ADL5380ACPZ-R2 [ADI]

IC,QUADRATURE DEMODULATOR,BIPOLAR,LLCC,24PIN,PLASTIC;
ADL5380ACPZ-R2
型号: ADL5380ACPZ-R2
厂家: ADI    ADI
描述:

IC,QUADRATURE DEMODULATOR,BIPOLAR,LLCC,24PIN,PLASTIC

文件: 总10页 (文件大小:367K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
400 to 6000MHz  
Quadrature Demodulator  
Preliminary Technical Data  
ADL5380  
FEATURES  
I/Q Demodulator  
RF frequency  
400 MHz to 6000MHz  
IIP3 +31 dBm  
IIP2 +60dBm  
Input P1dB +12dBm  
NF 13.2 dB @ 2.5GHz  
Voltage Conversion Gain of 4dB  
Quadrature demodulation accuracy  
Phase accuracy <0.5°  
Amplitude balance <0.25 dB  
LO Input –10 to +6 dBm  
Demodulation Bandwidth ~500 MHz  
I/Q Drive 2Vpp into 200  
APPLICATIONS  
QAM/QPSK demodulator  
W-CDMA/CDMA/CDMA2000/GSM  
Point-to-(Multi)Point Radio  
WiMax/LTE  
Figure 1. Functional Block Diagram  
GENERAL DESCRIPTION  
independent of differential load impedances as low as 100  
with a drive capability exceeding 2Vpp in to 200 .  
The ADL5380 is a high performance quadrature I-Q  
demodulator that covers an RF input frequency range from 400  
MHz to 6 GHz. With a NF = 13dB, IP1dB = 12dBm and IIP3 =  
31dBm at 2.5GHz, the demodulator offers good dynamic range  
suitable for the demanding infrastructure direct-conversion  
requirements. The differential RF inputs provide a well-behaved  
broad-band input impedance of 50and should be driven from  
a 1:1 balun for best performance.  
The fully balanced design minimizes effects from 2nd order  
distortion. The leakage from the LO port to the RF port is  
60dBc. Differential DC-offsets at the I and Q outputs are  
<10mV. Both of these factors contribute to the excellent IIP2 of  
>60dBm.  
<-  
The ADL5380 operates off a 4.75V to 5.25V supply with a  
typical supply current of 200mA. The ADL5380 is fabricated  
using Analog Devices’ advanced Silicon-Germanium bipolar  
process and is available in a 24-lead exposed paddle LFCSP  
package. Performance is specified over a -40oC to +85oC  
temperature range.  
Excellent quadrature accuracy is achieved using on-chip poly-  
phase filters for LO quadrature generation. Over a wide range of  
local oscillator (LO) levels, excellent demodulation accuracy is  
achieved with phase and amplitude balances < 0.25 dB and <  
0.5o, respectively. The demodulated in-phase (I) and quadrature  
(Q) differential outputs are fully buffered. The ADL5380  
provides a typical voltage conversion gain of 4dB  
Rev. PrB  
Information furnished by Analog Devices is believed to be accurate and reliable.  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its use.  
Specifications subject to change without notice. No license is granted by implication  
or otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.326.8703  
www.analog.com  
© 2008 Analog Devices, Inc. All rights reserved.  
AD5380  
Preliminary Technical Data  
SPECIFICATIONS  
Table 1. VS = 5 V, TA = 25oC, RBIAS = 1.5kΩ for RF ≤ 3GHz, RBIAS = 200Ω for RF ≥ 3GHz, Zo= 50 Ω unless otherwise noted. I & Q are  
loaded to 50 Ω using a 9:1 balun. Loss of RF input balun de-embedded from measurements. M/A COM ETC1-1-13 used for RF ≤  
3GHz. Johanson 3600BL14M050 used for 3GHz ≤ RF≤ 4GHz.  
Parameter  
Condition  
Min  
Typ  
Max Unit  
OPERATING CONDITIONS  
LO Frequency Range  
