ADL5375-15-EVALZ1 [ADI]

400 MHz to 6 GHz Broadband Quadrature Modulator; 400 MHz至6 GHz的宽带正交调制器
ADL5375-15-EVALZ1
型号: ADL5375-15-EVALZ1
厂家: ADI    ADI
描述:

400 MHz to 6 GHz Broadband Quadrature Modulator
400 MHz至6 GHz的宽带正交调制器

文件: 总32页 (文件大小:1087K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
400 MHz to 6 GHz  
Broadband Quadrature Modulator  
ADL5375  
FUNCTIONAL BLOCK DIAGRAM  
FEATURES  
Output frequency range: 400 MHz to 6 GHz  
1 dB output compression: ≥9.4 dBm from 450 MHz to 4 GHz  
Output return loss ≤ 14 dB from 450 MHz to 5.5 GHz  
Noise floor: −160 dBm/Hz @ 900 MHz  
Sideband suppression: <−50 dBc @ 900 MHz  
Carrier feedthrough: <−46 dBm @ 900 MHz  
Baseband input bias level  
IBBP  
ADL5375  
IBBN  
LOIP  
LOIN  
QUADRATURE  
PHASE  
SPLITTER  
RFOUT  
DSOP  
ADL5375-05: 500 mV  
ADL5375-15: 1500 mV  
Single supply: 4.75 V to 5.25 V  
QBBN  
QBBP  
24-lead LFCSP_VQ package  
Figure 1.  
APPLICATIONS  
Cellular communication systems  
GSM/EDGE, CDMA2000, W-CDMA, TD-SCDMA  
WiMAX/broadband wireless access systems  
Satellite modems  
GENERAL DESCRIPTION  
The ADL5375 is a broadband quadrature modulator designed for  
operation from 400 MHz to 6 GHz. Its excellent phase accuracy  
and amplitude balance enable high performance intermediate  
frequency or direct radio frequency modulation for commu-  
nication systems.  
broadband digital predistortion transmitters, and multiband  
radio designs.  
The ADL5375 accepts two differential baseband inputs and  
a single-ended LO. It generates a single-ended 50 Ω output.  
The two versions offer input baseband bias levels of 500 mV  
(ADL5375-05) and 1500 mV (ADL5375-15).  
The ADL5375 features a broad baseband bandwidth, along  
with an output gain flatness that varies no more than 1 dB  
from 450 MHz to 3.8 GHz. These features, coupled with a broad-  
band output return loss of ≤−14 dB, make the ADL5375 ideally  
suited for broadband zero IF or low IF-to-RF applications,  
The ADL5375 is fabricated using an advanced silicon-germanium  
bipolar process. It is available in a 24-lead, exposed paddle, Pb-free,  
LFCSP_VQ package. Performance is specified over a −40°C to  
+85°C temperature range. A Pb-free evaluation board is also  
available.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2007 Analog Devices, Inc. All rights reserved.  
 
 
 
ADL5375  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
RF Output.................................................................................... 20  
Output Disable............................................................................ 21  
Optimization................................................................................... 22  
Applications Information.............................................................. 23  
DAC Modulator Interfacing ..................................................... 23  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 7  
ESD Caution.................................................................................. 7  
Pin Configuration and Function Descriptions............................. 8  
Typical Performance Characteristics ............................................. 9  
ADL5375-05.................................................................................. 9  
ADL5375-15................................................................................ 14  
Theory of Operation ...................................................................... 19  
Circuit Description..................................................................... 19  
Basic Connections .......................................................................... 20  
Power Supply and Grounding................................................... 20  
Baseband Inputs.......................................................................... 20  
LO Input ...................................................................................... 20  
Using the AD9779 Auxiliary DAC for Carrier Feedthrough  
Nulling ......................................................................................... 24  
GSM/EDGE Operation ............................................................. 25  
W-CDMA Operation................................................................. 25  
LO Generation Using PLLs....................................................... 26  
Transmit DAC Options ............................................................. 26  
Modulator/Demodulator Options ........................................... 26  
Evaluation Board ............................................................................ 27  
Thermal Grounding and Evaluation Board Layout............... 28  
Characterization Setup .................................................................. 29  
Outline Dimensions....................................................................... 31  
Ordering Guide .......................................................................... 31  
REVISION HISTORY  
12/07—Revision 0: Initial Version  
Rev. 0 | Page 2 of 32  
 
ADL5375  
SPECIFICATIONS  
VS = 5 V; TA = 25°C; LO = 0 dBm single-ended drive; baseband I/Q amplitude = 1 V p-p differential sine waves in quadrature with a  
500 mV (ADL5375-05) or 1500 mV (ADL5375-15) dc bias; baseband I/Q frequency (fBB) = 1 MHz, unless otherwise noted.  
Table 1.  
ADL5375-05  
ADL5375-15  
Parameter  
Conditions  
Min Typ Max Min Typ  
Max Unit  
OPERATING FREQUENCY RANGE  
Low frequency  
High frequency  
LO = 450 MHz  
400  
6000  
400  
6000  
MHz  
MHz  
Output Power, POUT  
Modulator Voltage Gain  
Output P1dB  
Output Return Loss  
Carrier Feedthrough  
Sideband Suppression  
Quadrature Error  
I/Q Amplitude Balance  
Second Harmonic  
ADL5375-05  
VIQ = 1 V p-p differential  
RF output divided by baseband input voltage  
0.87  
−3.1  
9.4  
−14.7  
−48.0  
−33.1  
2.52  
−0.05  
−74.5  
0.46  
−3.5  
9.9  
−14.7  
−52.2  
−35.5  
1.64  
−0.07  
−74.5  
dBm  
dB  
dBm  
dB  
dBm  
dBc  
Degrees  
dB  
dBc  
POUT − (fLO + (2 × fBB))  
POUT = 0.87 dBm  
POUT = 0.46 dBm  
POUT − (fLO + (3 × fBB))  
POUT = 0.87 dBm  
POUT = 0.46 dBm  
ADL5375-15  
Third Harmonic  
ADL5375-05  
−51.3  
−77.1  
dBc  
ADL5375-15  
Output IP2  
f1BB = 3.5 MHz, f2BB = 4.5 MHz,  
POUT ≈ −5 dBm @ fLO = 900 MHz  
65.0  
67.9  
dBm  
Output IP3  
Noise Floor  
f1BB = 3.5 MHz, f2BB = 4.5 MHz,  
POUT ≈ −5 dBm @ fLO = 900 MHz  
I/Q inputs = 0 V differential with a dc bias  
only, 20 MHz carrier offset  
28.1  
23.0  
dBm  
−160.5  
−157.0  
dBm/Hz  
LO = 900 MHz  
Output Power, POUT  
Modulator Voltage Gain  
Output P1dB  
Output Return Loss  
Carrier Feedthrough  
Sideband Suppression  
Quadrature Error  
I/Q Amplitude Balance  
Second Harmonic  
ADL5375-05  
VIQ = 1 V p-p differential  
RF output divided by baseband input voltage  
0.87  
−3.1  
9.4  
−14.1  
−46.2  
−52.1  
−0.29  
−0.05  
−73.3  
0.47  
−3.5  
9.9  
−14.1  
−46.2  
−50.4  
−0.37  
−0.07  
−73  
dBm  
dB  
dBm  
dB  
dBm  
dBc  
Degrees  
dB  
POUT − (fLO + (2 × fBB))  
POUT = 0.87 dBm  
POUT = 0.47 dBm  
POUT − (fLO + (3 × fBB))  
POUT = 0.87 dBm  
POUT = 0.47 dBm  
dBc  
ADL5375-15  
Third Harmonic  
ADL5375-05  
−51.5  
−71  
dBc  
ADL5375-15  
Output IP2  
f1BB = 3.5 MHz, f2BB = 4.5 MHz,  
POUT ≈ −5 dBm @ fLO = 900 MHz  
68.3  
66.2  
dBm  
Output IP3  
Noise Floor  
f1BB = 3.5 MHz, f2BB = 4.5 MHz,  
POUT ≈ −5 dBm @ fLO = 900 MHz  
I/Q inputs = 0 V differential with a dc bias  
only, 20 MHz carrier offset  
26.8  
22.9  
dBm  
−160.0  
−157.1  
dBm/Hz  
Rev. 0 | Page 3 of 32  
 
