorporates an output disable pin feature that  
shuts down the output amplifier stage to isolate the modulator  
from the load. This output is disabled when the voltage on the  
DSOP exceeds 2 V. The output is enabled when the DSOP pin is  
either tied to ground or left unconnected.  
The time delay between when DSOP pin going low and the  
output power being restored is approximately 200 ns. The time  
delay when DSOP going high and output being disabled is less  
than 100 ns.  
Asserting DSOP further reduces LO leakage (see Figure 27 and  
Figure 52) and drives the broadband noise of the device down  
Rev. C | Page 21 of 36  
 
ADL5375  
Data Sheet  
IN inputs can be slightly different. Using Figure 55 as an  
example, after LO leakage nulling, the average dc level on IP  
and IN can be 500.25 mV and 499.75 mV.  
APPLICATIONS INFORMATION  
CARRIER FEEDTHROUGH NULLING  
LO leakage results from minute dc offsets that occur on the  
differential baseband inputs. In an IQ modulator, non-zero  
differential offsets mix with the LO and result in LO leakage to  
the RF output. In addition to this effect, some of the signal  
power at the LO input couples directly to the RF output (this  
may be a result of bond-wire to bond-wire coupling or coupling  
through the silicon substrate). The net LO leakage at the RF  
output is the vector combination of the signals that appear at  
the output as a result of these two effects.  
The same applies to the Q-channel. For the ADL5375-15, the  
same theory applies except that  
V
IBBP = VIBBN = 1500 mV.  
It is often desirable to perform a one-time carrier null. This is  
usually performed at a given frequency. After this factory  
calibration, the IQ modulator operates over a frequency range  
on each side of the calibration frequency. The nulled LO leakage  
level degrades somewhat because the LO frequency is moved  
away from the calibration frequency. Despite this degradation,  
the overall LO leakage across a frequency band can be expected  
to be better than when no nulling is performed. This assumes  
an operating frequency band that is in the 30 MHz to 60 MHz  
range.  
The device’s nominal carrier feedthrough can be nulled by  
adding small external differential offset voltages on the I and Q  
inputs.  
Nulling the carrier feedthrough is a multistep process. Initially,  
with the I-channel offset held constant (at 0 mV), the Q-  
channel offset is varied until a minimum LO leakage level is  
obtained. This Q-channel offset voltage is then held constant,  
while the offset on the I-channel is adjusted until a new  
minimum is reached. Through two iterations of this process,  
the LO leakage can be reduced to an arbitrarily low level. This  
level is only limited by the available offset voltage steps and by  
the modulators noise floor. Figure 55 illustrates the typical  
relationship between LO leakage and dc offset at 1900 MHz. In  
this case, differential offset voltages of approximately +0.5 mV  
and −0.5 mV on the I and Q inputs, respectively, result in the  
lowest carrier feedthrough. It is important to note that the  
required offset nulling voltage changes in polarity and  
magnitude from device to device and overtemperature and  
frequency. To ensure that all devices in a mass production  
environment can be adequately nulled, an offset adjustment  
range of approximately 10 mV should be provided.  
–57  
LO leakage nulling is discussed further in AN-1039, Correcting  
Imperfections in IQ Modulators to Improve RF Signal Fidelity.  
SIDEBAND SUPPRESSION OPTIMIZATION  
Sideband suppression results from relative gain and relative  
phase offsets between the I-channel and Q-channel and can  
be suppressed through adjustments to those two parameters.  
Figure 56 illustrates how sideband suppression is affected by  
the gain and phase imbalances.  
0
–10  
2.5dB  
–20  
1.25dB  
0.5dB  
–30  
–40  
–50  
–60  
–70  
–80  
0.25dB  
0.125dB  
0.05dB  
0.025dB  
0.0125dB  
Q OFFSET SWEEP  
I OFFSET SWEEP  
0dB  
–62  
–67  
–72  
–77  
–82  
–87  
–92  
–90  
0.01  
0.1  
1
10  
100  
PHASE ERROR (Degrees)  
Figure 56. Sideband Suppression vs. Quadrature Phase Error for  
Various Quadrature Amplitude Offsets  
Figure 56 underlines the fact that adjusting only one parameter  
improves the sideband suppression only to a point, unless the  
other parameter is also adjusted. For example, if the amplitude  
offset is 0.25 dB, improving the phase imbalance by better than  
1° does not yield any improvement in the sideband suppression.  
For optimum sideband suppression, an iterative adjustment  
between phase and amplitude is required.  
–1.0 –0.8 –0.6 –0.4 –0.2  
0
0.2  
0.4  
0.6  
0.8  
1.0  
I AND Q OFFSET VOLTAGE (µV)  
Figure 55. Example of Typical Carrier Feedthrough vs. DC Offset Voltage  
The sideband suppression nulling can be performed either  
through adjusting the gain for each channel or through the  
modification of the phase and gain of the digital data coming  
from the baseband signal processor.  
It is important to note that the carrier feedthrough is not  
affected by the dc bias levels (also called the common-mode  
level) on the I and Q inputs. A differential offset voltage must  
be applied, so after nulling, the average voltage on the IP and  
Rev. C | Page 22 of 36  
 
 
 
 
 