RF input Impedance  
RF Frequency Range  
RF INPUT @ 700MHz  
Input P1dB  
Voltage Conversion Gain  
Second Order Input Intercept (IIP2)  
Third Order Input Intercept (IIP3)  
Noise Figure  
0.4  
6
6
GHz  
Ω
GHz  
50  
0.4  
RFIP, RFIN  
11.2  
4.3  
72  
28  
11.5  
dBm  
dB  
dBm  
dBm  
450Ω load on QHI, QLO, IHI, ILO  
-5 dBm Each Tone  
-5 dBm Each Tone  
dB  
dB  
With a -4dBm interferer 5MHz away  
RFIP, RFIN  
TBD  
RF INPUT @ 1900MHz  
Input P1dB  
Voltage Conversion Gain  
Second Order Input Intercept (IIP2)  
Third Order Input Intercept (IIP3)  
Noise Figure  
11  
3.5  
67  
27  
12.8  
dBm  
dB  
dBm  
dBm  
dB  
450Ω load on QHI, QLO, IHI, ILO  
-5 dBm Each Tone  
-5 dBm Each Tone  
With a -4dBm interferer 5MHz away  
RFIP, RFIN  
TBD  
dB  
RF INPUT @ 2500MHz  
Input P1dB  
Voltage Conversion Gain  
Second Order Input Intercept (IIP2)  
Third Order Input Intercept (IIP3)  
Noise Figure  
12  
2.9  
60  
31  
13.2  
dBm  
dB  
dBm  
dBm  
dB  
450Ω load on QHI, QLO, IHI, ILO  
-5 dBm Each Tone  
-5 dBm Each Tone  
With a -4dBm interferer 5MHz away  
RFIP, RFIN  
TBD  
dB  
RF INPUT @ 3500MHz  
Input P1dB  
Voltage Conversion Gain  
Second Order Input Intercept (IIP2)  
Third Order Input Intercept (IIP3)  
Noise Figure  
11  
4.5  
54  
22  
14.7  
dBm  
dB  
dBm  
dBm  
dB  
450Ω load on QHI, QLO, IHI, ILO  
-5 dBm Each Tone  
-5 dBm Each Tone  
With a -4dBm interferer 5MHz away  
LOIP, LOIN  
TBD  
dB  
LO INPUT  
AC-coupled into LOIP with LOIN bypassed,  
measured at 2GHz  
Input Return Loss  
LO input level  
9
dB  
dBm  
-10  
5
RFIN,RFIP terminated in 50 Ω, LO Power=  
0dBm  
LO-RF Leakage  
–57  
dBm  
PrB | Page 2 of 10  
Preliminary Technical Data  
ADL5380  
I/Q BASEBAND OUTPUTS  
Voltage Conversion Gain  
QHI, QLO, IHI, ILO  
450Ω load on QHI, QLO, IHI, ILO @  
1900MHz  
4.3  
dB  
200Ω load  
TBD  
500  
TBD  
TBD  
TBD  
dB  
Demodulation Bandwidth  
Quadrature Phase Error  
Small Signal 3 dB Bandwidth  
1Vp-p Signal 3 dB Bandwidth  
400 Mhz to 6000 Mhz  
MHz  
MHz  
deg  
dB  
I/Q Amplitude Imbalance  
Output DC Offset (Differential)  
10  
mV  
0dBm LO input  
Output Common-Mode  
Group Delay Flatness  
Gain Flatness  
Vpos-3  
TBD  
TBD  
2
TBD  
10  
V
Any 20 MHz  
Any 20 MHz  
Differential 200 Ω load  
1kΩ load  
ns p-p  
dB p-p  
Vp-p  
Vp-p  
mA  
Output Swing  
Peak Output Current  
POWER SUPPLIES  
Voltage  
Each pin  
VPOS  
4.75  
5.25  
V
Current  
Current  
With RAdj = 1.5kΩ  
With RAdj = 200Ω  
240  
250  
mA  
mA  
PrB | Page 3 of 10  
AD5380  
Preliminary Technical Data  
ABSOLUTE MAXIMUM RATINGS  
Parameter  
Rating  
Stresses above those listed under Absolute Maximum  
Ratings may cause permanent damage to the device.  
This is a stress rating only; functional operation of the  
device at these or any other conditions above those  
listed in the operational sections of this specification is  
not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device  
reliability.  
Supply Voltage VPOS1, VPOS2, VPOS3  
LO Input Power  
RF/IF Input Power  
Internal Max Power Dissipation  
θJA  
5.5 V  
10 dBm (re: 50 Ω)  
TBD dBm (re: 50 Ω)  
TBD mW  
TBD°C/W  
Maximum Junction Temperature  
Operating Temperature Range  
Storage Temperature Range  