ADL5375  
ADL5375-05  
ADL5375-15  
Parameter  
Conditions  
Min Typ Max Min Typ  
Max Unit  
LO = 1900 MHz  
Output Power, POUT  
Modulator Voltage Gain  
Output P1dB  
Output Return Loss  
Carrier Feedthrough  
Sideband Suppression  
Quadrature Error  
I/Q Amplitude Balance  
Second Harmonic  
ADL5375-05  
VIQ = 1 V p-p differential  
RF output divided by baseband input voltage  
1.01  
−3.0  
9.8  
−14.1  
−40.5  
−54.2  
−0.24  
−0.05  
−67  
0.63  
−3.4  
10.4  
−13.6  
−39.0  
−51.3  
−0.15  
−0.08  
−73  
dBm  
dB  
dBm  
dB  
dBm  
dBc  
Degrees  
dB  
dBc  
POUT − (fLO + (2 × fBB))  
POUT = 1.01 dBm  
ADL5375-15  
POUT = 0.63 dBm  
Third Harmonic  
ADL5375-05  
POUT − (fLO + (3 × fBB))  
POUT = 1.01 dBm  
−52  
−62  
dBc  
ADL5375-15  
POUT = 0.63 dBm  
Output IP2  
f1BB = 3.5 MHz, f2BB = 4.5 MHz,  
62.7  
63.8  
dBm  
P
OUT ≈ −5 dBm @ fLO = 900 MHz  
Output IP3  
Noise Floor  
f1BB = 3.5 MHz, f2BB = 4.5 MHz,  
POUT ≈ −5 dBm @ fLO = 900 MHz  
I/Q inputs = 0 V differential with a dc bias  
only, 20 MHz carrier offset  
24.6  
22.1  
dBm  
−160.0  
−158.2  
dBm/Hz  
LO = 2150 MHz  
Output Power, POUT  
Modulator Voltage Gain  
Output P1dB  
Output Return Loss  
Carrier Feedthrough  
Sideband Suppression  
Quadrature Error  
I/Q Amplitude Balance  
Second Harmonic  
ADL5375-05  
VIQ = 1 V p-p differential  
RF output divided by baseband input voltage  
1.05  
−2.9  
10.0  
−14.2  
−40.6  
−45.0  
−0.72  
−0.04  
−68  
0.67  
−3.3  
10.4  
−13.9  
−37.9  
−44.7  
−0.58  
−0.06  
−62  
dBm  
dB  
dBm  
dB  
dBm  
dBc  
Degrees  
dB  
POUT − (fLO + (2 × fBB))  
POUT = 1.05 dBm  
dBc  
ADL5375-15  
POUT = 0.67 dBm  
Third Harmonic  
ADL5375-05  
POUT − (fLO + (3 × fBB))  
POUT = 1.05 dBm  
−53  
−63  
dBc  
ADL5375-15  
POUT = 0.67 dBm  
Output IP2  
f1BB = 3.5 MHz, f2BB = 4.5 MHz,  
58.7  
55.8  
dBm  
P
OUT ≈ −5 dBm @ fLO = 900 MHz  
Output IP3  
Noise Floor  
f1BB = 3.5 MHz, f2BB = 4.5 MHz,  
POUT ≈ −5 dBm @ fLO = 900 MHz  
I/Q inputs = 0 V differential with a dc bias  
only, 20 MHz carrier offset  
25.7  
22.1  
dBm  
−159.5  
−157.9  
dBm/Hz  
Rev. 0 | Page 4 of 32  
ADL5375  
ADL5375-05  
ADL5375-15  
Parameter  
Conditions  
Min Typ Max Min Typ  
Max Unit  
LO = 2600 MHz  
Output Power, POUT  
Modulator Voltage Gain  
Output P1dB  
Output Return Loss  
Carrier Feedthrough  
Sideband Suppression  
Quadrature Error  
I/Q Amplitude Balance  
Second Harmonic  
ADL5375-05  
VIQ = 1 V p-p differential  
RF output divided by baseband input voltage  
1.18  
−2.8  
10.3  
−15.1  
−41.0  
−44.3  
−0.72  
−0.04  
−57  
0.78  
−3.2  
10.6  
−14.5  
−42.3  
−45.6  
−0.60  
−0.07  
−55  
dBm  
dB  
dBm  
dB  
dBm  
dBc  
Degrees  
dB  
POUT − (fLO + (2 × fBB))  
POUT = 1.18 dBm  
dBc  
ADL5375-15  
POUT = 0.78 dBm  
Third Harmonic  
ADL5375-05  
POUT − (fLO + (3 × fBB))  
POUT = 1.18 dBm  
−52  
−52  
dBc  
ADL5375-15  
POUT = 0.78 dBm  
Output IP2  
f1BB = 3.5 MHz, f2BB = 4.5 MHz,  
49.0  
48.5  
dBm  
P
OUT ≈ −5 dBm @ fLO = 900 MHz  
Output IP3  
Noise Floor  
f1BB = 3.5 MHz, f2BB = 4.5 MHz,  
POUT ≈ −5 dBm @ fLO = 900 MHz  
I/Q inputs = 0 V differential with a dc bias  
only, 20 MHz carrier offset  
21.8  
19.4  
dBm  
−159.0  
−157.6  
dBm/Hz  
LO = 3500 MHz  
Output Power, POUT  
Modulator Voltage Gain  
Output P1dB  
Output Return Loss  
Carrier Feedthrough  
Sideband Suppression  
Quadrature Error  
I/Q Amplitude Balance  
Second Harmonic  
ADL5375-05  
VIQ = 1 V p-p differential  
RF output divided by baseband input voltage  
1.71  
−2.3  
10.4  
−21.6  
−30.5  
−49.3  
−0.20  
−0.07  
−54  
1.14  
−2.8  
10.1  
−20.4  
−29.0  
−44.9  
−0.54  
−0.08  
−61  
dBm  
dB  
dBm  
dB  
dBm  
dBc  
Degrees  
dB  
POUT − (fLO + (2 × fBB))  
POUT = 1.71 dBm  
dBc  
ADL5375-15  
POUT = 1.14 dBm  
Third Harmonic  
ADL5375-05  
POUT − (fLO + (3 × fBB))  
POUT = 1.71 dBm  
−53  
−51  
dBc  
ADL5375-15  
POUT = 1.14 dBm  
Output IP2  
f1BB = 3.5 MHz, f2BB = 4.5 MHz,  
50.0  
57.9  
dBm  
P
OUT ≈ −5 dBm @ fLO = 900 MHz  
Output IP3  
Noise Floor  
f1BB = 3.5 MHz, f2BB = 4.5 MHz,  
POUT ≈ −5 dBm @ fLO = 900 MHz  
I/Q inputs = 0 V differential with a dc bias  
only, 20 MHz carrier offset  
23.8  
19.5  
dBm  
−157.6  
−156.3  
dBm/Hz  
Rev. 0 | Page 5 of 32  
ADL5375  
ADL5375-05  
ADL5375-15  
Parameter  
Conditions  
Min Typ Max Min Typ  
Max Unit  
LO = 5800 MHz  
Output Power, POUT  
Modulator Voltage Gain  
Output P1dB  
Output Return Loss  
Carrier Feedthrough  
Sideband Suppression  
Quadrature Error  
I/Q Amplitude Balance  
Second Harmonic  
ADL5375-05  
VIQ = 1 V p-p differential  
RF output divided by baseband input voltage  
2.40  
−1.6  
5.7  
−11.4  
−23.0  
−36.0  
−1.42  
0.20  
0.82  
−3.2  
6.6  
−10.5  
−16.3  
−33.0  
+1.17  
0.50  
dBm  
dB  
dBm  
dB  
dBm  
dBc  
Degrees  
dB  
dBc  
POUT − (fLO + (2 × fBB))  
POUT = 2.40 dBm  
−57  
−58  
ADL5375-15  
POUT = 0.82 dBm  
Third Harmonic  
ADL5375-05  
POUT − (fLO + (3 × fBB))  
POUT = 2.40 dBm  
−43  
−52  
dBc  
ADL5375-15  
POUT = 0.82 dBm  
Output IP2  
f1BB = 3.5 MHz, f2BB = 4.5 MHz,  
38.7  
35.7  
dBm  
P
OUT ≈ −5 dBm @ fLO = 900 MHz  
Output IP3  
Noise Floor  
f1BB = 3.5 MHz, f2BB = 4.5 MHz,  
POUT ≈ −5 dBm @ fLO = 900 MHz  
I/Q inputs = 0 V differential with a dc bias  
only, 20 MHz carrier offset  
13.5  
12.1  
dBm  
−153.0  
−153.4  
dBm/Hz  
LO INPUTS  
LO Drive Level  
Input Return Loss  
Characterization performed at typical level  
−6  
0
+7  
−6  
0
+7  
dBm  
dB  
500 MHz < fLO < 3.3 GHz  
See Figure 7 and Figure 32 for return loss vs.  
frequency  
≤−10  
≤−10  
BASEBAND INPUTS  
I/Q Input Bias Level  
Input Bias Current  
Input Offset Current  
Differential Input  
Impedance  
Pin IBBP, Pin IBBN, Pin QBBP, Pin QBBN  
500  
41  
0.1  
60  
1500  
32  
0.1  
mV  
μA  
μA  
kΩ  
Current sourcing from each baseband input  
100  
Bandwidth (0.1 dB)  
LO = 1900 MHz, baseband input =  
500 mV p-p sine wave  
95  
80  
MHz  
OUTPUT DISABLE  
Off Isolation  
Pin DSOP  
POUT (DSOP high) – POUT (DSOP low)  
DSOP low, LO leakage, LO = 2150 MHz  
DSOP high to low (90% of envelope)  
DSOP low to high (10% of envelope)  
86  
85  
dB  
dBm  
ns  
ns  
V
−53  
200  
100  
−53  
200  
100  
Turn-On Settling Time  
Turn-Off Settling Time  
DSOP High Level (Logic 1)  
DSOP Low Level (Logic 0)  
POWER SUPPLIES  
2.0  
2.0  
0.8  
0.8  
V
Pin VPS1 and Pin VPS2  
Voltage  
4.75  
5.25 4.75  
5.25  
V
Supply Current  
DSOP = high  
DSOP = low  
200  
131  
200  
131  
mA  
mA  
Rev. 0 | Page 6 of 32  
ADL5375  
ABSOLUTE MAXIMUM RATINGS  
Table 2.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Parameter  
Rating  
Supply Voltage, VPOS  
IBBP, IBBN, QBBP, QBBN  
LOIP and LOIN  
5.5 V  
0 V to 2 V  
13 dBm  
Internal Power Dissipation  
ADL5375-05  
1500 mW  
ADL5375-15  
1200 mW  
54°C/W  
150°C  
−40°C to +85°C  
−65°C to +150°C  
ESD CAUTION  
θJA (Exposed Paddle Soldered Down)1  
Maximum Junction Temperature  
Operating Temperature Range  
Storage Temperature Range  
1 Per JDEC standard JESD 51-2. For information on optimizing thermal  
impedance, see the Thermal Grounding and Evaluation Board Layout section.  
Rev. 0 | Page 7 of 32  
 
 
 