Data Sheet  
ADL5375  
Sideband suppression is discussed further in AN-1100, Wireless  
Transmitter IQ Balance and Sideband Suppression, as well as in  
AN-1039, Correcting Imperfections in IQ Modulators to Improve  
RF Signal Fidelity.  
of Figure 57. Because filtering of the third harmonic is most  
critical, and to ensure wide frequency range coverage, the 3 dB  
corner of the filters have been set to approximately 1.2~1.5  
times the maximum desired LO frequency. A Chebyshev filter  
topology at 100 Ω differential source impedance and 50 Ω  
differential load impedance was used for optimal performance.  
3.3V  
INTERFACING THE ADF4350 PLL TO THE ADL5375  
With an output frequency range of 137.5 to 4.4 GHz, a high  
performance integrated VCO and an LO output power level  
that can be programmed from −4 dBm to +5 dBm, the  
ADF4350 wideband synthesizer is ideally suited to drive the  
ADL5375 LO port.  
120pF  
120pF  
0.1µF  
C1a  
L1  
C2a  
L2  
C3a  
1nF  
Z
BIAS  
12  
13  
3
4
LOIP  
RF  
RF  
A+  
Care must be taken to adequately suppress the harmonics of the  
LO signal from the PLL. VCOs typically have a third harmonic  
power of approximately −10 dBc. A large third harmonic on the  
LO degrades the quality of the quadrature generation inside the  
IQ Modulator. The third harmonic should be suppressed to a  
level of –30 dBc or lower to prevent quadrature degradation. So  
approximately 20 dB of attenuation is required to get the third  
harmonic below −30 dBc. Figure 57 shows PLL modulator  
OUT  
R1  
BIAS  
C1c  
L1  
C2c  
L2  
C3c  
1nF  
Z
A–  
OUT  
LOIN  
C1a  
C2a  
C3a  
ADF4350  
ADL5375  
Figure 57. PLL-Modulator Interface Schematic  
interfaces schematic that for this operation at four different  
frequencies, and Table 4 shows the optimized components value  
Table 4. PLL Modulator Interface Components Values (DNI = Do Not Insert)  
Frequency Range (MHz)  
Zbias (nH) R1 (Ω) L1 (nH) L2 (nH) C1a (pF) C1c (pF) C2a C2c (pF) C3a (pF) C3c (pF)  
500 to 1300  
850 to 2450  
1250 to 2800  
2800 to 4400  
27  
19  
7.5  
3.9  
100  
100  
100  
100  
3.9  
2.7  
0 Ω  
0 Ω  
3.9  
2.7  
3.6  
0 Ω  
DNI  
3.3  
DNI  
DNI  
4.7  
DNI 5.6  
DNI  
3.3  
1.5  
3.3  
DNI  
DNI  
DNI  
4.7  
2.2  
DNI  
DNI  
DNI  
DNI  
DNI  
DNI DNI  
DNI  
Rev. C | Page 23 of 36  
 
 
 
ADL5375  
Data Sheet  
The two pull-up inductors of the Zbias provide two 50 Ω source  
impedances in combination with R1 resistor in parallel for the  
filter. While the ADL5375 is specified to be driven by a single-  
ended LO, the LOIP and LOIN input pins are naturally  
differential. Therefore, the differential LO drive from the  
ADF4350 is more desirable.  
AD9122  
ADL5375-05  
67  
21  
IOUT1P  
IBBP  
RBIP  
50Ω  
RBIN  
50Ω  
66  
59  
22  
9
IOUT1N  
IOUT2N  
IBBN  
The output power from the ADF4350 can be set to −4 dBm,  
−1 dBm,+2 dBm, and +5 dBm using Register 4 Bits[D2:D1] and  
−6 dBm to +7 dBm LO drive level for ADL5375 is recommended.  
QBBN  
RBQN  
50Ω  
If the physical distance between the PLL and the IQ modulator  
is significant, the filter should be placed adjacent to the IQ  
modulator, and two 50 Ω traces should be run between the  
devices (since there is a 50 Ω impedance looking from each of  
the filter inputs back to each of the PLL outputs).  
RBQP  
58  
10  
50Ω  
IOUT2  
QBBP  
Figure 58. Interface Between the AD9122 and ADL5375-05 with 50 Ω  
Resistors to Ground to Establish the 500 mV DC Bias for the ADL5375-05  
Baseband Inputs  
The ADL5375 evaluation board can be reconfigured for  
differential drive and also includes component pads in its LO  
path to accommodate a harmonic filter. The ADF4350 evaluation  
board can also be configured to provide a differential output and  
can be connected directly to the ADL5375 evaluation board.  
The AD9122 output currents have a swing that ranges from 0 mA  
to 20 mA. With the 50 Ω resistors in place, the ac voltage swing  
going into the ADL5375-05 baseband inputs ranges from 0 V to  
1 V. A full-scale sine wave out of the AD9122 can be described  
as a 1 V p-p single-ended (or 2 V p-p differential) sine wave  
with a 500 mV dc bias.  
Optimizing the interface between a PLL LO and I/Q modulator  
is discussed further in CN-0134 Broadband Low EVM Direct  
Conversion Transmitter: How to Optimize the Interface  
Between a PLL LO and I/Q Modulator.  
Limiting the AC Swing  
There are situations in which it is desirable to reduce the ac  
voltage swing for a given DAC output current. This can be  
achieved through the addition of another resistor to the interface.  
This resistor is placed in the shunt between each side of the  
differential pair, as shown in Figure 59. It has the effect of  
reducing the ac swing without changing the dc bias already  
established by the 50 Ω resistors.  
DAC MODULATOR INTERFACING  
Driving the ADL5375-05 with a TXDAC®  
The ADL5375-05 is designed to interface with minimal  
components to members of the Analog Devices, Inc. TxDAC  
families. These dual-channel differential current output DACs  
feature an output current swing from 0 mA to 20 mA. The  
interface described in this section can be used with any DAC  
that has a similar output.  
AD9122  
ADL5375-05  
67  
21  
IOUT1P  
IBBP  
RBIP  
An example of an interface using the AD9122 TxDAC is shown  
in Figure 58. The baseband inputs of the ADL5375-05 require a  
dc bias of 500 m V. The nominal midscale current on each of the  
outputs of the AD9122 is 10 mA. Therefore, a single 50 Ω resis-  
tor to ground from each of the DAC outputs results in an average  
current of 10 mA flowing through each of the resistors, thus  
producing the desired 500 mV dc bias for the inputs to the  
ADL5375-05.  
50Ω  
RLI  
100Ω  
RBIN  
50Ω  
66  
59  
22  
9
IOUT1N  
IOUT2N  
IBBN  
QBBN  
RBQN  
50Ω  
RLQ  
100Ω  
RBQP  
50Ω  
58  
10  
IOUT2  
QBBP  
Figure 59. AC Voltage Swing Reduction Through the Introduction  
of a Shunt Resistor Between Differential Pair  
Rev. C | Page 24 of 36  
 