Lead Temperature (Soldering, 60 sec)  
TBD°C  
–40°C to +85°C  
–65°C to +125°C  
300°C  
ESD CAUTION  
PrB | Page 4 of 10  
Preliminary Technical Data  
ADL5380  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
24  
23  
22  
21  
20  
19  
VCC GND RFIP RFIN GND ADJ  
1
2
3
4
5
6
18  
GND  
GND  
GND  
IHI  
GND 17  
QHI 16  
QLO 15  
ADL5380  
TOP VIEW  
ILO  
(Not to Scale)  
GND  
VCC  
GND  
14  
VCC 13  
ENBL GND LOIP LOIN GND NC  
10 11 12  
Figure 2. Pin Configuration  
7
8
9
Table 2. Pin Function Descriptions  
Pin No. Mnemonic  
1,2,5,8,11,14,17,18,20,23 GND  
Description  
Ground Connect.  
6, 13, 24  
VCC  
Supply. Positive supply for LO, IF, biasing, and baseband sections. These pins should be  
decoupled to the board ground using appropriate-sized capacitors. o a low impedance ground  
plane.  
12,  
7
NC  
ENBL  
Do not connect these pins.  
Enable Control.  
current. The default setting for this pin is open.  
9,10  
LOIP, LOIN  
Local Oscillator Input. Pins must be ac-coupled. A differential drive through a balun  
(recommended balun is the M/A-COM ETC1-1-13 for lower frequecies and Johanson xxxx for  
higher frequecies) is necessary to achieve optimal performance.  
3,4,15,16  
IHI, ILO, QLO, I Channel and Q Channel Mixer Baseband Outputs. These outputs have a 50 Ω differential  
QHI  
output impedance (25 Ω per pin). Each output pair can swing 2 V p-p (differential) into a load of  
200 Ω. Output 3 dB bandwidth is ~ 500 MHz.  
19  
ADJ  
A resistor to VPOS that optimizes third order intercept. For operation < 3GHz, RADJ = 1.5 kΩ. For  
operation from 3GHz to 4GHz, RADJ = 200Ω.  
21, 22  
RFIN, RFIP  
RF Input. A single-ended 50 Ω signal can be applied to the RF inputs through a 1:1 balun  
(recommended balun is the M/A-COM ETC1-1-13 for lower frequecies and Johanson xxxx for  
higher frequecies).  
EP  
Exposed Paddle. Connect to a low impedance thermal and electrical ground plane.  
PrB | Page 5 of 10  
AD5380  
Preliminary Technical Data  
TYPICAL PERFORMANCE CHARACTERISTICS  
VS = 5 V, T = 25°C, RADJ = 1.5 kΩ, ZO = 50 Ω, ETC1-1-13 balun on RF input. Balun loss de-embedded.  
15  
10  
5
14  
12  
10  
8
80  
75  
70  
65  
60  
55  
50  
45  
35  
30  
25  
20  
15  
10  
5
6
4
0
2
-5  
0
500  
1000  
1500  
2000  
2500  
3000  
0
500  
1000  
1500  
2000  
2500  
3000  
RF Frequency (MHz)  
RF Frequency (MHz)  
Figure 3. Gain & IP1dB vs. Frequency  
Figure 6 IIP3 and IIP2 vs. Frequency  
15  
14  
13  
12  
11  
10  
9
1
0.8  
0.6  
0.4  
0.2  
0
+85 Deg  
+25 Deg  
-40 Deg  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
8
500  
1000  
1500  
2000  
2500  
3000  
500  
1000  
1500  
2000  
2500  
3000  
LO Frequency (MHz)  
RF Frequency (MHz)  
Figure 4. Noise Figure vs. Frequency  
Figure 7.Magnitude Imbalance vs. Frequency  
5
4
70  
60  
50  
40  
30  
20  
10  
0
3
2
1
0
-1  
-2  
-3  
-4  
-5  
400  
600  
800  
1000  
1200  
1400  
1600  
1800  
2000  
2200  
2400  
2600  
2800  
3000  
Frequency (Mhz)  
500  
1000  
1500  
2000  
RF Frequency (MHz)  
2500  
3000  
Figure 8. Image Rejection vs. Frequency  
Figure 5. Phase Imbalance vs. Frequency  
PrB | Page 6 of 10  
Preliminary Technical Data  
ADL5380  
VS = 5 V, T = 25°C, RADJ = 200Ω, ZO = 50 Ω, Johanson 3600BL14M050 balun used on RF input. Balun loss de-embedded.  