ADL5375  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
DSOP 1  
COMM 2  
LOIP 3  
LOIN 4  
COMM 5  
NC 6  
18 VPS1  
17 COMM  
16 RFOUT  
15 NC  
14 COMM  
13 NC  
ADL5375  
TOP VIEW  
(Not to Scale)  
Figure 2. Pin Configuration  
Table 3. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
DSOP  
Output Disable. A logic high on this pin disables the RF output. Connect this pin to ground or leave it  
floating to enable the output.  
2, 5, 8, 11, 12,  
COMM  
Input Common Pins. Connect to the ground plane via a low impedance path.  
14, 17, 19, 20, 23  
3, 4  
LOIP, LOIN  
Local Oscillator Inputs.  
Single-ended operation: The LOIP pin is driven from the LO source through an ac-coupling capacitor  
while the LOIN pin is ac-coupled to ground through a capacitor.  
Differential operation: The LOIP and LOIN pins must be driven differentially through ac-coupling  
capacitors in this mode of operation.  
6, 7, 13, 15,  
9, 10, 21, 22  
NC  
No Connect. These pins can be left open or tied to ground.  
QBBN, QBBP,  
IBBP, IBBN  
Differential In-Phase and Quadrature Baseband Inputs. These high impedance inputs should be  
dc-biased to the recommended level depending on the version.  
ADL5375-05: 500 mV  
ADL5375-15: 1500 mV  
These inputs should be driven from a low impedance source. Nominal characterized ac signal swing is  
500 mV p-p on each pin. This results in a differential drive of 1 V p-p. These inputs are not self-biased  
and have to be externally biased.  
16  
RFOUT  
RF Output. Single-ended, 50 Ω internally biased RF output. RFOUT must be ac-coupled to the load.  
18, 24  
VPS1, VPS2  
Positive Supply Voltage Pins. All pins should be connected to the same supply (VS). To ensure adequate  
external bypassing, connect 0.1 μF and 1000 pF capacitors between each pin and ground.  
EP  
Exposed Paddle. Connect to the ground plan via a low impedance path.  
Rev. 0 | Page 8 of 32  
 
ADL5375  
TYPICAL PERFORMANCE CHARACTERISTICS  
ADL5375-05  
VS = 5 V; TA = 25°C; LO = 0 dBm single-ended drive; baseband I/Q amplitude = 1 V p-p differential sine waves in quadrature with a  
500 mV dc bias; baseband I/Q frequency (fBB) = 1 MHz, unless otherwise noted.  
12  
10  
8
5
V
= 5.25V  
V
S
4
= 5.0V  
S
3
T
= +25°C  
A
T
= –40°C  
A
2
V
= 4.75V  
S
1
6
0
T
= +85°C  
A
–1  
–2  
–3  
–4  
–5  
4
2
0
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
LO FREQUENCY (GHz)  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
LO FREQUENCY (GHz)  
Figure 6. SSB Output 1dB Compression Point (OP1dB) vs. LO Frequency (fLO)  
and Supply  
Figure 3. Single-Sideband (SSB) Output Power (POUT) vs.  
LO Frequency (fLO) and Temperature  
5
4
90  
V
= 5.0V  
S
V
= 5.25V  
60  
S
120  
3
V
= 4.75V  
2
S
6G  
150  
30  
1
0
450M  
0
180  
–1  
–2  
–3  
–4  
–5  
450M  
6G  
210  
330  
S11 OF LO  
S22 OF OUTPUT  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
LO FREQUENCY (GHz)  
240  
300  
270  
Figure 4. Single-Sideband (SSB) Output Power (POUT) vs.  
LO Frequency (fLO) and Supply  
Figure 7. Smith Chart of LOIP (LOIN AC-Coupled to Ground) S11 and RFOUT  
S22 from 450 MHz to 6000 MHz  
12  
10  
8
0
T
= –40°C  
A
LOIP  
T
= +85°C  
A
–10  
T
= +25°C  
A
RFOUT  
6
–20  
4
–30  
–40  
2
0
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
LO FREQUENCY (GHz)  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
FREQUENCY (GHz)  
Figure 8. Return Loss of LOIP (LOIN AC-Coupled to Ground) S11 and RFOUT  
S22 from 450 MHz to 6000 MHz  
Figure 5. SSB Output 1dB Compression Point (OP1dB) vs. LO Frequency (fLO)  
and Temperature  
Rev. 0 | Page 9 of 32  
 
 
 
ADL5375  
ADL5375-05  
0
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
T
= +25°C  
= –40°C  
A
T
= +85°C  
A
T
= –40°C  
A
T
A
T
= +85°C  
A
T
= +25°C  
A
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
LO FREQUENCY (GHz)  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
LO FREQUENCY (GHz)  
Figure 9. Carrier Feedthrough vs. LO Frequency (fLO) and Temperature;  
Multiple Devices Shown  
Figure 12. Sideband Suppression vs. LO Frequency (fLO) and Temperature After  
Nulling at 25°C; Multiple Devices Shown  
0
–10  
–20  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
10  
SSB OUTPUT  
POWER (dBm)  
5
T
= +85°C  
CARRIER  
A
FEEDTHROUGH (dBm)  
–30  
–40  
–50  
–60  
–70  
–80  
0
–5  
–10  
–15  
T
= –40°C  
A
SIDEBAND  
T
= +25°C  
SUPPRESSION (dBc)  
A
SECOND-ORDER  
DISTORTION (dBc)  
THIRD-ORDER  
DISTORTION (dBc)  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
LO FREQUENCY (GHz)  
0.06  
0.1  
1
2
BASEBAND INPUT VOLTAGE (V rms)  
Figure 13. Second- and Third-Order Distortion, Carrier Feedthrough,  
Sideband Suppression, and SSB POUT vs. Baseband Differential Input Level  
(fLO = 900 MHz)  
Figure 10. Carrier Feedthrough vs. LO Frequency (fLO) and Temperature After  
Nulling at 25°C; Multiple Devices Shown  
0
–10  
–20  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
10  
SSB OUTPUT  
POWER (dBm)  
5
CARRIER  
FEEDTHROUGH (dBm)  
T
= +85°C  
A
–30  
–40  
–50  
–60  
–70  
–80  
0
T
= +25°C  
A
–5  
–10  
–15  
SIDEBAND  
SUPPRESSION (dBc)  
T
= –40°C  
A
SECOND-ORDER  
DISTORTION (dBc)  
THIRD-ORDER  
DISTORTION (dBc)  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
LO FREQUENCY (GHz)  
0.06  
0.1  
1
2
BASEBAND INPUT VOLTAGE (V rms)  
Figure 11. Sideband Suppression vs. LO Frequency (fLO) and Temperature;  
Multiple Devices Shown  
Figure 14. Second- and Third-Order Distortion, Carrier Feedthrough,  
Sideband Suppression, and SSB POUT vs. Baseband Differential Input Level  
(fLO = 2150 MHz)  
Rev. 0 | Page 10 of 32  
ADL5375  
ADL5375-05  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
0
–10  
–20  
10  
5
SSB OUTPUT  
POWER (dBm)  
CARRIER  
FEEDTHROUGH (dBm)  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
T
= –40°C  
A
0
T
= +25°C  
A
–5  
–10  
–15  
T
= +85°C  
SIDEBAND  
A
SUPPRESSION (dBc)  
SECOND-ORDER  
DISTORTION (dBc)  
6
4
THIRD-ORDER  
DISTORTION (dBc)  
2
0
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
LO FREQUENCY (GHz)  
0.06  
0.1  
1
2
BASEBAND INPUT VOLTAGE (V rms)  
Figure 15. Second- and Third-Order Distortion, Carrier Feedthrough,  
Sideband Suppression, and SSB POUT vs. Baseband Differential Input Level  
(fLO = 3500 MHz)  
Figure 18. OIP3 vs. LO Frequency (fLO) and Temperature (POUT ≈ −5 dBm @  
fLO = 900 MHz)  
0
–10  
–20  
80  
70  
60  
T
= +25°C  
A
T
= –40°C  
A
–30  
–40  
–50  
–60  
–70  
–80  
50  
40  
30  
20  
10  
0
T
A
= +85°C  
A
T
= +25°C  
A
T
= –40°C  
THIRD-ORDER  
T
= +85°C  
A
SECOND-ORDER  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
LO FREQUENCY (GHz)  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
LO FREQUENCY (GHz)  
Figure 19. OIP2 vs. LO Frequency (fLO) and Temperature (POUT ≈ −5 dBm @  
LO = 900 MHz)  
Figure 16. Second- and Third-Order Distortion vs. LO Frequency (fLO) and  
Temperature (Baseband I/Q Amplitude = 1 V p-p Differential)  
f
–20  
–30  
–40  
–50  
–60  
–70  
–80  
2
–20  
–30  
–40  
–50  
–60  
–70  
1.5  
SSB OUTPUT POWER (dBm)  
SSB OUTPUT  
POWER (dBm)  
1
0.5  
CARRIER  
FEEDTHROUGH (dBm)  
CARRIER  
FEEDTHROUGH (dBm)  
0
–0.5  
–1.5  
–2.5  
–3.5  
–1  
–2  
–3  
–4  
SIDEBAND  
SUPPRESSION (dBc)  
THIRD-ORDER  
SIDEBAND  
SUPPRESSION (dBc)  
DISTORTION (dBc)  
SECOND-ORDER  
DISTORTION (dBc)  
SECOND-ORDER  
DISTORTION (dBc)  
1
10  
BASEBAND FREQUENCY (MHz)  
100  
–6  
–4  
–2  
0
2
4
6
LO AMPLITUDE (dBm)  
Figure 20. Second- and Third-Order Distortion, Carrier Feedthrough,  
Sideband Suppression, and SSB POUT vs. LO Amplitude (fLO = 900 MHz)  
Figure 17. Second-Order Distortion, Carrier Feedthrough, Sideband  
Suppression, and SSB POUT vs. Baseband Frequency (fBB); fLO = 2140 MHz  
Rev. 0 | Page 11 of 32  
ADL5375  
ADL5375-05  
230  
225  
220  
215  
210  
205  
200  
195  
190  
185  
180  
–20  
2
SSB OUTPUT  
POWER (dBm)  
–30  
–40  
–50  
–60  
–70  
1
CARRIER  
FEEDTHROUGH (dBm)  
V
= 5.25V  
0
S
–1  
–2  
–3  
–4  
V
= 5.0V  
S
SIDEBAND  
SUPPRESSION (dBc)  
THIRD-ORDER  
DISTORTION (dBc)  
V
= 4.75V  
25  
S
SECOND-ORDER  
DISTORTION (dBc)  
–80  
–6  
–40  
85  
–4  
–2  
0
2
4
6
TEMPERATURE (°C)  
LO AMPLITUDE (dBm)  
Figure 21. Second- and Third-Order Distortion, Carrier Feedthrough,  
Sideband Suppression, and SSB POUT vs. LO Amplitude (fLO = 2150 MHz)  
Figure 23. Power Supply Current vs. Temperature  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
2
18  
16  
14  
12  
10  
8
SSB OUTPUT  
POWER (dBm)  
1
CARRIER  
FEEDTHROUGH (dBm)  
0
SIDEBAND  
SUPPRESSION (dBc)  
–1  
–2  
–3  
–4  
6
4
THIRD-ORDER  
DISTORTION (dBc)  
SECOND-ORDER  
DISTORTION (dBc)  
2
–6  
–4  
–2  
0
2
4
6
0
–160.5 –160.3 –160.1 –159.9 –159.7 –159.5 –159.3 –159.1  
LO AMPLITUDE (dBm)  
NOISE (dBm/Hz)  
Figure 22. Second- and Third-Order Distortion, Carrier Feedthrough,  
Sideband Suppression, and SSB POUT vs. LO Amplitude (fLO = 3500 MHz)  
Figure 24. 20 MHz Offset Noise Floor Distribution at fLO = 900 MHz  
(I/Q Amplitude = 0 mV p-p with 500 mV DC Bias)  
Rev. 0 | Page 12 of 32  
ADL5375  
ADL5375-05  
8
90  
88  
86  
84  
82  
80  
78  
76  
74  
0
–10  
7
6
5
4
3
2
1
SSB OUTPUT POWER ISOLATION (dB)  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
CARRIER FEEDTHROUGH (dBm)  
0
–160.5  
–160.1  
–159.7  
–159.3  
–158.9  
–158.5  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
NOISE (dBm/Hz)  
LO FREQUENCY (GHz)  
Figure 27. SSB POUT Isolation and Carrier Feedthrough with DSOP High  
Figure 25. 20 MHz Offset Noise Floor Distribution at fLO = 2140 MHz  
(I/Q Amplitude = 0 mV p-p with 500 mV DC Bias)  
10  
9
8
7
6
5
4
3
2
1
0
–158.9  
–158.5  
–158.1  
–157.7  
–157.3  
–156.9  
–156.5  
NOISE (dBm/Hz)  
Figure 26. 20 MHz Offset Noise Floor Distribution at fLO = 3500 MHz  
(I/Q Amplitude = 0 mV p-p with 500 mV DC Bias)  
Rev. 0 | Page 13 of 32  
 