 
 
 
Data Sheet  
ADL5375  
0
–10  
–20  
–30  
–40  
–50  
–60  
36  
30  
24  
18  
12  
6
The value of this ac voltage swing limiting resistor is chosen  
based on the desired ac voltage swing. Figure 60 shows the  
relationship between the swing-limiting resistor and the peak-  
to-peak ac swing that it produces when 50 Ω bias-setting  
resistors are used. The differential peak-to-peak swing at the  
modulator input is  
MAGNITUDE  
GROUP DELAY  
[
2×RB ×RL  
]
]
VSIGNAL = IFS  
×
[
2×RB + RL  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
100  
1
10  
FREQUENCY (MHz)  
Figure 62. Frequency Response for DAC Modulator Interface with  
10 MHz Third-Order Bessel Filter  
Complex IF Operation  
The ADL5375 can be used with a DAC, generating a complex-  
IF (CIF), as well as a zero-IF signal (ZIF). The −1 dB bandwidth  
of the ADL5375 is approximately more than 400 MHz  
(Figure 63 and Figure 64 show the baseband frequency response  
of the ADL5375, facilitating high CIF and providing sufficient  
flat bandwidth for digital predistortion (DPD) algorithms).  
Using a CIF places the LO leakage and the undesired sideband  
outside the signal band at the modulator output where they can  
be easily removed with a bandpass filter.  
0
10  
100  
1000  
10000  
R
(Ω)  
L
Figure 60. Relationship Between the AC Swing-Limiting Resistor and the  
Peak-to-Peak Voltage Swing with 50 Ω Bias-Setting Resistors  
Filtering  
It is necessary to place an antialiasing filter between the DAC  
and modulator to filter out Nyquist images, common mode  
noise, and broadband DAC noise. The interface for setting up  
the biasing and ac swing discussed in the Limiting the AC  
Swing section lends itself well to the introduction of such a  
filter. The filter can be inserted between the dc bias setting  
resistors and the ac swing-limiting resistor. With this configuration,  
the dc bias setting resistors and the signal scaling resistors  
conveniently set the source and load resistances for the filter.  
1
0
–1  
–2  
–3  
–4  
–5  
–6  
Figure 61 shows a third-order, Bessel low-pass filter with a 3 dB  
frequency of 10 MHz. Matching input and output impedances  
make the filter design easier, so the shunt resistor chosen is  
100 Ω, producing an ac swing of 1 V p-p differential. The  
frequency response of this filter is shown in Figure 62.  
1
10  
100  
1k  
BASEBAND FREQUENCY (MHz)  
AD9122  
IOUT1P  
ADL5375-05  
LPI  
771.1nH  
67  
21  
Figure 63. ADL5375-05 Baseband Frequency Response Normalized to  
Response for 1 MHz  
IBBP  
RBIP  
50Ω  
53.62pF  
C1I  
350.1pF  
LNI  
771.1nH  
RSLI  
100Ω  
C2I  
RBIN  
50Ω  
66  
59  
22  
9
IOUT1N  
IOUT2N  
IBBN  
LNQ  
771.1nH  
QBBN  
RBQN  
50Ω  
RSLQ  
100Ω  
53.62pF  
C1Q  
350.1pF  
LPQ  
771.1nH  
C2Q  
RBQP  
50Ω  
58  
10  
IOUT2  
QBBP  
Figure 61. DAC Modulator Interface with  
10 MHz Third-Order, Bessel Filter  
Rev. C | Page 25 of 36  
 
 
 