60  
55  
50  
45  
40  
35  
30  
25  
15  
10  
5
25  
20  
15  
10  
5
9
7
5
3
1
-1  
-3  
-5  
0
-5  
0
3000  
3200  
3400  
3600  
3800  
4000  
4200  
3000  
3200  
3400  
3600  
3800  
4000  
4200  
RF Frequency (MHz)  
RF Frequency (MHz)  
Figure 12 IIP3 and IIP2 vs. Frequency  
Figure 9. Gain & IP1dB vs. Frequency  
1
0.8  
0.6  
0.4  
0.2  
0
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
+85 Deg  
+25 Deg  
-40 Deg  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
8
3000  
3200  
3400  
3600  
3800  
4000  
4200  
LO Frequency (MHz)  
3000  
3200  
3400  
3600  
3800  
4000  
4200  
RF Frequency (MHz)  
Figure 10. Noise Figure vs. Frequency  
Figure 13. Magnitude Imbalance vs. Frequency  
5
4
0
-10  
-20  
-30  
-40  
-50  
-60  
3
2
1
0
3.5GHz  
-1  
-2  
-3  
-4  
-5  
700MHz  
-70  
-60  
-50  
-40  
-30  
-20  
-10  
0
3000  
3200  
3400  
3600  
3800  
4000  
4200  
RF Input Power (dBm)  
RF Frequency (MHz)  
Figure 14. WiMAX EVM vs. RF Input Powerr a 16QAM, 10MHz BW signal at 700Mhz  
and 3.5Ghz  
Figure 11. Phase Balance vs. Frequency  
PrB | Page 7 of 10  
AD5380  
Preliminary Technical Data  
EVALUATION BOARD  
The ADL5382 evaluation board is available. There are two versions of the board, optimized for performance for separate frequency  
ranges. For operation < 3GHz, an FR4 material based board with the ETC1-1-13 balun footprint is available. For operation between  
3GHz to 4GHz, a Rogers material based board with the Johanson 3600BL14M050 balun footprint is available.  
The board can be used for single-ended or differential baseband analysis. The default configuration of the board is for single-ended baseband  
analysis.  
RFx  
T3x  
C5x  
C12x  
R19x  
R23x  
V
POS  
V
POS  
C8x  
C11x  
24  
23  
22  
21  
20  
19  
1 GND  
GND 18  
GND 17  
QHI 16  
R3x  
R5x  
2 GND  
3 IHI  
IPx  
INx  
QPx  
QNx  
R16x  
C16x  
R14x  
C15x  
R17x  
T4x  
R18x  
T2x  
ADL5380  
R7x  
R6x  
V
4 ILO  
5 GND  
6 VCC  
QLO15  
GND 14  
VCC 13  
R15x  
R13x  
R4x  
R2x  
C12x  
R10x  
V
POS  
POS  
C6x  
C9x  
C7x  
C10x  
7
8
9
10  
11  
12  
R9x  
R1x  
R9x  
Note: x= B, for low frequency operation upto 3GHz, ETC1-1-13 balun  
on RF & LO ports.  
R11x  
V
POS  
C2x  
C3x  
=A, for frequency operation from 3GHz to 4GHz, Johanson  
3600BL14M050 balun on RF & LO ports.  
C4x  
C1x  
P1A  
T1x  
V
POS  
LONx  
LOPx  
LO_SE  
Figure 16. Evaluation Board Schematic  
PrB | Page 8 of 10  
Preliminary Technical Data  
ADL5380  
Table 3. Evaluation Board Configuration Options  
Component Function  
Default Condition  
VPOS, GND  
Power Supply and Ground Vector Pins.  
Not Applicable  
R10x, R12x,  
R19x  
Power Supply Decoupling. Shorts or power supply decoupling resistors.  
R10x, R12x, R19x = 0 Ω (0603)  
C6x to C10x  
The capacitors provide the required dc coupling up to 6 GHz.  
Device Enable. When connected to VPOS, the device is active.  
C6x, C7x, C8x = 100 pF (0402)  
C9x, C10x, C11x = 0.1 μF (0603)  
P1x, R11x,  
R9x, R1x  
P1A, R9x=DNI, R1x= DNI, R11x=  
0 Ω.  
R23x  
Adjust Pin. Resistor value here sets the bias voltage at this pin and optimizes third order  
distortion.  
R23B= 1.5k Ω (0603)  
R23A= 200 Ω (0603)  
C1x to C5x,  
C12x  