ADL5375  
ADL5375-15  
VS = 5 V; TA = 25°C; LO = 0 dBm single-ended drive; baseband I/Q amplitude = 1 V p-p differential sine waves in quadrature with a  
1500 mV dc bias; baseband I/Q frequency (fBB) = 1 MHz, unless otherwise noted.  
5
12  
10  
8
V
= 5.25V  
S
4
V
= 5.0V  
S
3
2
T
= +25°C  
T
= –40°C  
V
= 4.75V  
A
A
S
1
0
6
T
= +85°C  
A
–1  
–2  
–3  
–4  
–5  
4
2
0
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
LO FREQUENCY (GHz)  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
LO FREQUENCY (GHz)  
Figure 28. Single-Sideband (SSB) Output Power (POUT) vs. LO Frequency (fLO)  
and Temperature  
Figure 31. SSB Output 1dB Compression Point (OP1dB) vs. LO Frequency (fLO)  
and Supply  
90  
5
4
60  
120  
V
= 5.25V  
S
3
2
6G  
150  
30  
V
= 4.75V  
1
S
V
= 5.0V  
S
0
450M  
0
180  
–1  
–2  
–3  
–4  
–5  
450M  
6G  
210  
330  
S11 OF LO  
S22 OF OUTPUT  
240  
300  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
LO FREQUENCY (GHz)  
270  
Figure 32. Smith Chart of LOIP (LOIN AC-Coupled to Ground) S11 and RFOUT  
S22 from 450 MHz to 6000 MHz  
Figure 29. Single-Sideband (SSB) Output Power (POUT) vs. LO Frequency  
(fLO) and Supply  
0
12  
T
= –40°C  
10  
8
A
–10  
–20  
–30  
–40  
LOIP  
T
= +25°C  
A
T
= +85°C  
A
6
RFOUT  
4
2
0
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
FREQUENCY (GHz)  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
LO FREQUENCY (GHz)  
Figure 33. Return Loss of LOIP (LOIN AC-Coupled to Ground) S11 and RFOUT  
S22 from 450 MHz to 6000 MHz  
Figure 30. SSB Output 1dB Compression Point (OP1dB) vs. LO Frequency (fLO)  
and Temperature  
Rev. 0 | Page 14 of 32  
 
 
ADL5375  
ADL5375-15  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
0
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
T
= +85°C  
A
T
= –40°C  
A
T
= +85°C  
A
T
= –40°C  
A
T
= +25°C  
A
T
= +25°C  
A
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
LO FREQUENCY (GHz)  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
LO FREQUENCY (GHz)  
Figure 37. Sideband Suppression vs. LO Frequency (fLO) and Temperature After  
Nulling at 25°C; Multiple Devices Shown  
Figure 34. Carrier Feedthrough vs. LO Frequency (fLO) and Temperature;  
Multiple Devices Shown  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
10  
0
–10  
–20  
–30  
SSB OUTPUT  
POWER (dBm)  
5
CARRIER  
FEEDTHROUGH (dBm)  
SIDEBAND  
SUPPRESSION (dBc)  
0
T
= +85°C  
A
–40  
–50  
–60  
–70  
–80  
–5  
–10  
–15  
T
= +25°C  
A
SECOND-ORDER  
DISTORTION (dBc)  
T
= –40°C  
A
THIRD-ORDER  
DISTORTION (dBc)  
0.06  
0.1  
1
2
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
LO FREQUENCY (GHz)  
BASEBAND INPUT VOLTAGE (V rms)  
Figure 38. Second- and Third-Order Distortion, Carrier Feedthrough,  
Sideband Suppression, and SSB POUT vs. Baseband Differential Input Level  
(fLO = 900 MHz)  
Figure 35. Carrier Feedthrough vs. LO Frequency (fLO) and Temperature After  
Nulling at 25°C; Multiple Devices Shown  
0
–10  
–20  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
10  
SSB OUTPUT  
POWER (dBm)  
CARRIER  
FEEDTHROUGH (dBm)  
5
T
= +85°C  
A
SIDEBAND  
SUPPRESSION (dBc)  
–30  
–40  
–50  
–60  
–70  
–80  
T
= –40°C  
A
0
T
= +25°C  
A
–5  
–10  
–15  
SECOND-ORDER  
DISTORTION (dBc)  
THIRD-ORDER  
DISTORTION (dBc)  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
LO FREQUENCY (GHz)  
0.06  
0.1  
1
2
BASEBAND INPUT VOLTAGE (V rms)  
Figure 39. Second- and Third-Order Distortion, Carrier Feedthrough,  
Sideband Suppression, and SSB POUT vs. Baseband Differential Input Level  
(fLO = 2150 MHz)  
Figure 36. Sideband Suppression vs. LO Frequency (fLO) and Temperature;  
Multiple Devices Shown  
Rev. 0 | Page 15 of 32  
ADL5375  
ADL5375-15  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
0
10  
5
SSB OUTPUT  
POWER (dBm)  
–10  
CARRIER  
FEEDTHROUGH (dBm)  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
SIDEBAND  
SUPPRESSION (dBc)  
T
= –40°C  
A
0
T
= +25°C  
A
–5  
–10  
–15  
SECOND-ORDER  
DISTORTION (dBc)  
T
= +85°C  
A
THIRD-ORDER  
DISTORTION (dBc)  
6
4
2
0
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
LO FREQUENCY (GHz)  
0.06  
0.1  
1
2
BASEBAND INPUT VOLTAGE (V rms)  
Figure 43. OIP3 vs. LO Frequency (fLO) and Temperature (POUT ≈ −5 dBm @  
fLO = 900 MHz)  
Figure 40. Second- and Third-Order Distortion, Carrier Feedthrough,  
Sideband Suppression, and SSB POUT vs. Baseband Differential Input Level  
(fLO = 3500 MHz)  
80  
70  
60  
0
–10  
–20  
–30  
T
= –40°C  
A
50  
40  
30  
20  
10  
0
–40  
THIRD-ORDER  
T = +25°C  
A
T
= +25°C  
A
–50  
–60  
–70  
–80  
T
= +85°C  
A
T
= +85°C  
A
T
= –40°C  
A
SECOND-ORDER  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
LO FREQUENCY (GHz)  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
LO FREQUENCY (GHz)  
Figure 44. OIP3 vs. LO Frequency (fLO) and Temperature (POUT ≈ −5 dBm @  
fLO = 900 MHz)  
Figure 41. Second- and Third-Order Distortion vs. LO Frequency (fLO) and  
Temperature (Baseband I/Q Amplitude = 1 V p-p Differential)  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
2
–20  
–30  
–40  
–50  
–60  
–70  
1.5  
SSB OUTPUT POWER (dBm)  
SSB OUTPUT  
POWER (dBm)  
1
0.5  
CARRIER  
FEEDTHROUGH (dBm)  
SIDEBAND  
0
SUPPRESSION (dBc)  
–0.5  
–1.5  
–2.5  
–3.5  
–1  
–2  
–3  
–4  
CARRIER  
FEEDTHROUGH (dBm)  
SIDEBAND  
SUPPRESSION (dBc)  
SECOND-ORDER  
DISTORTION (dBc)  
THIRD-ORDER  
DISTORTION (dBc)  
SECOND-ORDER  
DISTORTION (dBc)  
1
10  
100  
–6  
–4  
–2  
0
2
4
6
BASEBAND FREQUENCY (MHz)  
LO AMPLITUDE (dBm)  
Figure 45. Second- and Third-Order Distortion, Carrier Feedthrough,  
Sideband Suppression, and SSB POUT vs. LO Amplitude (fLO = 900 MHz)  
Figure 42. Second-Order Distortion, Carrier Feedthrough, Sideband  
Suppression, and SSB POUT vs. Baseband Frequency (fBB); fLO = 2140 MHz  
Rev. 0 | Page 16 of 32  
ADL5375  
ADL5375-15  
–20  
2
230  
225  
220  
215  
210  
205  
200  
195  
190  
185  
180  
CARRIER  
SSB OUTPUT  
POWER (dBm)  
FEEDTHROUGH (dBm)  
–30  
–40  
–50  
–60  
–70  
–80  
1
V
= 5.25V  
S
0
V
= 5.0V  
S
–1  
–2  
–3  
–4  
SECOND-ORDER  
DISTORTION (dBc)  
SIDEBAND  
SUPPRESSION (dBc)  
V
= 4.75V  
S
THIRD-ORDER  
DISTORTION (dBc)  
–6  
–4  
–2  
0
2
4
6
–40  
25  
TEMPERATURE (°C)  
85  
LO AMPLITUDE (dBm)  
Figure 46. Second- and Third-Order Distortion, Carrier Feedthrough,  
Sideband Suppression, and SSB POUT vs. LO Amplitude (fLO = 2150 MHz)  
Figure 48. Power Supply Current vs. Temperature  
18  
16  
14  
12  
10  
8
–10  
–20  
–30  
–40  
–50  
–60  
–70  
2
SSB OUTPUT  
POWER (dBm)  
1
CARRIER  
FEEDTHROUGH (dBm)  
0
SIDEBAND  
SUPPRESSION (dBc)  
–1  
–2  
–3  
–4  
6
THIRD-ORDER  
DISTORTION (dBc)  
4
2
SECOND-ORDER  
DISTORTION (dBc)  
0
–158.0 –157.8 –157.6 –157.4 –157.2 –157.0 –156.8 –156.6  
–6  
–4  
–2  
0
2
4
6
NOISE (dBm/Hz)  
LO AMPLITUDE (dBm)  
Figure 49. 20 MHz Offset Noise Floor Distribution at fLO = 900 MHz  
(I/Q Amplitude = 0 mV p-p with 1500 mV DC Bias)  
Figure 47. Second- and Third-Order Distortion, Carrier Feedthrough,  
Sideband Suppression, and SSB POUT vs. LO Amplitude (fLO = 3500 MHz)  
Rev. 0 | Page 17 of 32  
ADL5375  
ADL5375-15  
12  
0
90  
88  
86  
84  
82  
80  
78  
76  
74  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
10  
8
SSB OUTPUT POWER ISOLATION (dB)  
6
4
CARRIER FEEDTHROUGH (dBm)  
2
0
–158.5 –158.3 –158.1 –157.9 –157.7 –157.5 –157.3 –157.1  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
NOISE (dBm/Hz)  
LO FREQUENCY (GHz)  
Figure 50. 20 MHz Offset Noise Floor Distribution at fLO = 2140 MHz  
(I/Q Amplitude = 0 mV p-p with 1500 mV DC Bias)  
Figure 52. SSB POUT Isolation and Carrier Feedthrough with DSOP High  
9
8
7
6
5
4
3
2
1
0
–157.5  
–157.1  
–156.7  
–156.3  
–155.9  
–155.5  
NOISE (dBm/Hz)  
Figure 51. 20 MHz Offset Noise Floor Distribution at fLO = 3500 MHz  
(I/Q Amplitude = 0 mV p-p with 500 mV DC Bias)  
Rev. 0 | Page 18 of 32  
 