 
ADL5375  
Data Sheet  
0
–5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
1
0
–1  
–2  
–3  
–4  
–5  
–10  
–15  
–20  
–25  
0
1M  
10M  
FREQUENCY (Hz)  
100M  
500M  
–6  
1
10  
100  
1k  
Figure 66. Frequency Response for DAC Modulator Interface with 300 MHz  
Fifth-Order Butterworth Filter  
BASEBAND FREQUENCY (MHz)  
Figure 64. ADL5375-15 Baseband Frequency Response Normalized to  
Response for 1 MHz  
Driving the ADL5375-15 with a TXDAC  
The ADL5375-15 requires a 1500 mV dc bias and therefore  
requires a slightly more complex interface that performs a dc  
level shift on the baseband signals. It is necessary to level-shift  
the DAC output from a 500 mV dc bias to the 1500 mV dc bias  
that the ADL5375-15 requires.  
In CIF applications, a low-pass filter between the DAC and  
modulator is still favored to filter out images, noises discussed  
in the Filtering section as well as to preserve dc bias level from  
DAC to ADL5375-05. Figure 65 shows a fifth order Butterworth  
filter with a 300 MHz corner frequency and the frequency  
response of this filter is shown in Figure 66.  
Level-shifting can be achieved with either a passive network  
or an active circuit. A passive network of resistors is shown  
in Figure 67. In this network, the dc bias of the DAC remains at  
500 mV while the input to the ADL5375-15 is 1500 mV. It should  
be noted that this passive level-shifting network introduces  
approximately 2 dB of loss in the ac signal.  
Even a purely differential filter can work well, splitting the filter  
capacitors into two and grounding at filter topology as like C2  
and C4 in Figure 65 divert common mode currents to ground  
and result in additional common-mode rejection of high  
frequency signals to a purely differential filter.  
C2PI  
AD9122  
ADL5375-15  
22pF  
C4PI  
3pF  
RSIN  
L2PI  
AD9122  
IOUT1P  
ADL5375-05  
1k  
67  
21  
33nH  
67  
66  
21  
22  
IOUT1P  
IBBP  
IBBP  
L1PI  
33nH  
RBIP  
RLIP  
RBIP  
50  
45.3Ω  
3480Ω  
C1I  
3.6pF  
C3I  
6pF  
RSLI  
100Ω  
L1NI  
33nH  
5V  
RBIN  
50Ω  
RBIN  
45.3Ω  
RLIN  
3480Ω  
RSIP  
1kΩ  
IOUT1N  
IBBN  
66  
59  
22  
9
L2NI  
33nH  
C2NI  
22pF  
C4NI  
3pF  
IOUT1N  
IOUT2N  
IBBN  
RSQN  
1kΩ  
QBBN  
C2NQ  
22pF  
RBQN  
45.3Ω  
RLQN  
3480Ω  
C4NQ  
3pF  
L2NQ  
33nH  
5V  
59  
58  
9
IOUT2N  
IOUT2  
QBBN  
QBBP  
RSQP  
1kΩ  
RBQP  
45.3Ω  
RLQP  
3480Ω  
L1NQ  
33nH  
58  
10  
RBQN  
50Ω  
IOUT2  
QBBP  
RSLQ  
100Ω  
C1Q  
3.6pF  
C3Q  
6pF  
L1PQ  
33nH  
RBQP  
50Ω  
10  
Figure 67. Passive Level-Shifting Network For Biasing ADL5375-15  
from TxDAC  
L2PQ  
33nH  
C2PQ  
22pF  
C4PQ  
3pF  
The active level shifting circuit involves the use of the ADA4938  
dual-differential amplifier. This device has a VOCM pin that  
sets the output dc bias. Through this pin, the output common-  
mode of the amplifier can be easily set to the requisite 1.5 V for  
biasing the ADL5375-15 baseband inputs.  
Figure 65. Recommended DAC Modulator Interface Topology with  
FC = 300 MHz Fifth-Order, Butterworth Filter  
Rev. C | Page 26 of 36  
 
 
 
 
Data Sheet  
ADL5375  
Using the AD9122 DAC For Carrier Feedthrough and  
Unwanted Sideband Nulling  
The AD9122 features an auxiliary DACs (Register 0x42,  
Register 0x43, Register 0x46, and Register 0x47) or the digital  
dc offset adjustments (Register 0x3C through Register 0x3F)  
that can be used to null the carrier feedthrough by applying the  
dc offset voltage at each main DAC channels. Unwanted  
sideband suppression can be done by adjusting the I/Q phase  
(Register 0x38 through Register 0x3B) and DAC FS (Register  
0x40 and Register 0x44) registers.  
GSM/EDGE OPERATION  
Figure 69. ADL5375-05 GSM/EDGE(8-PSK) 6 Carriers Adjacent and Alternate  
Channel Power Performance at 950 MHz; Output Power(1 Carrier/100 KHz) =  
−24.4 dBm LO Drive = 0 dBm  
The performance of the ADL5375-05 in a Multi-Carriers  
GSM/EDGE environment is shown in Figure 68 and Figure 69.  
Figure 68 illustrates the 6 MHz offset noise floor of the  
The performance of the ADL5375 in a GSM/EDGE environ-  
ment is shown in Figure 70 and Figure 71.  
ADL5375-05 at the six carriers MCGSM/EDGE(8-PSK) operating  
condition vs. output power, and Figure 69 demonstrates IMD  
performance of the same six carriers MCGSM/EDGE(8-PSK)  
for the ADL5375-05 at 950 MHz. It is configured, as shown at  
Figure 65, for this measurement. The AD9122 is set at −3 dB  
digital FS back off, FDATA = 368.64 MSPS, 2× interpolation, and  
PLL and inverse sync off. Complex IF at 174.32 MHz is generated  
at NCO of the AD9122 and fed into the ADL5375-05 through a  
fifth order Butterworth filter. Special care must be taken not to  
be affected by the noise power of images through proper DAC  
setup at the selection of IF Frequency, FDATA, FDAC, and so on for  
such a low IMD and noise level measurement. Be sure to load  
clean LO signals and use equipment that allows enough  
dynamic range capability and noise correction feature to  
compensated the noise originated by equipment itself.  
Figure 70 illustrates the 6 MHz offset noise of the ADL5375-05  
and ADL5375-15 vs. output power at 940 MHz. Figure 71  
demonstrates how the 6 MHz offset noise is affected by variations  
in LO drive level for both version of the ADL5375 at 940 MHz.  
–99  
–100  
–101  
–102  
ADL5375-15  
–103  
–104  
ADL5375-05  
–105  
–73  
–74  
–75  
–76  
–77  
–78  
–79  
–80  
–81  
–82  
–83  
–84  
–104.0  
–104.5  
–105.0  
–105.5  
–106.0  
–106.5  
–107.0  
–107.5  
–106  
–107  
–5  
–4  
–3  
–2  
–1  
0
OUTPUT POWER (dBm)  
Figure 70. GSM/Edge (8-PSK) 6 MHz Offset Noise at 940 MHz vs. Output  
Power, LO Drive = 0 dBm  
–30  
–28  
–26  
–24  
–22  
OUTPUT POWER (1 CARRIER/100kHz) (dBm)  
Figure 68. ADL5375-05 GSM/EDGE(8-PSK) 6 Carriers 6 MHz Offset Noise Floor  
at 950 MHz vs Output Power(1 Carrier/100 KHz), LO Drive = 0 dBm  
Rev. C | Page 27 of 36  
 