AC Coupling Capacitors. These capacitors provide the required ac coupling from  
400MHz to 4GHz.  
C2x, C3x, C5x, C12x = 100 pF  
(0402),  
C1x, C4x = DNI  
R2x to R7x,  
R13x to  
R18x  
Single-Ended Baseband Output Path. This is the default configuration of the evaluation  
board. R13x to R18x are populated for appropriate balun interface.  
R2x to R5x are not populated. Baseband outputs are taken from QHI and IHI.  
R13x to R18x = 0 Ω (0402),  
R2x to R7x = Open  
The user can reconfigure the board to use full differential baseband outputs. R2x to R5x  
provide a means to bypass the 9:1 TCM9-1 transformer to allow for differential baseband  
outputs. Access the differential baseband signals by populating R2x to R5x with 0 Ω and  
not populating R13x to R18x. This way the transformer does not need to be removed.  
The baseband outputs are taken from the SMAs of Q_HI, Q_LO, I_HI, and I_LO. R6x and  
R7x are provisions for applying a specific differential load across the baseband outputs  
T2x, T4x  
IF Output Interface. TCM9-1 converts a differential high impedance IF output to a single- T2x, T4x = TCM9-1, 9:1 (Mini-  
ended output. When loaded with 50 Ω, this balun presents a 450 Ω load to the device.  
The center tap can be decoupled through a capacitor to ground.  
Circuits)  
C15x, C16x  
T1x  
Decoupling Capacitors. C15x and C16x are the decoupling capacitors used to reject  
noise on the center tap of the TCM9-1.  
C15x, C16x = 0.1 μF (0402)  
LO Input Interface. A 1:1 RF balun that converts the single-ended RF input to differential  
signal is used.  
T1B = ETC1-1-13, 1:1 (M/A COM)  
for operation < 3GHz.  
T1A= Johanson 3600BL14M050  
for operation from 3GHz to  
4GHz.  
T3x  
RF Input Interface. A 1:1 RF balun that converts the single-ended RF input  
to differential signal is used.  
T3B = ETC1-1-13, 1:1 (M/A COM)  
for operation < 3GHz.  
T3A= Johanson 3600BL14M050  
for operation from 3GHz to  
4GHz.  
PrB | Page 9 of 10  
AD5380  
Preliminary Technical Data  
OUTLINE DIMENSIONS  
Figure 10. 24-Lead Lead Frame Chip Scale Package [LFCSP_VQ] 4 mm × 4 mm Body, Very Thin Quad (CP-24-2)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
ADL5380ACPZ-R7  
ADL5380ACPZ-WP  
ADL5380-30A-EVALZ  
ADL5380-29A-EVALZ  
Temperature Range  
–40°C to +85°C  
–40°C to +85°C  
Package Description  
Package Option  
7” Tape and Reel  
Waffle Pack  
Evaluation Board for operation < 3GHz  
Evaluation Board for operation from 3GHz to 4GHz  
PrB | Page 10 of 10  
PR07585-0-6/08(PrB)  

相关型号:

ADL5380ACPZ-R7

400 MHz to 6 GHz Quadrature Demodulator
ADI

ADL5380ACPZ-WP

400 MHz to 6 GHz Quadrature Demodulator
ADI

ADL5382

700 MHz to 2.7 GHz Quadrature Demodulator
ADI

ADL5382-EVALZ

700 MHz to 2.7 GHz Quadrature Demodulator
ADI

ADL5382ACPZ-R7

700 MHz to 2.7 GHz Quadrature Demodulator
ADI

ADL5382ACPZ-WP

700 MHz to 2.7 GHz Quadrature Demodulator
ADI

ADL5385

50 MHz to 2200 MHz Quadrature Modulator
ADI

ADL5385-EVALZ

50 MHz to 2200 MHz Quadrature Modulator
ADI

ADL5385ACPZ-R2

50 MHz to 2200 MHz Quadrature Modulator
ADI

ADL5385ACPZ-R7

50 MHz to 2200 MHz Quadrature Modulator
ADI

ADL5385ACPZ-WP

50 MHz to 2200 MHz Quadrature Modulator
ADI

ADL5386

Correcting Imperfections in IQ Modulators to Improve RF Signal Fidelity
ADI