ADL5375  
THEORY OF OPERATION  
V-to-I Converter  
CIRCUIT DESCRIPTION  
The differential baseband inputs (QBBP, QBBN, IBBN, and  
IBBP) present a high impedance. The voltages applied to these  
pins drive the V-to-I stage that converts baseband voltages into  
currents. The differential output currents of the V-to-I stages  
feed each of their respective mixers. The dc common-mode  
voltage at the baseband inputs sets the currents in the two  
mixer cores. Varying the baseband common-mode voltage  
influences the current in the mixer and affects overall modula-  
tor performance. The recommended dc voltage for the baseband  
common-mode voltage is 500 mV dc for the ADL5375-05 and  
1500 mV for the ADL5375-15.  
The ADL5375 can be divided into five circuit blocks: the LO  
interface, the baseband voltage-to-current (V-to-I) converter,  
the mixers, the differential-to-single-ended (D-to-S) stage,  
and the bias circuit. A block diagram of the device is shown in  
Figure 53.  
LOIP  
PHASE  
SPLITTER  
LOIN  
IBBP  
IBBN  
Mixers  
Σ
RFOUT  
DSOP  
The ADL5375 has two double-balanced mixers: one for the  
in-phase channel (I channel) and one for the quadrature chan-  
nel (Q-channel). The output currents from the two mixers sum  
together into an internal load. The signal developed across this  
load is used to drive the D-to-S stage.  
QBBP  
QBBN  
Figure 53. Block Diagram  
The LO interface generates two LO signals in quadrature.  
These signals are used to drive the mixers. The I/Q baseband  
input signals are converted to currents by the V-to-I stages,  
which then drive the two mixers. The outputs of these mixers  
combine to feed the output balun, which provides a single-  
ended output. The bias cell generates reference currents for  
the V-to-I stage.  
D-to-S Stage  
The output D-to-S stage consists of an on-chip active balun  
that converts the differential signal to a single-ended signal.  
The balun presents 50 Ω impedance to the output (VOUT).  
Therefore, no matching network is needed at the RF output  
for optimal power transfer in a 50 Ω environment.  
LO Interface  
Bias Circuit  
The LO interface consists of a polyphase quadrature splitter  
and a limiting amplifier. The LO input impedance is set by  
the polyphase splitter. Each quadrature LO signal then passes  
through a limiting amplifier that provides the mixer with a  
limited drive signal.  
An on-chip band gap reference circuit is used to generate a  
proportional-to-absolute temperature (PTAT) reference current  
for the V-to-I stage.  
DSOP  
The DSOP pin can be used to disable the output stage of the  
modulator. If the DSOP pin is connected to ground or left  
unconnected, the part operates normally. If the DSOP pin is  
connected to the positive voltage supply, the output stage is  
disabled and the LO leakage is also reduced.  
The LO input can be driven single-ended or differentially.  
For applications above 3 GHz, improved OIP2 and LO leakage  
may result from driving the LO input differentially.  
Rev. 0 | Page 19 of 32  
 
 
 
ADL5375  
BASIC CONNECTIONS  
IBBN  
IBBP  
VPOS  
C5  
0.1µF  
C3  
1000pF  
VPOS  
S1  
A
B
VPOS  
C2  
1000pF  
C4  
0.1µF  
DSOP  
VPS1  
1
2
3
4
5
6
18  
17  
16  
15  
14  
13  
C6  
1000pF  
COMM  
COMM  
LOIP  
Z1  
RFOUT  
ADL5375  
LOIP  
RFOUT  
LOIN  
C1  
1000pF  
NC  
COMM  
C7  
COMM  
1000pF  
EXPOSED PADDLE  
NC  
NC  
GND  
QBBN  
QBBP  
Figure 54. Basic Connections for the ADL5375  
Figure 54 shows the basic connections for the ADL5375.  
All the baseband inputs must be externally dc biased. The  
recommended common-mode level is dependent on the  
version of the ADL5375.  
POWER SUPPLY AND GROUNDING  
Pin VPS1 and Pin VPS2 should be connected to the same 5 V  
source. Each pin should be decoupled with a 100 pF and  
0.1 μF capacitor. These capacitors should be located as close  
as possible to the device. The power supply can range between  
4.75 V and 5.25 V.  
ADL5375-05: 500 mV  
ADL5375-15: 1500 mV  
LO INPUT  
The LO input is designed to be driven from a single-ended  
source. The LO source is ac-coupled through a series capacitor  
to the LOIP pin while the LOIN pin is ac-coupled to ground  
through a second capacitor.  
The ten COMM pins should be tied to the same ground plane  
through low impedance paths.  
The exposed paddle on the underside of the package should also  
be soldered to a ground plane with low thermal and electrical  
impedance. If the ground plane spans multiple layers on the  
circuit board, they should be stitched together with nine vias  
under the exposed paddle as illustrated in the Evaluation Board  
section. The AN-772 application note discusses the thermal and  
electrical grounding of the LFCSP (QFN) package in detail.  
The typical LO drive level, which was used for the  
characterization of the ADL5375, is 0 dBm.  
Differential operation is also possible, in which case both sides  
of the differential LO source should be ac-coupled through a  
pair of series capacitors to the LOIP and LOIN pins.  
RF OUTPUT  
BASEBAND INPUTS  
The RF output is available at the RFOUT pin (Pin 16), which can  
drive a 50 Ω load. The internal balun provides a low dc path to  
ground. In most situations, the RFOUT pin must be ac-coupled  
to the load.  
The baseband inputs (IBBP, IBBN, QBBP, and QBBN) should be  
driven from a differential source. The nominal drive level used  
in the characterization of the ADL5375 is 1 V p-p differential  
(or 500 mV p-p on each pin).  
Rev. 0 | Page 20 of 32  
 
 
 
 
 
ADL5375  
to just above the KT (thermal) noise level. Asserting DSOP also  
reduces the supply current of the ADL5375 from 200 mA to  
131 mA.  
OUTPUT DISABLE  
The ADL5375 incorporates an output disable pin feature that  
shuts down the output amplifier stage to isolate the modulator  
from the load. This feature is enabled (output is disabled) when  
the voltage on the DSOP exceeds 2 V. The feature is disabled  
(output not enabled) when the DSOP pin is either tied to  
ground or left unconnected.  
The time delay between when the DSOP pin is forced to ground  
and the output power is restored is approximately 200 ns. The  
time delay between when the DSOP pin is forced to the positive  
supply voltage and the output shuts off is under 100 ns.  
Asserting DSOP further reduces LO leakage (see Figure 27 and  
Figure 52) and drives the broadband noise of the device down  
Rev. 0 | Page 21 of 32  
 