 
 
 
ADL5375  
Data Sheet  
–101  
–102  
–103  
–104  
–105  
–106  
–107  
–108  
–59  
–61  
–63  
–65  
–67  
–69  
–71  
–73  
–75  
–77  
–79  
–81  
–83  
–85  
–87  
ADJACENT CPR  
ADL5375-15  
ADL5375-05  
ALTERNATE CPR  
–109  
0
–20  
–18  
–16  
–14  
–12  
–10  
–8  
–6  
–4  
1
2
3
4
5
6
7
OUTPUT POWER (dBm)  
LO DRIVE (dBm)  
Figure 73. ADL5375-15 Single-Carrier W-CDMA Adjacent and Alternate  
Channel Power vs. Output Power at 2140 MHz; LO Power = 0 dBm  
Figure 71. GSM/Edge (8-PSK) 6 MHz Offset Noise at 940 MHz vs. LO Drive,  
Output Power = 0 dBm  
Figure 72 and Figure 73 show that both versions of the ADL5375  
are able to deliver about or better than −73 dB ACPR at an  
output power of −10 dBm.  
W-CDMA OPERATION  
The ADL5375 is suitable for W-CDMA operation. Figure 72  
and Figure 73 show the adjacent and alternate channel power  
ratios for the ADL5375-05 and ADL5375-15, respectively, at an  
LO frequency of 2140 MHz.  
Figure 74 illustrate the sensitivity of the EVM to variations in  
LO drive at 2140 MHz for the ADL5375-05 and ADL5375-15.  
6.0  
5.5  
5.0  
4.5  
–59  
–61  
–63  
–65  
–67  
–69  
–71  
–73  
–75  
–77  
–79  
–81  
–83  
–85  
–87  
ADJACENT CPR  
4.0  
ADL5375-15  
3.5  
3.0  
ADL5375-05  
2.5  
2.0  
1.5  
1.0  
0.5  
0
ALTERNATE CPR  
–6  
–4  
–2  
0
2
4
6
–20  
–18  
–16  
–14  
–12  
–10  
–8  
–6  
–4  
LO DRIVE (dBm)  
OUTPUT POWER (dBm)  
Figure 74. Single Carrier W-CDMA Composite EVM vs. LO Drive at 2140 MHz;  
Output Power = −10 dBm  
Figure 72. ADL5375-05 Single-Carrier W-CDMA Adjacent and Alternate  
Channel Power vs. Output Power at 2140 MHz; LO Power = 0 dBm  
The EVM exhibits improvements with a local feedthrough nulling  
operation.  
Rev. C | Page 28 of 36  
 
 
 
 
 
Data Sheet  
ADL5375  
All DACs listed have nominal bias levels of 0.5 V and use the  
same simple DAC modulator interface that is shown in Figure 75.  
LO GENERATION USING PLLS  
Analog Devices has a line of PLLs that can be used for generating  
the LO signal. Table 5 lists the PLLs together with their maximum  
frequency and phase noise performance.  
MODULATOR/DEMODULATOR OPTIONS  
Table 8 lists other Analog Devices modulators and demodulators.  
Table 5. Analog Devices PLL Selection  
Table 8. Modulator/Demodulator Options  
Frequency  
Range  
(MHz)  
Phase Noise @ 1 kHz Offset  
Frequency, fIN (MHz) and 200 kHz PFD (dBc/Hz)  
Modulator/  
Part No. Demodulator  
Part  
Comments  
ADF4110 550  
ADF4111 1200  
ADF4112 3000  
ADF4113 4000  
ADF4116 550  
ADF4117 1200  
ADF4118 3000  
−91 @ 540 MHz  
−87 @ 900 MHz  
−90 @ 900 MHz  
−91 @ 900 MHz  
−89 @ 540 MHz  
−87 @ 900 MHz  
−90 @ 900 MHz  
AD8345  
AD8346  
AD8349  
Modulator  
Modulator  
Modulator  
140 to 1000  
800 to 2500  
700 to 2700  
20 to 2400  
ADL5390 Modulator  
External  
quadrature  
ADL5385 Modulator  
ADL5386 Modulator  
50 to 2200  
50 to 2200  
Includes VVA and  
AGC  
The ADF4350 is a fractional-N PLL which offers broadband  
operation from 137.5 MHz to 4.4 GHz and contains an integrated  
high performance VCO.  
ADL5370 Modulator  
ADL5371 Modulator  
ADL5372 Modulator  
ADL5373 Modulator  
ADL5374 Modulator  
AD8347  
AD8348  
ADL5387 Demodulator  
ADL5380 Demodulator  
ADL5382 Demodulator  
300 to 1000  
500 to 1500  
1500 to 2500  
2300 to 3000  
3000 to 4000  
800 to 2700  
50 to 1000  
Table 6. ADF4350 Phase Noise at Various Frequencies  
Phase Noise @ 10 kHz (dBc/Hz)  
25 MHz PFD, 40 KHz Loop BW  
Frequency  
(MHz)  
Demodulator  
Demodulator  
Part  
ADF4350 2200  
ADF4350 3300  
ADF4350 4400  
−97  
−92  
−90  
50 to 2000  
400 to 6000  
700 to 2700  
700 to 1000  
AD8340  
Vector  
modulator  
Vector  
modulator  
TRANSMIT DAC OPTIONS  
AD8341  
1500 to 2400  
The AD9122 recommended in the previous sections of this data  
sheet is by no means the only DAC that can be used to drive the  
ADL5375. There are other appropriate DACs, depending on the  
level of performance required. Table 7 lists the dual TxDAC  
offered by Analog Devices.  
Table 7. Dual TxDAC Selection  
Part  
Resolution (Bits) Update Rate (MSPS Minimum)  
AD9709  
AD9761  
AD9763  
AD9765  
AD9767  
AD9773  
AD9775  
AD9777  
AD9776  
AD9778  
8
125  
40  
10  
10  
12  
14  
12  
14  
16  
12  
14  
125  
125  
125  
160  
160  
160  
1000  
1000  
1000  
AD9779A 16  
Rev. C | Page 29 of 36  
 