ADL5375  
OPTIMIZATION  
The carrier feedthrough and sideband suppression performance of  
the ADL5375 can be improved by using optimization techniques.  
The same applies to the Q-channel. For the ADL5375-15, the  
same theory applies except that  
Carrier Feedthrough Nulling  
VIBBP = VIBBN = 1500 mV.  
Carrier feedthrough results from minute dc offsets that occur  
between each of the differential baseband inputs. In an ideal  
It is often desirable to perform a one-time carrier null calibra-  
tion. This is usually performed at a given frequency and the  
radio allowed to operate over a frequency range on each side  
of that frequency. The nulled carrier feedthrough level degrades  
somewhat as the LO frequency is moved away from the  
frequency at which the null was performed. This variation is  
very small across a 30 MHz or 60 MHz cellular band, however.  
This small variation is due to the effects of LO-to-RF output  
leakage around the package and on the board as the frequency  
changes. Despite the degradation, the LO leakage can be  
expected to be better than when no nulling is performed.  
modulator, the quantities (VIBBP − VIBBN) and (VQBBP − VQBBN  
)
are equal to zero, which results in no carrier feedthrough. In a real  
modulator, those two quantities are nonzero and, when mixed  
with the LO, result in a finite amount of carrier feedthrough. The  
ADL5375 is designed to provide a minimal amount of carrier  
feedthrough. Should even lower carrier feedthrough levels be  
required, minor adjustments can be made to the (VIBBP − VIBBN  
)
and (VQBBP − V QBBN) offsets. The I-channel offset is held constant,  
while the Q-channel offset is varied until a minimum carrier  
feedthrough level is obtained. The Q-channel offset required to  
achieve this minimum is held constant, while the offset on the  
I-channel is adjusted until a new minimum is reached. Through  
two iterations of this process, the carrier feedthrough can be  
reduced to as low as the output noise. The ability to null is  
sometimes limited by the resolution of the offset adjustment.  
Figure 55 illustrates the typical relationship between carrier  
feedthrough and dc offset around the null.  
Sideband Suppression Optimization  
Sideband suppression results from relative gain and relative  
phase offsets between the I-channel and Q-channel and can  
be suppressed through adjustments to those two parameters.  
Figure 56 illustrates how sideband suppression is affected by  
the gain and phase imbalances.  
0
–10  
–60  
2.5dB  
–20  
1.25dB  
–64  
–68  
–72  
–76  
–80  
–84  
–88  
0.5dB  
–30  
–40  
–50  
–60  
–70  
–80  
0.25dB  
0.125dB  
0.05dB  
0.025dB  
0.0125dB  
0dB  
–90  
0.01  
0.1  
1
10  
100  
PHASE ERROR (Degrees)  
–300 –240 –180 –120 –60  
0
60  
120 180 240 300  
Figure 56. Sideband Suppression vs. Quadrature Phase Error for  
Various Quadrature Amplitude Offsets  
V
– V OFFSET (µV)  
P
N
Figure 55. Example of Typical Carrier Feedthrough vs. DC Offset Voltage  
Figure 56 underlines the fact that adjusting only one parameter  
improves the sideband suppression only to a point, unless the  
other parameter is also adjusted. For example, if the amplitude  
offset is 0.25 dB, improving the phase imbalance by better than  
1° does not yield any improvement in the sideband suppression.  
For optimum sideband suppression, an iterative adjustment  
between phase and amplitude is required.  
Using the ADL5375-05 version as an example, note that  
throughout the nulling process, the dc bias for the base-  
band inputs remains at 500 mV. When no offset is applied,  
V
V
IBBP = VIBBN = 500 mV, or  
IBBP VIBBN = VIOS = 0 V  
When an offset of +VIOS is applied to the I-channel inputs,  
The sideband suppression nulling can be performed either  
through adjusting the gain for each channel or through the  
modification of the phase and gain of the digital data coming  
from the baseband signal processor.  
V
V
V
IBBP = 500 mV + VIOS/2, and  
IBBN = 500 mV − VIOS/2, such that  
IBBP VIBBN = VIOS  
Rev. 0 | Page 22 of 32  
 
 
 
 
 
ADL5375  
APPLICATIONS INFORMATION  
DAC MODULATOR INTERFACING  
Driving the ADL5375-05 with a TXDAC®  
AD9779  
ADL5375-05  
93  
92  
21  
22  
OUT1_P  
IBBP  
RBIP  
The ADL5375-05 is designed to interface with minimal  
components to members of the Analog Devices, Inc. TxDAC  
families. These dual-channel differential current output DACs  
feature an output current swing from 0 mA to 20 mA. The  
interface described in this section can be used with any DAC  
that has a similar output.  
50  
RSLI  
100Ω  
RBIN  
50Ω  
OUT1_N  
IBBN  
84  
83  
9
OUT2_N  
OUT2_P  
QBBN  
QBBP  
RBQN  
50Ω  
An example of an interface using the AD9779 TxDAC is shown  
in Figure 57. The baseband inputs of the ADL5375-05 require  
a dc bias of 500 mV. The average output current on each of the  
outputs of the AD9779 is 10 mA. Therefore, a single 50 ꢀ resis-  
tor to ground from each of the DAC outputs results in an average  
current of 10 mA flowing through each of the resistors, thus  
producing the desired 500 mV dc bias for the inputs to the  
ADL5375-05.  
RSLQ  
100Ω  
RBQP  
50Ω  
10  
Figure 58. AC Voltage Swing Reduction Through the Introduction  
of a Shunt Resistor Between Differential Pair  
The value of this ac voltage swing limiting resistor is chosen  
based on the desired ac voltage swing. Figure 59 shows the  
relationship between the swing-limiting resistor and the peak-  
to-peak ac swing that it produces when 50 ꢀ bias-setting  
resistors are used.  
AD9779  
ADL5375-05  
93  
21  
OUT1_P  
IBBP  
RBIP  
50  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
RBIN  
50Ω  
92  
22  
OUT1_N  
OUT2_N  
OUT2_P  
IBBN  
84  
83  
9
QBBN  
QBBP  
RBQN  
50Ω  
RBQP  
50Ω  
10  
Figure 57. Interface Between the AD9779 and ADL5375-05 with 50 Ω  
Resistors to Ground to Establish the 500 mV DC Bias for the ADL5375-05  
Baseband Inputs  
10  
100  
1000  
10000  
R
()  
The AD9779 output currents have a swing that ranges from 0 mA  
to 20 mA. With the 50 ꢀ resistors in place, the ac voltage swing  
going into the ADL5375-05 baseband inputs ranges from 0 V to  
1 V. A full-scale sine wave out of the AD9779 can be described  
as a 1 V p-p single-ended (or 2 V p-p differential) sine wave  
with a 500 mV dc bias.  
L
Figure 59. Relationship Between the AC Swing-Limiting Resistor and the  
Peak-to-Peak Voltage Swing with 50 Ω Bias-Setting Resistors  
Filtering  
It is necessary to place an antialiasing filter between the DAC  
and modulator to filter out Nyquist images and broadband  
DAC noise. The interface for setting up the biasing and ac  
swing discussed in the Limiting the AC Swing section lends  
itself well to the introduction of such a filter. The filter can be  
inserted between the dc bias setting resistors and the ac swing-  
limiting resistor. Doing so establishes the input and output  
impedances for the filter.  
Limiting the AC Swing  
There are situations in which it is desirable to reduce the ac  
voltage swing for a given DAC output current. This can be  
achieved through the addition of another resistor to the interface.  
This resistor is placed in the shunt between each side of the  
differential pair, as shown in Figure 58. It has the effect of  
reducing the ac swing without changing the dc bias already  
established by the 50 ꢀ resistors.  
Figure 60 shows a third-order, Bessel low-pass filter with a 3 dB  
frequency of 10 MHz. Matching input and output impedances  
make the filter design easier, so the shunt resistor chosen is  
100 ꢀ, producing an ac swing of 1 V p-p differential. The  
frequency response of this filter is shown in Figure 61.  
Rev. 0 | Page 23 of 32  
 
 
 
 
 
 
ADL5375  
LPI  
AD9779  
ADL5375-05  
AD9779  
ADL5375-15  
RSIN  
771.1nH  
1kΩ  
93  
93  
21  
22  
21  
22  
OUT1_P  
OUT1_P  
IBBP  
IBBP  
RBIP  
RBIP  
RLIP  
50  
45.3Ω  
3480Ω  
RSLI  
53.62nF  
C1I  
350.1pF  
C2I  
5V  
100Ω  
RBIN  
50Ω  
RBIN  
45.3Ω  
RLIN  
3480Ω  
RSIP  
1kΩ  
92  
92  
84  
OUT1_N  
IBBN  
OUT1_N  
OUT2_N  
OUT2_P  
IBBN  
LNI  
771.1nH  
LNQ  
771.1nH  
RSQN  
1kΩ  
84  
9
9
OUT2_N  
QBBN  
QBBP  
QBBN  
QBBP  
RBQN  
RBQN  
45.3Ω  
RLQN  
3480Ω  
50Ω  
53.62nF  
C1Q  
350.1pF  
C2Q  
RSLQ  
100Ω  
5V  
RBQP  
83  
RBQP  
RLQP  
3480Ω  
RSQP  
1kΩ  
50Ω  
83 45.3Ω  
10  
10  
OUT2_P  
LPQ  
771.1nH  
Figure 62. Passive Level-Shifting Network For Biasing ADL5375-15  
from TxDAC  
Figure 60. DAC Modulator Interface with  
10 MHz Third-Order, Bessel Filter  
The active level shifting circuit involves the use of the ADA4938  
dual-differential amplifier. This device has a VOCM pin that  
sets the output dc bias. Through this pin, the output common-  
mode of the amplifier can be easily set to the requisite 1.5 V for  
biasing the ADL5375-15 baseband inputs.  
0
–10  
–20  
–30  
–40  
–50  
36  
30  
24  
18  
12  
6
MAGNITUDE  
GROUP DELAY  
USING THE AD9779 AUXILIARY DAC FOR CARRIER  
FEEDTHROUGH NULLING  
The AD9779 features an auxiliary DAC that can be used to  
inject small currents into the differential outputs for each  
main DAC channel. This feature can be used to produce the  
small offset voltages necessary to null out the carrier feed-  
through from the modulator. Figure 63 shows the interface  
required to use the auxiliary DACs, which adds four resistors  
to the interface.  
–60  
1
0
100  
10  
FREQUENCY (MHz)  
Figure 61. Frequency Response for DAC Modulator Interface with  
10 MHz Third-Orde,r Bessel Filter  
90  
AUX1_P  
500  
Driving the ADL5375-15 with a TXDAC  
AD9779  
ADL5375-05  
250Ω  
LPI  
771.1nH  
93  
21  
22  
The ADL5375-15 requires a 1500 mV dc bias and therefore  
requires a slightly more complex interface that performs a dc  
level shift on the baseband signals. It is necessary to level-shift  
the DAC output from a 500 mV dc bias to the 1500 mV dc bias  
that the ADL5375-15 requires.  
OUT1_P  
IBBP  
RBIP  
50Ω  
RSLI  
53.62nF  
C1I  
350.1pF  
C2I  
100Ω  
RBIN  
50Ω  
92  
89  
OUT1_N  
AUX1_N  
IBBN  
LNI  
771.1nH  
250Ω  
Level-shifting can be achieved with either a passive network  
or an active circuit. A passive network of resistors is shown  
in Figure 62. In this network, the dc bias of the DAC remains  
at 500 mV while the input to the ADL5375-15 is 1500 mV.  
It should be noted that this passive level-shifting network  
introduces approximately 2 dB of loss in the ac signal.  
500Ω  
87  
AUX2_N  
OUT2_N  
500Ω  
250Ω  
LNQ  
771.1nH  
84  
9
QBBN  
QBBP  
RBQN  
50Ω  
53.62nF  
C1Q  
350.1pF  
C2Q  
RSLQ  
100Ω  
RBQP  
50Ω  
83  
86  
10  
OUT2_P  
AUX2_P  
LPQ  
771.1nH  
250Ω  
500Ω  
Figure 63. DAC Modulator Interface with Auxiliary DAC Resistors  
Rev. 0 | Page 24 of 32  
 