 
 
 
 
 
ADL5375  
Data Sheet  
EVALUATION BOARD  
Populated RoHS-compliant evaluation boards are available  
for evaluation of the ADL5375. The ADL5375 package has an  
exposed paddle on the underside. This exposed paddle should  
be soldered to the board for good thermal and electrical grounding.  
The evaluation board is designed to minimize LO feedthrough  
to RFOUT through PCB by placing LO block on the underside.  
And it can be configured to allow differential LO driving through  
balun or direct interfacing to the PLL evaluation board. It also  
reserves component pads in its LO path to accommodate a  
harmonic filter. One side placement of baseband inputs is to  
interface directly to DAC evaluation board. The ADL5375  
evaluation board also includes an RF driver amplifier. The  
modulator output can be measured directly at the MOD_OUT  
SMA connector. Alternatively, by removing R1, and installing a  
0 Ω resistor in the R2 pad, the modulator’s output can be fed to  
the RF driver amplifier.  
The evaluation board ships, installed with an ADL5320 driver  
amplifier (400 MHz to 2700 MHz RF driver amplifier). This  
device requires external matching components (C100 and C101)  
and is tuned by default for operation from 1805 MHz to 2170 MHz.  
For details on tuning component values for other frequencies,  
please refer to the ADL5320 data sheet (the driver amplifier section  
of the ADL5375 Evaluation Board is identical to the ADL5320  
Evaluation Board). For higher frequency operation, the ADL5320  
should be replaced by the ADL5321, which is specified to operate  
from 2.3 GHz to 4 GHz. If a broadband matched device is desired,  
the ADL5601 (15 dB) or ADL5602 (20 dB) broadband gain blocks  
can be used.  
IBBN  
IBBP  
AGND  
AGND  
R7  
100  
VPOS  
C4  
VPOS_AMP  
RED  
R13  
0Ω  
C2  
100pF  
VPOS  
0.1µF  
VPOS  
C5  
C3  
C9 10µF  
AGND  
0.1µF  
100pF  
VPOS  
RED  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
C10 10nF  
AGND  
AMP_IN  
S1  
(2)  
DSOP  
YELLOW  
MOD_OUT  
A
B
C11 22pF  
AGND  
R6  
10kΩ  
U2  
ADL5320  
R15  
49.9Ω  
R21*  
0Ω  
R1***  
D.N.I  
VPS1  
DSOP  
COMM  
LOIP  
L1  
15nH  
AGND  
1
2
3
4
5
6
18  
R14  
R18  
0Ω  
C12  
22pF  
COMM  
RFOUT  
4
C6  
0Ω  
3
17  
16  
15  
14  
13  
R2  
0Ω  
1
2
AMP_OUT  
AGND  
3
LOIP  
AGND  
LOIN  
λ3  
λ4  
λ2  
100pF  
λ1  
ADL5375  
C18  
D.N.I  
C17  
D.N.I  
C16  
D.N.I  
TC1-1-43A+**  
LOIN  
C100 (C3)  
0.5pF  
C1  
100pF  
C101 (C7)  
1.5pF  
NC  
COMM  
6
1
AGND  
U1  
T1  
C7  
100pF  
COMM  
R16  
D.N.I  
R19  
D.N.I  
EXPOSED PADDLE  
AGND  
AGND  
AGND  
NC  
NC  
R20 D.N.I  
R17*  
0Ω  
R22**  
D.N.I  
AGND  
AGND  
NC  
6
AGND  
AGND  
5
2
4
3
1
GND  
BLACK  
AGND  
JOHANSON  
TECHNOLOGY**  
T2 3600BL14M050  
T2A 5400BL15B050  
AGND  
R12  
100Ω  
* SINGLE-ENDED LO DRIVING AT LOIP.  
** DIFFERENTIAL LO DRIVING AT LOIP WITH T1 OR T2.  
*** ADL5320 STAND-ALONE TEST.  
QBBN  
AGND  
QBBP  
AGND  
Figure 75. ADL5375 Evaluation Board Schematic  
Rev. C | Page 30 of 36  
 
 
Data Sheet  
ADL5375  
Table 9. Evaluation Board Description and Configuration Options  
Default Condition/Option  
Settings  
Component  
Description  
VPOS, GND Test Points  
S1 Switch, R6, R15  
Power supply and ground test points for clip leads  
DSOP output disable select  
Red = 5 V, black = GND  
Position A = output enabled  
Position B = output disabled  
R15 = 49.9 Ω (0603)  
R6 = 10 kΩ (0603)  
R7, R12  
C16 to C18, R14, R16, R18,  
R19  
AC limiting resistors  
LO input filter components  
R7, R12 = 100 Ω (0603)  
R14 , R18 = 0 Ω (0603)  
R16, R19, C16 to C18 = open  
(0603)  
C6, C7  
LO driving capacitor  
C6, C7 = 100 pF (0402)  
R17 = 0 Ω (0603)  
LOIP SMA, R17, R20, R21,  
R22, T1, T2, T2A  
Single-ended local oscillator input  
R20 = open (0402)  
R21 = 0 Ω (0402)  
R22 = open (0603)  
T1, T2, T2A = open  
R16, R19 = 0 Ω (0603)  
LOIN SMA, R16, R17, R19,  
R20,  
Optional differential LO input at LOIN  
R21, R22, T1, T2, T2A  
R20, R21 = 0 Ω (0402)  
R17, R22 = open (0603)  
T1, T2, T2A = open  
R17 = open (0603)  
LOIP SMA, T1 (or T2, T2A),  
R17, R20, R21, R22  
Optional differential LO driving with Balun at LOIP  
R20, R21 = open (0402)  
R22 = 0 Ω (0603)  
T1 = TC1-1-43A+ or  
T2 = 3600BL14M050 or T2A =  
5400BL15B050  
C100, C101  
Frequency tuning capacitors for RF driver amplifier  
Tuning for 1805 MHz to  
2170 MHz  
Refer to the ADL5320 datasheet for the exact position according to the frequency  
C100 = 0.5 pF (0402) C101 =  
1.5 pF (0402)  
C1  
R1  
AC-coupling capacitor connects ADL5375 RF output to MOD_OUT RF connector or to C1 = 100 pF (0402)  
ADL5320 RF input  
Resistor connects ADL5375 RF output to MOD_OUT (AMP_IN) SMA  
To check ADL5375 performance itself, a 0 Ω should be inserted at R1 and open R2.  
To check ADL5320 performance itself, a 0 Ω should be inserted at R1 and R2  
Resistor connects ADL5375 RF output to ADL5320 RF input  
R1 = open (0402)  
R2  
R2 = 0 Ω (0402)  
U1  
U2  
L1  
ADL5375 quadrature modulator  
SOT-89 RF driver amplifier  
DC bias Inductor  
ADL5375-05 or ADL5375-15  
ADL5320  
L1 = 15 nH(0603)  
C2, C3 = 100 pF (0402)  
C4, C5 = 0.1 µF (0402)  
C9 = 10 µF (1206)  
C10 = 10 nF (0603)  
C11 = 22 pF (0603)  
R13 = 0 Ω (0603)  
C2, C3, C4, C5, C9, C10, C11  
Power supply bypassing capacitors  
R13  
Resistor to share power supply between the ADL5375 and the ADL5320. To turn  
on the ADL5320, a 0 Ω resistor should be installed in this location.  
Rev. C | Page 31 of 36  
ADL5375  
Data Sheet  
Thermal Grounding and Evaluation Board Layout  
The package for the ADL5375 features an exposed paddle on  
the underside that should be well soldered to a low thermal  
and electrical impedance ground plane. This paddle is typically  
soldered to an exposed opening in the solder mask on the  
evaluation board. Figure 78 illustrates the dimensions used in  
the layout of the ADL5375 footprint on the ADL5375 Evaluation  
Board (1 mil. = 0.0254 mm).  
Notice the use of nine via holes on the exposed paddle. These  
ground vias should be connected to all other ground layers on  
the evaluation board to maximize heat dissipation from the  
device package.  
12 mil.  
23 mil.  
25 mil.  
82 mil.  
Figure 76. Evaluation Board Layout, Top Layer  
12 mil.  
19.7 mil.  
98.4 mil.  
133.8 mil.  
Figure 78. Dimensions for Evaluation Board Layout for the ADL5375 Package  
Under these conditions, the thermal impedance of the ADL5375  
was measured to be approximately 30°C/W in still air.  
Figure 77. Evaluation Board Layout, Bottom Layer  
Rev. C | Page 32 of 36  
 
 
Data Sheet  
ADL5375  
CHARACTERIZATION SETUP  
AEROFLEX IFR 3416  
250kHz TO 6GHz SIGNAL GENERATOR  
ROHDE & SCHWARTZ  
SPECTRUM ANALYZER  
FSU 20Hz TO 8GHz  
RF  
OUT  
FREQ 1MHz LEVEL 0dBm  
GAIN 0.5V  
GAIN 0.5V  
BIAS 0.5V  
BIAS 0.5V  
LO  
CONNECT TO BACK OF UNIT  
I OUT I/AM Q OUT Q/FM  
RF  
IN  
+6dBm  
0°  
90°  
I
Q
AGILENT 34401A  
MULTIMETER  
MOD TEST SETUP  
0.194 ADC  
MOD  
IP  
IN  
LO  
VPOS +5V  
QP  
QN  
AGILENT E3631A  
POWER SUPPLY  
OUTPUT  
OUT  
VPOS GND  
5.000  
0.194A  
6V  
±25V  
+
COM  
+
Figure 79. Characterization Bench Setup  
The primary setup used to characterize the ADL5375 is shown  
in Figure 79. This setup was used to evaluate the product as a  
single-sideband modulator. The aeroflex signal generator supplied  
the LO and differential I and Q baseband signals to the device  
under test (DUT). The typical LO drive was 0 dBm. The I-channel  
is driven by a sine wave, and the Q-channel is driven by a cosine  
wave. The lower sideband is the single-sideband (SSB) output.  
The majority of characterization for the ADL5375 was performed  
using a 1 MHz sine wave signal with a 500 mV (ADL5375-05)  
or 1500 mV (ADL5375-15) common-mode voltage applied to  
the baseband signals of the DUT. The baseband signal path was  
calibrated to ensure that the VIOS and VQOS offsets on the baseband  
inputs were minimized as close as possible to 0 V before  
connecting to the DUT. See the Carrier Feedthrough Nulling  
section for the definitions of VIOS and VQOS  
.
Rev. C | Page 33 of 36  
 