 
 
 
 
ADL5375  
–60  
–62  
–64  
–66  
–68  
–70  
–72  
–74  
–76  
–78  
–80  
–82  
–84  
GSM/EDGE OPERATION  
The performance of the ADL5375 in a GSM/EDGE environ-  
ment is shown in this section.  
Figure 64 illustrates the 6 MHz offset noise of the ADL5375-05  
and the ADL5375-15 vs. output power at 940 MHz. Figure 65  
demonstrates how the 6 MHz offset noise is affected by varia-  
tions in LO drive level for both versions of the ADL5375 at  
940 MHz.  
ADJACENT CPR  
–99  
ALTERNATE CPR  
–100  
–101  
–102  
–103  
–18  
–16  
–14  
–12  
–10  
–8  
–6  
–4  
OUTPUT POWER (dBm)  
Figure 66. ADL5375-05 Single-Carrier W-CDMA Adjacent and Alternate  
Channel Power vs. Output Power at 2140 MHz; LO Power = 0 dBm  
–58  
–60  
–62  
–64  
–104  
ADL5375-15  
–105  
ADL5375-05  
–106  
–66  
ADJACENT CPR  
–107  
–68  
–70  
–72  
–74  
–76  
–5  
–4  
–3  
–2  
–1  
0
OUTPUT POWER (dBm)  
Figure 64. GSM/Edge (8-PSK) 6 MHz Offset Noise at 940 MHz vs. Output  
Power,  
LO Drive = 0 dBm  
–101  
–102  
–103  
–104  
–105  
–78  
ALTERNATE CPR  
–80  
–82  
–20  
–18  
–16  
–14  
–12  
–10  
–8  
–6  
–4  
OUTPUT POWER (dBm)  
Figure 67. ADL5375-15 Single-Carrier W-CDMA Adjacent and Alternate  
Channel Power vs. Output Power at 2140 MHz; LO Power = 0 dBm  
Figure 66 and Figure 67 show that both versions of the ADL5375  
are able to deliver about or better than −72 dB ACPR at an  
output power of −10 dBm.  
ADL5375-15  
ADL5375-05  
–106  
–107  
–108  
–109  
Figure 68 and Figure 69 illustrate the sensitivity of the EVM to  
variations in LO drive at 2140 MHz for the ADL5375-05 and  
ADL5375-15 respectively.  
0
1
2
3
4
5
6
7
6.0  
LO DRIVE (dBm)  
5.5  
Figure 65. GSM/Edge (8-PSK) 6 MHz Offset Noise at 940 MHz vs. LO Drive,  
Output Power = 0 dBm  
COMPOSITE EVM  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
W-CDMA OPERATION  
The ADL5375 is suitable for W-CDMA operation. Figure 66  
and Figure 67 show the adjacent and alternate channel power  
ratios for the ADL5375-05 and ADL5375-15, respectively, at an  
LO frequency of 2140 MHz.  
1.5  
SYMBOL EVM  
1.0  
0.5  
0
–6  
–4  
–2  
0
2
4
6
LO DRIVE (dBm)  
Figure 68. ADL5375-05 Single Carrier W-CDMA Composite and Symbol EVM  
vs. LO Drive at 2140 MHz; Output Power = −10 dBm  
Rev. 0 | Page 25 of 32  
 
 
 
 
 
 
 
ADL5375  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
Table 5. ADF4360-x Family Operating Frequencies  
Part  
Output Frequency Range (MHz)  
COMPOSITE EVM  
ADF4360-0  
ADF4360-1  
ADF4360-2  
ADF4360-3  
ADF4360-4  
ADF4360-5  
ADF4360-6  
ADF4360-7  
ADF4360-8  
2400 to 2725  
2050 to 2450  
1850 to 2150  
1600 to 1950  
1450 to 1750  
1200 to 1400  
1050 to 1250  
350 to 1800  
SYMBOL EVM  
65 to 400  
0
–6  
TRANSMIT DAC OPTIONS  
–4  
–2  
0
2
4
6
LO DRIVE (dBm)  
The AD9779 recommended in the previous sections of this data  
sheet is by no means the only DAC that can be used to drive the  
ADL5375. There are other appropriate DACs, depending on the  
level of performance required. Table 6 lists the dual TxDAC  
offered by Analog Devices.  
Figure 69. ADL5375-15 Single Carrier W-CDMA Composite and Symbol EVM  
vs. LO Drive at 2140 MHz; Output Power = −10 dBm  
The EVM exhibits moderate improvements with an increase in  
the LO drive.  
Table 6. Dual TxDAC Selection  
LO GENERATION USING PLLS  
Part  
Resolution (Bits) Update Rate (MSPS Minimum)  
Analog Devices has a line of PLLs that can be used for generating  
the LO signal. Table 4 lists the PLLs together with their maximum  
frequency and phase noise performance.  
AD9709  
8
125  
40  
AD9761 10  
AD9763 10  
AD9765 12  
AD9767 14  
AD9773 12  
AD9775 14  
AD9777 16  
AD9776 12  
AD9778 14  
AD9779 16  
125  
125  
125  
160  
160  
160  
1000  
1000  
1000  
Table 4. Analog Devices PLL Selection  
Phase Noise @ 1 kHz Offset  
Frequency, fIN (MHz) and 200 kHz PFD (dBc/Hz)  
Part  
ADF4110 550  
ADF4111 1200  
ADF4112 3000  
ADF4113 4000  
ADF4116 550  
ADF4117 1200  
ADF4118 3000  
−91 @ 540 MHz  
−87 @ 900 MHz  
−90 @ 900 MHz  
−91 @ 900 MHz  
−89 @ 540 MHz  
−87 @ 900 MHz  
−90 @ 900 MHz  
All DACs listed have nominal bias levels of 0.5 V and use the  
same simple DAC modulator interface that is shown in Figure 60.  
The ADF4360-x comes as a family of chips with nine operating  
frequency ranges. Choose chips depending on the local  
oscillator frequency required. While the use of the integrated  
synthesizer may come at the expense of slightly degraded noise  
performance from the ADL5375, it can be a cheaper alternative  
to a separate PLL and VCO solution. Table 5 shows the options  
available.  
MODULATOR/DEMODULATOR OPTIONS  
Table 7 lists other Analog Devices modulators and demodulators.  
Table 7. Modulator/Demodulator Options  
Modulator/  
Frequency  
Range (MHz)  
Part No.  
AD8345  
AD8346  
AD8349  
ADL5390  
Demodulator  
Comments  
Modulator  
Modulator  
Modulator  
Modulator  
140 to 1000  
800 to 2500  
700 to 2700  
20 to 2400  
External  
quadrature  
ADL5385  
ADL5370  
ADL5371  
ADL5372  
ADL5373  
ADL5374  
AD8347  
AD8348  
ADL5387  
AD8340  
AD8341  
Modulator  
Modulator  
Modulator  
Modulator  
Modulator  
Modulator  
Demodulator  
Demodulator  
Demodulator  
Vector modulator  
Vector modulator  
50 to 2200  
300 to 1000  
500 to 1500  
1500 to 2500  
2300 to 3000  
3000 to 4000  
800 to 2700  
50 to 1000  
50 to 2000  
700 to 1000  
1500 to 2400  
Rev. 0 | Page 26 of 32  
 
 
 
 
 
 
 
 
ADL5375  
EVALUATION BOARD  
underside for easy removal and replacement of the ADL5375  
should it be necessary.  
Populated RoHS-compliant evaluation boards are available  
for evaluation of both versions of the ADL5375. The ADL5375  
package has an exposed paddle on the underside. This exposed  
paddle should be soldered to the board for good thermal and  
electrical grounding. The evaluation board is designed without  
any components on the underside, so heat can be applied to the  
Both versions of the ADL5375 share the same evaluation board  
and schematic. To differentiate the boards from each other,  
the silkscreen on the underside of the board has a table that is  
marked to indicate which version (-05 or -15) is populated on  
the board.  
IBBN  
IBBP  
R1  
0  
R2  
0Ω  
R8  
OPEN  
R7  
OPEN  
R9  
OPEN  
VPOS  
C5  
C3  
1000pF  
0.1µF  
VPOS  
B
S1  
A
VPOS  
R6  
C2  
C4  
0.1µF  
10kΩ  
R15  
49.9Ω  
1000pF  
DSOP  
VPS1  
1
2
3
4
5
6
18  
17  
16  
15  
14  
13  
C6  
COMM  
COMM  
LOIP  
1000pF  
Z1  
RFOUT  
ADL5375  
LOIP  
LOIN  
RFOUT  
LOIN  
C1  
1000pF  
NC  
COMM  
C7  
1000pF  
COMM  
R16  
OPEN  
EXPOSED PADDLE  
NC  
NC  
R17  
0Ω  
R5  
OPEN  
VPOS  
GND  
R11  
OPEN  
R12  
OPEN  
R10  
OPEN  
R3  
0Ω  
R4  
0Ω  
QBBN  
QBBP  
Figure 70. ADL5375 Evaluation Board Schematic  
Table 8. Evaluation Board Description and Configuration Options  
Component  
Description  
Default Condition/Option Settings  
VPOS, GND Test Points  
S1 Switch  
Power Supply and Ground test points for clip leads  
DSOP Output Disable Select  
Red = 5 V, black = GND  
Position A = output enabled  
Position B = output disabled  
R1 to R4, R7 to R12  
Baseband input filtering components  
R1 to R4 = 0 Ω (0402)  
R7 to R12 = open (0402)  
LOIP SMA, R16, R17  
LOIN SMA, R16, R17  
Single-ended local oscillator input  
Optional SMA for differential LO input  
R16 = open, R17 = 0 Ω (0402)  
R16 = 0 Ω (0402), R17 = open  
Rev. 0 | Page 27 of 32  
 
 
ADL5375  
THERMAL GROUNDING AND EVALUATION  
BOARD LAYOUT  
The package for the ADL5375 features an exposed paddle on  
the underside that should be well soldered to a low thermal  
and electrical impedance ground plane. This paddle is typically  
soldered to an exposed opening in the solder mask on the  
evaluation board. Figure 73 illustrates the dimensions used  
in the layout of the ADL5735 footprint on the ADL5375  
evaluation board (1 mil. = 0.0254 mm).  
Notice the use of nine via holes on the exposed paddle. These  
ground vias should be connected to all other ground layers on  
the evaluation board to maximize heat dissipation from the  
device package.  
12 mil.  
23 mil.  
25 mil.  
Figure 71. Evaluation Board Layout, Top Layer  
82 mil.  
12 mil.  
19.7 mil.  
98.4 mil.  
133.8 mil.  
Figure 73. Dimensions for Evaluation Board Layout for the ADL5375 Package  
Under these conditions, the thermal impedance of the ADL5375  
was measured to be approximately 30°C/W in still air.  
Figure 72. Evaluation Board Layout, Bottom Layer  
Rev. 0 | Page 28 of 32  
 
 
 
ADL5375  
CHARACTERIZATION SETUP  
AEROFLEX IFR 3416  
250kHz TO 6GHz SIGNAL GENERATOR  
ROHDE & SCHWARTZ  
SPECTRUM ANALYZER  
FSU 20Hz TO 8GHz  
RF  
OUT  
FREQ 4MHz LEVEL 0dBm  
GAIN 0.7V  
GAIN 0.7V  
BIAS 0.5V  
BIAS 0.5V  
LO  
CONNECT TO BACK OF UNIT  
I OUT I/AM Q OUT Q/FM  
RF  
IN  
+6dBm  
90°  
0°  
I
Q
AGILENT 34401A  
MULTIMETER  
F-MOD TEST SETUP  
0.175 ADC  
F-MOD  
IP  
IN  
LO  
VPOS +5V  
QP  
QN  
AGILENT E3631A  
POWER SUPPLY  
OUTPUT  
OUT  
VPOS GND  
5.000  
0.175A  
6V  
±25V  
+
COM  
+
Figure 74. Characterization Bench Setup  
The primary setup used to characterize the ADL5375 is shown  
in Figure 74. This setup was used to evaluate the product as a  
single-sideband modulator. The Aeroflex signal generator supplied  
the LO and differential I and Q baseband signals to the device  
under test (DUT). The typical LO drive was 0 dBm. The I-channel  
is driven by a sine wave, and the Q-channel is driven by a cosine  
wave. The lower sideband is the single-sideband (SSB) output.  
The majority of characterization for the ADL5375 was performed  
using a 1 MHz sine wave signal with a 500 mV (ADL5375-05)  
or 1500 mV (ADL5375-15) common-mode voltage applied to  
the baseband signals of the DUT. The baseband signal path was  
calibrated to ensure that the VIOS and VQOS offsets on the  
baseband inputs were minimized as close as possible to 0 V  
before connecting to the DUT. See the Carrier Feedthrough  
Nulling section for the definitions of VIOS and VQOS  
.
Rev. 0 | Page 29 of 32  
 
 
ADL5375  
TEKTRONIX AFG3252  
DUAL FUNCTION  
ARBITRARY FUNCTION GENERATOR  
ROHDE & SCHWARTZ SMT 06  
SIGNAL GENERATOR  
CH1 1MHz  
AMPL 700mV p-p  
PHASE 0°  
RF  
OUT  
CH2 1MHz  
FREQ 4MHz TO 4GHz  
LEVEL 0dBm  
AMPL 700mV p-p  
PHASE 90°  
LO  
90°  
0°  
I
Q
SINGLE-TO-DIFFERENTIAL  
CIRCUIT BOARD  
AGILENT E3631A  
POWER SUPPLY  
F-MOD TEST RACK  
Q IN AC  
5.000  
0.350A  
+
F-MOD  
CHAR BD  
6V  
–  
±25V  
COM  
Q IN DCCM  
TSEN  
+
IP  
IN  
IP  
LO  
GND  
VPOSB VPOSA  
IN  
IN1  
AGND  
IN1  
QP  
OUTPUT  
OUT  
GND  
VN1  
VP1  
–5V  
+5V  
QN  
VPOS  
QP  
QN  
I IN DCCM  
I IN AC  
VPOS +5V  
AGILENT E3631A  
POWER SUPPLY  
ROHDE & SCHWARTZ  
FSEA 30 SPECTRUM ANALYZER  
0.500  
0.010A  
6V  
±25V  
+
COM  
+
RF  
IN  
100MHz TO 4GHz  
+6dBm  
VCM = 0.5V  
AGILENT 34401A  
MULTIMETER  
0.200 ADC  
Figure 75. Setup for Baseband Frequency Sweep and Undesired Sideband Nulling  
The setup used to evaluate baseband frequency sweep and  
undesired sideband nulling of the ADL5375 is shown in Figure 75.  
The interface board has circuitry that converts the single-ended  
I input and Q input from the arbitrary function generator to  
differential I and Q baseband signals with a dc bias of 500 mV  
(ADL5375-05) or 1500mV (ADL5375-15). Undesired sideband  
nulling was achieved through an iterative process of adjusting  
amplitude and phase on the Q-channel. See the Sideband  
Suppression Optimization section for a detailed description  
on sideband nulling.  
Rev. 0 | Page 30 of 32  
 
ADL5375  
OUTLINE DIMENSIONS  
0.60 MAX  
4.00  
BSC SQ  
0.60 MAX  
PIN 1  
INDICATOR  
1
24  
19  
18  
0.50  
BSC  
PIN 1  
INDICATOR  
2.65  
2.50 SQ  
2.35  
TOP  
VIEW  
3.75  
BSC SQ  
EXPOSED  
PA D  
(BOTTOMVIEW)  
0.50  
0.40  
0.30  
6
13  
12  
7
0.23 MIN  
0.80 MAX  
0.65 TYP  
2.50 REF  
1.00  
0.85  
0.80  
12° MAX  
0.05 MAX  
0.02 NOM  
0.30  
0.23  
0.18  
COPLANARITY  
0.08  
0.20 REF  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-220-VGGD-8  
Figure 76. 24-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
4 mm × 4 mm Body, Very Thin Quad  
(CP-24-3)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
Package Description  
Package Option  
CP-24-3  
CP-24-3  
Ordering Quantity  
ADL5375-05ACPZ-R71  
ADL5375-05ACPZ-WP1  
ADL5375-05-EVALZ1  
ADL5375-15ACPZ-R71  
ADL5375-15ACPZ-WP1  
ADL5375-15-EVALZ1  
24-Lead LFCSP_VQ, 7”Tape and Reel  
24-Lead LFCSP_VQ, Waffle Pack  
Evaluation Board  
1,500  
64  
−40°C to +85°C  
−40°C to +85°C  
24-Lead LFCSP_VQ, 7”Tape and Reel  
24-Lead LFCSP_VQ, Waffle Pack  
Evaluation Board  
CP-24-3  
CP-24-3  
1,500  
64  
1 Z = RoHS Compliant Part/Evaluation Board.  
Rev. 0 | Page 31 of 32  
 
 
 
ADL5375  
NOTES  
©2007 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D07052-0-12/07(0)  
Rev. 0 | Page 32 of 32  

相关型号:

ADL5375-15ACPZ-R7

400 MHz to 6 GHz Broadband Quadrature Modulator
ADI

ADL5375-15ACPZ-R71

400 MHz to 6 GHz Broadband Quadrature Modulator
ADI

ADL5375-15ACPZ-WP

400 MHz to 6 GHz Broadband Quadrature Modulator
ADI

ADL5375-15ACPZ-WP1

400 MHz to 6 GHz Broadband Quadrature Modulator
ADI

ADL5375ACPZ-15-R7

RF/Microwave Modulator/Demodulator, 400 MHz - 6000 MHz RF/MICROWAVE QUADRAPHASE MODULATOR, 4 X 4 MM, ROHS COMPLIANT, MO-220-VGGD-8, LFCSP-24
ADI

ADL5375ACPZ-15-WP

RF/Microwave Modulator/Demodulator, 400 MHz - 6000 MHz RF/MICROWAVE QUADRAPHASE MODULATOR, 4 X 4 MM, ROHS COMPLIANT, MO-220-VGGD-8, LFCSP-24
ADI

ADL5375ACPZ-R7

400 MHz to 6 GHz Broadband Quadrature Modulator
ADI

ADL5375_13

400 MHz to 6 GHz Broadband Quadrature Modulator
ADI

ADL5380

400 MHz to 6 GHz Quadrature Demodulator
ADI

ADL5380-29A-EVALZ

400 MHz to 6 GHz Quadrature Demodulator
ADI

ADL5380-30A-EVALZ

400 MHz to 6 GHz Quadrature Demodulator
ADI

ADL5380ACPZ-R2

IC,QUADRATURE DEMODULATOR,BIPOLAR,LLCC,24PIN,PLASTIC
ADI