 
ADL5375  
Data Sheet  
TEKTRONIX AFG3252  
DUAL FUNCTION  
ARBITRARY FUNCTION GENERATOR  
AEROFLEX IFR 3416  
250kHz TO 6GHz SIGNAL GENERATOR  
CH1 1MHz  
AMPL 500mV p-p  
PHASE 0°  
RF  
OUT  
CH2 1MHz  
AMPL 500mV p-p  
PHASE 90°  
LEVEL 0dBm  
LO  
90°  
0°  
I Q  
SINGLE-TO-DIFFERENTIAL  
CIRCUIT BOARD  
AGILENT E3631A  
POWER SUPPLY  
MOD TEST RACK  
Q IN AC  
5.000  
0.350A  
MOD  
CHAR BD  
6V  
±25V  
COM  
Q IN DCCM  
TSEN  
–  
+
+
IP  
IN  
IP  
LO  
GND  
VPOSB VPOSA  
IN  
IN1  
AGND  
IN1  
QP  
OUTPUT  
OUT  
GND  
VN1  
VP1  
–5V  
+5V  
VPOS +5V  
QN  
VPOS  
QP  
QN  
I IN DCCM  
I IN AC  
AGILENT E3631A  
POWER SUPPLY  
ROHDE & SCHWARTZ  
SPECTRUM ANALYZER  
FSU 20Hz TO 8GHz  
0.500  
0.010A  
6V  
±25V  
+
COM  
+
RF  
IN  
VCM = 0.5V  
AGILENT 34401A  
MULTIMETER  
0.200 ADC  
Figure 80. Setup for Baseband Frequency Sweep and Undesired Sideband Nulling  
The setup used to evaluate baseband frequency sweep and  
undesired sideband nulling of the ADL5375 is shown in Figure 80.  
The interface board has circuitry that converts the single-ended  
I input and Q input from the arbitrary function generator to  
differential I and Q baseband signals with a dc bias of 500 mV  
(ADL5375-05) or 1500 mV (ADL5375-15). Undesired sideband  
nulling was achieved through an iterative process of adjusting  
amplitude and phase on the Q-channel. See Sideband  
Suppression Optimization section for a detailed description on  
sideband nulling.  
Rev. C | Page 34 of 36  
 
Data Sheet  
ADL5375  
OUTLINE DIMENSIONS  
4.10  
4.00 SQ  
3.90  
0.30  
0.25  
0.18  
PIN 1  
INDICATOR  
PIN 1  
INDICATOR  
24  
19  
0.50  
BSC  
1
6
18  
EXPOSED  
PAD  
2.65  
2.50 SQ  
2.45  
13  
12  
7
0.50  
0.40  
0.30  
0.25 MIN  
TOP VIEW  
BOTTOM VIEW  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
SECTION OF THIS DATA SHEET.  
COPLANARITY  
0.08  
0.20 REF  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-220-WGGD.  
Figure 81. 24-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
4 mm × 4 mm Body, Very Very Thin Quad  
(CP-24-7)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
Package Description  
Package Option  
CP-24-7  
CP-24-7  
Ordering Quantity  
ADL5375-05ACPZ-R7  
ADL5375-05ACPZ-WP  
ADL5375-05-EVALZ  
ADL5375-15ACPZ-R7  
ADL5375-15ACPZ-WP  
ADL5375-15-EVALZ  
24-Lead LFCSP_WQ, 7”Tape and Reel  
24-Lead LFCSP_WQ, Waffle Pack  
Evaluation Board  
1,500  
64  
−40°C to +85°C  
−40°C to +85°C  
24-Lead LFCSP_WQ, 7”Tape and Reel  
24-Lead LFCSP_WQ, Waffle Pack  
Evaluation Board  
CP-24-7  
CP-24-7  
1,500  
64  
1 Z = RoHS Compliant Part.  
Rev. C | Page 35 of 36  
 
 
ADL5375  
NOTES  
Data Sheet  
©2007–2013 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D07052-0-7/13(C)  
Rev. C | Page 36 of 36  

相关型号:

ADL5375-05-EVALZ1

400 MHz to 6 GHz Broadband Quadrature Modulator
ADI

ADL5375-05ACPZ-R7

400 MHz to 6 GHz Broadband Quadrature Modulator
ADI

ADL5375-05ACPZ-R71

400 MHz to 6 GHz Broadband Quadrature Modulator
ADI

ADL5375-05ACPZ-WP

400 MHz to 6 GHz Broadband Quadrature Modulator
ADI

ADL5375-05ACPZ-WP1

400 MHz to 6 GHz Broadband Quadrature Modulator
ADI

ADL5375-15-EVALZ

400 MHz to 6 GHz Broadband Quadrature Modulator
ADI

ADL5375-15-EVALZ1

400 MHz to 6 GHz Broadband Quadrature Modulator
ADI

ADL5375-15ACPZ-R7

400 MHz to 6 GHz Broadband Quadrature Modulator
ADI

ADL5375-15ACPZ-R71

400 MHz to 6 GHz Broadband Quadrature Modulator
ADI

ADL5375-15ACPZ-WP

400 MHz to 6 GHz Broadband Quadrature Modulator
ADI

ADL5375-15ACPZ-WP1

400 MHz to 6 GHz Broadband Quadrature Modulator
ADI

ADL5375ACPZ-15-R7

RF/Microwave Modulator/Demodulator, 400 MHz - 6000 MHz RF/MICROWAVE QUADRAPHASE MODULATOR, 4 X 4 MM, ROHS COMPLIANT, MO-220-VGGD-8, LFCSP-24
ADI